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WEAKLY SMOOTH CONTINUA
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LEWIS LUM

ABSTRACT. We define and investigate a class of continua called weakly

smooth. Smooth dendroids, weakly smooth dendroids, generalized trees, and

smooth continua are all examples of weakly smooth continua. We generalize

characterizations of the above mentioned examples to weakly smooth continua.

In particular, we characterize them as compact Hausdorff spaces which admit

a quasi order satisfying certain properties.

Introduction. A dendroid X is smooth at the point p if whenever xn is a

net in X the condition lim„ xn = x implies Limn \p, xn] = \p, x], where \p, x]

denotes the unique subcontinuum of X irreducible between p and x. Smooth

dendroids were investigated by Charatonik and Eberhart [3]. The nonmetric

analog of smooth dendroids, generalized trees, was studied by Ward [20].

G. R. Gordh, Jr. [8] generalized this notion to smooth continua by impos-

ing the smoothness condition on continua which are hereditarily unicoherent at

p. In [5] various characterizations of smooth continua are obtained; smooth

metric continua are discussed in [IS]; and a quasi order characterization was

obtained in [13].

In [14] smooth dendroids were generalized by relaxing the smoothness

condition. A dendroid X is weakly smooth at p if whenever xn is a convergent

net in X there exists a point x €. X such that Li„ [p, xn] = \p, x]. Analogs of

the well known characterizations of smooth dendroids were proved.

The purpose of this paper is to define and investigate weakly smooth con-

tinua. We generalize results in [5] and [14] to weakly smooth continua as well

as obtain other characterizations. In particular, we characterize weakly smooth

continua as compact Hausdorff spaces which admit a quasi order satisfying certain

properties.

We use the following notation: the symbol □ denotes the empty set; and if

A C Y C X then cl A (cly A) denotes the closure of A (in Y) and int A

(inty A) denotes the interior of A (in Y).
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1. Preliminaries. A continuum is a nondegenerate compact connected

Hausdorff space. A continuum is irreducible if it contains two points with no

proper subcontinuum containing them. An arc is a continuum (not necessarily

metrizable) with exactly two noncut points. A continuum is decomposable if it

can be expressed as the union of two proper subcontinua; otherwise, it is indecom-

posable.

An irreducible continuum is of type A' [7] if each subcontinuum with

nonvoid interior is decomposable. We define a continuum to be of type A' at the

point p if each subcontinuum which is irreducible between p and some other point

is of type A'.

A continuum is hereditarily unicoherent if the intersection of any two sub-

continua is connected. It is hereditarily unicoherent at the point p [8] if the

intersection of any two subcontinua, each of which contains p, is connected.

An arboroid is a hereditarily unicoherent arcwise connected continuum. A

tree is a hereditarily unicoherent locally connected continuum. A dendroid

(dendrite) is a metrizable arboroid (tree). These definitions are known to be

equivalent to the original definitions (see [4], [19], and [20]).

Throughout this paper we use the letter X to denote a continuum which (i)

is hereditarily unicoherent at p, and (ii) has the property that all of its indecom-

posable subcontinua are irreducible. Note that arboroids satisfy (i) by definition

and (ü) by a result of Bellamy [1 ].

For each x E X, let [p, x] denote the unique subcontinuum irreducible

between p and x. The weak cut point order with respect to p, denoted <p, is

defined by x <p y if and only if x E \p, y].

For a subset A C X let

L(A) = {x E X\x <p a for some a E A},

M(A) = {x E X\ a <p x for some a E A}, and

E(A) = L(A) n M(A).

Note that for each xEX, L(x) = \p, x] and E(x) = {y EX\ \p, x] = \p, y]}.

A subset C C X is a chain (with respect to <p) if C x C C rp U Y~l where

rp = {(x, y) E X x X\x <p y) and    1 = {(x, y) EX x X\ (y, x) 6 Tp}.

An element a in a subset A C X is minimal (maximal), whenever x <p a

(a <p x) in A implies a <p x (x <p a). The set of all minimal (maximal) elements

of A is denoted min A (max A). If z E A and z <p a for all a E A then z is

called a zero of A.

The symbols x <p y, x E \p, y],x E L(y), and (x, y) E Yp will be used

interchangeably. In case x <p y and x   E(y) we will write x <p y.

Although <p may not be antisymmetric, it is always reflexive and transitive.

Such a relation is called a quasi order. An antisymmetric quasi order is called a

partial order.
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Lemma 1.1. Let x EX- {p}. Then:

GO intL(x) E(x) = a;

(iii) E(x) is connected;

(iv) ifX is of type A' at p, then E(x) is closed;

(v) ifACX is closed, then min A ¥=

(vi) each subcontinuum of X has a zero;

(vii) if <p is a partial order (in particular, ifX is arcwise connected), then

X is hereditarily unicoherent.

