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LINEAR INDEPENDENCE OF PSEUDO-SPLINES

BIN DONG AND ZUOWEI SHEN

(Communicated by David R. Larson)

Abstract. In this paper, we show that the shifts of a pseudo-spline are lin-
early independent. This is stronger than the (more obvious) statement that
the shifts of a pseudo-spline form a Riesz system. In fact, the linear indepen-
dence of a compactly supported (refinable) function and its shifts has been

studied in several areas of approximation and wavelet theory. Furthermore,
the linear independence of the shifts of a pseudo-spline is a necessary and suf-
ficient condition for the existence of a compactly supported function whose
shifts form a biorthogonal dual system of the shifts of the pseudo-spline.

1. Introduction

A pseudo-spline is a compactly supported refinable function as was first intro-
duced in [8]. This paper is to prove that the shifts (integer translations) of a
pseudo-spline are linearly independent.

A compactly supported function φ ∈ L2(R) is refinable if it satisfies the refine-
ment equation

(1.1) φ = 2
∑
k∈Z

a(k)φ(2 · −k),

where a, called the refinement mask of φ, is a finitely supported sequence.
By L2(R) we denote all the functions f(x) satisfying

‖f(x)‖L2(R) :=
(∫

R

|f(x)|2dx
) 1

2
< ∞,

and by �2(Z) the set of all sequences c defined on Z such that

‖c‖�2(Z) :=
( ∑

j∈Z

|c(j)|2
) 1

2
< ∞.

The Fourier-Laplace transform of a compactly supported (measurable) function
f is defined by

f̂(ζ) :=
∫

R

f(t)e−iζtdt, ζ ∈ C.
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When f is compactly supported and bounded, the Fourier-Laplace transform of f

is analytic. When ζ is restricted to R, f̂ becomes the Fourier transform of f .
For a given finitely supported sequence c, its corresponding Laurent polynomial

is defined by
c̃(z) :=

∑
j∈Z

c(j)zj , for z ∈ C \ {0}.

The corresponding trigonometric polynomial is

ĉ(ξ) = c̃(e−iξ), ξ ∈ R.

With these, the refinement equation (1.1) can be written in terms of its Fourier
transform as

φ̂(ξ) = â(ξ/2)φ̂(ξ/2), ξ ∈ R.

We also call â the refinement mask of φ for convenience.
The refinement equation (1.1) can also be written in terms of its Fourier-Laplace

transform as

(1.2) φ̂(ζ) = ã(e−iζ/2)φ̂(ζ/2), for all ζ ∈ C.

We call ã a symbol of φ.
Pseudo-splines were first introduced in [8] and a comprehensive study, especially

the regularity analysis, was given in [11]. A pseudo-spline is a compactly supported
refinable function defined by its finitely supported refinement mask. There are two
types of pseudo-splines. The refinement mask of a pseudo-spline of type I with order
(m, l) (see [8]) is given by

(1.3) |1â(ξ)|2 := |1â(m,l)(ξ)|2 := cos2m(ξ/2)
l∑

j=0

(
m + l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2),

and type II with order (m, l) (see [11]) is given by

(1.4) 2â(ξ) := 2â(m,l)(ξ) := cos2m(ξ/2)
l∑

j=0

(
m + l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2).

It is clear that |1â(m,l)(ξ)|2 = 2â(m,l)(ξ). Furthermore, 1â(m,l)(ξ) is a 2π-periodic
trigonometric polynomial with real coefficients by Féjer-Riesz lemma (see e.g.
Lemma 6.1.3 of [7]).

