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Abstract. We give a new characterization of the property of seminormality

for 1-dimensional local rings; and with the help of this result we develop

extensions of the theorems of Salmon and Bombieri which interpret this

property in terms of singularities of algebraic curves.

1. Introduction. Let R be a reduced, 1-dimensional noetherian ring with

normalization (in its total quotient ring) a finite Ä-module. It is known that

Pic(/?)^Pic(Ä[A']) is an isomorphism if, and only if, the conductor of the

normalization, viewed as an ideal of the larger ring, is its own radical [B-M,

7.12], [E, 4.3]. These conditions are equivalent to what is now called

seminormality [T, 3.6]. If R is the local ring of a point of a scheme, then the

point is called seminormal provided that R is seminormal. Assume that p is a

singular point of an algebraic curve over an algebraically closed field. Salmon

[S] proves that in the plane curve case, p is seminormal if, and only if, it is an

ordinary double point. Bombieri [B] generalizes this result by dropping the

planar restriction and proving that/j is seminormal if, and only if, analytically

the curve locally at p consists of smooth branches with linearly independent

tangents, i.e., the curve has "normal crossings" at p. Now in [S] it is claimed

that the theorem is true over arbitrary ground field provided that "ordinary

double point" is interpreted to mean that the tangent cone splits over the

algebraic closure into two distinct lines. This is not quite true. In [B] it is

stated, but not really proved, that the seminormality of p is equivalent to "p is

an ordinary «-fold point, where n is the dimension of the Zariski tangent

space at p". We shall give a new characterization of seminormality of a

1-dimensional local ring which shows that this property may be described

purely algebraically in terms of the associated graded ring, or purely

geometrically in terms of the projectivized tangent cone. This result has as

corollary the theorem stated in [B] and the correct version of the theorem

claimed in [S]. We conclude with a brief exposition of how the "normal

crossings" result of [B] extends to the abstract case.

Standing notation. Risa reduced, noetherian, 1-dimensional local ring, with

normalization D a finite /v-module. M, k, eiR) and emdim(Ä) denote the

Received by the editors January 23, 1976 and, in revised form, July 28, 1976 and May 28, 1977.

AMS (MOS) subject classifications (1970). Primary 13H15, 14H20.
Key words and phrases. 1-dimensional local ring, seminormality, algebraic curve, tangent cone,

ordinary point, branches, normal crossings.

© American Mathematical Society 1978

1



2 E. D. DAVIS

maximal ideal, residue field, multiplicity and embedding dimension of R. Let

J denote the Jacobson radical of D and K = D/J. For any semilocal ring A,

G (A) denotes the associated graded ring (with respect to its Jacobson

radical).

Observe that R is seminormal if, and only if, M = J.

2. The algebraic-geometric viewpoint. The first theorem is the result referred

to in §1.

Theorem 1. The following statements are equivalent.

(1) R is seminormal.

(2) G(R) is reduced and e(R) = emdim(Ä).

(3) Proj(G(Ä)) is reduced and e(R) = emdim(Ä).

Before proceeding with the proof we state and discuss the following

geometric corollary.

Corollary 1. Let p be a closed point of an algebraic (or algebroid) curve at

which the Zariski tangent space has dimension n. Then:

(1) (cf. [S]) p is seminormal if, and only if, it is an n-fold point at which the

projectivized tangent cone is reduced.

(2) (cf. [B]) For algebraically closed ground field, p is seminormal if, and only

if, it is an ordinary n-fold point (i.e., a point of multiplicity n with n distinct

tangents).

(1) is clearly a special case of (l)<-»(3) of the theorem, and (2) is valid

because over algebraically closed ground field "ordinary point" and "projec-

tivized tangent cone reduced" are equivalent. Something weaker than

algebraic closure suffices: it is enough that all points on the normalization of

the curve lying over/? be rational over the residue field at p. Henceforth if our

local ring R has this property, we say that R has k-rational normalization. In

connection with (1) and [S] we consider an example. Suppose that char(A:) =

2 and that b2 = a E k, with b E k — k. We consider the plane curve over k

defined by the equation Y2 = aX2 + X3. This curve is absolutely reduced

and irreducible (and therefore a variety in anyone's sense of the term) since

over k the equation becomes (Y + bX)2 = X3. Let R be the local ring of the

origin on this curve. Clearly e(R) = emdim(/?) = 2, and G(R) =

k[X, Y]/Y2 + aX2 is reduced; hence R is seminormal. But Y2 + aX2 =

( Y + bX)2; i.e., the affine tangent cone does not split over k, as claimed in

[S], into two distinct lines. But this is in some sense the unique counterexam-

ple. Observe that, in general, G(R) will remain reduced over k'tí, and only if,

A' is a separable ^-algebra; and this is the case whenever e(R) < char()t).

