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ON THE SUBGROUP SEPARABILITY
OF GENERALIZED FREE PRODUCTS

OF NILPOTENT GROUPS

C. Y. TANG

(Communicated by Warren J. Wong)

Abstract. We prove that generalized free products of finitely generated nilpo-

tent groups with cyclic amalgamation are subgroup separable

1. Introduction

Hall [7] showed that free groups are subgroup separable. This result was

reproved by Burns [4] in a strengthened form. In [8], Mal'cev proved that

polycyclic groups are subgroup separable. Subgroup separability is not only of

interest group-theoretically but also is of interest for topological reasons. Thus

Scott [10], using geometrical methods, showed that orientable surface groups

are subgroup separable. This result was generalized by Brunner, Burns, and

Solitar [3] who showed that the generalized free products of free groups with

cyclic amalgamation are subgroup separable. More recently, Niblo, in his thesis

[9], proved that the generalized free products of finitely generated Fuchsian

groups with cyclic amalgamation are subgroup separable. Subgroup separability

is related to the generalized word problem in the same way as residual finiteness

is related to the word problem. Thus if G is a finitely presented subgroup

separable group then G has a solvable generalized word problem. Topologically

it is important because it is related to questions of embeddability of equivariant

subspaces in their regular covering spaces. Scott raised the question whether all

finitely generated 3-manifold groups are subgroup separable. This question was

answered negatively by Burns, Karrass, and Solitar [5] where they showed that

an infinite cyclic extension of a free group need not be subgroup separable.

However the question whether all knot groups are subgroup separable remains

open. Thurston [12, Problem 15] asked the question whether finitely generated
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Kleinian groups are subgroup separable. He stated that it would be useful to

know whether these groups are subgroup separable with respect to some special

subgroups.

Unfortunately the classes of groups known to be subgroup separable are rela-

tively few. In this paper, we prove that the generalized free products of finitely

generated nilpotent groups with cyclic amalgamation are subgroup separable.

The proof depends on a lemma of Brunner, Burns, and Solitar [3] which gives

a sufficient condition for a generalized free product of groups with cyclic amal-

gamation to be subgroup separable. Their method made use of a modified

concept of potency as introduced by Allenby and Tang [1] in their study of

residual finiteness of generalized free products of groups.

2. Preliminaries

Definition 2.1. A group G is said to be subgroup separable if for every finitely

generated subgroup H of G and every element x £ G\H, there exists a sub-

group 7 of finite index in G such that 77 c 7 and x £ 7. Equivalently

G is subgroup separable if for every finitely generated subgroup H of G and

every element x £ G\H, there exists a normal subgroup N of finite index in

G such that x <£ NH.

We note that if we restrict 77 = 1 then the above definition is that of residual

finiteness.

We need the following result of Brunner, Burns, and Solitar [3].

The BBS-Criterion. Let G be the generalized free product of the groups A and

B with cyclic amalgamation. Then G is subgroup separable if A and B satisfy

the following conditions:

For any m + 1 nontrivial elements x, gx, ... , gm of A (B) and any n

finitely generated subgroups HX,H2, ... ,Hn of A (B), m,n finite, there

exists a positive integer k such that for every positive integer / there is a

normal subgroup N of A (B) of finite index with the following properties:

(i)  Nn(x) = (xkl);

(ii) for each 77,. such that 77,. n (x) = 1, NH} n (x) = (xkl) ;

(iii) for each 77,. such that 77,. n (x) ¿ 1, A77,. n (x) = Hj n (x) ;

(iv) for each gt £ (x), gt i N(x);

(v) for each pair (i, j) such that 77, n (x)g¡ — 0, we have A77, n (x)gi =

0.

Definition 2.2. Let 77 be a subgroup of the group G. Then H is said to be

closed in G if for all x £ G, xn £ 77 implies x £ 77.

We also need the following result of Baumslag [2]:

Theorem 2.3. Let G be a finitely generated torsion-free nilpotent group. Let H

be a closed subgroup of G. Then f]°^x HGP = H for almost all primes p .
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Throughout this paper we shall use the following notations:

G = A*HB means G is the generalized free products of the groups A and

B amalgamating the subgroup 77.

N <r G means A is a normal subgroup of finite index in G.

If 77 is a subgroup of G then 77    is the normal closure of 77 in G.
G" = (xn ; x £ G).

If N < G and G = G/N then we use x , 77 to denote the respective images

of x £ G and the subgroup H of G.

Zj(G) is the ith center of G.

3. Main result

Our purpose is to prove the following theorem:

Theorem. Let A,B be finitely generated nilpotent groups. Then G = A*HB is

subgroup separable if 77 is cyclic.