The corresponding pseudo-splines can be defined in terms of their Fourier trans-
forms as

(1.5) kφ̂(ξ) := kφ̂(m,l)(ξ) :=
∞∏

j=1

kâ(m,l)(2−jξ), k = 1, 2,

with kφ̂(m,l)(0) = 1. Unless it is necessary, we use ka and kφ instead of ka(m,l) and
kφ(m,l), k = 1, 2, i.e. we always drop the subscript “(m, l)” in ka(m,l) and kφ(m,l)

for simplicity.
The regularity analysis of the pseudo-spline was given in [11]. It was shown

that pseudo-splines with order (m, l), m ≥ 2, have positive regularity exponents.
Hence, all pseudo-splines are bounded and in L2(R) (see Proposition 3.5 of [11]).
The regularity exponent of a pseudo-spline is estimated in terms of its mask and
depends on its order (m, l). Interested readers should consult [11] for the details.
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Pseudo-splines consist of a rich family of compactly supported refinable func-
tions. Together with the unitary extension principle of [21], they give a wide range
of choices of wavelet systems that balance and meet various demands, such as the
support and regularity of wavelets, and the approximation power of the truncated
tight frame series (see e.g. [8]), in time-frequency analysis. When l = 0, pseudo-
splines of both types are B-splines. Recall that a B-spline (see e.g. [1]) with order
m and its refinement mask are defined by

B̂m(ξ) = e−ij ξ
2

(
sin(ξ/2)

ξ/2

)m

and â(ξ) = e−ij ξ
2 cosm(ξ/2),

where j = 0 when m is even, j = 1 when m is odd. When l = m−1, pseudo-splines
of type I are the orthogonal refinable functions (i.e. the refinable functions with
orthonormal shifts which were constructed by Daubechies in [7]). Finally, pseudo-
splines of type II with order (m, m − 1) are the interpolatory refinable functions
(which were first studied by Dubuc in [12]). A continuous function φ is said to be
interpolatory if

φ(j) = δ(j), j ∈ Z,

where δ(0) = 1 and δ(j) = 0, for j �= 0.
For a compactly supported function φ ∈ L2(R) and some sequence b ∈ �(Z),

where �(Z) denotes the space of all complex-valued sequences defined on Z, the
semi-convolution of φ and b is defined by

φ ∗′ b :=
∑
j∈Z

b(j)φ(· − j).

Note that for any b ∈ �(Z) and a compactly supported function φ ∈ L2(R), φ ∗′ b
converges uniformly on any compact set (see e.g. [3]).

In order to introduce the concept of the linear independence of the shifts of a
compactly supported function φ, we first recall the notion of stability of φ which is
related to, somehow weaker than, the linear independence. A function φ ∈ L2(R)
is stable if there exist 0 < C1, C2 < ∞, such that for any sequence b ∈ �2(Z),

(1.6) C1‖b‖�2(Z) ≤
∥∥φ ∗′ b

∥∥
L2(R)

≤ C2‖b‖�2(Z).

The stability of function φ ∈ L2(R) can also be characterized by its bracket product
(see e.g. [3] and [15]). Recall that the bracket product of L2(R) functions f and g
is defined by

[f̂ , ĝ](ξ) :=
∑
k∈Z

f̂(ξ + 2πk)ĝ(ξ + 2πk).

It is also well known that (see e.g. [3], [7], [15] and [20]) a function φ ∈ L2(R) is
stable if and only if there exist two constants 0 < C1, C2 < ∞ such that

(1.7) C1 ≤ [φ̂, φ̂](ξ) ≤ C2

holds for almost every ξ ∈ R.
When φ is compactly supported in L2(R), it was shown by Jia and Micchelli

in Theorem 2.1 of [15] that the upper bound of (1.6) always holds. Furthermore,
Theorem 3.5 of [15] asserts that the lower bound of (1.6) is equivalent to

(1.8)
(
φ̂(ξ + 2πk)

)
k∈Z

�= 0 for all ξ ∈ R,

where 0 denotes the zero sequence in �(Z). Hence, Jia and Micchelli proved that
the stability of a compactly supported function φ ∈ L2(R) is equivalent to (1.8).
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A compactly supported function φ ∈ L2(R) and its shifts are linearly independent
if, for b ∈ �(Z),

φ ∗′ b = 0 implies b(j) = 0, for all j ∈ Z.

