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Introduction

This paper presents results from various papers read before the Society

during a period of several years. These are indicated in the footnotes. The

calculus is independent of the number of dimensions of the space in which the

vectors are supposed to be placed. Indeed the vectors are for the most part

supposed to be imbedded in a space of an infinity of dimensions, this infinity

being denumerable sometimes but more often non-denumerable. In the sense

in which the term is used every vector is an infinite vector as regards its dimen-

sionality. The reader may always make the development concrete by thinking

of a vector as a function of one or more variables, usually one, and involving a

parameter whose values determine the " dimensionality " of the space. The

values the parameter can assume constitute its "spectrum." It must be

emphasized however that no one concrete representation is all that is meant,

for the vector is in reality an abstract entity given by its definition, that is to

say, postulationally. The case is analogous to that of " group " in which the

"operators" are generally not operators at all, since they have nothing to

operate upon, but are abstract entities, defined by postulates. Always to

interpret vectors as directed line-segments or as expansions of functions is to

limit the generality of the subject to no purpose, and actually to interfere with

some of the processes. It is sufficient to notice that in any case the theorems

may be tested out in any concrete representation. The author desires to

state that he discriminates between the terms function, values of a function,

expansion of a function. The function is the law which enables one to ascertain

the values. The table of values is not the function. The expansion is the

system of coefficients of the basis functions by means of which we may have a

particular representation of the function. Further a system of coefficients

does not constitute a vector; such a system the author calls a multiplex.

It is true that a multiplex appeals to many mathematicians as a sufficient

entity to serve as vector, but a multiplex does not specify a vector till the basis

(or in geometry the set of axes) is specified. A system of coefficients does not de-

fine the same function when attached to powers of x as when attached to sines in

a Fourier series; the vector (1,2,3) has no meaning till the directions for the

* Presented to the Society at various meetings, 1909-1921.

Trans. Am. Math. Sac. 14.
195



196 J.   B.   SHAW [October

numbers are assigned; and 1 — x2 is the same function whether expanded in a

Fourier series or a Bessel series, though its multiplex is different. The essence

indeed of a vector calculus lies in its ability to produce invariantive and co-

variantive expressions, and it does this because it uses vectors directly and not

some particular representation of the vectors. A calculus which produces

formulas in x, y, z, even though they may be at once replaced by x', y', z',

and preserve the same formulas, may be an invariant calculus, but it is not a

vector calculus. At the best, symbols which stand for such expressions referred

to axes for their meaning are merely short-hand symbols.

The method developed here has been found by years of use to be flexible,

smooth-running, simple, and to include all the systems of vectors now extant.

Its expressions are all covariantive for the simple reason they have no depend-

ence upon any system of reference. They are compact and readily interpreted

in such applications as differential geometry. It furnishes the basis for integral

equations, and the general theory of distributive operators. In the abstract

the intention is to create a calculus of symbols which are defined by the rules of

the calculus. Any entities that submit to these rules may be represented by

the symbols so far as this calculus is concerned, though from other points of

view they must be treated differently. These symbols stand for entities which

are subject to certain processes. A process is not a function; it produces

entities which are functions of the entities subject to the process, but the process

is not the function. For instance we use a process called addition, and one

called multiplication. There are several called "A" processes which are not

"multiplications." The author is aware that some mathematicians like to

call some of these A processes by such names as inner mxàtiplication, outer

multiplication, indeterminate multiplication, and the like, but he has not yet

observed that this multiplicity of names has been any advantage in the develop-

ment of the subject.

On the side of vectors in finite space (as to dimensions) this method includes

the Clifford algebras,* and might be supposed to be identical with the general

treatment of Clifford. The question has been asked : Why not assume a system

of units, ii, i2, • • ■, in, whose squares are — 1, and such that ipiq = — ig ip

when p 7^ ql All the formulas in the finite cases may be worked out from this

point of departure. They m'-ht then be generalized to the case of a denumer-

able infinity of units. This would indeed at least simplify much of the extant

work on the uses of orthogonal functions, vectors in a "Hubert space," etc.

But when we take up the most general case of a non-denumerable space it

would fail.    The present development has no reference to any dimensions.

* Consult Clifford's Works; Joly, Proceedings of the Royal Irish Acad-

emy (3), vol. 5 (1897), pp. 73-123; vol. 6 (1900), pp. 13-18; M'Aulay, Proceedings
of theRoyal Society of Edinburgh, vol. 28 (1908), pp. 503-585.
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This must be well understood by the reader, for it is fundamental. The

Grassmann treatments are hampered by their assumption that the "outer

product" of all the basis units of the system is a numerical value. Without

knowing the number of dimensions of the space the formulas cannot always be

written. The formulas here are equally valid whether the vectors lie in a space

of three, three thousand, a denumerable number, or a non-denumerable

number of dimensions. There is no basis, for every vector is an entity unique

in itself. It defines with its numerical multiples a linear space, any two define

with their numerical multiples and under addition a binary space, any n an

ii-ary space,—under certain restrictions to be noted.

I. FUNDAMENTALS

1. Definitions

1. Vectors. Vectors are represented in notation throughout by small Greek

letters, or by expressions built up with small Greek letters, and other symbols.

Capital Greek letters invariably mean operators. Roman (italic) letters mean

numerical values selected from a given domain, or field. An exception some-

times is furnished in using w in the ordinary sense.

Vectors are defined by stating the conditions to which they are subject.

These are as follows.

(1) Each vector gives rise to a set of vectors, called its multiples, repre-

sented by writing the symbol of the vector and a symbol for a number

(or mark) chosen from the given field, thus from a we have aa, 3a, wa, and

the like. No distinction is made between aa and aa. The multiples of a

vector are as numerous as the marks or numbers of the field. Any one of the

multiples may itself be taken as the initial vector and the others, including the

original vector, are then multiples of it. No vector is a unit vector absolutely,

but only relatively.

(2) In case we have one more vector which is not among the multiples of the

vector a, say ß, then the multiples of a and the multiples of ß enable us to

form a binary complex of vectors, indicated by xa + yß, where x and y inde-

pendently assume all values in the field. The vector £ = xa + yß is a unique

vector, but is said to be dependent upon a and ß, or not to be linearly inde-

pendent of them. We call the process of forming these vectors of the complex

addition of vectors.   We assume as a matter of definition that

£ = xa + yß = yß + xa,

and further that, in the case of still a third vector, not in the complex of a,

and ß, say y, if £ = xa + yß, Ç = yß + zy,<? = !;+zy,r = xa+ Ç, then

in all cases a = t .

