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1. Introduction. Let A = (ank) be an infinite matrix of complex

numbers and let x = \xk} be a sequence of complex numbers. The

sequence <r= {a„} defined by

(1-1) <rn = 2J ankxk
k=o

is called the A -transform of x whenever the series converges for

m = 0, 1, ■ • • . The sequence x is said to be 4-summable to y if

{c„} converges to y. A is called conservative if xEc implies crEc,

where c is the linear space of convergent sequences. A is called regular

if it is conservative and preserves the limit of each convergent se-

quence.

In the theory of summability and its applications one is usually

interested in conservative or regular matrices. It is the object of this

paper to introduce a slightly more general class of matrices than the

conservative or regular matrices and to give certain illustrations of

this notion.

2. Definitions. Let m denote the linear space of bounded sequences.

A sequence xEm is said to be almost convergent and 5 is called its

generalized limit if each Banach limit [3] of x is s. The class / of

almost convergent sequences was introduced by Lorentz [3], who

proved that a sequence x= {xk} is almost convergent if and only if

. Xn "T" Xn+l    \     '   '   '     I    Xn-\-p— 1
(2.1) hm -= s

P—* oo p

uniformly in n.

A convergent sequence is almost convergent and its limit and its

generalized limit are identical. Lorentz proved that/ is a closed linear

subspace of m in the usual topology.

Definition 2.1. A sequence x is said to be almost convergent to s if

xEf and s is the generalized limit of x.

Definition 2.2. A sequence x is said to be almost A-summable if the

A-transform of x is almost convergent. It is said to be almost A-sum-

mable to s if the A-transform of x is almost convergent to s.

Definition 2.3. The matrix A is said to be almost conservative if
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xEc implies that the A-transform of x is almost convergent. A is said

to be almost regular if the A-transform of x is almost convergent to the

limit of x for each xEc
In the sequel the following notation is used:

(i)  C denotes the complex numbers,

(ii) Z denotes the integers,

(iii) Z+ denotes the positive integers,

(iv)  If x= \xk} is an element of c, then ||x|| is defined by

||*|| = sup { | xk\: k E Z],

(v) The linear space of all continuous linear functionals on c is

denoted by c',

(vi)  UfEc' then ||/|| is defined by

Il/H = sup {|/(.r) | :||,||=1}.

It is well known that the functionals defined by (iv) and (vi) of

the above are norms for c and c', respectively, and that the resulting

normed spaces are complete.

3. Theorems.

Theorem 3.1. The matrix A = (ank) is almost conservative if and only

if
/    oo       J      n+p—1 \

(3.1)   sup \2Z —    2Z    <*/*  ■■ P E Z+\  < oo,        n = 0, 1, • • • ,
V fc-0     P        j-n "

(3.2) there exists ctkEC, k=0, 1, ■ ■ • , such that

I    n+p-l

lim —   2^1  aik = ak,
j)-.»   p   j_„

uniformly in n, and

(3.3) there exists aEC such that

1     n+p— 1     oo

lim —  X)   S aik = a»
J>->»    p     j_n      k-0

uniformly in n.

Proof. Suppose that A is almost conservative. Fix nEZ. Let

1     n+p— 1

tpn(x)   =  —     2Z    <Jj(x),
P    j~n

where
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CO

<r>(x) ~ 2~2 aik%k-
k-0

It is clear that <ry£c', j = 0,1, ■ ■ ■. Hence tpnEc', p = l, 2, ■ ■ • . Since

A is almost conservative,

lim tpn(x) = t(x)

uniformly in n. It follows that \tpn(x)} is bounded for xEc and fixed

n. Hence, {||'jm||} is bounded by the uniform boundedness principle.

For each rEZ+, define the sequence y = y(n, p) by

n+p— 1

Jk = sgn   2~2 aik,       OStSr
y-n

= 0, r < k.

Then yEc, \\y\\ =1, and

1       r       n+p—1

I  lpn(i) I   =  - H       X)    aJk     ■
p k=o    j=n

Hence

|  tpn(y) I   ̂    |i^pn||   (HI   =   ||'jm||.

Therefore

1       oo       n+p— 1

- 2-i      2-1   aik    =  11'p»||»
p   k=o     y—n

so that (3.1) follows.

