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GEODESIC RAYS AND KÄHLER–RICCI TRAJECTORIES ON

FANO MANIFOLDS

TAMÁS DARVAS AND WEIYONG HE

Abstract. Suppose (X, J, ω) is a Fano manifold and t → rt is a diverging

Kähler-Ricci trajectory. We construct a bounded geodesic ray t → ut weakly
asymptotic to t → rt, along which Ding’s F–functional decreases, partially

confirming a folklore conjecture. In absence of non-trivial holomorphic vector

fields this proves the equivalence between geodesic stability of the F–functional
and existence of Kähler–Einstein metrics. We also explore applications of our

construction to Tian’s α–invariant.

1. Introduction and Main Results

Let (X, J, ω) be a compact connected Fano Kähler manifold normalized by
[ω]dR = c1(−KX). If ω′ is another Kähler metric on X satisfying [ω′]dR = [ω]dR,
by the ∂∂̄–lemma of Hodge theory there exists a potential ϕ ∈ C∞(X) such that

ω′ = ω + i∂∂̄ϕ,

and up to a constant ω′ uniquely determines ϕ. Hence, one can study Kähler
metrics in the cohomology class of ω by studying certain smooth functions. This
motivates the introduction of the space of smooth Kähler potentials:

H = {u ∈ C∞(X)| ωu := ω + i∂∂̄u > 0}.

Clearly, H is a Fréchet manifold as an open subset of C∞(X), so for v ∈ H one can
identify TvH with C∞(X). Given 1 ≤ p <∞, we introduce Lp type Finsler-metrics
on H:

(1) ‖ξ‖p,v =
( 1

Vol(X)

∫
X

|ξ|pωnv
) 1

p

, ξ ∈ TvH,

where Vol(X) =
∫
X
ωn is an invariant of the class H. When p = 2 we obtain the

much studied Mabuchi Riemannian structure initially investigated in [Ma, Se, Do]
in connection with special Kähler metrics. As pointed out in [Da4], in the case
p = 1 one recovers the strong topology/geometry of H, as introduced in [BBEGZ],
which proved to be extremely useful in the study of weak solutions to complex
Monge–Ampère equations. In considering the general case p ≥ 1, we hope to unify
the treatment of these two motivating examples.

Even more general Orlicz–Finsler structures were studied in [Da4] and we recall
some of the notations and results of this paper before we state our main theorems. A
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2 TAMÁS DARVAS AND WEIYONG HE

curve [0, 1] 3 t→ αt ∈ H is smooth if the function α(t, x) = αt(x) ∈ C∞([0, 1]×X).
As usual, the length of a smooth curve t→ αt is computed by the formula:

(2) lp(α) =

∫ 1

0

‖α̇t‖p,αt
dt.

The path length distance dp(u0, u1) between u0, u1 ∈ H is the infimum of the length
of smooth curves joining u0, u1. In [Da4] it is proved that dp(u0, u1) = 0 if and
only if u0 = u1, thus (H, dp) is a metric space, which is a generalization of a result
of X.X. Chen in the case p = 2 [C].

Let us recall some facts about the Riemannian case p = 2. We will be very brief
and for details we refer to the recent survey [Bl2]. In this case one can compute
the associated Levi-Civita connection ∇(·)(·) and curvature tensor which is non-
positive.

Suppose S = {0 < Re s < 1} ⊂ C. Following [Se], one can argue that a smooth
curve [0, 1] 3 t→ ut ∈ H connecting u0, u1 ∈ H is a Riemannian geodesic (∇u̇t

u̇t =
0) if its complexification u(s, x) = uRe s(x) is the (unique) smooth solution of the
following Dirichlet problem on S ×X:

(π∗ω + i∂∂u)n+1 = 0(3)

u(t+ ir, x) = u(t, x) ∀x ∈ X, t ∈ (0, 1), r ∈ R(4)

u(0, x) = u0(x), u(1, x) = u1(x), x ∈ X.

Unfortunately, the above problem does not have smooth solutions (see [LV, Da1]),
but a unique solution in the sense of Bedford-Taylor does exist such that i∂∂̄u has
bounded coefficients (see [C] with complements in [Bl1]). The most general result
about regularity was proved in [BD, Brm2] (see [H1] for a different approach) but
regularity higher then C1,1 is not possible by examples provided in [DL]. The
resulting curve

[0, 1] 3 t→ ut ∈ H∆ = {∆u ∈ L∞, ω + i∂∂̄u ≥ 0}

is called the weak geodesic joining u0, u1. As we just explained, this curve leaves
the space H, hence it cannot be a Riemannian geodesic, but as argued in [Da4], it
interacts well with all the path length metrics dp, i.e.

(5) dp(u0, u1) = ‖u̇t‖p,ut
, t ∈ [0, 1], p ≥ 1.

In fact, t→ ut is an actual dp–metric geodesic joining u0, u1 in the metric comple-

tion (H, dp) = (Ep(X,ω), dp) as we recall now.
The set of ω–plurisubharmonic functions is the following class:

PSH(X,ω) = {u ∈ L1(X), u is u.s.c. and ω + i∂∂̄u ≥ 0}.