The linear independence of a compactly supported function was first studied by
Dahmen and Micchelli in [9] and [10], and Jia in [13] and [14] in the context of
box splines. In [19] Ron (also see [4]) studied the linear independence of compactly
supported distributions in terms of their Fourier-Laplace transforms. Applying
Proposition 2.1 of [19] (also see [16]), one obtains that for an arbitrary compactly
supported single variable distribution, which is not identically zero, there are at
most finitely many ζ ∈ C such that(

φ̂(ζ + 2πk)
)
k∈Z

= 0.

Furthermore, Ron proved in Theorem 1.1 of [19] that the shifts of a compactly
supported distribution are linearly independent if and only if the Fourier-Laplace
transform of φ satisfies

(1.9)
(
φ̂(ζ + 2πk)

)
k∈Z

�= 0 for all ζ ∈ C.

Comparing (1.8) and (1.9), we can immediately see that for a compactly supported
function φ ∈ L2(R), linear independence of the shifts of φ implies the stability of
φ. More recently, Jia and Wang characterized the linear independence of single
variable refinable functions in terms of their masks.

It is easy to see from the definition of linear independence that when the function
φ is a pseudo-spline of type I or II with order (m, m − 1) (which is the orthogonal
refinable function for the first type or interpolatory refinable function for the second
type), its shifts are linearly independent. It is also well known that a pseudo-spline
of either type with order (m, 0), which is a B-spline, and its shifts are linearly
independent. It is very natural to ask whether an arbitrary pseudo-spline and its
shifts are linearly independent. This is one of our motivations, but not the only
one. The linear independence of a pseudo-spline φ and its shifts is a necessary
and sufficient condition for the existence of a compactly supported dual refinable
function φd ∈ L2(R) of φ. The proof of the necessity is simple. Recall that a
compactly supported refinable function φd ∈ L2(R) is a dual of φ, if

(1.10) 〈φ, φd(· − k)〉 = δ(k)

holds for all k ∈ Z (see e.g. [5], [6]). Indeed, if there is a compactly supported
function φd ∈ L2(R) that is dual to φ, then for b ∈ �(Z) satisfying φ ∗′ b = 0, we
have

0 = 〈φ ∗′ b, φd(· − k)〉 =
∑
j∈Z

b(j)〈φ(· − j), φd(· − k)〉 = b(k) for all k ∈ Z.

However, the proof of the sufficiency is more complicated, and we refer to [17] and
[18] for the details. It is well known that the existence of a compactly supported
dual refinable function of a pseudo-spline is a key step in constructing a pair of
biorthogonal wavelet systems from the given pseudo-spline.

Finally, we observe that since 1â(m,l)(ξ) is a trigonometric polynomial with real
coefficients, we have

2â(m,l)(ξ) = |1â(m,l)(ξ)|2 = 1â(m,l)(ξ) · 1â(m,l)(−ξ).
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This leads to

(1.11) 2φ̂(m,l)(ξ) = 1φ̂(m,l)(ξ) · 1φ̂(m,l)(−ξ), ξ ∈ R.

Since both 1φ(m,l) and 2φ(m,l) are compactly supported and bounded, their Fourier-
Laplace transforms 1φ̂(m,l)(ζ) and 2φ̂(m,l)(ζ) are analytic on C. Hence, (1.11) holds
for all ζ ∈ C, i.e.

(1.12) 2φ̂(m,l)(ζ) = 1φ̂(m,l)(ζ) · 1φ̂(m,l)(−ζ), ζ ∈ C.

The identity (1.12) implies that the set of all zeros of 1φ̂(m,l)(ζ) is contained in that
of 2φ̂(m,l)(ζ) for ζ ∈ C.

Applying (1.9), we conclude the following proposition.

Proposition 1.1. Assume that the shifts of pseudo-spline 2φ(m,l) of type II with
order (m, l) are linearly independent. Then the shifts of pseudo-spline 1φ(m,l) of
type I with the same order are linearly independent.

In the rest of the paper, we will focus on the verification of the linear indepen-
dence of the shifts of pseudo-splines of type II.