Now for the proof of Theorem 1 we require the following technical

characterization of seminormality.

Lemma. R is seminormal if, and only if, the following conditions hold, (i)

e(R) = emdim(Ä); (ii) MJ n M = M2.
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Proof. Since dim(Ä) - 1, eiR) = fc-dim(Z)/MD). But J and D are

isomorphic Ä-modules since J = xD for some regular element x of /. Hence

eiR) = k-dim{J/MJ). Suppose that R is seminormal; i.e., M = J. Then

e(R) = k-dim(J/MJ) = A:-dim(M/A/"2) = emdim(Ä), and MJ n M = M2.

To prove the converse observe that the inclusion M —» / induces a ^-linear

map M/M2 -* 7/A/7 with kernel M/ n M/M2. By (ii) this map is injective;

and by (i) A>dim(M'/A/2) = A>dim(7/A/7). So (i) and (ii) imply that the map

is surjective. Thus J = M + MJ; whence M = J (Nakayama's lemma).

Proof of Theorem 1.(1)-» (2). Observe that the ¿¿-linear maps M"/M"+ '

-»7"/V+1 induce a graded A>algebra homomorphism G(Ä)-> G(Z>). In

any event GiD) is reduced: GiD) = K[T], T an indeterminate. If R is

seminormal, then eiR) = emdim(Ä) (Lemma), and GiR) is reduced because

the map G(i?) -» GiD) is injective when M = J. (2) -»(1). Suppose that R is

not seminormal. Then by the Lemma, there is x E MJ n M, x & M2. Now

x" E M"J" in > 0), and for sufficiently large n, J" c M because J is the

radical of the conductor. For such n, x" E A/"+1; i.e., the leading form of x

in GiR) is nilpotent. (2)->(3) is clear. (3)-»(2). Since the points of

Proj(G(i?)) correspond to the minimal prime ideals of GiR), the fact that

Proj(G(/?)) is reduced implies that the minimal primary components of the

O-ideal in GiR) are prime. Hence in order to prove that GiR) is reduced, it

suffices to show that the irrelevant maximal ideal of G(/?) is not an associ-

ated prime of the O-ideal. One can prove this directly; but instead we quote a

more general result of J. Sally [Sy] valid for Cohen-Macaulay local rings R of

arbitrary dimension: GiR) is Cohen-Macaulay provided that emdim(/?) =

eiR) + dim(Ä) - 1.

Remark. One can prove (3) -» (1) by using the "A/ = 7" criterion and the

methods of § 1 of Lipman's paper [L].

We conclude this section by giving a more explicit description of GiR).

For Tan indeterminate let G = {/ E K[T]\fiO) E k).

Corollary 2. R is seminormal if, and only if, GiR) = G iisomorphism of

graded k-algebras).

Proof. Let t E G(D) be the leading form of x, where J = xD. Then

t H> T induces a graded AT-algebra isomorphism of GiD) with K[T]. If

M = J, then this isomorphism identifies G(Ä) with G. Note that if GiR) s¿

G, then k-dimiM"/M"+l) = k-dimiK) in > 0). Since in any event we have

eiR) = k-dimiMn/Mn+l) for all large n, it follows that eiR) = emdim(Ä) if

GiR) s* G. And G is clearly reduced.

Remark. (Thanks to the referee for bringing to light this supplement to

Corollary 2.) Observe first that G-say by the conductor criterion-is seminor-

mal with normalization K[T\. It follows that G is the seminormalization of

each of its graded A:-subalgebras having normalization K[T]. (See [T] for

"seminormalization.") Next note that G(Ä) is reduced if, and only if, the

homomorphism G(Ä)-> GiD) is injective. (Proof: essentially identical with
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the "reduced" part of the proof of (l)<-»(2) of Theorem 1.) It follows that

when G(R) is reduced, the identification of G(D) with K[T] identifies G(R)

with a ¿-subalgebra of G having normalization K[T]. These comments,

together with Corollary 2, prove: R is seminormal if, and only if, G(R) is

reduced and seminormal. Consequently: D is obtained from R by glueing over

M if, and only if, G(D) is obtained from G(R) by glueing over the homoge-

neous maximal ideal. (See [T] for "glueing.")

Let {Mj\l < i < n} be the set of maximal ideals of D, and K¡ «■ D/M¡.

For each /' let k-dim(K¡) = d(i) and let (a(>|l < j < d(i)} be a ¿-basis of K¡.