Proof, (i) is clear, (ii) follows from [9, Theorem 3-44, p. 140]. (iii) is a

special case of [6, Theorem 12]. For (iv), the proof of [17, Theorem 7, p. 13]

generalizes to nonmetric continua. See [21, Theorem 1, p. 146] for the proof of

(v). To prove (vi) let Y be a subcontinuum of X and let z E min Y. Then [p, z]

n Y c E(z) and \p, z] U Y is a continuum which is hereditarily unicoherent at p.

Hence for each y E Y, \p, y] C \p, z] U Y. Consequently, □ \p, y] C\(\p,z]

n Y) C E(z). It follows that z <p y; that is, z is a zero of Y. Finally, the proof

of (vii) is similar to the proof of [5, Theorem 2.2, p. 63].

Our first theorem is a partial generalization of [7, Theorem 3.7, p. 653].

Theorem 1.2. IfX is a chain then X is irreducible between p and some

other point.

Proof. Index X = {x„} so that xm <p x„ whenever m < n. Then X =

U„ \P> x„] is the union of an increasing nest of irreducible continua.

Note that for each x EX, there existsy EX such that x <p y. (If this were

not the case we would be done.)

Claim 1. Suppose Y is a subcontinuum of X containing p. If Y contains

xn for arbitrarily large n then Y = X.

Proof of claim. For any xmEX choose xnEY such that xm <p xn. Since

Y is hereditarily unicoherent at p, xm E \p, xn] C Y. It follows that Y = X.

Claim 2. For each x EX, the set clM(x) is connected.

Proof of claim. We first show N = X - \p, x] is connected. Let A and B

be separated sets whose union is N. Since xnEN for all x <p xn, we may assume

x„ E A for arbitrarily large n. From Claim 1 we infer X = [p, x] U clA and

hence B = □. Thus N is connected.

NowM(x) =NU E(x) is the union of two connected sets. Since clM(x) =

cl   U cl E(x) it suffices to show cl AT n cl £(x)   □. Suppose cl N n cl E(x) =

□; then in particular, x $ cl N. Choose any z E cl N n \p, x] and note that jc £

\p, z]. But according to Claim 1, \p, z] U cl N = X. This contradiction proves

the claim.
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Claim 3. Let z be a cluster point of the net X = {*„}• If z <px then jc is

also a cluster point of the net xn. In particular, there exists z G X such that when-

ever z <p jc, je is a cluster point of the net xn.

Proof of claim Suppose z <p x and x is not a cluster point of the net xn.

Then there exists y G X and an open neighborhood U'vciX satisfying xEUC

[p, y] - E(y). By the selection of z it follows that z G cl Af( y). Hence by

Claim 1, X = [p, z] U cl Af(.y)- This is a contradiction since x £ \p, z] and

cl Af( y) C cl(X - LO implies x £ cl M( y).

For the remainder of the proof assume z is a point in X such that x is a

cluster point of the net xn whenever z<^x.

Claim 4. The continuum cl Af(z) is indecomposable.

Proof of claim. Let H C cl Af(z) be a subcontinuum with nonvoid interior

in cl Af(z). It follows that H contains xn for arbitrarily large n. Let A be a zero

of Hand note that [p, h] UH = X. Since \p, h] HHC E(h) it follows that

x G H whenever h <p x. Thus H contains all the cluster points of the net xn.

Hence by the selection of z, cl Af(z) C H. From [9, Theorem 341, p. 139], we

infer cl M(z) is indecomposable.

Now by the hypothesis, cl Af(z) is irreducible, or, equivalently, cl Af(z) con-

tains at least two composants. Let £ be a composant of cl Af(z) which does not

contain z.

To conclude the proof of the theorem we consider two cases: (a) K C

\p, z], and (b) K £ \p, z].

Case (a). Recall that K is dense in cl Af(z). If K C fp, z] then cl K =

cl Af(z) C \p, z], and hence X = \p, z] U cl Af(z) = [p, z].

Case (b). Choose x£K-\p, z]. Then since X is a chain, x G Af(z). Apply

Claim 2 to the continuum \p, x]. We infer that cl(Af(z) n \p, x\) is a subcontin-

uum of [p, x]. Since jc, z G cl(M(z) n [p, x]) C cl Af(z) and cl Af(z) is irreduc-

ible between x and z it follows that cl Af(z) = cl(M(z) n \p,x])C \p,x]. Hence,

X = [p, z] U cl Af(z) C fp, jc] C A"; i.e., X = \p,x]. This concludes the proof

of the theorem.