If u ∈ PSH(X,ω), as explained in [GZ1], one can define the non-pluripolar measure
ωnu that coincides with the usual Bedford-Taylor volume when u is bounded. We
say that ωnu has full volume (u ∈ E(X,ω)) if

∫
X
ωnu =

∫
X
ωn. Given v ∈ E(X,ω),

we say that v ∈ Ep(X,ω) if ∫
X

|v|pωnv <∞,

The following trivial inclusion will be essential to us later:

(6) H0 = PSH(X,ω) ∩ L∞(X) ⊂
⋂
p≥1

Ep(X,ω).
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GEODESIC RAYS AND KÄHLER–RICCI TRAJECTORIES ON FANO MANIFOLDS 3

For a quick review of finite energy classes Ep(X,ω) we refer to [Da3, Section 2.3].
Next we recall the induced geodesic metric space structure on Ep(X,ω). Suppose
u0, u1 ∈ Ep(X,ω). Let {uk0}k∈N, {uk1}k∈N ⊂ H be sequences decreasing pointwise to
u0 and u1 respectively. By [BK, De] it is always possible to find such approximating
sequences. We define the metric dp(u0, u1) as follows:

(7) dp(u0, u1) = lim
k→∞

dp(u
k
0 , u

k
1).

As justified in [Da4, Theorem 2] the above limit exists and defines a metric on
Ep(X,ω).

Let us also define geodesics in this space. Recall that by a ρ–geodesic in a metric
space (M,ρ) we understand a curve [a, b] 3 t → gt ∈ M for which there exists
C > 0 satisfying:

ρ(gt1 , gt2) = C|t1 − t2|, t1, t2 ∈ [a, b].

The constant C is just the speed of the geodesic t → gt. Let ukt : [0, 1] → H∆ be
the weak geodesic joining uk0 , u

k
1 . We define t→ ut as the decreasing limit:

(8) ut = lim
k→+∞

ukt , t ∈ (0, 1).

The curve t→ ut is well defined and ut ∈ Ep(X,ω), t ∈ (0, 1), as follows from the
results of [Da3]. By [Da4, Theorem 2] this curve is a dp–geodesic joining u0, u1 and
we have

(9) (H, dp) = (Ep(X,ω), dp), p ≥ 1.

Functionals play an important role in the investigation of special Kähler met-
rics. Recall that the Aubin-Yau (also Aubin-Mabuchi) functional and Ding’s F–
functional are defined as follows:

(10) AM(v) =
1

(n+ 1)Vol(X)

n∑
j=0

∫
X

vωj ∧ (ω + i∂∂̄v)n−j ,

(11) F(v) = −AM(v)− log

∫
X

e−v+fωωn,

where v ∈ H and fω ∈ C∞(X) is the Ricci potential of ω, i.e. Ric ω = ω +
i∂∂̄fω normalized by

∫
X
efωωn = Vol(X). It was argued in [Da4] that both of these

functionals are continuous with respect to all metrics dp, hence extend to Ep(X,ω)
continuously. Also, AM is linear along the geodesics defined in (8), whereas F is
convex. As the map u → ωu is translation invariant, one may want to normalize
Kähler potentials to obtain an equivalence between metrics and potentials. This can
be done by only considering potentials from the ”totally geodesic” hypersurfaces

HAM = H ∩ {AM(·) = 0},

H0,AM = L∞(X) ∩ PSH(X,ω) ∩ {AM(·) = 0},
EpAM (X,ω) = Ep(X,ω) ∩ {AM(·) = 0}.

A smooth metric ωuKE
is Kähler-Einstein if ωuKE

= Ric ωuKE
. One can study such

metrics by looking at the long time asymptotics of the Hamilton’s Kähler–Ricci flow:

(12)

{
dωrt

dt = −Ric ωrt + ωrt ,

r0 = v.
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4 TAMÁS DARVAS AND WEIYONG HE

As proved in [Cao], for any v ∈ HAM , this problem has a smooth solution

[0, 1) 3 t→ rt ∈ HAM .

It follows from a theorem of Perelman and work of Chen-Tian, Tian-Zhu and Phong-
Song-Sturm-Weinkove, that whenever a Kähler–Einstein metric cohomologous to ω
exists, then ωrt converges exponentially fast to one such metric (see [CT1], [TZ],
[PSSW]).

We remark that our choice of normalization is different from the alternatives used
in the literature (see [BEG, Chapter 6]). We choose to work with the normalization
AM(·) = 0, as this seems to be the most natural one from the point of view of
Mabuchi geometry. Indeed, the Aubin-Yau functional is continuous with respect
to all metrics dp and is linear along the geodesic segments defined in (8). It will
require some careful analysis, but as we shall see, from the point of view of long
time asymptotics, this normalization is equivalent to other alternatives.

Suppose (M,ρ) is a geodesic metric space and [0,∞) 3 t → ct ∈ M is a con-
tinuous curve. We say that the unit speed ρ–geodesic ray [0,∞) 3 t → gt ∈ M
is weakly asymptotic to the curve t → ct, if there exists tj → ∞ and unit speed

ρ–geodesic segments [0, ρ(c0, ctj )] 3 t→ gjt ∈M connecting c0 and ctj such that

lim
j→∞

ρ(gjt , gt) = 0, t ∈ [0,∞).

We clearly need limj ρ(c0, ctj ) = ∞ in this last definition, hence to construct
dp–geodesic rays weakly asymptotic to diverging Kähler-Ricci trajectories, we first
need to prove the following result, which improves on the main result of [Mc] and
partly generalizes [Da4, Theorem 6]. For a similar result about the Calabi metric
we refer to [CR].

Theorem 1 (Theorem 3.1). Suppose (X, J, ω) is a Fano manifold and p ≥ 1.
There exists a Kähler–Einstein metric in H if and only if every Kähler–Ricci flow
trajectory [0,∞) 3 t → rt ∈ HAM is dp–bounded. More precisely, the C0 bound
along the flow is equivalent to the dp bound:

1

C
dp(r0, rt)− C ≤ sup

X
|rt| ≤ Cdp(r0, rt) + C,

for some C(p, r) > 1.