Since K is the it-algebra direct sum of {K¡}, the set {a,-,} is canonically

identified with a subset of K. Let X = {XtJ\l < / < n, 1 < j < d(i)} be a set

of ^determinates, and define a ¿-algebra homomorphism k[X]^> K[T] by

Xy \-+ayT. One easily verifies that the image is G and the kernel is of the

form Sk[X], where S = Sx U • • • U S„ U {A^JfJl ¥= «} and 5, is a set of

homogeneous generators of the kernel of the ¿-algebra homomorphism

k[XiX,...,Xid(i)]^K[T]. Hence:

Corollary 3. R is seminormal if, and only if, G(R) = k[X]/Sk[X]

(graded k-algebra isomorphism). And, in particular, when R has k-rational

normalization, R is seminormal if, and only if,

G(R)m k[X,..., Xn}/ [XtXj\i *j)k[xx, ...,x„].

3. The algebroid-geometric viewpoint. We retain in force the notation

introduced at the end of §2. Let G = {/ E K[[T]]\f(0) E k}. One easily

verifies: G is local with normalization Aff7/1]]; G is seminormal; Xu h» a¡jT

defines a continuous ¿-algebra homomorphism with image G and kernel

5¿[[Ar]]. Assume for the moment that R is complete and equicharacteristic.

Then: k is contained in R; AT is contained in D; and we have a continuous

AT-algebra isomorphism D at K[[T]], which identifies R with G if, and only if,

R is seminormal. Consequently, for complete equicharacteristic R, we have

that R is seminormal if, and only if, R » ¿[[A']]/5'¿[[Ar]] (continuous ¿-

algebra isomorphism). All this is noted in [B], albeit for the case in which R

has ¿-rational normalization.

Now let """ denote completion. Let P¡ denote the minimal prime ideal of R

corresponding to M¡; i.e., P¡ = Q¡ n R, where Q¡ is the unique minimal prime

ideal of D contained in M¡. Recall that the set of (algebroid, or analytic)

branches of R is {R/P¡}. (Properly speaking we should say that

{Spec(R/P¡)} is the set of branches of Spec(Ä).) Since the Zariski tangent

space Z(R) of R is the ¿-linear dual of M/M2 = M/M2, we see that

Z(R) = Z(R). Furthermore, since Z(R/P) is the dual of M/P + M2 = the

annihilator in Z(R) of the subspace P + M2/M2, the Zariski tangent spaces

of the branches are canonically embedded in Z(R), and we may therefore

meaningfully speak of their linear dependence or independence.

Observe that by the "M = J" criterion, R is seminormal if, and only if R,

is seminormal. With this fact and the above explicit description of complete
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equicharacteristic R, one easily shows that the following theorem is valid in

the equicharacteristic case.

Theorem 2. The following are equivalent.

(1) R is seminormal.

(2) The branches of R are seminormal and the Zariski tangent space of R is

the direct sum of the Zariski tangent spaces of the branches.

(3) The branches of R are seminormal and M has a minimal basis {x¡j\l < i

< n, 1 < j < dit)), with {xuJ\u 7e i) a basis for Pi ifor each i).

Claim. Theorem 2 is valid without the equicharacteristic assumption. (3) -»

(1) is valid since from (3) one can deduce the explicit description of G(Ä)

given in Corollary 3. (1)^(2)-» (3) can be proved in the spirit of the

equicharacteristic case, but the technical details must necessarily be

somewhat different owing to the absence of a coefficient field. We omit these

details which are tedious, but quite straightforward, manipulations of stan-

dard techniques of elementary linear and local algebra.

Finally we single out the special case wherein R has fc-rational norma-

lization. As in the classical case, "normal crossings" means "smooth branches

with linearly independent tangents".

Corollary 4. Suppose that R has k-rational normalization. Then R is

seminormal if and only if R has normal crossings.

Remarks. Recent results of F. Orecchia [O, 1.1, 2.3, 2.9] imply the validity

of (1) *-» (2) of Theorem 2. Theorem 1 remains valid if the standing hypothesis

"reduced with finite normalization" is weakened to "Cohen-Macaulay". But

this is not a true generalization: under the weaker hypothesis (1), (2) and (3)

each imply the stronger hypothesis. Theorem 2 does not remain valid under

the weaker hypothesis; e.g., R = k[[X, Y]]/XY2k[[X, Y]] satisfies (2) and (3)

but not (1). If "branches" means {R/P¡), {P¡} the set of primary components

of O, then Theorem 2 is valid under the weaker hypothesis. But the criticism

of the above generalization of Theorem 1 also applies here.
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