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AN ABSOLUTELY EXTREMAL FLOW WITH
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Abstract. It is shown that a homomorphic image of an absolutely extremal

flow is not necessarily absolutely extremal.

1. Introduction

The notions of affine embedding and absolute extremality were defined in

[1]. It was shown there that the property of being absolutely extremal is not

preserved under products. We show here that a homomorphic image of an

absolutely extremal point is not necessarily absolutely extremal. (This answers

a problem suggested in [1].) For our example of an absolutely extremal flow

with a nonabsolutely extremal factor we will use a construction similar to that

in [3], and results concerning absolute extremality proved in [1 and 2]. For the

convenience of reading we state here the relevant results:

In all that follows (X ,T) is a minimal metric flow. ¿P(X) denotes the space

of probability measures on X endowed with the weak * topology. Whenever

p: (X,T)
—► (Q , T) is an affine embedding (that is, Q is a compact convex subset of a lo-

cally convex linear topological space, T: Q -» Q is an affine homeomorphism,

y/ is a continuous 1-1 equivariant map, and Q = œy/X) we will denote by ß

the barycenter map from 9°(X) onto Q (i.e., ßX = ¡x y/xdX(x), X e &(X)).

A point x0e X is said to be absolutely extremal if for every affine embedding

y/ : X —► Q , y/(x0) is an extreme point of Q . (X, T) is an absolutely extremal

flow if every point of X is absolutely extremal.

L - L(X) = {(x, , x2) e X x X\A is the unique minimal set in the orbit

closure of (x, ,x2)}, P(X) — {(x, ,x2) e X x X\x{  and x2 are proximal},

and if tp: (X, T) —► (Y, T) is a flow homomorphism then X xX = {(xx ,x2) e
v>

X x X\tpxx = tpx2} .

By Corollary 2.2 and the proof of Theorem 2.3 in [1],
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(1.1) If for x0 e X and p e ¿P(X) ßp — y/x0 in some affine embedding

y/: X —> Q , then there exists an Fg subset A of X with p(A) = 1, x e X,

and a sequence of integers {«J s.t.  T"'x -» x for every x e Au {x0} .

This implies Theorem 2.3 of [1].

(1.2) Every distal point in (X, T) is absolutely extremal.

We will need also Proposition 1.1 of [2].

(1.3) If x0 e X is one of three doubly asymptotic points then x0 is not

absolutely extremal.

And finally, Lemma 3.1 in [1].

( 1.4) If in some affine embedding y/ : X -» Q ßp- y/x (p e â°(X), x e X)

and y e X is an atom of p then (x ,y) e L .

Considering these last two results one might conjecture that a converse of

(1.4) and a generalization of (1.3) holds, i.e. that whenever x0 , y0 , z0 are three

points in X each pair of which is in L , x0 (and/or y0 , z0) is not absolutely

extremal. We conclude with an example showing this conjecture to be false.

I wish to thank Professor S. Glassner for his constant help and guidance.

2. An absolutely extremal flow with

A NONABSOLUTELY extremal factor

Throughout this discussion I will denote [0,1) with addition modulo 1,

ae I will be a fixed irrational number, and Ra the rotation by a on /.

Given a decreasing sequence (iA:)^l0 of numbers in (0,1] s.t. tQ = 1, tk J. 0

and tk ¿cos2nna for every k > 1 and « eZ,let /: [-1, HVí^/^ljUÍO}) -*
{-1,0,1} be defined as follows:

(2.1)

Denote

1 ,        if t - 1 or tk < t < tk_x where k > 1 is odd.

0,        if tk < t < tkx where k > 2 is even.

- 1,    if - 1 <r<0.

J(M = f(cos2n(^ + na))

(whenever this is well defined), and define x e {-1,0, 1}Z by

x(«)=/(cos27r«a)=/0n.