This is called associativity of addition.
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(3) If £ = S xn 0Ln, then the multiples of £, as c£, are also to be formed

from the same multiples ol xxai,x2a2, • • •, that is

c£ - ]C cxn a„.

We see that by this last condition

xa + y a + • • • = ( x + y + ■ ■ -)a.

(4) If 0 is included in the field, then we have vectors 0a,0ß, • • • and these

are indistinguishable.

It follows that we may consider a + 0£ = a in all cases. Further we see

that the multiples of a, ß, y, etc., which determine a complex are to be con-

sidered as in the complex. Hence the vectors which determine a complex are

not unique. Whatever vectors are used to determine a complex are called a

basis for the complex in case they constitute an irreducible set, in the sense that

no one of them is included in the complex of the others. That is the same as

saying that ax, a2, • • •, an form a basis for a complex in case

Op = xx ai + x2 a2 + ■ • • + xn a„

only for xi = x2 = • • • = xn = 0. They are said then to be linearly in-

dependent.

(5) When the number of linearly independent vectors is not finite we

indicate them by using a parameter attached to the vector symbol, sometimes

as a subscript, as in the case of a denumerable infinity, thus ax, a2, ••-,«»;

and sometimes as a parameter in a parenthesis, as a(i), as in the case of a

non-denumerable infinity.    The complex in the first case is indicated by

£  =   Xa   Xn On Or Y^XnOi(n).

The complex in the second case is indicated by

£ =   I   x(i)a (i)di.

As an instance of each case, so far as our conditions go we may consider that

functions of a single variable are vectors. We would then have, using z for the

variable, i for the parameter, in the first case, an instance from expansions in

orthogonal functions,

£(z) = XX<¿„ (z);

in the second case, an instance from the expression of a function as a definite

integral,

£(z) =   |   a(i)<p(i,z)di.
Ja



1922] GENERAL  VECTOR  CALCULUS 199

When we apply vectors to functions we need to note there are further restric-

tions on account of the problems of analysis. We are concerned here largely

with the problems of algebra only.

When we undertake to find the coefficients (from the field) which would

enable us to express a given vector as belonging to the complex of a given basis

(finding the components of the vector), in case it is possible to express the vector

thus, that is, in case the vector does belong to the complex, we say we resolve

the given vector on the given basis. This is exemplified in the process of finding

components of velocity, or force, or vector field, or Fourier coefficients, or

solving a linear homogeneous integral equation. The conditions, in the func-

tion case again, that such resolution may take place, have been extensively

studied in certain special cases. The study of such conditions as result from

these analytic problems has been carried far by E. H. Moore, whose papers on

General Analysis may be referred to. The definitions of norm, Hermitian

square, generalized theorem of Pythagoras, etc., find their place in such

investigations.

(6) Vectors are further subject to conditions which are the main object of

the present paper.   These result from the formation of vectors of grade 2,3,

• • •, and their combinations into complexes, and combinations into complexes

of mixed grades. These will be treated separately under the heads : the accretive

process, the decretive process, the Hamiltonian process. The latter will also be

called the product.

2. The accretive process

2. Alternants.* In general an expression is alternant when it changes sign

with the interchange of two of its elements. The usage here is not contra-

dictory to this but supplements it considerably. As an example of an alternant

let us consider n functions of n different variables, giving us n2 different func-

tions

<*«(*>•) (i,j = 1,2, ■■■ ,n).

Then the expression £ ± «¿i ( «i ) a¿a ( s2 ) ■ • • onn ( sn ), where the subscripts ¿

are the numbers 1,2, • • •, n in some permutation, all permutations occurring,

and the sign is + or — according to the number of inversions, is an expression

which changes sign if any two subscripts are interchanged. It is therefore an

alternant.

The alternants we introduce are defined by the following conditions:

(1) From any n vectors we may construct an alternant, written An • «i a2

• • • an, called a simple vector of grade n.

* The remainder of part I contains the results of papers read before the Society as follows :

Chicago Section, December 26, 1913, The two fundamental operations of general vector analysis;

December 31, 1909, On Hamiltonian products; Southwestern Section, November 27, 1909,

Scalars of lineal products.
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(2) The interchange of any two vectors changes the sign.

(3) If any one of the vectors is in a complex, say a¿ = J2ai ßj where the £

may be used also to include the non-denumerable case

«(*') = ja(j)ß(j)dj,

then

An • ax a2 ■ • • at ■ • • an = ^ aj An ■ ax a2 ■ • • ßj ■ ■ ■ an.

It follows at once that if any two vectors are equal the alternant vanishes,

that if any vector is in the complex of the others the alternant vanishes, and

that to any vector may be added any vector in the complex of the others

without altering the alternant. The distributivity property (3) is very

important.

(4) Ax ■ a = a. The alternants begin with A2. We preserve the notation

since it is valid in general theorems.

(5) If An • ax a2 ■ ■ ■ an = 0 then for some set of values xx,x2, ■ ■ •, xn not

all zero
xx ax + x2 a2 + ••■ + xn an = 0.

This makes either equation a necessary and sufficient condition for the other.

It precludes using as the alternant defined above any alternant expression.

For instance in quaternions we might use as ^42 • aß the expression

V • 6 (a) 6 (ß) where 6 ( ) is a linear vector function, but it would be necessary

to choose 6 as non-singular. Otherwise the expression might vanish because

a or ß happened to be an invariant line for the root 0. Similarly we might

take as ^12 • aß the expression

p f[a(s)ß(t) -ß(s)a(t)]<b(s)dsdt,

but we should have to place restrictions upon what <¡> ( ) could be. Indeed in

either example we can consider that we do not really have the simple alternant,

but a function of the alternant, for they may be written respectively $V ■ aß,

and $[a(s)ß(t) — ß(s)a(t)]. The function might vanish when the

elementary alternant does not. We limit the meaning of An • otherwise,

however, only by the postulates.

3. Vector of grade n .* A basis of alternants of grade n gives a complex of

grade n, and any member of the complex is a vector of grade n. A vector of

grade n is indicated by Vn. It does not have to reduce to a single alternant,

as for instance A2 • aß + A2 ■ y8 may or may not reduce to the form ^42 • «f.