Corollary 1.3. Suppose Vp u r~1 is a closed subset ofX x X. If

{\p, xn]} is a nest of chains then cl(\J„ \p, xn\) is irreducible between p and

some other point.

2. Smooth continua. The continuum Z is smooth at the point q [8] pro-

vided Z is hereditarily unicoherent at q and for each net zn G Z the condition

lim„ zn = z implies Lim„ [q, zn] = [q, z]. The continuum Z is smooth if there

exists a point q such that Z is smooth at q.

A generalized tree is an arcwise connected smooth continuum. A smooth

dendroid is a metrizable generalized tree. According to Lemma 1.1 (vii) and [10]
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the above definition of generalized tree is equivalent to the definition originally

given by Ward [20].

For the continuum X, which is hereditarily unicoherent at p, denote by V(X, p)

the set of all irreducible subcontinua of the form \p, x]. We view V(X, p) as a

subspace of 2X, the space of nonempty closed subsets of X with the Vietoris topol-

ogy [16]. Let rjp: X—► V(X, p) denote the natural function defined by rjp(x) =

\p, x]. The space V(X, p) is studied in [14] when X is a dendroid. Note that in

this more general setting ijp need not be one to one; indeed r\p is one to one if and

only if <p is a partial order.

The theorem below is proved in [14] for dendroids. The proof easily

generalizes to nonmetric continua.

Theorem 2.1. The continuum X is smooth at p if and only if the function

r]p . X —► 1XX, p) is continuous.

For the continuum X, which is hereditarily unicoherent at p, we define an

equivalence relation p on X by (x, y)Ep if and only if [p, x] = \p, y]. Note

that the equivalence class containing x is E(x). Let <p: X —> X/p denote the

natural quotient map.

In case X is smooth at p Gordh [8] showed this relation defines an upper

semicontinuous monotone decomposition of X whose decomposition space is a

generalized tree.

Lemma 2.2. If Y CX is a subcontinuum containing p then 0-1(0(y)) = Y.

Proof. We show only 4Tl(<KY)) CY. If x E 0_1(0(IO) there exists yE

Y such that <p(x) = <p(y). Since Y is hereditarily unicoherent at p, x E \p, x] =

Ip, y] c Y.

3. Property a at p. The continuum X has property a at p if whenever C

is a subcontinuum containing p and C c \p, x] for some x E X it follows

that C = \p, c] for some cEC. Observe that if X is arcwise connected

then X has property a at p.

Example 3.1. Let P by the pseudo arc (see [9, p. 143]). Recall that P is

a metrizable hereditarily indecomposable continuum and is homeomorphic to each

of its nondegenerate subcontinua. Using these facts it is not difficult to verify

that P is hereditarily unicoherent, P contains no arcs, and P has property a at each

of its points.

Theorem 3.2. If the continuum X is smooth at p then X has property a

at p.

Proof. By [8, Theorem 4.1(h), p. 56] it follows that<H\p,x])= [<p(p),<tfx)]

is an arc in the generalized tree X/p for each x E X. Let C c X be a sub-
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continuum satisfying p E C C \p, x] for some x G X. Then <j>(p) G 0(Q C

[0(p)> 0(*)] • Since X/p has property a at p there exists c G C such that 0(C) =

[0O>). 0(c)] • Finally, by Lemma 2.2, C = [p, c].

Theorem 3.3. The continuum X has property a at p if and only if \p, x]

is a chain for each x EX.

Proof. Assume X has property a at p. For y and z in \p, x\ there exists

w E \p, x] such that \p, y] U \p, z] = \p, w]. If w G \p, y] then z <p y; if

w G [p, z] theny     z. The converse follows immediately from Theorem 1.2.

Corollary 3.4. If X has property a at p then <p is order dense (i.e., if

x <p y there exists z EX such that x <p z <p y).

Proof. Suppose * <p y and jc <p z <p y for no z G X. Then \p, y] -

\p, x] is a nonempty open (in \p, y]) subset of E(y) which contradicts Lemma

1.1(h).

There exist continua for which <p is order dense but fail to have property

a at p (see Example 4.4).

4. Weakly smooth continua. The continuum Z is weakly smooth at the

point q provided Z is hereditarily unicoherent at q, Z has property a at q, and

the Li-condition:

for each convergent net zn in Z, there exists

z G Z such that Li„ [q, zn] = [q, z]

holds. The continuum Z is weakly smooth if there exists a point q such that Z

is weakly smooth at q.