Let T be the shift on ß = {-1,0,1} and X = O(x) the orbit closure of

x in ß. If the tk 's are chosen so that for each Ç e I f(cos2n(Ç + na)) is

defined for "enough" « 's then for every x e X there exists a unique c; e I s.t.,

(2.2) x(«) = /(cos27r(¿í + «a))=,/ín.

For every « € Z for which f. n is well defined. (Note that if f( n — f n then

sgncos27i(<j; + na) = sgncos27r(?7 + na), so if such equality holds for, say, all

n < n0 for some integer «0, then f = n.)

From (2.2) it easily follows that X is an almost 1-1 extension of (/ , Ra) and

thus a minimal flow. Let n: X —> I denote the flow homomorphism assigning

to each x e X the unique t\ e I satisfying (2.2).
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Our first example is of a flow X constructed as above which is not absolutely

extremal but has an extremal extension. For this example set t0 = 1 and ¿;0 = 0.

Then, when t. e (0,1] and <f € I have already been chosen for 0 < j < k,

t. — cos2nc;j, choose 0 < tk < tk_x/2 s.t. tk ^ cos2n(clj + na) for every

0 < j < k and n e Z and let Çk e I satisfy tk — cos 2nÇk . (Then for every

£ e I  ff n is well defined for every « e Z except for maybe one.)

It is easy to verify that in the above construction the set of £, 's in / s.t.

7r-l(¿í) is a singleton is 7\{^ - ma, (1/4) - ma , (3/4) - ma\m e Z, j > 1} .

If £ = ¿j - ma for some / > 1 and m e Z, then n~ (£) consists of exactly

two points which differ only on the m th coordinate which is 0 in one of these

points and 1 in the other. If £ = (1/4) - ma or £ = (3/4) - ma for some

m eZ then n~ (£) consists of exactly three points which differ only on the

m th coordinate. Thus if x e X and nx = (1/4) - ma or nx = (3/4) - ma for

some m e Z, then x is one of three doubly asymptotic points and therefore is

not absolutely extremal by (1.3). That is, the flow X is not absolutely extremal.

We now define an almost periodic extension Y of X which is absolutely

extremal.

Let Y = X x I and let T : Y —» Y be a homeomorphism defined by

T(x,a) = (Tx,a + g(x))

for every x e X, a e I, where g: X —» / is a continuous function. (7, T)

is an almost periodic extension of (X, T). By defining g properly we get that

Y has the property

(2.3) if x0,x, and x_x are three different points in X s.t. nx0 = nxx =

7tx_, and for some k eZ xQ(k) = 0,xx(k) = 1 and x_x(k) = -1, then for

every a e I(xQ , a) and (xx ,a) are doubly asymptotic and proximal to (x_, , b)

for every bel (and to no other point).

Denote by <p : Y —► X the projection on the first coordinate. Y is a distal

extension of the minimal flow X and hence is a disjoint union of minimal sets.

Each of these minimal sets is projected by tp onto X and hence must include

at least one point of each fiber over X. By (2.3) (and using the same notations

as in (2.3)), all the points in the fiber over x_, are proximal to the same point

(x0 , a) and thus all lie in the same minimal set as (x0 , a). Therefore there

is a unique minimal set in Y, i.e. (Y, T) is minimal. Now, if in some affine

embedding of y y/ : Y —► Q, y/y0 is not an extreme point, then there exists

p e &>(Y), p ^ ô s.t. ßp = y/y0 . Without loss of generality we may assume

that y0 is an atom of p. By ( 1.1 ) there exists an Fg subset A of Y s.t.

p(A) - 1 and all the points in A are simultaneously proximal. Since any two

points in Y which lie in the same fiber over X are distal, such A includes

at most one point of each fiber. Since the proximality of (x ,a) and (x' ,a)

in Y implies that x and x are proximal in X, and in X each point has

only finite number of points proximal to it, such A is finite (and in particular,
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A = supp/¿).  Therefore, if ny/y0 £ {(1/4) - ma, (3/4) - ma\m e Z} then

there are at most two points in supp p. But then if p ^ ô,   ßp^ y/y0.