Many vectors of grade n do however reduce to single terms which are repre-

sented by the symbols An.    Such is the case to be defined, which is written

*This is not the "polyadic " of some authors.
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An ■ ai a2 ■ • ■ an+k where k ¿¿ 0. Such expressions have properties to be

proved which may be stated in terms of the permutation groups under which

they are invariant. In case k = 0 we might say that An ■ «i a2 • • • an is

invariant under the alternating group of permutations of its vectors, and

changes sign for the remaining substitutions of the symmetric group. Other

expressions constructed from an initial term by applying the substitutions of

some group would be interesting and useful, but little study of them has

occurred.

4. Accretive process.   The accretive process is now defined by the equation

Ap+q ■ Ap ■ ai a2 ■ ■ • ap Ag ■ ßi ß2 • • ■ ßq = Ap+q ■ aia2 • • ■ apßiß2 • • ■ ßg,

where p, q, are any integers. Hence if the alternants are interchanged the sign

is multiplied by ( — 1 )pq.

3.   The decretive process

5. Scalars. The term scalar was first applied by Hamilton to quaternions

which could be included in the ordinary number scale. It is used here in the

same sense but with the further application to a process which gives numbers

(marks) belonging to the field, from vectors, whatever the grade of the vectors.

We shall use A0 • to indicate such results.    We define first:

(1) Ao • An ■ «i a2 ■ • ■ an An • ßi ß2 • • ■ ßn is a number or mark of the

coefficient field.

(2) Ao ■ An ai ai ■■■ an An ■ ßißi ■• • ßn

= Ao ■ An ■ ßiß2 ■■■ ßn An • ai a2 ■■■ an.

This will be found to be a special case of a more general formula.    In particular

A0 ■ aß = A0 ■ ßa.

(3) Ao-Ap()Ag() =0,    p^q.

(4) Ao- (P + Q+ ■■■)(R + S+ ■■■)
= Ao ■ PR + Ao ■ PS + ■ ■ ■ + Ao ■ QR + Ao ■ QS + ■ ■ ■

for any expressions P, Q, • • •, R, S, ■ ■ ■ .    That is, A0 is distributive.

Instances of the scalar process are found in the expression called inner product

by some mathematicians. In geometric vectors it is usually defined to be the

product of the lengths of the vectors by the cosine of their angle, which angle is

defined for the space involved.    In functions we have

Ao- aß =   j    a(s)ß(s)ds.

We do not identify the scalar process A0 with the scalar process in quaternions,

though the latter is included.    For we might take A0 • aß = Sad(ß) where
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6 ( ) is a self-trans verse (symmetric, self-conjugate) linear vector operator

which has no zero roots. Such a form is implied in the integration with a

matrix defined by E. H. Moore in his General Analysis.

Scalars of vectors of grades higher than one are expressible by scalars of

vectors of grade one.

6. Orthogonality. If the scalar of two vectors of any grade vanishes the

two vectors are said to be orthogonal. A system of vectors may be mutually

orthogonal, as for instance a system of mutually perpendicular vectors in

space, or a system of functions such as a,- = \2 sin iirs, under the definition

Aq • ai aj =    I   at (s)aj (s)ds.
Jo

Biorthogonality.   Two systems of vectors a(i), ß(j) are mutually bior-

thogonal in case we have

A0-a(i)ß(j) =0,       i* j,

Ao ■ a(i)ß(i) ?¿0.

Biorthogonality and orthogonality play an important part in the problem of

expansions mentioned earlier. For instance they enable us to find the coeffi-

cients under proper restrictions.

7. Decretive process.   We are now in a position to define the general de-

cretive process.    We define first the expression

An-i ■ aAn  ■ ßXß2  ■ ■ ■ ßn  =   E ( ~  1)Í_1 ^0 • Otßi • 4_i • ßX ■ • • ßn
t

where the i written under ßi • • • ßn means that ßi is missing from the expression.

That is ßi • • • ßn means ßi • • • ßi-X ft+i • • • ßn,  with the particular cases

ßi • • ■ ßn means ß2 • • • ßn and ßx • • • ßn means ßi • • ■ ßn-i.    This expression
1 n

is evidently a vector of grade n — 1. The decretive process reduces the grade.

We define further

An-l •   (An • ßl • • • ßn)a  =   ( -  l)"'1 An-X  •  aAn • ßi • • • ßn •

We shall see later that we are here following a general law of permutations

which is the same as the determinant law for change of sign, but we have to

notice that in A0 the two vectors may be permuted without change of sign.

If we iterate the process just defined we would have

A„-2  •  aX An-l  •  a2 An  • ßl • • • ßn

= E(-1)<-<+iAo • «i ßi   Ao • «i ßj

Ao • a2 ßi   Ao • a2 ßj
An-2  • ßl.ßn,        i   <j  .

This is evident since the multiplier of A„-2 • ßi.ßn will come from two
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sources; being, if we omit the signs, one way A0 • a¡ ßj • Ao- ai ßi, and the

other way Ao • ai ßi Ao • ai ßj. But if i < j the sign for the first is ( — )i+i+2

and for the second ( —)i+-'+3, hence they have opposite signs. It is easy to

see by induction that for r iterations we have

An-r  •  «1 An-r+l  •  a2  • • • An-l  '  «r An  ■ ßl  ■ • • ßn

=   £ ( - )*r"+-"*'\A,  -akßm\An-r-ßl.ßn
H. -, *r

where k = 1,2, ■ • • ,r, m = ix,i2, • • •, ¿r, ¿i < ¿2 < ■ • • < ¿r.

The formula for operation on the right instead of the left is easily written.

As an instance in functions, we may define A„ • ßi • • • ßn to be the

determinant

-:£ ±ßi (shl)ß2 (shJ •■■ ßn (sK),

a function of n independent variables. If now we multiply by ai (s), we

may produce the decretive process by forming the sum, with proper sign, of the

integrals we have, when we set in turn s = Si, s = s2, • • •, s = sn.

Since the vectors a enter the expressions above in an alternating manner

we are warranted in the final definition, for the decretive process on two

vectors of any grades,

An-r •  Ar •  ai  ••■  arAn  • ßl  ■•■ ßn

= An-r ■  Oil An-r+l ■ «2 * * ' -¿n-1  ' «r An  • 01  • • • ßn , T ^ U,

and we can show that

An-r • An- () Ar •() = (- )r<""» An-r ■ A, ■ () An • ()    when   r^n.