In case Z is a dendroid this definition agrees with the definition of weakly

smooth dendroids [14]. Also observe that in view of Theorem 3.2 a smooth

continuum is weakly smooth.

Theorem 4.1. If the continuum X has property a at p and is irreducible

between p and q then X is weakly smooth at p.

Proof. It suffices to show the Li condition holds. Let xn be a convergent

net in X. By [8, Theorem 2.2, p. 53], Lin \p, xn] is a subcontinuum of X.

Since X = \p, q] and A'has property a at p it follows that Lin [p, xn] = [p, x]

for some xEX. Thus, X is weakly smooth at p.

Gordh [8, Theorem 3.3, p. 55] proved each smooth irreducible continuum

is of type A'. This is not the case for weakly smooth continua; Theorem 4.1 and

the discussion in Example 3.3 imply the pseudo arc is weakly smooth.

Theorem 4.2. Let the continuum X have property ex at p. Then X is
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weakly smooth at p (i.e., the Li condition holds) if and only if V(X, p) is a com-

pact subset of 2X.

Proof.  Assume X is weakly smooth at p. Since 2X is a compact Hausdorff

space [16, Theorem 4.9, p. 163] it suffices to show V(X, p) is closed. Let

\p, xn] be a net in V(X, p) converging to a point A E 2X. By [8, Theorem 2.2,

p. 53], it follows that A is a subcontinuum of X. From the net xn in X select

a convergent subnet xm. By hypothesis, LiOT [p, xm] = \p, x] for some x G X.

Since X has property a at p we infer from p G A = Limn [p, xn] = Li„ [p, x„] C

Lim fr>> *« 1 = \P> *1 ̂  ^ e ft* P)-
Conversely, assume      p) is compact and let xn be a convergent net in X.

From the net \p, xn] in IXX, p) select a convergent subnet [p, xm], say,

Limm [p, xm] = \p, x]. Again from property a at p and p G Li„ \p, x„] C

Lim [p, xm] = Limm [p, xm] = \p, x] we infer X is weakly smooth at p.

We now obtain various characterizations of weakly smooth continua. In

most cases we assume X is of type A' z\p. We make use of the fact that irreduc-

ible continua of type A' admit a monotone map onto a (generalized) arc/(see

[7]).

Theorem 4.3. Suppose X is of type A' at p. If V(X, p) is compact or the

Li condition holds then X has property a at p.

Proof. Let C be a subcontinuum of X satisfying pE.CC \p, x] for some

x G X. Let {[p, xn]} be a decreasing nest of subcontinua maximal with respect

to C C \p,xn] C [p, x]. It follows from either hypothesis that Lim„ \p, xn] =

n„ \p, xn] = \p, q] for some q E \p, x]. Observe that C C [p, q] and let

/: [P. Q] ~~* I be the monotone map of [7]. If f(C) £ / then there exist s and

t in / such that f(Q = [0, t) g [0, s] $ /. Now for q' G/^^s), C C [p, <?'] $

[p, <?] which contradicts the minimality of [p, 9]  [7, Theorem 2.3, p. 649].

Thus,/(C) = / and by [7, Theorem 2.5, p. 650], C = \p,q].

The condition that X is of type A' at p is necessary as the example below

shows.

Example 4.4. Let P be the pseudo arc and let p, a, and b be points which

lie in distinct composants of P. Let X be the continuum obtained by collapsing

the sets {a} x {0, 1} and {b} x {0,1} in P x {0, 1}. It is not difficult to see

that X is hereditarily unicoherent at (p, 0) and (p, 1), and <^p 0j is order dense.

Let x ^ a (v   Z») be a point in the same composant of P as the point a

(b). Then in X the points (x, 1) and (y, 1) are not related by *^(p>o)- It follows

from Theorem 3.3 that X does not have have property a at p. Hence X is not

weakly smooth at (p, 0).

It is, however, true that V(X, (p, 0)) is compact and the Li condition holds.

The details are left to the reader.
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Recall that

Tp = {(x,y)EX xX\x<py}  and  I^1 = {(x, y) EX x X\(y, x) E rp}.

In [14] it was proved that a dendroid X is weakly smooth at p if and only if

Tp U T"1 is closed. The next theorem extends this result to continua.

Theorem 4.5. // the continuum X is weakly smooth at p then rp u r~l

is a closed subset of the product space X x X. The converse holds ifX is of

type A' at p.

Proof. Assume X is weakly smooth at p and let (x„,yn) be a net in

Tp U T"1 converging to (x, y). Without loss of generality there exists a subnet

(xm, ym) such that (xm, ym) E Tp for each m. Since X is weakly smooth at p,

there exists z EX such that Lim \p, ym] = \p, z]. Since [p, z] is a chain con-

taining x andy it follows that (x, v)GrpU T"1.