We first make the following simple observation:

Lemma 3.1. Let G be a finitely generated torsion-free nilpotent group. Let x £ G
fi

and X = (x). Then (x) is closed in X   .

Proof. We use induction on the nilpotency class of G,   If G is abelian or
c c

x £ Z(G), then X = (x). Thus (x) is trivially closed in X . Suppose

that G is nonabelian and x £ Z(G). Let y £ X be such that y = xm.

Let G = G/Z(G). Then y =xm. Therefore, by induction, we have y = x

for some integer /. This implies y = x z for some z £ Z(G). It follows

that y = (x z) = x z = xm . Thus z ~m — z~ . Since G is a torsion-free

nilpotent group, x £ Z(G) implies that (x)C\Z(G) - 1. This means z~ = 1,

whence z = 1. Therefore y — x £ (x). Hence (x) is closed in X  .

Corollary 3.2. Let G be a finitely generated nilpotent group. Let x £ G and

X = (x). Then D~, (x)(XG)' = (x).

Proof. If x is of finite order then (X )' = 1 for some integer i. Therefore

we can assume G to be torsion-free. The corollary then follows from the above

lemma and Theorem 2.3.

Lemma 3.3. Let G be a finitely generated torsion-free nilpotent group. Let H

be a subgroup of Z(G) and x £ G such that (x) n 77 = 1. Then (x) is closed

in (x,H)G.

Proof. If H = 1 then, by Lemma 3.2, the lemma is true. We use induction

on the Hirsch length of G. Let A = (x, 77) . If G is abelian then A =

(x) x H. Thus (x) is closed in A. So we can assume G to be nonabelian

and x $ Z(G). Since G is a finitely generated torsion-free nilpotent group,

WLOG, we can assume H contains a maximal cyclic group (z) of G. Suppose

there exists y £ A such that y" = xm. Let G = G/(z). Since (z) is a

maximal cyclic group of G, G is torsion-free and of Hirsch length less than
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G. Moreover, (x) n 77 = 1 . Also A = (x, H) . Therefore, by induction,

y" = xm implies y £ (x). Thus, y = x za . It follows that xw = y" = xlnzan ,

whence xm~ " = zan . This means a = 0, whence y = x £ (x). This proves

the lemma.

Corollary 3.4. Let G be a finitely generated torsion-free nilpotent group. Let 77

be a subgroup of Z(G) and x £ G such that (x) n 77 = 1. Then

oo

n<x)(v*,T7>G)'' = (x>.

In order to apply the BBS-criterion we first prove the following propositions

(cf. Propositions 1 and 2 [3]):

Proposition 3.5. Let G be a finitely generated nilpotent group. Let H be a

subgroup of G and let x £ G be of infinite order such that 77 n (x) = 1. Then

there exists a postive integer r such that for all positive integers n there exists

Nn <f G such that NnH n (x) = (xnr).

Proof. We prove by induction on the Hirsch length / of G. The proposition

is trivially true if / = 0.

Since the set of elements of finite order in G is a normal subgroup of finite

order, WLOG we can assume G to be a finitely generated torsion-free group.

Suppose 77nZ(G)_j¿ 1. Let 1 ¿ z £ Hf\Z(G) and G = G/(z). Then
H n (3c) = 1 . Now G is of Hirsch length / - 1 . Therefore, by induction, there

exists Nn <y G for r > 0 and for each n , such that NnHil(x) = (xnr). Let Nn

be the preimage of Nn in G. Clearly Nn<r G. Since z £ H and Hil(x) = 1 ,

we have NnHr\(x) = (xnr). Suppose next that (77, x)nZ(G) = 1, and consider

G = G/(z), where 1 /ze Z(G). Again, by induction, we can show that the

required Nn exists. So we may suppose (77, x)nZ(G) ^ 1 and Hf)Z(G) = 1 .

If (x)f)Z(G) = (x'^then let G = G/(xnr). Clearly 77 n (3c) = 1 and the order

of x = nr. Since G is subgroup separable, it follows that for each positive

integer n , there exists Nn <y G such that x,x2, ... , x"r~l ^ NnH. Let Nn

be the preimage of Nn in G. Then Nn is the required normal subgroup.

It remains to consider the case when 77 n Z(G) = 1, (x) n Z(G) = 1,

and (77, x) n Z(G) ¿I. Let 1 # z € (77, x) n Z(G). Let G = G/(z). If
(77) n (3c) = 1 then, as before, the proposition can be proved by induction.