2. Linear independence

This section is to verify the linear independence of the shifts of pseudo-splines.
We start with two lemmata. The first lemma is implied by Theorem 1 and 2 of
a paper of Jia and Wang (see [16]). Instead of stating both theorems of [16] and
deducing the following lemma by using them, here we include a direct proof which
is essentially derived from Jia and Wang’s proof of Theorem 1 and 2 in [16].

We say that a Laurent polynomial ã has symmetric zeros on C \ {0} if there is
a z0 ∈ C \ {0} such that

ã(z0) = ã(−z0) = 0.

Lemma 2.1. Let φ ∈ L2(R) be a compactly supported refinable function with
(finitely supported) refinement mask a. The shifts of φ are linearly independent
if and only if:

(1) φ is stable;
(2) the symbol ã does not have any symmetric zeros on C \ {0}.

Proof. We first show the necessity of (1) and (2). Condition (1) is necessary for the
linear independence of the shifts of φ implied by (1.8) and (1.9). The necessity of
(2) is proven by contradiction. Suppose there exists z0 = e−iζ0 ∈ C \ {0} such that
ã(e−iζ0) = ã(−e−iζ0) = 0. Applying the Fourier-Laplace transform given in (1.2),
one obtains, for any k ∈ Z,

φ̂(2ζ0 + 4kπ) = φ̂(ζ0 + 2kπ)ã(e−iζ0) = 0

and
φ̂(2ζ0 + (4k + 2)π) = φ̂(ζ0 + 2kπ + π)ã(−e−iζ0) = 0.

These two identities imply that φ̂(2ζ0 + 2kπ) = 0 for all k ∈ Z, which contradicts
the linear independence of the shifts of φ by (1.9).

Next, we show the sufficiency of (1) and (2), which is again shown by contra-
diction. Suppose that φ and its shifts are not linearly independent. Then, there
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is a ζ0 ∈ C, such that φ̂(ζ0 + 2kπ) = 0 for all k ∈ Z. Since (φ̂(2kπ))k∈Z �= 0,
ζ0 ∈ C \ {0}. Applying (1.2) again, one obtains, for any k ∈ Z,

0 = φ̂(ζ0 + 4kπ) = φ̂(ζ0/2 + 2kπ)ã(e−iζ0/2)

and
0 = φ̂(ζ0 + (4k + 2)π) = φ̂(ζ0/2 + π + 2kπ)ã(−e−iζ0/2).

Since ã(z) does not have symmetric zeros on C \ {0}, we conclude that at least one
of the two sets of identities φ̂(ζ0/2 + 2kπ) = 0, k ∈ Z and φ̂(ζ0/2 + π + 2kπ) = 0,
k ∈ Z holds. Let ζ1 = ζ0/2 or ζ1 = ζ0/2 + π. (Here the choice depends on whether
φ̂(ζ0/2 + 2kπ) = 0, k ∈ Z or φ̂(ζ0/2 + π + 2kπ) = 0, k ∈ Z.) Repeating this
process, one obtains ζ2 = ζ1/2 or ζ2 = ζ1/2 + π. Continuing the process, one
obtains a set of numbers A := {ζ0, ζ1, ζ2, · · · } such that (φ̂(ζj + 2kπ))k∈Z = 0 for
j = 0, 1, 2, · · · . However, by Proposition 2.1 of Ron in [19], the set A must be finite
(also see [16]). Hence, there must exist some integers 0 ≤ p < q, such that ζp = ζq.
Since ζp = ζ0

2p + rπ, ζq = ζ0
2q + sπ for some rational number r and s, we have

ζ0

2p
+ rπ =

ζ0

2q
+ sπ.

This leads to the fact that ζ0 is a real number which implies that(
φ̂(ζ0 + 2kπ)

)
k∈Z

= 0 with ζ0 ∈ R.

This contradicts the stability of φ (which is (1)) by (1.8). �

Lemma 2.1 says that, in order to show the linear independence of the shifts of
pseudo-splines of type II, we need to verify: (i) pseudo-splines of type II are stable;
(ii) the symbol of an arbitrary pseudo-spline of type II does not have any symmetric
zeros on C\{0}. The stability of pseudo-splines of type II follows from the definitions
of pseudo-splines. Here, we give a short proof for the sake of completeness.