For the converse, we first show [p, q] is a chain for each q EX. It will

then follow from Theorem 3.3 that X has property a at p. Let /: [p, q] —> /

be the monotone map of [7]. Choose x and y in [p, q] and assume, without

loss of generality, f(x) <f(y). If fix) <f(y) then \p, y] is a subcontinuum of

\p, q] which meets /"'(/(p)) and f~l(f(y)). Hence, by [7, Theorem 2.3, p.

649], x G rl(f(x)) C\p,y] ; i.e., x <p y. Assume /(x) = /O) and (x, y) $

Tp U Tp 1; then there exists an open neighborhood U of x satisfying (x, y) E U

x {y} C X x Z - (rp U rp 1). Now if z E U and f(z) < /(» or f(y) < /(z)

it follows from the above argument that (z, y) E Tp U T"1. Thus, from the

choice of U we infer U C This contradicts [7, Theorem 2.7, p. 650].

To complete the proof we show the Li condition holds. Let xn be a con-

vergent net in X. Since each \p, x„] is a chain and rp U Tpx is closed it follows

that Li„ [p, x„] is a chain. From Theorem 1.2 we infer Li„ \p, x„] = [p, x] for

some x G X. Thus, X is weakly smooth at p.

The next characterization of weakly smooth continua is in terms of the

set function T on X. For a continuum Y and a point y E Y let T(y) denote the

set of all points zEY such that each subcontinuum containing z in its interior

must also contain y. It is known [4] that 7T(y) is a continuum.

Gordh [5] showed the continuum X is smooth at p if and only if 7(x) C

Af(x) for eachx EX. We generalize this characterization to weakly smooth con-

tinua. The proof is a modification of an argument used by Charatonik and

Eberhart [3, Theorem 5, p. 302].

Theorem 4.6. If X is weakly smooth at p then T(x) C L(x) U Af(x) for

each xEX. The converse holds if X is of type A' at p.

Proof. Suppose X is weakly smooth at p and for some x EX there exists

yEX such that y E T(x) — (L(x) U Af(x)). Thus (x, y) $ Tp U T"1, and there
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exists an open neighborhood V of y such that (x, y) E {je} x cl V C Z x X -

(Tp u r-»).
Now consider the set Z,(cl F) U M(cl V) = Y. Since r = \J{[p, x] C Z|

\p, x] n (cl V) # □} it is clearly connected. Let zn be a net in Y converging to

x G Z. For each n choose an E cl V such that (zn, an) E Tp U T"1. Since cl K

CZ and Tp U T"1 C Z x Z are closed it follows that zEY. Hence r is also

closed. But then, Y is a subcontinuum of X which contains y in its interior and

misses x. This is a contradiction.

Conversely, if X is of type .4' at p it suffices to show Tp U T"1 is closed.

Select a point (x, y) £ Tp U T"1; then x £ 7/(.y) and y £ 2T(x). Let M and JV be

subcontinua of X satisfying: (i) x G int A/ C M C X - {^}, and (ii) 7 G int A7^ C

ATCI- fx). Define M' = \p, x] U M (Nf = \p, y] U N) and observe that (i)

and (ü) hold with M and N replaced by M' and Af', respectively.

Let V = (X-N') xintAT'. Then V C X x Z - Tp; for if (z, w) G Vn Tp

then z G [p, w] CJV' which is a contradiction.

Dually, if W = int M' x (Z -M') then W C Z x Z - T"1.

Since (x, y) E V C\ W C X x X - (Tp U T"1) it foUows that Tp U T"1 is

closed.

For continua of type A' at p we have shown:

Theorem 4.7. //Z is of type A' at p then the following are equivalent:

(i) Z is weakly smooth at p; (ii) the Li condition holds; (iii) I^Z, p) zs compact;

(iv) Tp U r~1 is closed; and (v) 7{x) C L(x) U Af(x)/or eacA x EX.

We conclude this section with two structure theorems for V(X, p) which

were proved in [14] for weakly smooth dendroids.

Theorem 4.8. // Z is weakly smooth at p then tXX, p) is an arcwise

connected continuum which admits a closed order dense partial order < induced

by inclusion. In particular, for each x EX, t?p([p, x]) is an arc in V(X, p) with

noncut points np(p) = \p, p] and r?p(x) = \p, x].

Proof. It is well known that 2X admits a closed partial order < defined

by A < B if and only if A C B. Clearly, V(X, p) inherits this closed partial order.