Using this theorem, the recently established convexity of the K-energy func-
tional from [BB] (for a different approach see [CLP]), the compactness theorem of
[BBEGZ], and the divergence analysis of Kähler-Ricci trajectories from [R1], we
establish our main result:

Theorem 2 (Theorem 3.3). Suppose (X, J, ω) is a Fano manifold without a Kähler–
Einstein metric in H and [0,∞) 3 t→ rt ∈ HAM is a Kähler-Ricci trajectory. Then
there exists a curve [0,∞) 3 t → ut ∈ H0,AM which is a dp–geodesic ray weakly
asymptotic to t→ rt for all p ≥ 1. In addition to this, t→ ut satisfies the following:

(i) t→ F(ut) is decreasing,
(ii) the ”sup-normalized” potentials ut−supX(ut−u0) ∈ H0 decrease pointwise

to u∞ ∈ PSH(X,ω) for which
∫
X
e−

n
n+1u∞ωn =∞.

If additionally (X, J) does not admit non–trivial holomorphic vector fields, then
t→ F(ut) is strictly decreasing.
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GEODESIC RAYS AND KÄHLER–RICCI TRAJECTORIES ON FANO MANIFOLDS 5

We note that the normalizing condition AM(ut) = 0 in the above result assures
that geodesic ray t→ ut is non–trivial, i.e. ut 6= u0 + ct.

This theorem provides a partial answer to a folklore conjecture, perhaps first
suggested by [LNT], which says that one should be able to construct ”destabiliz-
ing” geodesic rays asymptotic to diverging Kähler-Ricci trajectories. For a precise
statement and connections with other results we refer to [R1, Conjecture 4.10].

Given their connection with special Kähler metrics, constructing geodesic rays
in the space of Kähler potentials from geometric data has drawn a lot of interest.
We mention [PH1, PH2], where the authors constructed rays out of algebraic test
configurations. The work [RWN], builds on this and constructs rays out of more
general analytic test configurations via their Legendre transform. For related re-
sults we also mention [AT, CT2, SZ, RZ] in a fast expanding literature. Perhaps
one of the advantages of our method is that the ray we construct instantly gives
geometric information about special Kähler metrics without further results, as it
will be evidenced in Theorem 3 below.

We hope that the methods developed here will be the building blocks of future
results constructing geodesic rays asymptotic to different (geometric) flow trajecto-
ries. Motivated by this we prove a very general result in Theorem 3.2 from which
Theorem 2 will follow.

On Fano manifolds not admitting Kähler-Einstein metrics, part (ii) of Theorem
2 ensures the bound α(X) ≤ n/(n+ 1) for Tian’s alpha invariant:

α(X) = sup
{
α,

∫
X

e−α(u−supX u)ωn ≤ Cα < +∞, u ∈ PSH(X,ω)
}
.

This is a well known result of Tian [T]. The fact that the geodesic ray t → ut
is able to detect a potential u∞ satisfying

∫
X
e−

n
n+1uωn = ∞, is analogous to the

main result of [R1], where it is shown that one can find such potential using a
subsequence of metrics along a diverging Kähler-Ricci trajectory. We refer to this
paper for relations with Nadel sheaves.

It would be interesting to see if a geodesic ray produced by the above theorem
is in fact unique. We prove that this ray is bounded, but it is not clear if this
curve has more regularity. Finally, we believe that t→ F(ut) is strictly decreasing
regardless whether (X, J) admits non–trivial holomorphic vector fields or not and
prove this in the case when the Futaki invariant is non–zero (Proposition 3.4).

Lastly, we note the following theorem, which is a consequence of the previous
result, and in the case p = 2 gives the Kähler-Einstein analog of Donaldson’s
conjectures on existence of constant scalar curvature metrics [Do, H2]:

Theorem 3 (Theorem 3.5). Suppose p ∈ {1, 2} and (X, J, ω) is a Fano manifold
without non–trivial holomorphic vector–fields and u ∈ H. There exists no Kähler-
Einstein metric in H if and only if there exists a dp–geodesic ray [0,∞) 3 t→ ut ∈
H0,AM with u0 = u such that the function t→ F(ut) is strictly decreasing.

Additinally, as a consequence of Theorem 3.2 below, the dp-geodesic rays pro-
duced by the last two theorems will also solve the complex Monge-Ampère equation
(3).

Fixing a potential u ∈ H, by this last theorem, on Fano manifolds with discrete
automorphism group, a Kähler-Einstein metric does not exist if and only if there
exists an “unstable” geodesic ray emanating from u. As pointed out to us by R.
Berman, in the case of general Fano manifolds, he was able to prove a very closely
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6 TAMÁS DARVAS AND WEIYONG HE

related result. Using the recently established equivalence between K-stability and
existence of Kähler-Einstein metrics, it is shown in [Brm1, Theorem 4.1] that a
Kähler-Einstein metric does not exists if and only if for all potentials u ∈ H, there
exists an unstable geodesic ray emanating from u. It would be interesting to see if
a general result holds that unifies these theorems.

Although we do not pursue such generality, we remark that Theorem 1 and
Theorem 2 also hold for the Orlicz-Finsler metric structures (H, dχ) studied in
[Da4].

2. Preliminaries

2.1. The Metric Spaces (H, dp). In this short paragraph we further elaborate
on the metric spaces (H, dp). By the definition, we have the inclusion Ep(X,ω) ⊂
Ep′(X,ω), for p′ ≤ p and also the metric dp dominates dp′ . What is more, it follows
that for u0, u1 ∈ Ep(X,ω), the curve defined in (8) is a geodesic with respect to
both dp and d′p (perhaps of different length). Using this and (6) we can conclude
the following:

Proposition 2.1. For u0, u1 ∈ H0, the curve [0, 1] 3 t→ ut ∈ H0 from (8) will be
a dp–geodesic joining u0, u1 for all p ≥ 1.

