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On Congruences Related to the

First Case of Fermat's Last Theorem

By Wells Johnson*

_T7 n17 17 + 2
Abstract.   Solutions to the congruences (1 + ay   ■ 1 + or    (mod p       ) and

(1 + sY = 1 + sP (mod p") are discussed. Congruences of this type arise in the study

of the first case of Fermat's Last Theorem. Solutions to these congruences always

exist for primes p s i (mod 6).   They are derived from the existence of a

primitive cube root of unity (mod p).   Constructive techniques for finding

numerical examples are presented.   The results are obtained by examining the

p-adic expansions of the p-adic (p — l)st roots of unity.

1.  Introduction.   Let p > 5 be a prime.  Carmichael [2] proved that if the

Fermât equation xp + yp = zp has a nonzero integral solution in the first case

ip Jfxyz), then there exists an a, 0 < a < p, satisfying

(1) (1 + ay2 = 1 + ap2    (mod p3).

Dickson [3, p. 772] writes that it was G. D. Birkhoff who noted that this congruence

is equivalent to

(2) il+af = l+ap    (mod p3).

Meissner [9] gives the same result.

Using a theorem of Furtwängler, Vandiver [12] proved that a solution (x, y, z)

of the Fermât equation in the first case must also satisfy the congruence x + y = z

(mod p3).  Gandhi [7] has noted that this implies that the congruence

(3) (1 + s)p = 1 + sp    (mod p*)

must hold for some integer s, p ¡( s.

Trypanis [11] and Ferentinou-Nikolakopoulou [5] have reported that a

solution to the Fermât equation in the first case requires that for some a, 0 < a < p,

(4) (1 + a)p2 = 1 + ap2    (mod p4).

If a is a solution to Eq. (4), then Eqs. (1) and (2) hold, so that s = ap is a solution

to Eq. (3).

It was known classically (essentially to Cauchy) that, if a2 + a + 1 = 0 (mod p)

(implying that p = 1 (mod 6)), then Eq. (2) is satisfied by a. Meissner [9] and
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Pollaczek [10] have noted, however, that such a's do not give rise to a solution of

the Fermât equation in the first case. We are thus led to the question of whether or

not Eq. (2) can have a solution a which does not satisfy a2 + a + 1 = 0 (mod p).

It has been known for some time (cf. Arwin [1]) that there exist solutions to the

congruence (1 + aY = 1 + ap (mod p2) with a2 + a + 1 ^ 0 (mod p).  S. S.

Wagstaff, Jr., at the University of Illinois, has verified computationally, however,

that for all primes p < 100,000 the only solutions to Eq. (2) are those also satisfying

a2 + a + 1 = 0 (mod p). In particular, no solution to Eq. (2) is known to exist

for p = 5 (mod 6).

In the next section, we give a proof of the fact that for 0 < a < p the condition

a2 + a + 1 = 0 (mod p) is equivalent to the infinite set of congruences

(5) (1 + a)p" = 1 + aPn    (modp" + 2),      n>\.

For n = 1,2, Eq. (5) reduces to Eqs. (2) and (4), respectively.  This equivalence

places some perspective on any attempts to demonstrate the first case of Fermat's

Last Theorem by means of congruences of this type (cf. Gandhi [6] ).

We also present some solutions to the congruences (1 + sY — 1 + sp (mod p")

for exponents n > 3.  It is shown that solutions always exist for n > 3 if p = 1

(mod 6); and of course, these known solutions all satisfy s2 + s + 1 = 0 (mod p).

The solutions of this type are completely characterized (mod p'"/2').  They occur in

pairs, with sum congruent to - 1 (mod p'"/2').  A simple construction is presented

to compute the values of the solutions in the case n = 5.  We also establish a general

congruence for the difference (1 + sY - 1 - sp (mod p4) for all integers s satisfying

s2 + s + 1 = 0 (mod p).

The results of this paper all follow from the existence of the (p - l)st roots of

unity in the ring of p-adic integers, Z , and the numerical determination of their

p-adic expansions.  The author [8] has proved previously some well-known properties

of the Bernoulli numbers from similar considerations.

2.  Main Theorems.   For 0 < a < p, let via) denote the unique p-adic (p - l)st

root of 1 in Zp which satisfies via) = a (mod p).  If a2 + a + 1 = 0 (mod p), then

p = 1 (mod 6) and a is a primitive cube root of 1 (mod p).   From a3 = 1 (mod p)

and a ^ 1 (mod p), we deduce via)3 = 1 and via) J= 1 in Zp, so that via) is a

primitive cube root of 1 in  Z , and 1 + via) + via)2 = 0.  But then 1 + via) =

- via)2, so that 1 + via) is the (p - l)st root of 1 congruent to 1 + a (mod p). By

uniqueness, we obtain

(6) 1 + via) - u(l + a).