In either case if r = re we have the important formula

Ao  • An  ■  ai  ■ ■ ■  an An  • ßl  ■ ■ • ßn   =   (- )Ín(n_1) \Ao  ■  UißA

(i,j= 1,2, ■■■ ,n).

The expression just found is sometimes called the Grammian when the a's and

ß's represent functions.    In this case we define

Ao- aß =   f a(s)ß(s)ds.
Ja

For n functions the vanishing of the Grammian is a necessary and sufficient

condition of their being linearly dependent. However, this is really because of

the presence of the An • of the n functions. It is really what vanishes. It

is evident now that we may rewrite the definition of the general decretive

process in a theorem

An-r ■ Ar • ai  • ••  arAn  • ßl • • • ßn

=   Y,{-Yi+h{-r-1)Ao-Ar-ai---arAr-ßil---ßirAn-rßi.ft,.
*1. —. *r
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It is to be observed that the sign is to be obtained by the determinant rule,

since we pass /3,-, over ti — 1 preceding ß's, ßi2 then over t2 — 2 preceding ß's,

etc. The total inversions are then t\ + t2 + • • • + ir + \r ( r + 1 ). This

theorem is a particular case of a more general one to follow, which, however,

is to be stated as a definition of both the accretive and the decretive processes

for all cases.

The expression A0 • An () An () is called the norm or square of the intensity

of the vector An, as for instance A0 ■ A2 ■ aßA2 ■ aß is the square of the in-

tensity of A2 • aß. An alternant divided by its intensity, if this is not 0, gives

a unit alternant.

By means of the two processes it is possible to construct the whole of a

general vector calculus.*

8. When Ao • An ■ «i • • • an An • ßi • :• ßn = 0, we know from the prop-

erties of determinants that if the rank is A, by proper addition of rows and

columns we may reduce the determinant to one in which either n — A rows or

n — A columns contain only 0, which in the present determinant will give

vectors in these rows or columns that are in the complex of the vectors a or

the complex of the vectors ß, respectively. It follows that n — A vectors in

the complex of ß's may be chosen so as to all be orthogonal to every vector a,

or we may choose n — h vectors in the complex of the a's which are all orthog-

onal to all the vectors ß. It follows that the complex of the remaining A

linearly independent vectors in the complex of the a's, and the remaining A

linearly independent vectors in the complex of the ß's, define two complexes of

A dimensions, which have a common incident complex of A dimensions. We

must not assume that the complex of order A of the vectors a can be identified

with that of order A of the vectors ß, since each vector of the first may be of

the form £* *< 7» + ft» 3 = 1 > "' ,h, and the vectors of the other complex of

the form £* !/»" T¿ + is ,3 = 1 > • • •, h, where the vectors f and £ are orthogonal

to all the vectors 7, and all vectors f are orthogonal to all vectors £. The A0

process leaves only the bilinear homogeneous forms Yixi y i • It follows that

the A vectors a are not necessarily expressible as in the complex of the A vectors

ß, and vice versa. We may say then that the complex of the n vectors which

determine a vector of grade n, and the complex of the n vectors which deter-

mine another vector of grade n, may have with regard to each other a rank A,

which is the order of two sub-complexes, one from each complex, which have a

common sub-complex of order A. In the geometric case it is easy to see the

significance of these facts. In the function spaces, however, they are also sig-

nificant. When the general decretive expression vanishes, each scalar coefficient

vanishes provided the vectors ß are linearly independent. Hence all vectors

a and ß become subject to the remarks just made.

* This was presented to the Society in a paper read March 26, 1921, On Hamiltonian

products, second paper.    The contents are incorporated in this memoir.
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9. In the alternant An • «i • • • an we may substitute other vectors without

changing the value of the alternant. These may be chosen so as to form a

mutually orthogonal system if their intensities do not vanish. For it is evident

that

A0 • ai a2
a2 — «!

Ao ■ ai ai

is orthogonal to ai and its substitution for a2 will not change the value of the

alternant. We may now find a vector orthogonal to both «i, a2 to substitute

for a3, etc.    In short if we set

«i = on,

a2 = Ai - ai A2 ■ «i «2/^0 • «1 cd,

a3 = Ai • A2 • «i «2 A3 ■ ai a2 a3/A0 • A2 • ai a2A2 • «i a2,

we shall have An • «i • • ■ an = A„ ■ a[ ■ - - a„.

The process would of course break down in case

Ao • ai «i = 0,        Ao ■ A2 ■ ai a2 Ai • ai a2 = 0,

etc. But these are singular vectors and are excluded from the cases that are

under consideration. This process of orthogonalizing vectors is of importance

in the study of sets of functions, integral equations, etc. If the A0 process is

defined as in the General Analysis of Moore, so that it is a Hermitian product,

the vectors may always be orthogonalized.

10. In case p is linearly expressible in terms of fti, • • •, ft,, since we have for

any set of n vectors ai, • • •, an (writing merely a for «i a2 • - • an and ß for

ßiß2---ßn)

Ai- An ■ aAn+i ■ ßp = 0 = (A0 ■ An ■ aAnß)p

-   (Ao  ■ An  ■   aAn  ■ ßl  ■■■ ßn-ip)ßn +   " '

it follows that we have a means of expanding p in terms of the vectors fti, ß2,

• • •, ßn if Ao ■ An ■ aAn • ß 7e 0; that is, if the set of a's has rank n with

regard to the set of ß's.   Transposing we have

„   Ao  •   On  ■  An  • ßl  ••• ßn-1 P
P = ßn

Ao ■ An- aAn ■ ß

_ o       Ap- An- aAn • ftl • • • ft»-2 ßn P    ,

A0- An- aAn  • ß

We now set

ßi . ( _ )*-i Ai - An-i ■ ßi ■■■ ßnAn ■ ai ■■■ On/Ao - An • aAn ■ ß;
i

ß* is called the complement of ßi as to the vectors a.   In case the vectors a
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coincided each to each with the corresponding vectors ß, then the complements

would be called the adjuncts of the vectors ß, that is, the adjuncts are com-

plements in the complex of the ß's themselves.    Evidently

Ao ■ ßißj = hi,

where S,y is 1 if t = j, and 0 if t ¿¿ j.   The expression of p now becomes

P = E<A^o-j8*P = ^ißiAo-ßip.

This is the generalized form for the expansion of p commonly used in

quaternions.