Lemma 2.2. Pseudo-splines of type II are stable.

Proof. Since pseudo-splines are compactly supported and belong to L2(R) (see e.g.
Proposition 3.5 of [11]), the stability of them is equivalent to (1.8). Let φ(m,l) be
the pseudo-spline of type II with order (m, l) and let â(m,l) be its refinement mask.
By Definition (1.4), for each fixed m ≥ 1 and for every 0 ≤ l ≤ m−1, the inequality

cos2m(ξ/2) ≤ â(m,l)(ξ)

holds for all ξ ∈ R. Therefore, by (1.5), we have for all ξ ∈ R,

(2.1) |B̂2m(ξ)| ≤ |φ̂(m,l)(ξ)|.

Since B2m is stable, the vector (B̂2m(ξ + 2kπ))k∈Z �= 0 for every ξ ∈ R. Hence,
(φ̂(m,l)(ξ +2kπ))k∈Z �= 0 for every ξ ∈ R, which is equivalent to the fact that φ(m,l)

is stable. �

By Lemmas 2.1 and 2.2, to show that the shifts of a pseudo-spline of type II are
linearly independent, we only need to show that the symbol of it has no symmetric
zeros on C \ {0}. Now we compute the symbols of pseudo-splines of type II. Recall
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that the refinement mask of a pseudo-spline of type II with order (m, l) is given by
(1.4), i.e.

(2.2) 2â(ξ) = cos2m(ξ/2)
l∑

j=0

(
m + l

j

)
sin2j(ξ/2) cos2(l−j)(ξ/2).

Using

(2.3) cos2(ξ/2) =
1 + cos(ξ)

2
=

2 + eiξ + e−iξ

4
=

(1 + e−iξ)2

4e−iξ

and

(2.4) sin2(ξ/2) =
1 − cos(ξ)

2
=

2 − eiξ − e−iξ

4
=

−(1 − e−iξ)2

4e−iξ
,

one obtains

2â(ξ) :=
(1 + e−iξ)2m

(4e−iξ)m

l∑
j=0

(
m + l

j

)(
−(1 − e−iξ)2

4e−iξ

)j( (1 + e−iξ)2

4e−iξ

)l−j

, for ξ∈R.

Extending the above trigonometric polynomial to the Laurent polynomial, one ob-
tains the symbol of the pseudo-spline of type II with order (m, l):
(2.5)

2ã(z) :=
(1 + z)2m

(4z)m

l∑
j=0

(
m + l

j

)(
−(1 − z)2

4z

)j( (1 + z)2

4z

)l−j

, z ∈ C \ {0}.

Before proving the main theorem of this paper, we need to give the following
proposition first. The proof of it employs Rouché’s theorem (see e.g. [2]), which
states: Suppose two functions f(z) and g(z) are analytic inside and on a simple
closed contour C, and suppose

|f(z)| > |g(z)| for all z ∈ C.

Then f and f + g have the same number of zeros, counting multiplicities, inside C.

Proposition 2.3. Let

P (z) =
l∑

j=0

cjz
j

be a polynomial with real coefficients satisfying

cl > cl−1 > · · · > c0 > 0.

Then, all zeros of P (z) are contained in the open unit disk D := {z ∈ C : |z| < 1}.

Proof. Let
ρ := max

1≤j≤l
{cj−1

cj
}.

Since cj is strictly greater than cj−1, 0 < ρ < 1 and ρcj ≥ cj−1 for all 1 ≤ j ≤ l.
Consider

Q(z) := (ρ − z)P (z).
Then,

Q(z) = ρP (z) − zP (z)

= ρc0 + (ρc1 − c0)z + (ρc2 − c1)z2 + · · · + (ρcl − cl−1)zl − clz
l+1

= g(z) + f(z),
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where

f(z) := −clz
l+1 and g(z) := ρc0 +(ρc1−c0)z+(ρc2−c1)z2 + · · ·+(ρcl−cl−1)zl.