All the results of this paper are a consequence of this basic fact.  Everett and

Metropolis [4] have shown that if Eq. (6) holds, then a2 + a + 1 = 0 (mod p).  For

the sake of completeness, we include a direct proof of this fact in the following

theorem.

Theorem 1. Let p = 1 (mod 6) be a prime, and let 0 < a < p.  Then the

following properties on a are equivalent:
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(1) a2 + a + 1 = 0 (mod p) (i.e., a is a primitive cube root of 1 (mod p)),

(2) 1 + via) = vil + a),

(3) (1 + dy" = 1 + ap" (mod pn + 2)for alln>l.

Proof.  We have seen that (1) =* (2).  To prove the converse, let V denote the

cyclic subgroup of Z   containing the (p - l)st roots of unity.  Let F = Q(V) be the

subfield of the p-adic numbers Q   generated by V over the prime subfield Q.  Let

a: F—>-.Fbe the automorphism defined by a(u) = v~1 for v E V. Then, applying a

to (2), we obtain u(l + a)-1 = 1 + via)'1.  But this implies that 1 + u(a) + via)2=

0, which gives us (1).

Now write via) = a + rap for ra in Z , uniquely defined by a.  Since viaY =

via), it is easy to prove by induction on n > 0, that via) = ap   + rapn + 1 (mod p" + 2).

A similar result holds for u(l + a).

If (2) holds, then ra = r, +a and (3) follows immediately from (2) and the

congruences above.  Conversely, if (3) holds, then the congruences above imply that

1 + via) = vil +a)   (modpn + 1)

for all n > 1, which is sufficient for (2).

We see as a corollary that, if a2 + a + 1 = 0 (mod p), then a is a solution to

Eqs. (2) and (4) and s = ap is a solution to Eq. (3). The implication (3) => (1) has

been reported without proof by Trypanis [11].

We next turn to the general problem of finding solutions to the congruence

(1 + sY = 1 + sp (mod p") for exponents n > 3.  If a2 + a + 1 = 0 (mod p), then

Eq. (6) implies that 1 + viaY = u(l + aY.  Thus, if we simply take a rational integer

s, s = via) (mod p"), then 1 + s = u(l + a) (mod p") by Eq. (6), so that the

existence of solutions to our congruence is always assured for primes p = 1 (mod 6).

A slightly stronger result is true, however:

Theorem 2. Let p = 1 (mod 6) be a prime, and suppose that a2 + a + 1 =

0 (mod p), where 0 < a < p. // s = u(a) (mod p") for n > 1, then

il+s)P = l+SP    (modp2n + 1).

Proof   Write s = u(a) + Ap", for some r G Zp.  Then sp = u(a)P +

/p^Vay-1 = via) + rp" + 1 (mod p2n + 1).  Also, 1 + s = u(l + a) + rp" by

Eq. (6).   Hence, we also have

(1 +s)p=u(l +a) + rpn+1    (modp2n + 1).

The result now follows from Eq. (6).

Since the primitive cube roots of 1 (either (mod p) or in Zp) come in pairs

(either a and a2, or u(a) and via)2), we always obtain a pair of solutions (mod p")

to the congruence in Theorem 2.  Moreover, if s and s are solutions, with s = via)

(mod p") and s' = via)2 (mod p"), then j + i's-1 (mod p"), so that a second

solution can be obtained easily from a first.

We next prove a converse to Theorem 2:
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Theorem 3. Let p = 1 (mod 6) be a prime, and suppose s2 + s + 1 = 0

(mod p) and (1 + sY — 1 + sp (mod p2") for some rational integer s.   Then s =

via) (mod p"), where a is the smallest positive residue of s (mod p).

Proof.   By induction on n > 1.  The case w = 1 is trivial, since s = a = via)

(mod p) by the definitions of a and u(a).

Next assume that n > 2 and that the theorem is true for n - 1.  By the induc-

tion hypothesis, we can write s = via) + rp""1 for some r £ Z .  But then

5P = u(a)p +/7?"t>(a)p-1 + (^)u(a)p-2r2p2"-2    (mod p2n)

or

sp = via) + rp" + Q)via)-1r2p2"-2      (mod p2").