We note that for p 6= 2, the dp–geodesic connecting u0, u1 may not be unique.
See [Da4] for examples of d1–geodesic segments that are different from the ones
defined in (8).

In hopes of characterizing convergence in the metric completion (Ep(X,ω), dp)
more explicitly, for u0, u1 ∈ Ep(X,ω) one can introduce the following functional
(see [Da4, G]):

Ip(u0, u1) =
(∫

X

|u0 − u1|pωnu0

)1/p

+
(∫

X

|u0 − u1|pωnu1

)1/p

.

In [Da4, Theorem 3] it is proved that there exists C(p) > 1 such that

(13)
1

C
Ip(u0, u1) ≤ dp(u0, u1) ≤ CIp(u0, u1).

This double estimate implies that there exists C(p) > 1 such that

(14) sup
X
u ≤ Cdp(u, 0) + C.

Also, if dp(uk, u)→ 0 then uk → u a.e. and also ωnuk
→ ωnu weakly. For more details

we refer to [Da4, Theorems 3-6]. Our first observation says that in the presence of
uniform C0–estimates all the dp geometries are equivalent.

Proposition 2.2. Suppose {uk}k∈N ⊂ H0 = PSH(X,ω) ∩ L∞ and ‖uk‖L∞ ≤ D
for some D > 0. Then {uk}k∈N is dp–Cauchy if and only if it is d1–Cauchy. If this
condition holds then in addition the limit u = limk uk also satisfies ‖u‖L∞ ≤ D.

Proof. The equivalence follows from (13) and basic facts about Lp norms. The
estimate ‖u‖L∞ ≤ D also follows, as from [Da4, Theorem 5(i)] we have uk → u in
capacity, hence uk → u pointwise a.e.. �

We recall the compactness theorem [BBEGZ, Theorem 2.17]. Before we write
down the statement, let us first recall the notion of strong convergence and entropy.
As introduced in [BBEGZ], we say that a sequence uk ∈ H converges strongly to
u ∈ E1(X,ω) if uk →L1 u and AM(uk)→ AM(u). As argued in [Da4, Proposition
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GEODESIC RAYS AND KÄHLER–RICCI TRAJECTORIES ON FANO MANIFOLDS 7

5.9], one has uk → u strongly if and only if I1(uk, u)→ 0, which in turn is equivalent
to d1(uk, u)→ 0 according to (13). The Mabuchi K-energy functionalM : H → R,
which will be used by us later, is given by the following formula:

M(u) = nAM(u)− L(u) +Hω(ωu),

where Hω(ωu) =
∫
X

log(ωnu/ω
n)ωnu is the entropy of ωnu with respect to ωn and

L(u) is the following operator:

L(u) =

n−1∑
j=0

∫
X

u Ric ω ∧ ωju ∧ ωn−1−j .

In the presence of bounded entropy the following compactness result holds:

Proposition 2.3. [BBEGZ, Proposition 2.6, Theorem 2.17] Suppose {uk}k∈N ⊂ H
is such that | supX uk|, Hω(ωuk

) ≤ D for some D ≥ 0. Then there exists u ∈
E1(X,ω) and kl →∞ such that liml→∞ d1(ukl , u) = 0.

Putting together the last two results we can write:

Theorem 2.4. Suppose {uk}k∈N ⊂ H is such that Hω(ωuk
), ‖uk‖L∞ ≤ D for

some D ≥ 0. Then there exists u ∈ H0 with ‖u‖L∞ ≤ D and kl → ∞ such that
dp(ukl , u)→ 0 for all p ≥ 1.

In our computations we will need the following bound for the L functional in the
expression of the Mabuchi K-energy:

Proposition 2.5. For any p ≥ 1 there exists C(p) > 1 such that

|L(u)| ≤ Cdp(0, u), u ∈ H.

Proof. There exists C > 0 such that −Cω ≤ Ric ω ≤ Cω. We can start writing:

|L(u)| ≤ C
n∑
j=1

∫
X

|u|ωj ∧ ωn−ju

≤ C
∫
X

∣∣∣u
2

∣∣∣ωnu
2

≤ C
(∫

X

∣∣∣u
2

∣∣∣pωnu
2

)1/p

≤ Cdp
(

0,
u

2

)
≤ Cdp(0, u),

where in the penultimate inequality we have used (13) and in the last inequality
we have used [Da4, Lemma 5.3]. �

Finally, we recall a result about bounded geodesics which will be very useful to
us later:

Theorem 2.6. [Da2, Theorem 1] Given a bounded weak geodesic [0, 1] 3 t→ ut ∈
H0 connecting u0, u1 ∈ H0, i.e. a bounded solution to the system (4), there exists
Mu,mu ∈ R such that for any a, b ∈ [0, 1] we have

(i) infX
ua−ub

a−b = mu,

(ii) supX
ua−ub

a−b = Mu.
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8 TAMÁS DARVAS AND WEIYONG HE

This result tells us that for a bounded weak geodesic [0, 1] 3 t→ ut ∈ H0, which
is also a dp–geodesic for all p ≥ 1, the function t → supX(ut − u0) is linear. As
explained in the introduction of [Da2], this implies that t → ũt = ut − supX(ut −
u0) ∈ H is a geodesic that is decreasing in t (one can see that ˙̃ut ≤ 0). Since
supX ũt is bounded, the pointwise limit u∞ = limt→∞ ũt is different from −∞.
As we shall see by the end of this paper, for certain geodesic rays one can draw
geometric conclusions about the manifolds X, by studying the singularity type of
u∞.

2.2. Diverging Kähler-Ricci Trajectories. In this short paragraph we recall
estimates along diverging Kähler Ricci trajectories, that will allow us to apply
Theorem 2.4 along such curves. Unfortunately most of the literature on the Kähler-
Ricci flow uses a normalization different from ours (see below). We will argue that
the most important estimates have analogs for our AM–normalized trajectories as
well.