The process used above for two complexes is called biorthogonalization of

the vectors ß as to the vectors a. The complexes need not be the same, but

must have their rank with regard to each other equal to the order of the com-

plex. That is to say, the vectors a must be expressible linearly in terms of the

common incident complex and other vectors orthogonal to the incident com-

plex. The same is true for the vectors ß. The vectors outside of the incident

complex, however, may be quite different. As an example we may show that

the sets of vectors

ßi,        Ai • axA2 ■ ßxß2,        Ai ■ A2 ■ axa2A3 ■ ßxß2ß3,

Ax • A3 ■ ai a2 a3 A4 • ßi ß2 ß3 ßi,        ■••,

ai,        Ai ■ ßi A2 • ai a2,        Ai • A2 • ßiß2 A3 ■ ax a2 a3,

Ai • A3 • ßi ß2ß3Ai-aia2a3Oi,

are biorthogonalized sets.

11. We may now give the complete definition that states the result of using

either the accretive or the decretive process on two alternants* (counting

Ai • £ as an alternant by definition). It could not have been stated before

since some of the expressions on the right would have to be defined first. We

define for all i, j and any vectors a, ß,

Ai+j-2k • Ai • ai • • • ai Aj • ßi • • • ßj

= S ( - )2<«+2>4+i(1-t) Ai+j-2k -ai.ai ßx • • -ßj

X (Ao ■ Ak ■ ah ■•• ahA ■ ßjl ■ ■ ■ ßjh)

where f we have k ^=i,k ^j, that is, i +j — 2k ^ |t — j\. The sign may be

determined directly without using the factor containing the sign, by counting

the total number of inversions, provided however that in the scalar factor

Ao • ()() the vectors a precede the vectors ß.   This definition includes all

* No special name is needed, as the next division shows.

f This X sign merely means that the expression should be written on one line.
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the others given, as particular cases. In case k Si \i, i Si j, and fto = a,a,

ia = 1,2, ■ • • ,i, the expression vanishes. In case k = 0 we have but a single

term, the sign being +. If k = 0 we have the accretive process. If the

order of the two alternants is changed it is evident that the result is multi-

plied by ( - )"+*.

The vector just defined, of grade i + j — 2k, is the alternant which defines

the region or space of order i + j — 2k containing all the regions of the

alternants of order i and j determined by omitting common incident regions

of order j.

4. The Hamilton product

12. Hamilton product of two vectors. Let Vn and Vm be any two vectors of

grades n, m respectively, that is, in the complex of a system of alternants all

of grade n and the complex of a system of alternants of grade m respectively.

Then we define Vm¥n-2k• Vm Vn = E Am+n-ik-A'mAnXmyn, where Vm = T.XmA'm,

and Vn = Y,ynAl- This merely states the distributive law. We now

define the Hamilton product (also distributive) for two vectors of grades m,n,

indicating it by the sign * temporarily. We shall see later that no special

mark is needed.    We remember a scalar is not a vector, though written A 0.

Vm*Vn = TMSi~nlVm+n-2k-VmVn,      0 < m, 0 < il,      V m* X = xVm = X* Vm .

From this definition we have first, since Ai • ai = ai,

oí* a2 = Ao • «i a2 + A2 ■ ai a2.

Since the two parts of this product are of different grades, there is nothing to

interfere with our using the same symbols in front of the Hamilton product as

selective symbols to indicate the different parts.    That is, we may use

Aq - ai* a2        and        Ao • «i a2,

A2 • ai * a2       and        A2 • «i a2

indifferently.    We shall see that this is a procedure which is general.

Again we have

ai*A2 • a2 a3 = Ai - «i A2 - a2 a3 + A3 • «i A2 • a2 a3

= a3 Ao - «i a2 — a2 A0 ■ «i a3.+ A3 ■ «i a2 a3.

Since ai*^áo • «2 a3 = ai A0 • a2 a3, by adding, we have

on* (a2* a3) = ai AQ - a2 a3 — a2 A0 • «i a3 + a3 A0 - «i a2 + A3 - «i a2 a3.

This product consists then of two vectors, one of grade 1, the other of grade 3.

If we use Ai and A3 in front of a Hamilton product as selective symbols, then

we may define

Ai • a\* (a2*a3) = ai A0 - a2 a% — a2 Ao • ai «3 + «3 Ao • «i a2,

A3 ■ ai * ( a2 * a3 ) = A3 • on a2 a3.



208 J.  B.  SHAW [October

Evidently

Ax ■ ax*(a2*a3) = Ax ■ a3* (a2*ax).

We have

«i * ( a2 * a3 ) = Ax • ax * ( a2 * a3 ) + A3 ■ axa2a3 = (a¡* a2)* a3.

The vector of grade 3 in this product is familiar. The vector of grade 1, how-

ever, is a new function of ai, a2, and a3. We may indicate it as a function of

«i, a2, a3 by using the same symbol, omitting the multiplication sign*. The

alternants we have already written in that manner, the mere juxtaposition of

the vectors in An • ax ■ • • an not implying up to this point anything in the

nature of a product. It has meant so far nothing more than a certain defined

function An • ( «i, a2, ■ • ■, an ) of n vectors, of first grade. Hence we will

now define a new system of functions recurrently:

q\      An  ■   «1 «2   • • •  «n+2i  = An • «1 An-l  •  «2  • • •  «„+2i

+ An ■ ax An+1 • a2 ■ • • an+2i,        0 < n,

where OSt. (The last term vanishes when i = 0, since An+i • a2 • • ■ an = 0,

f or n + 1 > n. )

(2) A0 ■ ai a2 ■ ■ ■ a2m = A0 • «i Ax • a2 ■ ■ ■ a2m.

For instance

Ax • «i a2 a3 = Ai • ai A0 • a2 a3 + Ai • ai A2 • a2a3.

In the case of functional space the number t indicates the number of integra-

tions we perform, there being in all n + 2t parameters which are set equal in

i pairs in every possible manner, and then each pair integrated, leaving in

every resulting term n parameters as indicated always by the subscript of

the A . We see that now A has ceased to have only an alternating significance,

retaining that meaning when the number of vectors following is the same as the

subscript on the A . But when the number is greater (it never can be less), then

A no longer is an alternating sign. The functions, however, do permit certain

permutations depending upon the grade, as will be shown.