Similarly, 1 + s = v(l + a) + rp""1 by Eq. (6), so that

(1 + s)p = u(l +a) + rpn + (2 Vl + a)-lr2p2n-2    (mod p2").

By the hypothesis and Eq. (6), we deduce

(5)*>r W"2 = (2)*1 + «)" 1r2p2n~2    (mod p2"),

or

u(l + a)r2 = u(a)r2    (mod p).

Equation (6) now implies that p|r, so that s = via) (mod p"), as desired.

It should be remarked that the proofs of Theorems 2 and 3 generalize slightly.
k k

With the same hypotheses, if s = u(a) (mod p"), then (1 + sY   = I + sp

(mod p2n + k), and conversely, if (1 + s)Pfe = \ + sPk (mod p2n + fc-1), then s =

via) (mod p").

3.  A Construction and Some Examples.  In this section we show how examples

of solutions to the congruence (1 + sY — 1 + sp (mod p5) may be constructed easily

in the case that p — 1 (mod 6).  To use Theorem 2, it is merely necessary to compute

via) (mod p2) for a2 + a + 1 = 0 (mod p). We write via) = a + t>(a),p (mod p2),

where 0 < u(a)t < p.  From the relation viaY = via), it follows that i>(a), = aqa

(mod p), where qa = (ap_1 - l)/p, the so-called Fermât quotient.

Define ft > 1 by the equation a2 + a + 1 = ftp.  Then a3 - 1 = ft(a - l)p,

so that

aP-1 = (1 + ft(a - l)p)(p-1)/3 = 1 + (p - l)ft(a - l)p/3    (mod p2).

Thus qa=ip~ l)ft(a - l)/3 (mod p), or

aqa=ip- l)b(a2 - a)/3 = ft(2a + l)/3    (mod p),

and v(a)x is the least nonnegative residue of ft(2a + l)/3 (mod p).  Also, 0 < a < p

implies that  pH"ft, and p > 5 implies that p 4r(2a + 1).  Hence, u(a), > 0 always,

and we have
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Theorem 4. Let p be a prime, p — 1 (mod 6), and let a be a solution to the

congruence a2 + a + 1 = 0 (mod p), 0 < a<p. Ifb > 1 is defined by a2 + a + 1 = ftp,

then v(a)x is the least nonnegative residue ofb(2a + l)/3 (mod p), and u(a), > 0. Hence,

s = a + u(a)jp is a rational integer solution to the congruence (1 + sY = I + sp

(mod p5), and p <s < p2.

The simplest examples, for p = 7, 13, and 19 and a = 2, 3, and 7, respectively,

yield the congruences

317 = 1 +   307      (mod   7s = 16807),

14713 = 1 + 14613    (mod 13s = 371293),

29319 = 1 + 29219    (mod 195 = 2476099).

By the remark just before Theorem 3, we also have the congruences

197 = 1 + 187 (mod 7s),

2313 = l+2213 (mod 13s),

6919 = l+6819    (mod 19s).

The latter solutions can also be obtained from Theorem 4, by choosing a = 4, 9, and

11 for p = 7, 13, and 19, respectively.

Theorems 3 and 4 combine to give the following:

Corollary. If p is an odd prime, there are no rational integer solutions a in

the interval 0 < a < p to the simultaneous congruences

a2 + a + 1 = 0   (mod p),

(1 + a)p = 1 + ap    (mod p4).

This contrasts with the classical result that, for p = 1 (mod 6), the congruence

a2 + a + 1 = 0 (mod p) always has two solutions a, 0 < a < p, both of which also

satisfy Eq. (2).

4.  More General Congruences.  In this section we establish general congruences

for the differences (1 + dfn - I - aP" (mod p" + 3) and (1 + sf - 1 - sp (mod p4),

when a and s satisfy x2 + x + 1 = 0 (mod p).

Theorem 5. If p is a prime, p = 1 (mod 6) and a2 + a + 1 = 0 (mod p)

for some a, 0 < a < p, then for n > 1,

(1 +ayn =1 +ap" +iqaql+al2)pn + 2    (modp" + 3).

Proof.   As in the proof of Theorem 1, write u(a) = a + rap.  Then u(a) =

viaY" =ap" + rapn + 1 + iaq2j2)p"+2 (mod pn + 3), since ra =aqa (mod p), as we

noted at the beginning of Section 3.  A similar result holds for u(l + a).  By Eq. (6),

ra = rl+a and

(1 +ay" - 1 -ap" = [iaq2a-il + a)q2x+a)/2]p" + 2    (modp" + 3).
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But ra = rx +a implies that (1 + a)qx +a = aqa (mod p), and the result follows.