It is well known that the flow equation (12) can be rewritten as the scalar equa-
tion

ωnrt = efω−rt+ṙt+β(t)ωn,

where β : [0,∞) → R is a function chosen depending on the desired normaliza-
tion condition on rt. In our investigations we will use the normalizing condition
AM(rt) = 0. However most of the literature on the Kähler-Ricci flow uses the
normalization t → r̃t for which β(t) = 0 and r̃0 = v + c, with c carefully chosen
(see [PSS, (2.10)]). Evidently, in this latter case the scalar equation becomes

(15) ωnr̃t = e−r̃t+
˙̃rt+fωωn,

and the conversion from this normalization to the one employed by us is given by
the formula

rt = r̃t −AM(r̃t), t ≥ 0.

The following result brings together estimates for the trajectory t→ r̃t that we
will need. Most of these are classical and well known, for the others we sketch the
proof. We note that for the Ricci potential fωt satisfying Ricωr̃t = ωr̃t + i∂∂̄fωt

we will always assume the normalization
∫
X
efωtωnrt = Vol(X).

Proposition 2.7. Suppose t→ r̃t is a Kähler-Ricci trajectory normalized according
to (15). For any t ≥ 0 we have:

(i) ‖ ˙̃rt‖L∞ , ‖fωt‖L∞ ≤ C for some C > 1.
(ii) −C ≤ AM(r̃t), in particular −

∫
X
r̃tω

n
r̃t
≤ n

∫
X
r̃tω

n + C for some C > 1.

(iii)
∫
X
r̃tω

n
r̃t
≤ C,−C ≤

∫
X
r̃tω

n hence also −C ≤ supX r̃t for some C > 1.
(iv) − infX r̃t ≤ C supX r̃t +D for some C,D > 0.

(v) if α ∈ (0, 1) then − log
( ∫

X
e−α(r̃t−supX r̃t)ωn

)
≤ ((1−α)n−α) supX r̃t+C

for some C > 1.
(vi) supX r̃t−AM(r̃t) ≥ supX r̃t/C −C ≥ (AM(r̃t)− infX r̃t)/D−D for some

C,D > 1.

Proof. The estimates in (i) are essentially due to Perelman [ST, TZ]. The estimates
from (ii) are also well known. In fact, one can prove that t→ AM(ut) is increasing
[CT1, L]. We recall the argument from [R1]. First we notice that

− log

∫
X

e−r̃t+fωωn = − log

∫
X

e−
˙̃rtωnr̃t ,
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GEODESIC RAYS AND KÄHLER–RICCI TRAJECTORIES ON FANO MANIFOLDS 9

hence this quantity is uniformly bounded by (i). It is well known that t → F(r̃t)
is decreasing and now looking at the expression of F(r̃t) from (11), we conclude
that there exists C > 1 such that AM(r̃t) ≥ −C. The second estimate of (ii) now
follows from the next well known inequality:

AM(r̃t) =
1

(n+ 1)Vol(X)

n∑
j=0

∫
X

r̃tω
j ∧ ωn−jr̃t

≤ 1

(n+ 1)Vol(X)

(∫
X

r̃tω
n
r̃t + n

∫
X

r̃tω
n
)
.

We now prove the estimate of (iii). From (15) we have
∫
X
er̃tωnr̃t =

∫
X
e

˙̃rt+fωn.

Hence the estimates of (i) yield that
∫
X
er̃tωnr̃t is uniformly bounded. The first

estimate now follows from Jensen’s inequality:

1

Vol(X)

∫
X

r̃tω
n
r̃t ≤ log

( 1

Vol(X)

∫
X

er̃tωnr̃t

)
.

The second and third estimate of (iii) follows now from (ii). Estimate (iv) is just
the Harnack estimate for the Kähler-Ricci flow. For a summary of the proof we
refer to steps (i) and (iii) in the proof of [R1, Theorem 1.3][Na], which in turn
follows the arguments in [T, Si].

We justify the estimate of (v) and the roots of our argument are again from [R1].
To start, we notice that using equation (15) we can write

− log
(∫

X

e−αr̃tωn
)

= − log
(∫

X

e−αr̃t+r̃t−fω+ ˙̃rtωnr̃t

)
≤ 1

Vol(X)

∫
X

(α− 1)r̃tω
n
r̃t + C

≤ n(1− α)

Vol(X)

∫
X

r̃tω
n + C,

where in the second line we have used the estimates of (i) and (ii). It is well known
that there exist D(ω) > 0 such that

D ≥ sup
X
u−

∫
X

uωn ≥ 0, u ∈ PSH(X,ω).

Putting together the last two estimates finishes the proof of (v).
Now we turn to the proof of the double estimate in (vi). From the definition of

AM and (iii) it follows that

sup
X
r̃t −AM(r̃t) ≥

1

n+ 1
(sup
X
r̃t −

1

Vol(X)

∫
X

r̃tω
n
r̃t)

≥ 1

n+ 1
sup
X
r̃t − C,

and this establishes the first estimate. The second estimate follows from (iv) and
the simple fact that supX r̃t ≥ AM(r̃t). �

Finally, we are ready to write down the main result of this paragraph, which
phrases some of the estimates from the previous proposition for AM–normalized
Kähler–Ricci trajectories.

Nov 17 2015 20:28:22 EST
Version 2 - Submitted to TRAN

GeomAnalThis is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



10 TAMÁS DARVAS AND WEIYONG HE

Proposition 2.8. Suppose t → rt is an an AM–normalized Kähler–Ricci trajec-
tory. Let t→ r̃t be the corresponding Kähler–Ricci trajectory normalized according
to (15), i.e. rt = r̃t −AM(r̃t). For t ≥ 0 the following hold:

(i) − infX rt ≤ C supX rt + C, for some C > 1.
(ii) supX r̃t ≤ C supX rt + C ≤ D supX r̃t + E, for some C,D,E > 1.
(iii) For any p ≥ 1 we have supX rt/C − C ≤ dp(r0, rt) ≤ C supX rt + C for

some C > 1.