13. We shall now prove that the definition just given for An, when the number

of vectors exceeds n, leads to an expansion in alternants of grade n. That is,

we shall prove the theorem:

An-2i • ai ■ • ■ an = X) ( — )sy°+< A0 • aji ajt • • • aiti

X An-2i -ax.a„    (a = 1, 2, • • • , 2t).
hlr-hi

As a matter of fact again the signs follow the determinant rule, provided we

place the subscripts after A0 in natural order, that is, have ji ^ j2 21 • • • Si j2¿.

For let us suppose this formula holds for all values of n up to and including
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n = t, and for all values of t, such that 2t Si t.   Then it follows that

Ai • ai a2 • • • at = ai Ao • a2 • ■ • at — a2 Ao • ai • • ■ at

+ ■ ■ ■ + at Ao • «i • • • ««-i

whenever t is odd, and further when t is odd, so that t + 1 is even, from the

definition in § 12,

Ao ■ ai a2 • ■ • at+i

= Ao • ai Ai ■ a2 ■ • ■ at+i

= A0 ■ ai a2 Ao • a3 ■ • ■ at+i — A0 ■ ai a3 A0 ■ a2 a4 • ■ ■ at+i

Now by definition whether t is odd or even

•4«+i-2i • aia2 • • • at+i

= At+i-2j • «i At+2-2j • a2 ■ • • at+i + ¿t(-|-i_2y • «i At-2j ■ a2 ■ • ■ at+i,

where 2j Si t + 1. But each term on the right contains a case that comes

under the hypothesis since there are only t vectors concerned in the second A .

Hence we may reduce the right-hand member, and

At+i-2j • ai a2 • ■ ■ at+i

= At+i-2j ■ «i X) At+2-2j • a2.at+i Ao ■ akl • • ■ akv_t ( — y~1+^k
ti—fc^-t

+ At+i-2j • ax X ^í-2i • «2.oit+i A0 ■ ahl ■ ■ • ahlj ( — )i+zh

where kx < k2 < • • • < 42y_2, hi < h2 < • • • < A2j-.

The first term reduces to

2 At+i-ij ■ a2.at+x A0 ■ ax ako A0 ■ ah ■ ■ ■ akh_, ( - )*-*+»+*•+•■
*0*l-"*2>-2

where r is the number of subscripts kx, k2, • • •, kr < k0 in the term, and

ko9^ki,k2, • ■ •, 42j_2, 40 = 2, 3, • • •, / + 1 in different terms. This reduces

to

2 At+i-.2j ■ a2a3.at+i Ao ■ ai a2 • • • aklj_t ( — )i+^+a+^k
0,*l—*2j-2

in which the subscripts are now rearranged so that g < ki < k2 < • • • < k2¡-2.

No 4 = 1. In these terms «i is missing with 2j — 1 others, or 2j including ai.

The second term reduces to

X ^4i+i-2/ • «i «2.oLt+i Ao ■ ahl ■ ■ ■ ahl. ( — )3+:sh

where no h is 1, and hx < h2 < ■ ■ • < A2y.

In these terms ai is present, and 2j excluding «i are missing.    But these

two sets of terms together give exactly

^4f+i_2;- • ax a2 ■ • • at+i

= X) ^i+i-2; • «i.at+i Ao ■ ak¡ ■■• ak   ( - )i+zk
*i-*t,
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and hence the theorem holds for the next value of n = t + 1 and for all values

of j that are possible. Since, however, we know the theorem is true for n = 1,

n = 2, n = 3, it holds for ail cases of n an integer. The signs follow the

determinant rule provided that under Ao • the letters are in their natural

order, that is, as on the left. We see now from the definition of the Hamilton

product of two vectors of any grades that

«i* [An • a2 ••■ a„+i + A„-i ■ a2 ■ • • an+1

+ ■■• + Ai    or    A0 ■ a2 ••• an+i]

= A„+i • ai a2 ■ ■ ■ an+i + An-i ■ «i An • a2 • • ■ an+i

+ • • • + An-i • ai An-2 • a2 ••■ On+i + •••

= An+l  •«!••■  an+l  + An-l  •  «1   • • •  On+i

+ ■ ■ ■ + Ao    or    Ai ■ ai ■ •■ an+i.

Now we know already that

«n-l* Oin  = A2  ■ an-l Cin + A0  ■ an-l an

and

«n-2* (a„-i*On)   = A3 • 0„_2 Oin-1 «n + AX  ■  a„-i an-l On .

It is evident from the theorem just proved that we must have the general

Hamilton product (in which the multiplier is set at the left) given by the

theorem

Oil*[a2* (•••*«„)]= An ■  «i  • • • an + An-i  •  Oil  ■ ■ ■  Cin +

If the A's are inserted in front of this product they are understood as selective

symbols that pick out the term on the right of corresponding grade. We have

now to show that this product is associative, that is, we may group the vectors in

the order in which they come, in any manner, and find that the Hamilton

product of the groups is the Hamilton product of the whole set.    For instance

[ai*(a2*a3)]*(a4*a5)=ái*[(a2*a3)*(a4*a5)]=u:i*[o:2*(a3*a4*a5)].

14. Associativity of the Hamilton product. We shall prove this by showing

that whether we multiply successively an by an-i, then a„_2, • • •, by ai, or

whether we form the product of an by an-i, • • •, by a¿, and then the product of

this by the product of ai multiplied successively by at-i, a,_2, • • •, by «i,

we have the same result.    That is, we are to prove that

[A, • ai ••• ai + Ai-2 • «i • • • a< + • • • ]

* [An-i • Oii+i  •■•  On + An-i-2  • «<+l  ' • • On]

= An • «i • • •  an + An-i ■ Oil ■ • •  Oin +

in the first place let n = i + j.   Then

Ai-2q • «i • • • a{ = £ ( - )zt*¥,Ai-2q (ii, ■■■ , i2q)Ao • ah ■ • ■ ailq,
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where the subscripts written inside the parenthesis will indicate the missing

vectors from «i, •••,«,-.    Also we have

Aj-2m ai+i • ■ ■ ai+j = J2 ( — YiAm Aj-2m (ji, ■■• , j2m ) Ao ■ ah • ■ ■ aíín,

Ai+j-2(m+p+g) • Ai-2g • ai • ■ ■ at Aj-2m ■ a,-+i ■ • • ai+y

- È ( - )******» Ai+j-2im+p+q) Ai-2q (ii, ■ ■ ■, i2q)

X Aj-2m (ji, ■• ■, j2m)A0 ■ atl • • • ai%<¡A0 ■ ah ■ ■ ■ aÍJm

= Z ( - )*i*+V'+*+™+i> Ai+i-um+p+g) aia2.ai+j
h—hq+pil—km+p

X Ao ■ ah ■ ■ • aijq A0 ■ ah ■ • • aitmAo

■ AP a,-2g+1 ■ • • fXi^Ap ■ ahm^ ■ ■ ■ ahmir.