Note that [p, a] < \p, b] if and only if a <p b. Using Theorem 3.4 it is trivial

to show < is order dense and t?p([p, x]) is a closed chain (with respect to <) for

each x G Z. It follows from [10, Lemma 1, p. 922], that r?p([p, x]) is an arc

with noncut points [p, p] and \p, x].

Corollary 4.9. // Z is smooth at p then r?p: Z —*■ 1XX, p) is a mono-

tone surjective map. Consequently, ViX, p) is a generalized tree which is smooth

at p.
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Proof. According to [8, Theorem 3.3, p. 53] and Theorem l.l(iv), r\p is

monotone. By [8, Theorem 4.1, p. 56], ViX, p) is hereditarily unicoherent at

t]p(p)- Since JXX, p) is arcwise connected, it is hereditarily unicoherent. The

result now follows from Theorem 4.8.

At this point we pose a question: If X is weakly smooth at p, is V(X, p) a

generalized tree which is smooth at r]p(p)1 By Theorem 4.8 it is equivalent to

ask if V(X, p) is hereditarily unicoherent at r]p(p).

5. Images of weakly smooth continua. In this section we investigate

various types of maps on weakly smooth continua and the extent to which they

preserve weak smoothness. Compare these results with those of Gordh [8] and

Charatonik and Eberhart [3].

Recall AT is a continuum which is hereditarily unicoherent at p.

Lemma 5.1. Let f:X —► Y be a map from X into the compact Hausdorff

space Y. Then the function /': ViX, p)~+2Y defined by /'([p, x]) = /(\p, x])

is continuous.

Proof. The proof follows immediately from [16, Theorem 5.10, p. 170].

Let /: X —* Y be a map from X into a continuum Y. The map is ^-pre-

serving if Y is hereditarily unicoherent at f(p) and x <p y implies f(x) ^/(p) fiy).

Theorem 5.2. Let f: X—+Ybe a <p-preserving map from X onto Y.

Then:

0) f(\p, x]) = [f(p), f(x)) for each xEX;
(ü) if X has property a at p then Y has property a at f(p);

(hi) if X is weakly smooth at p then Y is weakly smooth at fip); and

(iv) ifX is smooth at p then Y is smooth at f(p).

Proof, (i) The argument of [3, Proposition 4, p. 309], holds for

(nonmetric) continua.

(ii) Let C be a subcontinuum of Y satisfying /(p)GCC [f(p),f(x)] from

some x EX. By [3, Proposition 4, p. 309], the restriction of /to [p, x] is

monotone; hence /-1(Q O \p, x] is a subcontinuum of \p, x]. Since X has

property a at p there exists c EX such that f~l(C) n \p, x] = [p, c]. It follows

that [/(p), fie)] = /([p, c]) = fir1 (O n \p, x]) = C; that is, Y has property

a at fip).

(hi) Since Y has property a at fip), it suffices by (ii) to show 1X% fip))

is compact (Theorem 4.2). It follows from (i) that /' maps the compact fXX, p)

onto ViY, fip)).

(iv) Consider the diagram
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M r/(p)
ViX, p) jr* W f(p))

which is easily shown to commute; i&.,f'r\p = Vf(p)f- The continuity of /, /',

and Tip assure the continuity of Vf(p)- By Theorem 2.1 Y is smooth at f(p).

Corollary 5.3. Let f : X —*■ Y be a monotone map from X onto a

compact Hausdorff space Y. Then (i)-(iv) of Theorem 5.2 hold.

Proof. The space Y is a continuum which is hereditarily unicoherent at

p by [8, Theorem 4.1, p. 56]. The map / is <p-preserving by [3, Proposition 4,

p. 309].
Gordh [8] originally proved the monotone image of a smooth continuum

is smooth but his proof is different from the one presented here.

The full strength of <p-preserving maps is not necessary to preserve weak

smoothness of continua. A map f:X —>Y from X onto a continuum Y which

is hereditarily unicoherent at/(p) is weakly <p-preserving in case x <p y implies

f(x) </(p) f(y) or f(y) </(p) /(*).

Theorem 5.4. Let f: X—* Y be a weakly <p-preserving map from X

onto Y. Assume Y is hereditarily unicoherent at f(p) and is of type A' at f(p).

IfX is weakly smooth at p then Y is weakly smooth at f(p).

Proof. It suffices to show V(Y, f(p)) is compact (Theorem 4.7). To this

end we will show /': V(X, p) —*■ 2Y maps 1XX, p) onto 1XY, f(p)).