If n y/yQ = (1/4) - ma or ny/y0 = (3/4) - ma for some meZ then (using

again the same notations as in (2.3)) y0 = (x , a) for some a e I, where x = x0

or x, or x_,

Consider for example the case when y0 = (x0 ,a). By (2.3) for every bel

there exist b' ^ b and a sequence (n¡) of integers s.t. Tn'((x0 , a), (x_x , b')) —►

(y' • y') for some y e Y. Passing to a subsequence if necessary, we may

assume that Tn'((x_x , b), (x_, , b')) —► (y" , y'). Since Y is an almost periodic

extension of X and y and y" are two different points lying in the same fiber

over X, y and y" are distal. Since Tn¡((x0 , a), (x_x , b)) —> (y , y"), the pair

((x0,a) ,(x_, ,b)) is not in L(Y). Thus by (1.4) (and since supp// is finite),

for every bel (x_x ,b) $ supp//. Hence in this case also supp/i consists

of at most two points ((x0 , a) and (x, , a)) and thus if p / â = ô, a) then

ßp ^ y/y0. Similarly it can be shown that if y0 = (x , a) where x = xx or x_,

then y0 is absolutely extremal.

To complete the example we need only construct a continuous function

g: X —> I so that (2.3) is satisfied. Let then < be the order on 7\{0} in-

duced by the usual order on (0,1). For every « > 0 choose sn e I s.t.

0 < sn < (1/4) ,sn I 0, and sn = (1/4) + mna where mQ = 0 and for every

« > 0 mn < mn+x . Choose for every n > 0 rne I s.t. (3/4) < rn < 1 , rn \ 1,

and rn = (3/4) + lna where /0 = 0 and for every n > 0,   ln < ln+x . Let

C = {n-\t)\(l/4)<t<(3/4)}

and for every n > 0 let

An = {n-l(t)\sn+x <t<sn},

Bn = ^~\t)\rn<t<rn+l}.

Each of these sets is a clopen set in X, they are pairwise disjoint and the union

of all of them is X\{n~ ' (0)} = X\{x} .

Define g: X —► I as follows:

On Cu {x} g - 0. On each An g = pn o n where pn is an increasing map

taking the interval nAn = [sn+x ,sn] onto an interval of the form [0, l/2y]. On

Bn   g = ôn o 71 where ôn  is an increasing map from nBn = [rn ,rn+x] onto

[0, l/2y]. The ;' 's are chosen so that for w = 0, 1 gAn = gBn = [0,1/2], then

for the next 4 n 's gAn = gBn = [0,1/4], etc.. Obviously, g is continuous on

X\{x} U(^u5J UC,
L«>o

and it is easily verified that g is also continuous at x.

Now, for every neZ,

Tn(x ,a) = (Tnx ,a + gn(x))
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where
n-\

g0(x) = 0,        gn(x) = J2s(TJx)    for«>l,
7=0

and
-i

8„(x)=^2-g{TJx)    for«<-l.
j=-n

Two points (x, a) and (x ,a) in Y are proximal iff

(i) x and x   are proximal (which in our case means nx = nx'), and

(ii) a - a   is a limit point of (gn(x) - gn(x'))neZ .

There can be an n for which gn(x) - gn(x) ^ 0 only if nx = nx is in

the orbit closure of 1/4 or 3/4 in I, and then only if on the m th coordinate

where x and x differ, x(m) = -1 and x'(m) = 0 or 1. For example, suppose

nx = nx' = 1/4, x(o) - -1 and x'(o) = 0 or 1. Then g(TJx) ^ g(TJx)

only for ;''s in the sequence (mn)™=0, and (g(Tm"x) - g(Tm"x'))™=0 is the

sequence 1/2,1/2,1/4,1/4,1/4,1/4.Thus (gn(x) - gn(x'))nez has all
the diadic numbers in 7, and hence the whole of 7, as limit points.  All the

other cases are similar.

