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The Cesàro and the Riemann methods of summation are both

intimately connected with the theories of Fourier and trigonometric

series. It is therefore natural that the relation between these methods

should have been investigated in some detail. For instance Verblun-

sky [2] has proved that, when k is a positive integer, summability

(C, fe —5) implies summability (R, fe + 1); and Kuttner [l] has

proved that, for fe=l, 2, summability (R, k) implies summability

(C, fe+5).
Riesz's typical means generalise Cesàro summability and there is a

corresponding generalisation for Riemann summability. Since both

these methods are appropriate for dealing with almost periodic func-

tions, we wish to establish a connection between them.

The notation we shall use is the following.

Riesz's typical means. If fe>0, 0=X0<Xi<X2< • ■ •  and

z(i--Y«»->*
X„<u  \ W /

as co—>*>, then ^m„ is said to be summable (R, X», fe) to s.

Riemann summability. If fe is a positive rational number with odd

denominator, 0 <Xi <X2 < • • •  and

»  /sin\BA\*
«0 + 2^ ( ) «n —» S

n-1 \    An«     /

as fe—>0, then ]£M» IS said to be summable (22, fe, X») to s.

The object of this note is to prove the following result.

Theorem. Suppose Xo = 0, 0<£=X„+i—X„á(Z for all » and ^T-o M»>

is summable (R, X„, 1) to t. Then y^T_n un is also summable (R, fe, X„)

to t when k>2 (and k is a rational number with odd denominator).

Before proceeding with the proof we might mention that, although

our result is new even when {X„}={«}, from the point of view of

applications it would be more desirable to proceed from a nonintegral

Riesz mean to Riemann summability of an integral order. However

this problem appears to be a very formidable one because of the diffi-

culty of dealing with nonintegral Riesz means.
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Proof of the theorem. For ra = 1 we put

tn=±(l--)ur
r=0 \ Xn/

so that the hypothesis of the theorem implies that /„—H as ra—> <*>. We

have

n

XBfn  =  XnSn / . XrWr>

r=0

where sn = uo+ui+ • ■ ■ +un, and so

Xn+dn+l  —  Xntn  =   Xn+lSn+1  —  XnSn  —  Xn+lUn+l   =   (Xn+1 X„)S„.

It follows that, for ra = 2,

Xn+ltn+l Xntn Xntn Xn—dn—l

(1) Un -
Xn+1 Xn X» X„_i

and, since Xo = 0, (1) is easily seen to hold for ra = l also, whatever

value is assigned to fo.

Taking a suitable i>2we define rh, lor h>0, by

/sin Xnh\
Th = m + x

- /sin x„Ay

n=l \     Xnh     /

the series being convergent since Xn+i—Xn^p and so un — o(Xn). We

put

1, for x = 0,

*(*)- /sin x\*

It)' for x ?<* 0.

Then, by (1) and since also Uo — h,

(Xn+dn+l   —   Xntn Xnln Xn—dn-^, /Xn+l/n+1 X„/n Xnln Xn-l¿n-l\

Tft = c(Xoh)ti + ¿_ c(Xnh) I-1.
n=l \       Xn+1  —  X„ Xn Xn-1       /

Now i„ is bounded, c(Xnh) =0(\/nk) and Xn/(Xr+i — Xr) —0(n). Hence

the series for rft may be written

« (c(\n+ih) - c(Xnh)     c(\nh) - c(Xn-ih)\

n=l \ X„+l  —  X„ Xn X„_l /

—   ¿^ Oth.ntn-

n-1
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We wish to prove that this transformation is regular, i.e. that

r„—H as h—>0. This is so if (and only if) the three Toeplitz conditions

are satisfied, namely

(i) an,n—»0 as h—> 0, for all n,

(ii)   Sn-i \oth,n\ is uniformly bounded for all fe>0,

(hi)   Üi«»,»-^1 as h—>0.
The first and the third condition are easily shown to be satisfied.

In the first place the continuity of c(x) shows that «;,,„—»0 as h—»0.

Also

00

¿2   ah,n  =   1
n=\

for all fe>0. This is either proved directly or by taking «o= 1, «n = 0

for re = 1 so that tn = 1 for all re and r» = 1 for all h > 0.

We still have to prove (ii). We have

/c(X»+i») — c(\nh)      c(\nh) — c(X„-ih)\
an.n = I-;-;-:-;— I An«

\    XB+ife — A„« \nh — Xn-ih    /

=   {c'(Vn)   -c'(U)}\nh

=   (Vn  —  tn)c"(Xn)\nh,

where X„_ife<^re<XBfe<>7n<Xn+ife and ^n<xn<r¡„. Now

(sin x\k~2/x cos x — sin x\2—) (-5—)

/sin x\k~1/ — x2 sin x — 2x cos x + 2 sin #\
+ *(--)  (-7--)

\   x

and so

. . (A if 0 < x < I,

1A*     if * = l,

where ^4 is a constant.

Let N be the integer such that

Xffh < 1 ^ Xjv+ife.

For re = N,

| ai,, |   < (nn — %n)A\nh < 2qhA\nh < 2Aq2nh2

and so
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¿ | a*,» |  < 2AqW 2 » = AqWN(N + 1) < PA2A2
n-l »=1

á Bh\XN/pY < B/p* = K,

say.

For n>N,

. A 2Aq*nh* 2Aq*
| ah,„ |   < (ijn - ¿„) -r X„Â <-—- g

x* (X„_iA)*

(t ')V
and so

y  \a 2Aqï       y    1   <       c
«¿il /1    \» 3+1 ra*"1 < Â*-2(A 4- l)*-2

A*-2
(7')'

Cç*-2
<-= Cg*-2 = 7,

(ÂXjv+i)*-2

say. Hence, for all h>0,

oo

£ I a*.. |   < K + L
n-l

and the theorem is therefore proved.

We wish to express our thanks to the Sandia Corporation of Albu-

querque, New Mexico, which financed a project of which this paper

is a part.
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