Let r = m + p + q; then we may condense the expression just written into

S ( — )r Ai+j-2r (ii • • • ¿2a+p ji • ■ • j2m+p)A0-AP- a,-,

••• aH^Ap ■ ah ■■■ aJimtT.

If now we set q + m = h, p = r — h, and holding h fixed let q and m take all

possible values, we have from the above
*=r   l=h, m=0

¿2     Z-i     Ai+i-2r • Ai-2t ■ «i • • • ai Aj-2m ai+i • • ■ aj+y
Ä=0    1=0, m=h

= Za ( — )r Ai+j-2r «i.ai ai+i.a¡ Ao • Ar-\ • a,-.

• • • a^Ar-h • ay, • • • ayt,

where we must have s + t = 2r and r — AsisSir-f-A. But finally summing

as to h, we have exactly the sum

2_jr Ai+j-2r «i • • • a,- a»+i • • • ai+j,

which is the expansion of the Hamiltonian product of «i, a2, • • ■, a,+j in the

order written.   On the left the final sums give the Hamiltonian products of

ai, a2, ■ ■ • , at and ai+1, • • • , ai+j.

We see now that the special use of a multiplication sign is unnecessary and

that in all the functions we have built up, with the use of the A and subscripts,

the array of vectors may be considered to be a Hamilton product, and the A a

selective sign for the vector of the indicated grade. The remarkable simplicity

of this result enables us to dispense with any very large collection of formulas

for transforming expressions in this general vector calculus. We may break up

by associativity any expression under an A and arrive at various reductions in

this way.    As instances

Ao • ai a2 a3 Oia5a6 = Ao ■ («i a2 a3 Oi) (as a6)

= A0 • [(Ai + A2 + Ao) • aia2a3o!4][^42 + ^o] ■ aña6

= Ao - A2 • «i «2 a3OiA2 • a6 a6 + Ao • «i a2 a3 a4 Ao • a5 a3;

A2 • (A2 • aia2^l4 • ßiß2ß3ßi)

= A2 (aiffi - Ao ■ aia2)Ai ■ ßiß2ß3ßt = A2 ■ (aia2 Ai ■ ßiß2ß3ßi);

Ao • ai a2 a3 ai = Ao • ai a2 Ao • a3 ai

— Ao • ai a3 A0 • a2 Oí + A0 ■ «i a4 A0 • a2 a3.
Trans. Am. Math. Soc. 15.
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Expansions of this sort are unlimited in number.*    Other useful formulas are

easily derived by combinations, as

An  •  aAn-l ßAn  ■  7 i  ' ' *  In + An  • ßAn+i  •  aAn  •  Jl  •■•  Jn

= An ■ aßAn • 7i • • • 7„;

Ai • An ■ ax ■ ■ ■ an An+i pßi ■ • • ßn = ( - )n pA0 ■ An ■ ai

■ ■ • an AH • ßi ■ ■ ■ ßn - J2 ßj Ao ■ An ■ ai • • • an An ■ pßi • • • ßn;
i

Ai • ai A2 • a2 a3 + Ai • a2 A2 • a3 ai + Ai ■ a3 A2 • ai a2 = 0;

A2 • ai A3 • a2 a3 ai — A2 ■ a2 A3 • aia3Oi

+ A2 • a3 A3 • ai a2 an — A2 ■ ai A3 ■ ai a2 a3 = 0.

15. There are other ways by which we might have developed the subject.

We might have taken a method similar to that of Clifford and defined the

symbols a, ß, etc., which we have called vectors, as the hypernumbers defined

by the ratios of geometric vectors; but this method (and others) has great

disadvantages in the end. We might of course have defined a general or

indeterminate product and derived from this expressions which would have

been our A expressions. Some of these will be exhibited later. We should

have difficulties also this way. From a long consideration of the problem the

method of development used was settled on as the most desirable from a good

many points of view.

16. We proceed to develop a few theorems useful in applications. If we

consider two complexes of order n each, defined by «i, • • • ,an and ßi, • • •, ßn,

and a vector p, the part of p in the incident complex of the two (say p' ) is

given by

p' A0 ■ An ■ aAn • ß = Ai ■ (An-l ■ pAn a) An ■ ß.

For it is easy to see that

An-i • pAn •«!•••«„=  J^Ao-ai pAn-l • «1 • ■ • an ( — )i_1,
i

and therefore the right side gives ^i A0 ■ aip ■ ai • A0 • An • aA„ ■ ß, when

we set for the complement of a»

a* = ( - )i_1 • Ai ■ An-i • ai ■ ■ ■ an An ■ ßx • ■ ■ ßn/A0 ■ An ■ aAn-ß.
<

But the form we now have is that part of p which lies in the complex of a1, a2,

• • •, an, that is, in the incident complex.    It follows that

_ Ai • (An-i ■ pAn • a) An ■ ß

Aq- An • aAn • ß

* Conversely every expression Am- ai ••• <*„, may be expressed as a sum of products alone

without any A's.   See page 220.
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is the part of p (its projection) exterior to the incident space. It may be also

written in the form

Ai • [pAp • An • aAn ■ ß — (An-i ■ pAn ■ a)An • ß]

Ao- An  ■  aAn  • ß

17. Another useful form is the following. Since Ai • An-i • ßi • • • ßn-i An • a

is linear in ai, • • •, On, we see that if we consider a set of vectors defining a

complex of order r, ai, ■ ■ ■, an, an+i, • • •, ar,nSr, then

Ar+i - [ Ai ■ An-i ■ ßi •■■ ft-i An ■ «i • • • an ] Ar ■ ax ■ • ■ a, = 0

identically. This is true whatever the vectors ß. Hence for any vectors

7i, •••, 7r+l

A0  •   [Ar+l  ■  7l  • • •  7r+l Ar+l •  AX (An-1  • ßl

■ ■ ■ ßn-i A„ • ai • • • a„) Ar ■ ai • • ■ ar] = 0

identically.    We may now change the order and have still identically

Ao ■ [Ar+1 ■ (Ar ■ «i • • • ar Ai ■ An-i ■ ft

• • • ft_i An • ai ■■• an) Ar+i • 7i • • • 7r+i ] = 0.