If [p, x] £ V(X, p) then \p, x] is a chain (with respect to <p) and hence

/([P» *]) is a chain (with respect to ^(p))- By Theorem 1.2 there exists y £ Y

such that/(b, x]) = IK[/(/>)>/(*)] l*€ \p, x]} - [f(p),y] £ 1XY, f(p)).
Thus,/' maps V(X, p) into V(J, f(p))-

For any point [f(p),f(x)] £ V(Y, f(p)) consider the closed set A = \p, x]

^/"'(/(x)) £ \P> x]. Let z £ min Z (=£□ by Lemma 1.1 (v)) and observe that

z is a zero of Z since Z is a chain. It follows that [f(p),f(x)] C/([p, z]) £

1XYf f(p))- If the inclusion is proper there exists a point w <p z such that f(w)

= /(*)> but this contradicts the definition of z. Hence /' is onto.

The weakly <p-preserving image of a smooth continuum need not be smooth,

even if both spaces are dendroids.

Example 5.5. In the plane with polar coordinates join the point p =

(0, 0) with a0 = (1, 0) and with points an = (1,1/2""1) for n » 1,2,... by

straight line segments. The dendroid X obtained in this way is a harmonic fan
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with top p. A harmonic hooked fan Y is obtained by joining the points an in X

with bn = 0*2,3A • (1/2"-1)) by straight line segments.

Let f(p) = p, f(a0) = 04, 0), /((&, 0)) = a0, and /(a„) = irt for each « =

1,2.Clearly / can be extended to a weakly <p-preserving map from X

onto Y. However, X is smooth at p while Y is not smooth.

6. The spaces X/p and ViX/p, <t>(p)). Recall the definition of the quotient

space, X/p (see §2). Of course X/p is always connected but, in general, it may

not be Hausdorff (e.g., let X be the pseudo arc).

Theorem 6.1. If X/p is Hausdorff then the quotient map <t>: X—* X/p is

monotone, X/p is a continuum which is hereditarily unicoherent at <p(p), and 0

induces a homeomorphism <p' from V(X, p) onto fXX/p, <j>(p)).

Proof. If X/p is Hausdorff then each point 0fx) E X/p is closed. Hence

E(x) = 0_1 (<t>(x)) C X is closed. By Theorem 1.12(f) each E(x) is connected;

thus 0 is monotone. By [8, Theorem 4.1, p. 56], X/p is hereditarily unicoherent

at 0(p); so ViX/p, 0(p)) is well defined. From Lemma 5.1, Corollary 5.3, and

Lemma 2.2 we infer 0([p, x]) = [<j>(p), 0(x)] defines a one to one map from

ViX, p) onto ViX/p, <p(p)). It remains only to show the inverse function is con-

tinuous. (Since X is not assumed to be weakly smooth at p it does not follow

that V(X, p) is compact.)

Let 0([p, xn]) be a net in V(X/p, <p(p)) converging to 0([p, x]). We show

Lim„ [p, xn] = [p, x]. Let [p, xm] be a convergent subnet of the net \p, xn]

(one exists since 2X is compact Hausdorff [16]).

We first show [p, x] C Limm \p, xm]. If z E \p, x] then 0(z) S 0([p, x])

= Limm0([p, xm]) and there exist points zm E\p,xm] such that limm0(zm) =

0(z). Let zk be a convergent subnet of zm, say limk zk = z'. By the continuity

of 0, limfc 0(zfc) = 0(z') = 0(z).   It follows that z E \p, z] = [p, z'] C

LSmb. xm] =Umm\p,xm].

We now show the reverse inclusion. If z E Limm [p, xm] there exist points

zm S [p, jcm] such that limm zm = z. Since 0 is continuous, limm <Mzm) —

0(z). It Mows that 0(z) e Lsm 0([p. *m]) = Limw <K\P, xm]) = <K\P. x]).

Hence z G [p, x] by Lemma 2.2.

Thus, \p, x] is the only cluster point of the net fp, xn]. Since 2X is com-

pact Hausdorff it follows that Lim„ \p, xn] = \p, x].

This completes the proof of the theorem.

Corollary 6.2. Suppose X/p is Hausdorff. IfX is weakly smooth at p

then X/p is weakly smooth at p. The converse is true ifX is of type A' at p.

Proof.  The first statement follows from Corollary 5.3; the converse

from Theorem 4.7.
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We now prove the converse of Gordh's decomposition for smooth continua

[9, Theorem 5.3, p. 57]. A proof due to T. Mackowiak [15, Theorem 3.1, p.

177] easily generalizes to (nonmetric) continua but we present an alternate proof

here.

Theorem 6.3. // X/p is a continuum which is smooth at (p(p) then X is

smooth at p.

Proof. Since <p is monotone the diagram below commutes.