Let the sequences e and ek, k = 0, 1, ■ • • , be defined by

e=(l,l, • • •, 1, ■ • •) and ek = (0, • ■ ■, 0, 1, 0, • • • ) where the last 1

is in the Ath position. Since e and ek are convergent sequences,

k = 0, 1, • • • , lim tpn(e) and lim tpn(ek) must exist uniformly in n.

Hence (3.2) and (3.3) must hold.

Now assume that (3.1), (3.2), and (3.3) hold. Fix nEZ and xEc.
Then

1     n+p—l     oo

tpn(x)   = -    X      H aik*k
p     j=n     ifc-0

1      oo   n+p—1

=  - 2-1    2-1    aikXk,
P   k=0    j-n

so that
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1       oc    I n+p—1

|  lpn(x) |   ̂   — X       X)    «J*    11*11-
/>   /t=0 I    j-n

Therefore, |/pB(x)| ^A^n||*|| by (3.1), where Kn is a constant inde-

pendent of p. Hence tpnEc', p = l, 2, • • • , and the sequence {||/Pn||}

is bounded for each «£Z+. (3.2) and (3.3) imply that lim tpn(e)

and lim tpn(ek) exist for » = 0, 1, • • • , and k = 0, 1, • • • . Since

[e, e0, t\, * ' • } is a fundamental set in c it follows from an elemen-

tary result of functional analysis (see, e.g., [2, p. 252]) that

lim tpn(x) = tn(x)
p—» oo

exists and /B£V. Therefore, tn has the form [2, p. 205]

tn(x) = /?   tn(e) — X) *»(«*)    + 11 x*tn(ek),
Ar=0 J A=0

where |8 = lim **. But tn(e)=a and !n(ek)=ak, k = 0, 1, • • • , by (3.3)

and (3.2), respectively. Hence

lim tpn(x) = t(x)
P-.M

exists for each xEc and n = 0, 1, ■ ■ ■ , with

_ QO —1 00

(3.4) t(x) = 0   a—   Hak    + £«***.
4=0       J 4=0

Since tp„Ec' for each p and n, it has the form

[— oo -"1 oo

(3.5) tpn(x) = (3    /pnW  —   X /j.B(e*)     +H^p»(e*)-
L 4-0 J 4=0

It is easy to see from (3.4) and (3.5) that the convergence of

\tpn(x)} to t(x) is uniform in n, since tpn(e)—>a and tpn(ek)-^ak uni-

formly in «. Therefore, A is almost conservative and the theorem is

proved.

Theorem 3.2. The matrix A is almost regular if and only if

/       00 1      I  K+p-1 -V

(3.6) sup \ 2Z —    E ajk  :p E Z+\  < oo,        n = 1, 2, ■ ■ ■ ,
\ 4=0    ^        j=n '

1    n+p-1

(3.7) lim —   X ai* = 0,        uniformly in n, k = 0, 1, • • ■ ,

and
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1    n+p—1     oo

(3.8) lim —   23    2 aik = 1,        uniformly in n.
p_>oo     p      j=H       k=o

Proof. Suppose that A is almost regular. Then A is almost con-

servative so that (3.6) must hold by Theorem 3.1. (3.7) and (3.8)

must hold since the A -transforms of the sequences ek, k = 0, 1, ■ ■ ■ ,

and e must be almost convergent to 0 and 1, respectively.

Suppose that (3.6), (3.7), and (3.8) hold. Then A is almost con-

servative by Theorem 3.1. Therefore, lim tpn(x) =t(x) uniformly in n

for each xEc. The representation (3.4) gives t(x) =lim xk. Hence, A

is almost regular. This proves the theorem.

It is interesting to compare Theorem 3.2 with the well known Silver-

man-Toeplitz Theorem which gives necessary and sufficient condi-

tions that A be a regular matrix. The Silverman-Toeplitz conditions

are

(3.9) sup < 2-) I a„k\:n £ z\  < °o,
"       (. i-0 7

(3.10) \ank: n E Z\ converges to 0,    k = 0, 1, ■ ■ ■ ,

and

(3.11) < 22 ank- n E Z\ converges to 1.
1 fc-0 7

It is clear that (3.9) implies (3.6). The criteria of Theorem 3.2

which correspond to (3.10) and (3.11) are that the sequences

{ank: nEZ] and { 2~lt=o ank: nEZ} shall be almost convergent to 0,

k = 0, 1, • ■ ■ , and to 1, respectively.