(iv) If α ∈ (n/(n+1), 1) and p ≥ 1 then − log
( ∫

X
e−α(rt−supX(rt−r0))+fωωn

)
≤

−εdp(r0, rt) + C for some C > 1 and ε > 0.

Proof. The estimate in (i) follows from part (vi) of the previous proposition. This
last estimate also gives the first estimate of (ii). Estimate (ii) in the previous result
immediately gives the second part of (ii).

The first estimate of (iii) is just [Da4, Corollary 4]. By (13) we have that
dp(r0, rt) ≤ oscX(r0 − rt). Part (i) now implies the second estimate of (iii).

Notice that α > n/(n+ 1) is equivalent with (1− α)n− α < 0 and that the left
hand side of (v) is invariant under different normalizations. The estimate of (iv)
now follows after we put together parts (v) of the previous proposition with what
we proved so far in this proposition. �

3. Proof of the Main Results

First we give a proof for Theorem 1. As it turns out, the argument is about
putting together the pieces developed in the preceding section.

Theorem 3.1. Suppose (X, J, ω) is a Fano manifold and p ≥ 1. There exists a
Kähler–Einstein metric in H if and only if every Kähler–Ricci trajectory [0,∞) 3
t → rt ∈ HAM is dp–bounded. More precisely, the C0–bound along the flow is
equivalent to the dp–bound:

(16)
1

C
dp(r0, rt)− C ≤ sup

X
|rt| ≤ Cdp(r0, rt) + C,

for some C(p) > 1.

Proof. If there exists a Kähler–Einstein metric in the cohomology class of ω then
by [Da4, Theorem 6] we have that any Kähler–Ricci trajectory dp–converges to one
such metric, hence stays dp–bounded.

For the other direction, suppose dp(0, rt) is bounded. By Proposition 2.8(ii)(iii),
dp(0, rt) controls both supX r̃t and supX rt, which in turn control ‖r̃t‖L∞ and
‖rt‖L∞ , by Proposition 2.8(i) and Proposition 2.7(iv) respectively. The regularity
theory for the Kähler–Ricci flow implies now that t → r̃t converges exponentially
fast in any Ck norm to a Kähler–Einstein metric, hence so does t→ rt. �

It is well known that the Mabuchi K–energy decreases along Kähler–Ricci tra-
jectories. The estimates of the previous section imply that in case (X, J, ω) does
not admit a Kähler–Einstein metric, any AM–normalized Kähler–Ricci trajectory
t→ rt satisfies the assumptions of the following theorem:

Theorem 3.2. Suppose [0,∞) 3 t → ct ∈ HAM is a curve for which there exists
tl →∞ satisfying the following properties:

(i) (Harnack estimate) − infX ctl ≤ C supX ctl + C for some C > 0.
(ii) (C0 blow-up) liml→∞ supX ctl = +∞.
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GEODESIC RAYS AND KÄHLER–RICCI TRAJECTORIES ON FANO MANIFOLDS 11

(iii) (bounded K-energy ’slope’)

lim sup
l→∞

M(ctl)−M(c0)

supX ctl
< +∞.

Then there exists a curve [0,∞) 3 t → ut ∈ H0,AM which is a non–trivial dp–
geodesic ray weakly asymptotic to t→ ct for all p ≥ 1. Additionally, t→ ut solves
the complex Monge-Ampère equation (3).

Proof. The idea of the proof is to construct a d2–geodesic ray satisfying all the
necessary properties. At the end we will conclude that this same curve is also a
dp–geodesic ray for any p ≥ 1.

By setting ω := ω + i∂∂̄c0 and ct := ct − c0, we can assume without loss of
generality that c0 = 0. As infX ctl ≤ C supX ctl + C, the same argument as in the
previous theorem gives:

(17)
1

C
dp(0, ctl)− C ≤ sup

X
|ctl | ≤ Cdp(0, ctl) + C,

for any p ≥ 1. The fact that liml supX ctl = +∞ implies now that fl = d2(0, ctl)→
∞. Let

[0, fl] 3 t→ ult ∈ H∆

be the unit speed (re–scaled) weak geodesic curve (solving the system (4)), joining
c0 = 0 with ctl . By our choice of normalization it follows that

(18) AM(ult) = 0 and d2(0, ult) = t, t ∈ [0, fl].

By our assumptions and (17) there exists C,D > 1 such that

−Cd2(0, ctl)− C ≤ −D sup
X
ctl −D ≤ inf

X
ctl ≤ sup

X
ctl ≤ Cd2(0, ctl) + C.

Rewriting this, as ulfl = ctl and supX ctl →∞, for l big enough we obtain:

(19) − C ≤
−D′ supX u

l
tl

fl
≤

infX u
l
fl

fl
≤

supX u
l
fl

fl
≤ C,

As ul0 = 0 for all l, using (19) and Theorem 2.6 we can conclude that

(20) − C ≤ −D
′ supX u

l
t

t
≤ infX u

l
t

t
≤ supX u

l
t

t
≤ C, t ∈ [0, fl].

By the main result of [BB] (for a different approach see [CLP]) it follows that the
map t→M(ult) is convex and non-positive. In particular, for t ≥ 0 we have:

Hω(ωul
t
)− L(ult)

t
=
M(ult)−M(u0)

t
≤ M(ctl)−M(c0)

fl
≤ C <∞,

where in the last estimate we have used condition (ii) in the statement of the
theorem along with (17). Proposition 2.5 now implies that there exists C > 1 such
that

(21) 0 ≤ Hω(ωul
t
) ≤ L(ult) + Et ≤ Cd2(0, ult) +Dt = (C +D)t.

