AN ABSOLUTELY EXTREMAL FLOW WITH A NONABSOLUTELY EXTREMAL FACTOR

NAOMI SHAKED-MONDERER

(Communicated by Dennis K. Burke)

ABSTRACT. It is shown that a homomorphic image of an absolutely extremal flow is not necessarily absolutely extremal.

1. INTRODUCTION

The notions of affine embedding and absolute extremality were defined in [1]. It was shown there that the property of being absolutely extremal is not preserved under products. We show here that a homomorphic image of an absolutely extremal point is not necessarily absolutely extremal. (This answers a problem suggested in [1].) For our example of an absolutely extremal flow with a nonabsolutely extremal factor we will use a construction similar to that in [3], and results concerning absolute extremality proved in [1 and 2]. For the convenience of reading we state here the relevant results:

In all that follows (X, T) is a minimal metric flow. $\mathscr{P}(X)$ denotes the space of probability measures on X endowed with the weak * topology. Whenever ψ : (X, T)

 $\rightarrow (Q, T)$ is an affine embedding (that is, Q is a compact convex subset of a locally convex linear topological space, $T: Q \rightarrow Q$ is an affine homeomorphism, ψ is a continuous 1-1 equivariant map, and $Q = \overline{\operatorname{co}} \psi X$) we will denote by β the barycenter map from $\mathscr{P}(X)$ onto Q (i.e., $\beta\lambda = \int_X \psi x \, d\lambda(x)$, $\lambda \in \mathscr{P}(X)$). A point $x_0 \in X$ is said to be absolutely extremal if for every affine embedding $\psi: X \rightarrow Q$, $\psi(x_0)$ is an extreme point of Q. (X, T) is an absolutely extremal flow if every point of X is absolutely extremal.

 $L = L(X) = \{(x_1, x_2) \in X \times X | \Delta \text{ is the unique minimal set in the orbit closure of } (x_1, x_2)\}, P(X) = \{(x_1, x_2) \in X \times X | x_1 \text{ and } x_2 \text{ are proximal } \}, \text{ and if } \varphi: (X, T) \to (Y, T) \text{ is a flow homomorphism then } X \underset{\varphi}{\times} X = \{(x_1, x_2) \in X \land X | x_1 \text{ or } X \land X \}$

$$X \times X | \varphi x_1 = \varphi x_2 \} \,.$$

By Corollary 2.2 and the proof of Theorem 2.3 in [1],

©1989 American Mathematical Society 0002-9939/89 \$1.00 + \$.25 per page

Received by the editors September 25, 1987 and, in revised form, March 7, 1988.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 54H20.

This paper is part of the author's Ph.D. thesis done at at Tel-Aviv University under the supervision of Professor S. Glasner.

(1.1) If for $x_0 \in X$ and $\mu \in \mathscr{P}(X)$ $\beta \mu = \psi x_0$ in some affine embedding $\psi: X \to Q$, then there exists an F_{σ} subset A of X with $\mu(A) = 1$, $\overline{x} \in X$, and a sequence of integers $\{n_i\}$ s.t. $T^{n_i}x \to \overline{x}$ for every $x \in A \cup \{x_0\}$.

This implies Theorem 2.3 of [1].

(1.2) Every distal point in (X, T) is absolutely extremal.

We will need also Proposition 1.1 of [2].

(1.3) If $x_0 \in X$ is one of three doubly asymptotic points then x_0 is not absolutely extremal.

And finally, Lemma 3.1 in [1].

(1.4) If in some affine embedding $\psi: X \to Q$ $\beta \mu = \psi x$ $(\mu \in \mathscr{P}(X), x \in X)$ and $y \in X$ is an atom of μ then $(x, y) \in L$.

Considering these last two results one might conjecture that a converse of (1.4) and a generalization of (1.3) holds, i.e. that whenever x_0 , y_0 , z_0 are three points in X each pair of which is in L, x_0 (and/or y_0 , z_0) is not absolutely extremal. We conclude with an example showing this conjecture to be false.

I wish to thank Professor S. Glassner for his constant help and guidance.

2. An absolutely extremal flow with a nonabsolutely extremal factor

Throughout this discussion I will denote [0, 1) with addition modulo 1, $\alpha \in I$ will be a fixed irrational number, and R_{α} the rotation by α on I.