X-q-+X/P

%\ I ty(p)
1XX, p) —r> WX/P, <Hp))

9

Since 0 is continuous,       is continuous (Theorem 2.1), and 0' is a homeomor-

phism (Theorem 6.1) we infer r\p is continuous. Thus X is smooth at p.

7. A quasi order characterization. Ward [20] characterized generalized

trees as compact Hausdorff spaces which admit a partial order satisfying certain

properties. In [13] an analogous quasi order characterization of smooth continua

was obtained. In this section we establish a quasi order characterization of weakly

smooth continua.

Theorem 7.1. Let Zbe a compact Hausdorff space such that each of its

indecomposable subcontinua is irreducible. Then Z is a continuum which is

weakly smooth at p if and only ifZ admits a quasi order T satisfying:

(i) rur'ts closed;

(ii) there exists p E C\{L(x) \xEZ} and each L(x) is a connected chain;

and

(in) if Y is a closed connected subset of Z with pEY, then L(y) C Y for

each y E Y.

Proof. If Z is weakly smooth at p then the weak cut point order with

respect to p satisfies (i)—(iii). To prove the converse, we show the quasi order

Tp defined by (x, y) E Tp if and only if x E cl L(y) is the weak cut point order

with respect to p.

For notational convenience, let Lp(x) = cl L(x) for each xEZ and if Y C

Z is a chain with respect to T (Tp) we will write "Y is a T (rp)-chain".

Observe that Lp(x) is a T-chain (and hence a Tp-chain) for each x EX

since: L(x) x L(x) CTUr1 by (ii); and thus by (i),

L(x) x L(x) C Lp(x) x Lp(x) C T U T"1 C Tp U r"1.
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The above inclusions also show Tp U Tp 1 = T U T 1. For if (x, y) E

Tp U T"1 then (x, y) G Lp(y) x Lp(y) C r U r-1.

Consequently, the quasi order Tp not only satisfies properties (i)-(iii) with

T replaced by Tp and L(x) replaced by Lp(x) but also the property that each

Lp(x) is a continuum.

Using (ii) and (hi) it is straightforward to verify that Z is a continuum which

is hereditarily unicoherent at p\ Tp is the weak cut point order with respect to

p; and each Lp(x) = \p, x] is a Tp-chain. Hence by Theorem 3.3, Z has property

a at p.

We conclude the proof by showing the Li condition holds. Let xn be a

convergent net in Z. Since Tp U T"1 is closed it follows that the continuum

Li„ \p, xn] is a Tp-chain. Thus by Theorem 1.2, Lin \p, xn] is of the form [p, jc]

for some x E Z.

We remark that the quasi order T may be properly contained in Tp. In fact,

one can define a linear partial order T on the closure of the "sin(l/jc)-curve"

satisfying (i)-(iii) with p = (1, sin 1).

8. Arboroids. Recall an arboroid is a hereditarily unicoherent arcwise

connected continuum. The first two theorems of this section were proved in

[14] for dendroids. Their proofs generalize in a straightforward manner.

Theorem 8.1. Let X be an arboroid. If Y c X is a subcontinuum and q

is the zero of Y with respect to <p then Y is weakly smooth at q and i?p(Y) C

V(X, p) is homeomorphic to V(Y, q).

Theorem 8.2. The arboroid X is a generalized tree if and only if there

exists a homeomorphism h: X —> V(X, p) from Xonto V(X, p) for some p EX.

We remark that Theorem 8.1 is not valid for arbitrary weakly smooth (or

smooth) continua since they may contain nonunicoherent subcontinua. Also, in

Theorem 8.2 the arboroid X need not be smooth at p (see [14, Example 2, p.

116]).

Since an arboroid is hereditarily decomposable [1] it is of type A' at p.

Thus, Theorem 4.7 is valid for arboroids.

Finally, a slight modification of conditions (i)-(iii) of Theorem 7.1 yields

a characterization of weakly smooth arboroids.

Theorem 8.3. Let Z be a compact Hausdorff space such that each of its

indecomposable subcontinua is irreducible. A necessary and sufficient condition

that Zbe a weakly smooth arboroid is that Z admit a partial order T satisfying

(i) and (hi) of Theorem 7.1 and (ii') there exists p E C\{L(x) \x E Z} and if

(x, y)ET then M(x) n L(y) is a closed connected chain.
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Proof. Since M(p) = Z, (ii') implies (if). Thus Z is a continuum which is

weakly smooth at p. Since each L(x) is closed it follows that T = Tp. According

to Corollary 3.4 and [18, Lemma 1, p. 922], Z is arcwise connected. Consequent-

ly, Z is an arboroid (Z is hereditarily unicoherent by Lemma 1 .l(viii)).
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