Note that when |z| = 1, we have

|g(z)| ≤ ρc0 + (ρc1 − c0) + (ρc2 − c1) + · · · + (ρcl − cl−1)
= (ρ − 1)c0 + (ρ − 1)c1 + · · · + (ρ − 1)cl−1 + ρcl

= ρcl − (1 − ρ)
l−1∑
j=0

cj

< cl = | − clz
l+1| = |f(z)|.

Since f and g are analytic on {z ∈ C : |z| ≤ 1}, Rouché’s theorem asserts that
Q = f + g has the same number of zeros as that of f in D = {z ∈ C : |z| < 1}.
Since f has l + 1 zeros in D, Q must have exactly l + 1 zeros in D. Since Q has
only l + 1 zeros and since zeros of P are a subset of the zeros of Q, all zeros of P
must be in D. �

Next, we prove the main theorem of this paper.

Theorem 2.4. The shifts of a pseudo-spline of type II are linearly independent.

Proof. Since Lemma 2.2 shows that pseudo-splines of type II with arbitrary orders
are stable, in order to prove the linear independence of the shifts of a given pseudo-
spline of type II, one only needs to show that the symbol 2ã(z) of it has no symmetric
zeros on C \ {0}, by Lemma 2.1.

The symbol 2ã(z) given by (2.5) can be rewritten as

2ã(z) =
(1 + z)2m

(4z)m

l∑
j=0

(
m + l

j

)(
−(1 − z)2

4z

)j( (1 + z)2

4z

)l−j

=
(1 + z)2m

(4z)m+l

l∑
j=0

(
m + l

j

)(
− (1 − z)2

)j(1 + z)2(l−j)

=
(1 + z)2m+2l

(4z)m+l

l∑
j=0

(
m + l

j

)(
−(1 − z)2

(1 + z)2

)j

.

Since z = −1 is a zero of 2ã(z), while 2ã(z) = 1 when z = 1, 2ã(z) having no
symmetric zeros on C \ {0} is equivalent to

(2.6) h(z) :=
l∑

j=0

(
m + l

j

)(
−(1 − z)2

(1 + z)2

)j

,

having no symmetric zeros on C \ {0, 1,−1}.
Consider

P (x) =
l∑

j=0

bjx
j , with bj =

(
m + l

j

)
, x ∈ C.

We first show that Proposition 2.3 can be applied to P to conclude that the zeros
of P lie inside of the unit disk of C. For this, we need to show that for given
m > 0, 0 ≤ l ≤ m − 1,

(2.7) bj+1 > bj > 0, 0 ≤ j ≤ l − 1.
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Note that (
m + l

j + 1

)
=

m + l − j

j + 1

(
m + l

j

)
.

Since j ≤ l − 1, replacing j by l − 1 in m+l−j
j+1 , the right-hand side of the above

identity decreases and becomes

m + 1
l

(
m + l

j

)
,

which is larger than
(
m+l

j

)
by l ≤ m−1. This shows that bj+1 > bj , j = 0, . . . , l−1.

It is clear that b0 = 1 > 0. With (2.7), applying Proposition 2.3, one concludes
that all zeros of P (x) must be in {x ∈ C : |x| < 1}. Let z0 be an arbitrary zero of
h in C \ {0, 1,−1}. Then, the above conclusion on the zeros of P implies that z0

must satisfy

(2.8)
∣∣∣∣−(1 − z0)2

(1 + z0)2

∣∣∣∣ < 1.

Suppose h has symmetric zeros z0 and −z0. Then, −z0 must also satisfy∣∣∣∣−(1 + z0)2

(1 − z0)2

∣∣∣∣ < 1.

Since ∣∣∣∣−(1 − z0)2

(1 + z0)2

∣∣∣∣ =
1∣∣∣−(1+z0)2

(1−z0)2

∣∣∣ ,
we conclude that ∣∣∣∣−(1 − z0)2

(1 + z0)2

∣∣∣∣ > 1,

which contradicts (2.8). This leads to the fact that h has no symmetric zeros on
C \ {0, 1,−1}, and hence, 2ã(z) has no symmetric zeros on C \ {0}. This, together
with the stability of pseudo-splines of type II, proves the linear independence of the
shifts of an arbitrary given pseudo-spline of type II by Lemma 2.1. �

Acknowledgments

The authors thank the anonymous referee for his suggestions that led to Propo-
sition 1.1.