Fix now s ≥ 0. From (20) and (21) it follows using Theorem 2.4 that there exists

l′k →∞ and us ∈ H0 such that d2(u
l′k
s , us)→ 0. As AM is continuous with respect

to d2, by (18) we also have AM(us) = 0 and d2(0, us) = s.
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12 TAMÁS DARVAS AND WEIYONG HE

Building on this last observation, using a Cantor type diagonal argument, we can
find sequence lk → ∞ such that for each h ∈ Q+ there exists uh ∈ H0 satisfying

dp(u
lk
h , uh)→ 0, AM(uh) = 0 and d2(0, uh) = h.

As t → ult are unit speed d2–geodesic segments, for any a, b, c ∈ Q+ satisfying
a < b < c we have

d2(ulka , u
lk
b ) + d2(ulkb , u

lk
c ) = c− a = d2(ulka , u

lk
c ).

Taking the limit lk →∞ we will also have

d2(ua, ub) + d2(ub, uc) = c− a = d2(ua, uc).

Hence, by density we can extend h→ uh to a unit speed d2–geodesic [0,∞) 3 t→
ut ∈ H0,AM weakly asymptotic to t → ct. This d2–geodesic is non-trivial, i.e. not
of the form ut = u0 + ct for some c ∈ R. Indeed, this would contradict the fact
AM(ut) = 0 and t → ut is unit speed with respect to d2. As d2-geodesic rays
connecting two points are unique, it follows that t → ut additionally solves the
complex Monge-Ampère equation (3).

Finally, as t → ut is a bounded d2–geodesic ray, by Proposition 2.1 t → ut is a
dp geodesic ray as well for any p ≥ 1. �

When the curve t→ ct in the previous theorem is a diverging Kähler-Ricci tra-
jectory, the weakly asymptotic ray produced by the previous theorem has additional
properties:

Theorem 3.3. Suppose (X,J, ω) is a Fano manifold without a Kähler–Einstein
metric in H and [0,∞) 3 t → rt ∈ HAM is a Kähler-Ricci trajectory. Let t → ut
be the geodesic ray produced by the previous theorem. The following holds:

(i) The map t → F(ut) is decreasing. If additionally (X, J) does not admit
non–trivial holomorphic vector fields then t→ F(ut) is strictly decreasing.

(ii) The ”sup-normalized” potentials ut−supX(ut−u0) ∈ H0 decrease pointwise

to u∞ ∈ PSH(X,ω) for which
∫
X
e−

n
n+1u∞ωn =∞.

Proof. We work with the notations of the previous theorem. To show t→ F(ut) is
decreasing, we claim first that for any t > 0, F(u0) ≥ F(ut). It is well known that
t → F(rt) is decreasing, hence F(u0) ≥ F(ulfl). By Berndtsson’s theorem [Brn1],

the maps t→ F(ult) are convex, hence we also have

F(u0) ≥ F(ult), t ∈ [0, fl].

As noted earlier, the maps F are continuous with respect to d2. By passing to the
limit, the claim is proved. As t → F(ut) is convex and F(u0) ≥ F(ut) for any
t ∈ (0,∞), F has to be decreasing.

If additionally (X, J) does not admit non–trivial holomorphic vector fields then
t→ F(ut) is strictly decreasing. Indeed, if this were not the case, then there would
exist t0 ≥ 0 such that

∂

∂t
F(ut) = 0, t ≥ t0.

By the second part of Berndtsson’s convexity theorem [Brn1], this implies that
(X, J) admits a non–trivial holomorphic vector field, which is a contradiction.

We turn to part (ii). For n/(n+1) < α < 1 each curve t→ αult is a subgeodesic,
hence it follows from [Brn1] that each map

t→ − log
(∫

X

e−αu
l
t+fωωn

)
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is convex. As ul0 ≡ 0, by Theorem 2.6 the map t → supX u
l
t is linear, hence the

function

t→ Gα(ult) = − log
(∫

X

e−α(ul
t−supX ul

t)+fωωn
)

= − log
(∫

X

e−αu
l
t+fωωn

)
− α sup

X
ult

is also convex. By Theorem 2.8(iv) this implies that Gα(ult) ≤ −εd2(0, ult) + C =
−εt + C. Similarly to F(·), the functional Gα(·) is also continuous with respect to
d2, hence by taking the limit lk →∞ in this last estimate we obtain:

(22) Gα(ut) ≤ −εt+ C.

As discussed after Theorem 2.6, the decreasing limit u∞ = limt→∞(ut − supX ut)
is a well defined and not identically equal to −∞. Letting t → ∞ in (22) by the
monotone convergence theorem we obtain that

∫
X
e−αu∞ωn =∞. As n/(n+ 1) <

α < 1 is arbitrary, the recent resolution of the openness conjecture (see [Brn2, GZh])
implies part (ii). �

We believe t → F(ut) should be strictly decreasing even if X has holomorphic
vector fields. We can show this when the Futaki invariant is nonzero as we elaborate
below. Note that along the Kähler-Ricci trajectory t → rt the F–functional is
strictly decreasing unless the initial metric is Kähler–Einstein. Using the identity

e−rt+fω∫
X
e−rt+fωωn

ωn = efωrt ωnrt

we can write
∂F(rt)

∂t
= −

∫
X

fωrt
(efωrt − 1)ωnrt .

It is natural to introduce the following quanitity:

ε(ω) = inf
u∈H

∫
X

fωu(efωu − 1)ωnu ≥ 0.