Theorem 5 also follows from Theorem 1 and the second result of Trypanis [11].

If we choose n = 1 in Theorem 5, we have proved a special case (namely 0 < s < p)

of the following:

Theorem  6. If p is a prime, p = 1 (mod 6), and s2 + s + 1 = 0 (mod p) for

some rational integer s > 2, p js, then

(1 + s)p = 1 + sp + iqsqx+s/2)p3    (mod p4).

Proof.   To finish the proof, it suffices to show that if the congruence holds for

s, then it also holds for s + p.  To see this, note that

(7) <7î+p -<?,-*"'    (modp).

This in turn implies that the congruence

(8) sqs = (l +s)qx+s    (modp),

proved for 0 < s < p above, depends only on the residue class of s (mod p).  The

rest of the verification is an easy algebraic computation.

Note that if s2 + s + 1 = 0 (mod p), then by Theorem 6 we have that (1 + sY

= 1 + sp (mod p4) if and only if qs = 0 (mod p).  If we write s = a + cp, with

0 <a <p and c > 1, then by Eq. (7), this condition is equivalent to qa = c/a (mod p),

or c = a<7a = v(a)x (mod p).   But this means that s = v(a) (mod p2), which is nothing

more than the case n = 2 of Theorem 3.

5.   More Examples.   It is not difficult, using Theorem 2, to construct specific

solutions to the congruences (1 + sY = 1 + sp (mod p7) and (mod p9), much as

we did (mod p ) in Section 3.   It merely requires the computation of v(a) (mod p4),

where a2 + a + 1 = 0 (mod p).

For notation, expand via) out p-adically in the form

v(a) = a + v(a)xP + v(a)2p2 +■■■+ v(a)np" + • • • ,

where the p-adic coefficients v(a)n satisfy 0 < v(a)n < p for all n > 1.  Now Eq. (6)

implies the rather remarkable fact that all the p-adic coefficients for via) and u(l + a)

are equal:

(9) via)n = vil + a)n,      n>l.

In Section 3 we saw that the relation viaY = via) implies that

(10) t>(a), = aqa    (mod p).

Similarly, from viaY = u(a) we can compute that

(11) via)2p = via)xp + iaqa - u(a),)   (mod p2),
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and

(12)   via)3P2 = [ufcOi - v(fl)2]p + iaqa - v(a)x) + via)2p2 + iaq2J2)p2    (mod p3).

Equations (10)—(12) permit the computation of v(a) (mod p4).   For example,

if p = 13 and a = 3, we have already seen that v(a) = 3 + lip (mod p2).  Now 33 =

1 + 2p, and from this we can compute that

q3 = 8 + lip + 7p2 + 5p3 +p4.

From Eqs. (10)—(12), we find that v(3)x = 11, u(3)2 = 6, v(3)3 = 9, so that

u(3) = 3 + 1 lp + 6p2 + 9p3    (mod p4).

From Theorem 2 and the remark before Theorem 3, we obtain the examples

116113 = 1 + 116013 (mod 137),

103713 = 1 + 103613 (mod 137),

2093413 = 1 + 2093313 (mod 139),

762813 = 1 + 762713 (mod 139).

The second congruence in each pair also follows from Theorem 2, with a = 9.  Since

u(3) + u(9) = - 1, we can conclude that

u(9) = 9 +p + 6p2 + 3p3    (modp4).

The explicit formula for u(3) (mod p4) given above can also be deduced from

the so-called Witt formula:   via) = lim _>«,flp   (p-adic limit).   From this, one sees

that if

ap =a + axp + a2p2 + a3p3    (modp4),

then

via) = a +axp + iax + a2)p2 + (a, + a2 + a3 + (a2/2a))p3    (mod p4).

This formula is equivalent to Eqs. (10)—(12).  For p = 13 and a = 3, we find that

ax = 11,a2 = 8, anda3 = 10, so that, as before,

w(3) = 3 + 1 lp + 6p2 + 9p3    (mod p4).

From Eq. (9) with n = 1, 2, 3 and Eqs. (10)—(12), we obtain

0 + a>?i +a - a% - (<7a<7i +J2)P2    (mod P3)-

This congruence is in fact the case n = 1 of Theorem 5, so that Theorem 6 can be

obtained by these more computational methods.
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