Given a decreasing sequence $(t_k)_{k=0}^{\infty}$ of numbers in (0, 1] s.t. $t_0 = 1$, $t_k \downarrow 0$ and $t_k \neq \cos 2\pi n\alpha$ for every $k \ge 1$ and $n \in \mathbb{Z}$, let $f: [-1, 1] \setminus (\{t_k\}_{k=1}^{\infty} \cup \{0\}) \rightarrow \{-1, 0, 1\}$ be defined as follows:

(2.1)
$$f(t) = \begin{cases} 1, & \text{if } t = 1 \text{ or } t_k < t < t_{k-1} \text{ where } k \ge 1 \text{ is odd.} \\ 0, & \text{if } t_k < t < t_{k-1} \text{ where } k \ge 2 \text{ is even.} \\ -1, & \text{if } -1 \le t < 0. \end{cases}$$

Denote

 $f_{\xi,n} = f(\cos 2\pi(\xi + n\alpha))$

(whenever this is well defined), and define $\tilde{x} \in \{-1, 0, 1\}^{\mathbb{Z}}$ by

$$\tilde{x}(n) = f(\cos 2\pi n\alpha) = f_{0,n}.$$

Let T be the shift on $\Omega = \{-1, 0, 1\}^Z$ and $X = \overline{O(\tilde{x})}$ the orbit closure of \tilde{x} in Ω . If the t_k 's are chosen so that for each $\xi \in I$ $f(\cos 2\pi(\xi + n\alpha))$ is defined for "enough" n's then for every $x \in X$ there exists a unique $\xi \in I$ s.t.,

(2.2)
$$x(n) = f(\cos 2\pi(\xi + n\alpha)) = f_{\xi,n}.$$

For every $n \in \mathbb{Z}$ for which $f_{\xi,n}$ is well defined. (Note that if $f_{\xi,n} = f_{\eta,n}$ then sgn cos $2\pi(\xi + n\alpha) = \text{sgn cos } 2\pi(\eta + n\alpha)$, so if such equality holds for, say, all $n \le n_0$ for some integer n_0 , then $\xi = \eta$.)

From (2.2) it easily follows that X is an almost 1-1 extension of (I, R_{α}) and thus a minimal flow. Let $\pi: X \to I$ denote the flow homomorphism assigning to each $x \in X$ the unique $\xi \in I$ satisfying (2.2).

Our first example is of a flow X constructed as above which is not absolutely extremal but has an extremal extension. For this example set $t_0 = 1$ and $\xi_0 = 0$. Then, when $t_j \in (0, 1]$ and $\xi_j \in I$ have already been chosen for $0 \le j < k$, $t_j = \cos 2\pi\xi_j$, choose $0 < t_k < t_{k-1}/2$ s.t. $t_k \ne \cos 2\pi(\xi_j + n\alpha)$ for every $0 \le j < k$ and $n \in \mathbb{Z}$ and let $\xi_k \in I$ satisfy $t_k = \cos 2\pi\xi_k$. (Then for every $\xi \in I$ fs is well defined for every $n \in \mathbb{Z}$ except for maybe one.)

It is easy to verify that in the above construction the set of ξ 's in I s.t. $\pi^{-1}(\xi)$ is a singleton is $I \setminus \{\xi_j - m\alpha, (1/4) - m\alpha, (3/4) - m\alpha | m \in \mathbb{Z}, j \ge 1\}$. If $\xi = \xi_j - m\alpha$ for some $j \ge 1$ and $m \in \mathbb{Z}$, then $\pi^{-1}(\xi)$ consists of exactly two points which differ only on the *m* th coordinate which is 0 in one of these points and 1 in the other. If $\xi = (1/4) - m\alpha$ or $\xi = (3/4) - m\alpha$ for some $m \in \mathbb{Z}$ then $\pi^{-1}(\xi)$ consists of exactly three points which differ only on the *m* th coordinate. Thus if $x \in X$ and $\pi x = (1/4) - m\alpha$ or $\pi x = (3/4) - m\alpha$ for some $m \in \mathbb{Z}$, then x is one of three doubly asymptotic points and therefore is not absolutely extremal by (1.3). That is, the flow X is not absolutely extremal.

We now define an almost periodic extension Y of X which is absolutely extremal.