This quanitity is clearly an invariant of (X,J, [ω]). If ε(ω) > 0, then there exists
no Kähler-Einstein metric in H. By Jensen’s inequality, for any u ∈ H we have∫
M
fωu

ωnu ≤ 0, hence we can write∫
M

fωu
(efωu − 1)ωnu ≥

∫
M

fωe
fωuωnu .

By [H2], the right hand side above (defined as the H-functional) is nonnegative and
is uniformly bounded away from zero if the Futaki invariant is nonzero, implying
in this last case the bound ε(ω) > 0. Finally, we note the following result:

Proposition 3.4. Suppose t → rt and t → ut are as in the previous theorem. If
ε(ω) > 0, then the map t→ F(ut) is strictly decreasing. More precisely, there exists
C > 0 such that F(ut) ≤ F(u0)− Ct, t ≥ 0.

Proof. By the discussion above, we have the estimate

F(rtl)−F(r0) ≤ −ε(ω)tl.
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14 TAMÁS DARVAS AND WEIYONG HE

Using the notation of the previous theorem’s proof, by the estimates of paragraph
2.2, there exists C,C ′ > 0 such that for l big enough:

fl = d2(0, rtl) ≤ C ′ sup
X
rtl ≤ Ctl.

From our observations it follows that

F(ulfl)−F(u0)

fl
=
F(rtl)−F(r0)

fl
≤ −ε(ω)

C
.

By the convexity of F we can conclude that

F(ult)−F(u0)

t
≤ −ε(ω)

C
, t ∈ (0, fl].

Letting l→∞ we obtain

F(ut)−F(u0)

t
≤ −ε(ω)

C
, t ∈ (0,∞).

�

Finally we prove the equivalence of geodesic stability and existence of Kähler–
Einstein metrics:

Theorem 3.5. Suppose p ∈ {1, 2} and (X, J, ω) is a Fano manifold without non–
trivial holomorphic vector–fields and u ∈ H. There exists no Kähler-Einstein metric
in H if and only if there exists a dp–geodesic ray [0,∞) 3 t → ut ∈ H0,AM with
u0 = u such that the function t→ F(ut) is strictly decreasing.

Proof. The only if direction is a consequence of the previous theorem. We argue
the if direction. Suppose there exists a Kähler–Einstein metric in H.

In case p = 1 it is enough to invoke [Da4, Theorem 6]. Indeed, this result says
that on a Fano manifold without non–trivial holomorphic vector–fields existence
of a Kähler-Einstein metric in H is equivalent to the d1–properness of F (sublevel
sets of F are d1–bounded). Hence the map t→ F(ut) can not be bounded for any
d1–geodesic ray t→ ut.

For the case p = 2 we first claim that d2–geodesic rays are also d1–geodesic rays.
Indeed, this follows from the CAT (0) property of (H, d2) = (E2(X,ω), d2) [Da3,
CC], as we argue now. Because of this property, d2–geodesic segments connecting
different points of H0 are unique, hence they are always of the type described in (8),
which are also d1–geodesics (Proposition 2.1). Clearly, the same statement holds
for geodesic rays as well, not just segments, proving the claim. Now we can use
[Da4, Theorem 6] again to conclude the argument. �

Using the convexity of F along d2–geodesics, the above proof additionally shows
that there exists a Kähler–Einstein metric on (X, J, ω) if and only if t → F(ut) is
eventually strictly increasing for all d2–geodesic rays t→ ut.
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Birkhäuser/Springer, New York, 2012, 39–66.

[Brn1] B. Berndtsson,A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness
theorems in Kähler geometry. Invent. Math. 200 (2015), no. 1, 149–200.

[Brn2] B. Berndtsson, The openness conjecture for plurisubharmonic functions, arXiv:1305.5781.

[Bl1] Z. Blocki, On geodesics in the space of Kähler metrics, Proceedings of the ”Conference in
Geometry” dedicated to Shing-Tung Yau (Warsaw, April 2009), in ”Advances in Geometric

Analysis”, ed. S. Janeczko, J. Li, D. Phong, Advanced Lectures in Mathematics 21, pp. 3-20,

International Press, 2012.
[Bl2] Z. B locki, The complex Monge-Ampère equation in Kähler geometry, CIME Summer School

in Pluripotential Theory, Cetraro, July 2011, to appear in Lecture Notes in Mathematics.
[BK] Z. B locki, S.Ko lodziej, On regularization of plurisubharmonic functions on manifolds, Pro-

ceedings of the American Mathematical Society 135 (2007), 2089–2093.

[BBEGZ] S. Boucksom, R. Berman, P. Eyssidieux, V. Guedj, A. Zeriahi, Kähler-Einstein metrics
and the Kähler-Ricci flow on log Fano varieties, arXiv:1111.7158.

[BEG] S. Boucksom, P. Eyssidieux, V. Guedj, An introduction to the Kähler-Ricci flow, Lecture

Notes in Math. 2086, Springer 2013.
[CC] E. Calabi, X. X. Chen, The Space of Kähler Metrics II, J. Differential Geom. 61(2002), no.

2, 173-193.

[Cao] H. Cao, Deformation of Kaehler metrics to Kaehler-Einstein metrics on compact Kaehler
manifolds, Invent. Math. 81 (1985), no. 2, 359–372.

[C] X.X. Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), no. 2, 189–234.

[CLP] X.X. Chen, L. Li, M. Paun, Approximation of weak geodesics and subharmonicity of
Mabuchi energy, arXiv:1409.7896.

[CT1] X.X Chen, G. Tian, Ricci flow on Kähler-Einstein surfaces, Inventiones mathematicae
2/2002; 147(3):487-544.

[CT2] X.X. Chen, Y. Tang, Test configuration and geodesic rays, Géometrie differentielle,
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