3.  AN ABSOLUTELY EXTREMAL FLOW WITH THREE POINTS PAIRWISE IN   L

Let a , I and / be defined as in §2, only this time choose the tk 's differently:

Set t0 — 1 . Now let «, > 0 be an integer s.t. nxa + (1/4) e (0,1/4), and set

tx = cos2n(nxa + 1/4). Let «2 > «, be an integer s.t. cos27i(«2a + 3/4) <

(1/2)/, , and set t2 = cos27r(«2a + 3/4) . Assuming « and t] has been chosen

for 1 < j < k let nk > n._. be an integer s.t. cos2n(nka+ 1/4) < (l/2)/A_, ,

if k is odd, and set tk = cos2n(nka + 1/4). If k is even choose nk > nk_x

s.t. cos2n(nka + 3/4) < (l/2)tk_x  and set tk = cos2n(nka + 3/4).

As in the construction of I in §2, let z e {-1 ,0, 1}    be defined by

¿(") = /o,„ =/(cos27T«a).

Let Z be the orbit closure of z in ß = {-1 ,0,1}    under the shift T. Then

for every z e Z there exists a unique £ e I s.t.,

(3.1) z(n) = 4„.

For every n e Z, or for every « e Z except for a sequence of the form (m +

n2j-i)T=i ' or f°r everv n eZ except for a sequence of the form (m + rt2j)c*Lx .

Let n: Z —► 7 be the flow homomorphism assigning to each z e Z the

unique t\ e I satisfying (3.1). (Z , T) is thus a minimal, almost 1-1 extension

of (/ , R) and therefore L(Z) = P(Z) = ZxZ.
71

If £ <£ {(1/4) - ma, (3/4) - ma|m e Z} then n~l(Ç) is a singleton. If

t\ = (1/4) - ma then  n~l(Ç)  consists of exactly three points x0, x, ,    x_,
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which differ on the coordinates (m + «2/-i)/=i > wnere

x0(m) = 0,       X[(m) = 1,       x_,(m) =-1    and for every j> 1,

x0(m + n2j_x) = xx(m + n2j_x) = 1,       x_,(m + n2j_x) = 0.

Similarly, if £ = 3/4 - ma then n~l(Ç) consists of exactly three points x0 ,

xx ,x_, which differ only on the coordinates (m + n2j)J>x, where

x0(m) = 0,       x,(m) = l,       x_x(m) = 1    and for every j > 1,

x0(m + n2.) = x,(m + «2;) = 0,       x_,(m + «2j) = 1.

In both cases, x0 and x, are doubly asymptotic while x0 and x_( are not

doubly asymptotic (though the pair (x0 ,x_,) is in L ). In such case x0 cannot

be an absolutely extremal point, as the following argument shows:

Claim. If .Y is a minimal metric flow and x0 , y0 , zQ e X are three different

points s.t. (x ,xQ) e P iff x = x0 , y0 or z0 , x0 and y0 are doubly asymptotic

and x0 and z0 are not doubly asymptotic, then x0 is absolutely extremal.

Proof. Assume Tn'x0 —► x and T"1 zQ —> z, x / z. If there exists an affine

embedding of X y/: X —> Q s.t. for some measure ôx ^ p e â°(X), ßp =

y/xQ, then without loss of generality we may assume that supp/i ç {yQ, z0} ,

i.e. p = a¿   +(1 -a)â   ,   0<a<l.Thus

y/x0 = ay/y0 + (l - a)y/z0

Tniyvx0   =   aTniy/y0    +    (1 - a)Tn'y/z0

I I i
y/x       =       ay/x       +       (1 - a)y/z

which contradicts x / z .

Note that in our specific example by a similar argument x, and x , are also

absolutely extremal and thus (Z ,T) is an absolutely extremal flow.
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