Let $Y = X \times I$ and let $T: Y \to Y$ be a homeomorphism defined by

$$T(x, a) = (Tx, a + g(x))$$

for every $x \in X$, $a \in I$, where $g: X \to I$ is a continuous function. (Y, T) is an almost periodic extension of (X, T). By defining g properly we get that Y has the property

(2.3) if x_0, x_1 and x_{-1} are three different points in X s.t. $\pi x_0 = \pi x_1 = \pi x_{-1}$ and for some $k \in \mathbb{Z}$ $x_0(k) = 0, x_1(k) = 1$ and $x_{-1}(k) = -1$, then for every $a \in I(x_0, a)$ and (x_1, a) are doubly asymptotic and proximal to (x_{-1}, b) for every $b \in I$ (and to no other point).

Denote by $\varphi: Y \to X$ the projection on the first coordinate. Y is a distal extension of the minimal flow X and hence is a disjoint union of minimal sets. Each of these minimal sets is projected by φ onto X and hence must include at least one point of each fiber over X. By (2.3) (and using the same notations as in (2.3)), all the points in the fiber over x_{-1} are proximal to the same point (x_0, a) and thus all lie in the same minimal set as (x_0, a) . Therefore there is a unique minimal set in Y, i.e. (Y, T) is minimal. Now, if in some affine embedding of $Y \ \psi: Y \to Q$, ψy_0 is not an extreme point, then there exists $\mu \in \mathscr{P}(Y), \ \mu \neq \delta_{y_0}$ s.t. $\beta \mu = \psi y_0$. Without loss of generality we may assume that y_0 is an atom of μ . By (1.1) there exists an F_{σ} subset A of Y s.t. $\mu(A) = 1$ and all the points in A are simultaneously proximal. Since any two points in Y which lie in the same fiber over X are distal, such A includes at most one point of each fiber. Since the proximality of (x, a) and (x', a')in Y implies that x and x' are proximal in X, and in X each point has only finite number of points proximal to it, such A is finite (and in particular, $A = \operatorname{supp} \mu$). Therefore, if $\pi \psi y_0 \notin \{(1/4) - m\alpha, (3/4) - m\alpha | m \in \mathbb{Z}\}$ then there are at most two points in $\operatorname{supp} \mu$. But then if $\mu \neq \delta_{y_0}$, $\beta \mu \neq \psi y_0$.

If $\pi \psi y_0 = (1/4) - m\alpha$ or $\pi \psi y_0 = (3/4) - m\alpha$ for some $m \in \mathbb{Z}$ then (using again the same notations as in (2.3)) $y_0 = (x, a)$ for some $a \in I$, where $x = x_0$ or x_1 or x_{-1} .

Consider for example the case when $y_0 = (x_0, a)$. By (2.3) for every $b \in I$ there exist $b' \neq b$ and a sequence (n_i) of integers s.t. $T^{n_i}((x_0, a), (x_{-1}, b')) \rightarrow (y', y')$ for some $y' \in Y$. Passing to a subsequence if necessary, we may assume that $T^{n_i}((x_{-1}, b), (x_{-1}, b')) \rightarrow (y'', y')$. Since Y is an almost periodic extension of X and y' and y'' are two different points lying in the same fiber over X, y' and y'' are distal. Since $T^{n_i}((x_0, a), (x_{-1}, b)) \rightarrow (y', y'')$, the pair $((x_0, a), (x_{-1}, b))$ is not in L(Y). Thus by (1.4) (and since $\sup p\mu$ is finite), for every $b \in I$ $(x_{-1}, b) \notin \sup p\mu$. Hence in this case also $\sup p\mu$ consists of at most two points $((x_0, a)$ and $(x_1, a))$ and thus if $\mu \neq \delta_{y_0} = \delta_{(x_0, a)}$ then $\beta\mu \neq \psi y_0$. Similarly it can be shown that if $y_0 = (x, a)$ where $x = x_1$ or x_{-1} then y_0 is absolutely extremal.

To complete the example we need only construct a continuous function $g: X \to I$ so that (2.3) is satisfied. Let then < be the order on $I \setminus \{0\}$ induced by the usual order on (0,1). For every $n \ge 0$ choose $s_n \in I$ s.t. $0 < s_n \le (1/4)$, $s_n \downarrow 0$, and $s_n = (1/4) + m_n \alpha$ where $m_0 = 0$ and for every $n \ge 0$ $m_n < m_{n+1}$. Choose for every $n \ge 0$ $r_n \in I$ s.t. $(3/4) \le r_n < 1$, $r_n \uparrow 1$, and $r_n = (3/4) + l_n \alpha$ where $l_0 = 0$ and for every $n \ge 0$, $l_n < l_{n+1}$. Let

$$C = \overline{\{\pi^{-1}(t) | (1/4) < t < (3/4)\}}$$

and for every $n \ge 0$ let

$$A_n = \{ \pi^{-1}(t) | s_{n+1} < t < s_n \}$$

$$B_n = \overline{\{ \pi^{-1}(t) | r_n < t < r_{n+1} \} }.$$

Each of these sets is a clopen set in X, they are pairwise disjoint and the union of all of them is $X \setminus \{\pi^{-1}(0)\} = X \setminus \{\tilde{x}\}$.