Therefore, we assume H il (3c) # 1. Let 77 n (3c) = (3c'). Then xl = h for some

h £ 77. This implies h = x'z" for some integer u. Let hx be any element of

77 of the form xmz . Then hx = xm £ 77n(3c). It follows that m = tl, whence

hx = x' z . Thus hxh~ = z ~" e H n Z(G) = 1 . Hence hx = h . Therefore,

the set ¿ = {A € H; h = xmzk] = (x'z"). Let 4. = (A0)' with ^, = ^G. If

Ax n (z) = (za) then (z,a) c A¡. Since fl~i(^ n (2>) = 1 > it follows that, for

each i, there exists a smallest positive integer ki such that Ak n (z) c (z'a).
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We shall show that V(JL^HAj n ^'^ = 1 • For each j ' let sj = H n (x')Aj ■

Since (x') n (zu) = 1, by Lemma 3.3, (x') is closed in B = (x!, z") . By

Corollary 3.4, fl£i (*'>*' = (**) ■ Thus Aj C Bj implies n~i<*'M; = <*') •

Therefore H" i Sj C (*'}. Since 77 n (x) = 1 , it follows that f)~i ^ = 1 •

Now (y?=l(HAj n (*')) = n>i(^>*y n <*')) • Also fy</ n (*') is generated

by Aj n (x') together with the set Tj of x^ € (x') such that x^a;. G S, for

some a, £ A.. Since ^, n (x') = (xct) for some integer c, it follows that

Aj n (x') = (x^'). Let 6j be the canonical homomorphism of G to G/Aj.

Then S.0,. - 770;. n ((xdj)1) = ((x6j)d'et) where e is given by SX9X = <(jcÖ1)">

and c?. is some integer with d, = 1 . Therefore T, — (x ¡et). Moreover Sj+x

and AJ+X are subgroups of 5. and .4. respectively. This implies Tj+X c ¡T ,

whence (x J+,et) C (xdjC'). Thus we can assume dj\dj+x. Let a". = ";^7_, for

some integer «;. Then a" = dxn2- ■■ nj it follows that

oo oo

(3.1) f](SjAjn(xt)) = f](xjcl,x{n^e').

;=i ;=i

Clearly for sufficiently large j, (xjct) c (x("2'""')ei) = r¿ for a given /. More-

over, H~i Sj = 1 implies that for sufficiently large ;', d} > d¡. Thus (x{nr"n¡)et)

% T¡. Therefore (3.1) implies Pi%i(SjAj n (x')) C f\%i^, ~ 1, whence

n%:i(77^: n (x')) = 1. Thus for every integer a", there exists an integer m

such that 77^m n (x) c (xd). In particular, for each n, there exists a small-

est positive integer ln such that HA¡ n (x) c (xnat). Let mn = /cnu/n, re-

calling that knu is the smallest integer such that Ak n (z) c (z""Q). Then

HAmn n (x) c (x"Q') and ^ n (z) c (z"Q"). Let C/„ = Am(znau) and

G = G/í/„ . Then 77 n (3c) = (xnat). Since G is subgroup separable, it fol-

lows that there exists Nn <, G such that x, x , ... , xna'~   £ NnH. Thus

G = G/~Ñn is finite such that Hf)(T) = (x""a ). Let Nn be the preimage of Ñ~n

in G and let r = at. Then A^ is the required normal subgroup in G. This

completes the proof.

Proposition 3.6. Let G be a finitely generated nilpotent group. Let H be a

finitely generated subgroup of G and 1 ^ x £ G. If g £ G is such that

H n (x)g = 0 then there exists a subgroup L of finite index in G such that

H c7 and 7n(x)g = 0.

Proof. By a theorem of Stebe [11], g £ (x)H implies that there exists N <, G

such that NgC\(x)H = 0. Let G = G/A. Then g £ (3c)77. This implies

(x)giiH = 0 . Let 7 = A//. Clearly 7 is of finite index in G. If y e 7n(x)g,

then y e 7n(3c)g = Hn(x)g contradicting (x)jnH = 0. Hence 7n(x)g = 0

as required.
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Applying Propositions 3.5 and 3.6 and using the same argument as in the

Lemma of [3] we see that if A, B are finitely generated nilpotent groups then

the conditions (i)-(v) of the BBS-criterion are satisfied. The theorem follows

immediately.

4. Remark

Many residual properties of finitely generated nilpotent groups can be carried

to polycyclic groups. In [6], Dyer proved that generalized free products of

polycyclic groups are residually finite. Thus we propose the following problem:

Are generalized free products of polycyclic groups with cyclic amalgamation

subgroup separable?
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