References

1. C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York, 1978. MR0507062
(80a:65027)

2. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th ed., McGraw-Hill
Higher Education, Boston, 2004. MR0730937 (84k:30002)

3. C. de Boor, R. DeVore and A. Ron, The structure of finitely generated shift-invariant spaces
in L2(Rd), J. Funct. Anal. 119 (1994), 37–78. MR1255273 (95g:46050)

4. A. Ben-Artzi and A. Ron, On the integer translates of a compactly supported function:
dual bases and linear projectors, SIAM J. Math. Anal. 21 (1990), 1550–1562. MR1075591
(91j:41009)

5. A. Cohen and I. Daubechies, A stability criterion for biorthogonal wavelet bases and their re-
lated subband coding scheme, Duke Math. J. 68 (2) (1992), 313–335. MR1191564 (94b:94005)

6. A. Cohen, I. Daubechies and J. C. Feauveau, Biorthogonal bases of compactly supported
wavelets, Comm. Pure Appl. Math. 45 (1992), 485–560. MR1162365 (93e:42044)

http://www.ams.org/mathscinet-getitem?mr=0507062
http://www.ams.org/mathscinet-getitem?mr=0507062
http://www.ams.org/mathscinet-getitem?mr=0730937
http://www.ams.org/mathscinet-getitem?mr=0730937
http://www.ams.org/mathscinet-getitem?mr=1255273
http://www.ams.org/mathscinet-getitem?mr=1255273
http://www.ams.org/mathscinet-getitem?mr=1075591
http://www.ams.org/mathscinet-getitem?mr=1075591
http://www.ams.org/mathscinet-getitem?mr=1191564
http://www.ams.org/mathscinet-getitem?mr=1191564
http://www.ams.org/mathscinet-getitem?mr=1162365
http://www.ams.org/mathscinet-getitem?mr=1162365


2694 BIN DONG AND ZUOWEI SHEN

7. I. Daubechies, Ten Lectures on Wavelets, in: CBMS Conf. Series in Appl. Math., vol. 61,
SIAM, Philadelphia, 1992. MR1162107 (93e:42045)

8. I. Daubechies, B. Han, A. Ron, and Z. Shen, Framelets: MRA-based constructions of wavelet
frames, Appl. Comput. Harmon. Anal. 14 (1) (2003), 1–46. MR1971300 (2004a:42046)

9. W. Dahmen and C. A. Micchelli, Translates of multivariate splines, Linear Algebra Appl. 52
(1983), 217–234. MR0709352 (85e:41033)

10. W. Dahmen and C. A. Micchelli, On the local linear independence of translates of a box spline,

Studia Math. 82 (1985), 243–262. MR0825481 (87k:41008)
11. B. Dong and Z. Shen, Pseudo-splines, wavelets and framelets, preprint (2004).
12. S. Dubuc, Interpolation through an iterative scheme, J. Math. Anal. Appl. 114 (1986), 185–

204. MR0829123 (88b:41003)
13. R. Q. Jia, Linear independence of translates of a box spline, J. Approx. Theory 40 (1984),

158–160. MR0732698 (85h:41025)
14. R. Q. Jia, Local linear independence of the translates of a box spline, Constr. Approx. 1

(1985), 175–182. MR0891538 (88d:41017)
15. R. Q. Jia and C. A. Micchelli, Using the refinement equations for the construction of pre-

wavelets. II. Powers of two, Curves and Surfaces, 209–246, Academic Press, Boston, MA,
1991. MR1123739 (93e:65024)

16. R. Q. Jia and J. Z. Wang, Stability and linear independence associated with wavelet decom-
positions, Proc. Am. Math. Soc. 117 (4) (1993), 1115–1124. MR1120507 (93e:42046)
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