Define $g: X \to I$ as follows:

On $C \cup \{\tilde{x}\}\ g = 0$. On each $A_n \ g = \rho_n \circ \pi$ where ρ_n is an increasing map taking the interval $\pi A_n = [s_{n+1}, s_n]$ onto an interval of the form $[0, 1/2^j]$. On $B_n \ g = \delta_n \circ \pi$ where δ_n is an increasing map from $\pi B_n = [r_n, r_{n+1}]$ onto $[0, 1/2^j]$. The *j*'s are chosen so that for n = 0, 1 $gA_n = gB_n = [0, 1/2]$, then for the next 4 *n*'s $gA_n = gB_n = [0, 1/4]$, etc.. Obviously, *g* is continuous on

$$X \setminus \{\tilde{x}\} = \left[\bigcup_{n \ge 0} (A_n \cup B_n)\right] \cup C ,$$

and it is easily verified that g is also continuous at \tilde{x} .

Now, for every $n \in \mathbb{Z}$,

$$T^{n}(x, a) = (T^{n}x, a + g_{n}(x))$$

$$g_0(x) = 0$$
, $g_n(x) = \sum_{j=0}^{n-1} g(T^j x)$ for $n \ge 1$,

and

$$g_n(x) = \sum_{j=-n}^{-1} -g(T^j x)$$
 for $n \le -1$.

Two points (x, a) and (x', a') in Y are proximal iff

- (i) x and x' are proximal (which in our case means $\pi x = \pi x'$), and
- (ii) a a' is a limit point of $(g_n(x) g_n(x'))_{n \in \mathbb{Z}}$.

There can be an *n* for which $g_n(x) - g_n(x') \neq 0$ only if $\pi x = \pi x'$ is in the orbit closure of 1/4 or 3/4 in *I*, and then only if on the *m* th coordinate where *x* and *x'* differ, x(m) = -1 and x'(m) = 0 or 1. For example, suppose $\pi x = \pi x' = 1/4$, x(o) = -1 and x'(o) = 0 or 1. Then $g(T^j x) \neq g(T^j x')$ only for *j*'s in the sequence $(m_n)_{n=0}^{\infty}$, and $(g(T^{m_n}x) - g(T^{m_n}x'))_{n=0}^{\infty}$ is the sequence 1/2, 1/2, 1/4, 1/4, 1/4, ... Thus $(g_n(x) - g_n(x'))_{n \in \mathbb{Z}}$ has all the diadic numbers in *I*, and hence the whole of *I*, as limit points. All the other cases are similar.

3. An absolutely extremal flow with three points pairwise in L

Let α , I and f be defined as in §2, only this time choose the t_k 's differently: Set $t_0 = 1$. Now let $n_1 > 0$ be an integer s.t. $n_1\alpha + (1/4) \in (0, 1/4)$, and set $t_1 = \cos 2\pi (n_1\alpha + 1/4)$. Let $n_2 > n_1$ be an integer s.t. $\cos 2\pi (n_2\alpha + 3/4) < (1/2)t_1$, and set $t_2 = \cos 2\pi (n_2\alpha + 3/4)$. Assuming n_j and t_j has been chosen for $1 \le j < k$ let $n_k > n_{k-1}$ be an integer s.t. $\cos 2\pi (n_k\alpha + 1/4) < (1/2)t_{k-1}$, if k is odd, and set $t_k = \cos 2\pi (n_k\alpha + 1/4)$. If k is even choose $n_k > n_{k-1}$ s.t. $\cos 2\pi (n_k\alpha + 3/4) < (1/2)t_{k-1}$ and set $t_k = \cos 2\pi (n_k\alpha + 3/4)$.

