SHORTER NOTES

The purpose of this department is to publish very short papers of unusually polished character, for which there is no other outlet.

AN EXAMPLE OF FRÉCHET SPACE, NOT MONTEL, WITHOUT INFINITE DIMENSIONAL NORMABLE SUBSPACES

JUAN C. DÍAZ

ABSTRACT. Given X a Fréchet Montel space, no infinite dimensional subspace of X is normable. We show that the converse implication is not true in general. In fact we provide here a Fréchet space X (moreover, X is a perfect Fréchet space), which is not Montel but does not contain an infinite dimensional normable subspace.

Clearly, given X a Fréchet Montel space, none of the infinite dimensional subspaces of X is normable. The converse implication is true for certain classes of Fréchet spaces (e.g. echelon sequence spaces, X-Köthe sequence space [2], closed subspaces of the reduced projective limits of $\mathcal{L}_{p,\lambda}$ -spaces $p \geq 2$ [1],...). However, we give here a counterexample in order to prove that the converse implication is not true in general.

In fact, let $\rho \in \mathbf{R}$, $\rho \geq 1$, and let us consider the following perfect Fréchet space

$$\lambda_{\rho} = \bigcap_{n \geq 0} l^p = \bigcap_{n \in \mathbb{N}} l^{\rho+1/n} = \underline{\operatorname{proj}}(l^{\rho+1/n}, I_{nm}),$$

 $\lambda_{\rho} = \bigcap_{p>\rho} l^p = \bigcap_{n\in\mathbf{N}} l^{\rho+1/n} = \underline{\operatorname{proj}}(l^{\rho+1/n}, I_{nm}),$ $I_{nm}: l^{\rho+1/m} \to l^{\rho+1/n}, \ n \leq m, \text{ denoting the inclusion mapping. According to the}$ results of Dubinsky [3], λ_{ρ} is a, not Montel, perfect Fréchet space. On the other hand, if λ_0 contains an infinite dimensional normable subspace, say B, then it is easy to check that there is $k_0 \in \mathbb{N}$ so that B is isomorphic to a subspace of $l^{\rho+1/k}$ for every $k \geq k_0$, but this is not possible since l^p and l^r are totally incomparable spaces if $p \neq r$ [4]. Thus λ_{ρ} is a not Montel, Fréchet space, without infinite dimensional normable subspaces.

REFERENCES

- 1. J. C. Diaz, Montel subspaces in the echelon Köthe spaces (to appear).
- 2. S. F. Bellenot, Basic sequences in non-Schwartz-Fréchet spaces, Trans. Amer. Math. Soc. **258** (1980), 199–216.
- 3. E. Dubinsky, Perfect Fréchet spaces, Math. Ann. 174 (1967), 186-194.
- 4. J. Lindenstrauss and L. Tzafiri, Classical Banach spaces. I, Surveys in Math, Springer-Verlag, 1979.

CÁTEDRA DE MATEMÁTICAS, E.T.S.I. AGRÓNOMOS, UNIVERSIDAD DE CÓRDOBA, 14004 CÓRDOBA, SPAIN

Received by the editors September 6, 1985. 1980 Mathematics Subject Classification. Primary 46A14.