In the applications of summability theory to function theory it is

important to know the region in which the sequence of partial sums

of the geometric series is ,4-summable to 1/(1 —z) for a given matrix

A. The following theorem is helpful in determining the region in

which the sequence of partial sums of the geometric series is almost

^4-summable to  1/(1— z).

Theorem 3.3. Let A be a matrix such that (3.8) holds. The sequence of

partial sums of the geometric series is almost A-summable to 1/(1—2)

if and only if zE& where

l 1    n+p—1     oo \

Q =  <z:   lim —   2J,    2-i aikZk = 0 uniformly in n\  •
\ p-.oo    p     j=n      k=0 )

Proof. Let {^(2)} denote the sequence of partial sums of the geo-
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metric series. Then

1    n+p—1     oo

'pn   =   -    E      E OjkSk(z)
p     y=n     4=0

1    n+p-1     oo 1   _ s4+l

= — 2Z  E a*-
p     j=n      4=0 1  — Z

Hence,

1 2 n+p— 1 oo

lim lpn =-lim —- £   E aikZk.
p-.oo 1   —   S P-oo   p(\    —   z)  j=n     4=0

Therefore

1
lim tpn =-1

p_.cc 1—3

uniformly in w, if and only if zf_E_2.

4. Applications. The Euler matrix E(r) is defined by

£>„4 = ( n ) r*(l - r)"~*,       OgiigM

= 0,        » < k.

It is known that E(r) is regular if and only if 0<rgl [l].

Theorem 4.1. Let r9*0 be a complex number. The sequence of partial

sums of the geometric series is almost E(r)-summable to 1/(1— z) if

and only if zE&r where

0r = \z: |2-(l-l/r)| <l/\r\,Z9*l}.

Proof. Since E*-o^n4 = l, (3.8) holds for E(r). Hence, by

Theorem 3.3 it is sufficient to show that ft = Or. In this case

n+p—1     oo n+p—1     j       /   i \

E   E bjkzk =  E   E (. W - r)'-Hk
j=n       fc=0 j=n       A=0    \ «  /

n+p—1

=   E  tt - r + rzV
j—n

1 - (1 - r + rz)»
= (1 - r + r z)n - ■

1 - (1 - r + rz)

Therefore, zE® if and only if 11— r+rz| gl, Z9*l. Hence, fl=fir.

In order that the sequence of partial sums be £(r)-summable to
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1/(1 —z) it is necessary that z lie strictly inside the disk 12r.

It is known [l] that E(r) is regular if and only if (XrrSl. It is

natural to inquire whether or not there exist values of r for which

E(r) is almost regular but not regular. Unfortunately, this is not the

case.

Theorem 4.2. E(r) is almost regular if and only if it is regular.

Proof. If 0<rf£l then E(r) is regular and, hence, almost regular.

Suppose E(r) is almost regular. Since an almost convergent sequence

is bounded, (3.7) will hold only if |l-r|<l. If A= {z: |z|<l},
then ACS!,, since the geometric series converges to 1/(1—z) if z£A.

Since Q,r is a disk with center (1 — 1/r) whose boundary passes through

2 = 1, it is evident that 1 —1/r^O. Hence, r^l. This condition to-

gether with 11—r| <1 implies 0<rgl. Therefore, E(r) is regular.

The following result provides an example of a matrix which is

almost regular but not regular.

Theorem 4.3. Let C=(cnk) be defined by

C„ = —- [1 + (- 1)-],        0 jS k g n,
n + 1

= 0, n < k.

Then C is almost regular but not regular.

Proof. C is not regular since

OO

lim   2~1 cnk
n->«    jt_o

does not exist. It is easy to see that the hypotheses of Theorem 3.2

hold for the matrix C so that C is almost regular.

The author is indebted to the referee for some helpful suggestions.

Added in proof. It has been pointed out to the author, by Mr. Jerry

D. Badger, that (3.1) and (3.6) can be replaced by the more natural

(3.9).
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