As in the construction of X in §2, let $\tilde{z} \in \{-1, 0, 1\}^{\mathbb{Z}}$ be defined by

$$\tilde{z}(n) = f_{0,n} = f(\cos 2\pi n\alpha).$$

Let Z be the orbit closure of \tilde{z} in $\Omega = \{-1, 0, 1\}^{\mathbb{Z}}$ under the shift T. Then for every $z \in \mathbb{Z}$ there exists a unique $\xi \in I$ s.t.,

$$(3.1) z(n) = f_{\xi,n}.$$

For every $n \in \mathbb{Z}$, or for every $n \in \mathbb{Z}$ except for a sequence of the form $(m + n_{2j-1})_{j=1}^{\infty}$, or for every $n \in \mathbb{Z}$ except for a sequence of the form $(m + n_{2j})_{j=1}^{\infty}$. Let $\pi: \mathbb{Z} \to I$ be the flow homomorphism assigning to each $z \in \mathbb{Z}$ the

Let $\pi: \mathbb{Z} \to I$ be the flow homomorphism assigning to each $z \in \mathbb{Z}$ the unique $\xi \in I$ satisfying (3.1). (\mathbb{Z}, T) is thus a minimal, almost 1-1 extension of (I, R_{α}) and therefore $L(\mathbb{Z}) = P(\mathbb{Z}) = \mathbb{Z} \times \mathbb{Z}$.

If $\xi \notin \{(1/4) - m\alpha, (3/4) - m\alpha | m \in \mathbb{Z}\}$ then $\pi^{-1}(\xi)$ is a singleton. If $\xi = (1/4) - m\alpha$ then $\pi^{-1}(\xi)$ consists of exactly three points x_0, x_1, x_{-1}

which differ on the coordinates $(m + n_{2i-1})_{i=1}^{\infty}$, where

$$x_0(m) = 0$$
, $x_1(m) = 1$, $x_{-1}(m) = -1$ and for every $j \ge 1$,
 $x_0(m + n_{2j-1}) = x_1(m + n_{2j-1}) = 1$, $x_{-1}(m + n_{2j-1}) = 0$.

Similarly, if $\xi = 3/4 - m\alpha$ then $\pi^{-1}(\xi)$ consists of exactly three points x_0 , x_1 , x_{-1} which differ only on the coordinates $(m + n_{2j})_{j \ge 1}$, where

$$x_0(m) = 0$$
, $x_1(m) = 1$, $x_{-1}(m) = 1$ and for every $j \ge 1$,
 $x_0(m + n_{2j}) = x_1(m + n_{2j}) = 0$, $x_{-1}(m + n_{2j}) = 1$.

In both cases, x_0 and x_1 are doubly asymptotic while x_0 and x_{-1} are not doubly asymptotic (though the pair (x_0, x_{-1}) is in L). In such case x_0 cannot be an absolutely extremal point, as the following argument shows:

Claim. If X is a minimal metric flow and x_0 , y_0 , $z_0 \in X$ are three different points s.t. $(x, x_0) \in P$ iff $x = x_0$, y_0 or z_0 , x_0 and y_0 are doubly asymptotic and x_0 and z_0 are not doubly asymptotic, then x_0 is absolutely extremal.

Proof. Assume $T^{n_i}x_0 \to x$ and $T^{n_i}z_0 \to z$, $x \neq z$. If there exists an affine embedding of $X \quad \psi: X \to Q$ s.t. for some measure $\delta_{x_0} \neq \mu \in \mathscr{P}(X)$, $\beta \mu = \psi x_0$, then without loss of generality we may assume that $\operatorname{supp} \mu \subseteq \{y_0, z_0\}$, i.e. $\mu = \alpha \delta_{y_0} + (1 - \alpha) \delta_{z_0}$, $0 \le \alpha \le 1$. Thus

$$\psi x_0 = \alpha \psi y_0 + (1 - \alpha) \psi z_0$$

$$T^{n_i} \psi x_0 = \alpha T^{n_i} \psi y_0 + (1 - \alpha) T^{n_i} \psi z_0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\psi x = \alpha \psi x + (1 - \alpha) \psi z$$

which contradicts $x \neq z$.

Note that in our specific example by a similar argument x_1 and x_{-1} are also absolutely extremal and thus (Z, T) is an absolutely extremal flow.

References

- 1. S. Glasner, Absolutely extremal points in minimal flows, Compositio Math. 55 (1985), 263-268.
- 2. S. Glasner and D. Maon, On absolutely extremal points, Compositio Math. 59 (1986), 51-56.
- 3. L. Shapiro, *Proximality in minimal transformation groups*, Proc. Amer. Math. Soc. 26 (1970), 521-525.

DEPARTMENT OF MATHEMATICS, TEL AVIV UNIVERSITY, TEL AVIV, ISRAEL