We may however drop the first AT+i since A0 in front prevents any additional

terms from entering, and then for the same reason we may insert Ar as shown,

arriving at a formula from which many useful formulas may be deduced : *

Ao • Ar ■ ai ■ ■ ■ ar Ar ■ [Ai ■ (An-i ■ ft

• • • ft_i An  • <Xi •••  On) Ar+l ■ Ji ■ ■ ■ Jr+l]  =   0 .

18. A similar formula may be deduced from

AX    ■     Ay    ■    ßl    ■   ■   ■    ßy   Ax+y    '    Ut    '  '  '    «¡^.y,

which is linear in Ax • ail • • • aix. If then we consider the set «i, • • •, ax+y+z

where z may be zero, we have the identity

A2x+y+Z     •     (AX    •     Ay    •    ßl     ■    •   •    ßy   Ax+y     '     «1     "   '   '     aX+y)AX+y+ll     ■     Oi\    '   "   «     0^^     =     0'

Hence whatever the vectors 71, • • •, 721+^+3 > we have identically

Aß     •     [A2x+y+Z    •     7l     •   •   •     y2x+y+z   A2x+y+Z

■     (AX    •    Ay    •    ßl    •   •   •    ßy  Ax+V    •    Oil    •   •   •    OiX+y ) A X+y+Z    '    <Xl    '  '  '    «I+Ï+J ]     =    0 ,

whence for all ß's and 7's we have

Ao • [Ax+y+z • ai • • • ax+v+z Ax

■     (Ay    •   ßl    '   ••   ßyAX+y    •«!•••    ax+y)]A2x+y+z    •    J1    •   •   ■    ̂ 2x+y+Z    =    0.

Particular cases occur for z = 0.

* Volterra, Rice  Institute  Pamphlets,  vol. 4 (1917), No. 1, p. 58 (3).
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19. In the expression

A2r+s-2x • Ar •  ai  • • •  ar Ar+s  •  «1  • ■ •  «r fti  • ' • ft»

=   Z ± Ao ■ Ax ■ aiy • ■ ■ aix Ax • ajl • • • ajy ßkl

■ • • ßkz_v A2r+a-2x -ai.ar ai.arßi.ft,
Il'"ix 11—iy *l",^r-IÍ

the vectors a that enter the right-hand side are all different, and there are not

more than r, hence we have 2r — x — y^r or r^x + y. Further if the j

set and the i set do not together make up the whole r set, then there are inevi-

tably duplicates in the last factor which would cause it to vanish. Hence the i

set and thej set must cover all the r vectors «i, • • ■ ,ar, though they may over-

lap, in which case in the last factor the overlap would be missing. In each A

we may reduce with no alteration in value by substituting an orthogonal set

for the vectors appearing there (indicated by accents). The factor A0 would

then vanish if it contained any vectors ß. Hence the vectors of the ¿ set and

those of the j set must define the same complex. They must therefore each

be the whole set «i, • • •, aT. Hence for any value except x = y = r the

expression vanishes, and when x = y = r it reduces to

a, • ß[ • • • ß:.

20. If we consider the bordered determinant

A0 • a8      Ao ■ aßi      A0 ■ aß2       ■ ■ ■    A0 ■ aßn

A0 • Ti 8   Ao- Yi fti   Ao • yißi    •■•    A0 • yi ßn

Ao ■ yn 8   Ao ■ yn fti   A0 ■ yn ßi    ■••   A0 • yn ß»

we see that it may be condensed into

( _ )}n(„+i) Aq . Än+1 .sß1ßt... ßn An+i - ayi 72 • • • 7» ■

If we expand by Cauchy's theorem the determinant is equal to

A • A0 • a8 — 2 Ao • aßi AQ • 8yj ■ Ay,

where A is the determinant of ß and y alone, that is, the one bordered, and A,y

is the minor of A produced by omitting the column containing ßi and row con-

taining Yy. Now interchange a and 8 and subtract. The first terms cancel

and the others become

Yi, Ao ■ A2 • aSA2 ■ ßi 7y • A¿y = ^ A0 • A2 ■ a8A2

• ßi 7y Ao • An-l ■ ßl • ' ' ßn An-l • 7l ' ' • 7» ( ~ )*<"^><«-i>+«-/.
ßi ij

This is easily reduced to

( _ )i(»-i)n+i Ao- Ai- a8A2 ■ An - ßi ■ ■ ■ ßn An - 7i • • • 7n.



1922] GENERAL  VECTOR  CALCULUS 215

Hence we have the useful theorem

Ao ■ An+i • aßi--- ßn An+i • 8yi - ■ ■ yn - A0 • An+i - 8ft

■•• ßn An+i • ayi • • ■ 7„ = ( — )" A0 • A2 • a8A2 • An • ßAn ■ y.

21. We notice that

An -ßl ■■■ ßn*a  = An+l ■   (An • ßl ■ • • ft, * a )  + An-l •   (An - ßl ••■ft,*«)

-   ( - )» [An+l -  aßi--- ßn~ An-l  ■  oAn  ■ ßl  • ■ • ft, ] .

Hence we have since ^4„+2 • aAn+i a() = 0, and ^1„_2 • aAn-i • a () = 0,

a*An-ßi---ßn*a

= (-)n[An ■ aAn+i ■ aßi--- ßn - An ■ aAn-i ■ aAn • ftt • • • ßn]

= ( - )» [Ao ■ aaAn ■ ßi - - - ßn - 2Ao ■ aßi ■ An - aß2

■■- ßn + 2A0- aß2A„ ■ «(Sift, •••ft,]

= An • aßi -•■ ßna.

It is apparent then that if we multiply an alternant of grade n by the same

linear vector on the right and left, we have a vector of grade n, which is the

part of grade n of the product of the original product by this vector on the

right and the left.

Since we have Ao • aßi • • - ßn a = A0 • aaA0 • fti • • • ft, and since

aa = Ao ■ aa,    and    a - A0 • fti • • • ft, • a = aaA0 -fti • • • ft»,

it is evident that for any expression

Am • ßi • ■ ■ ßn (m Si n)

we have

a* Am ■ ßi ■ ■ ■ ßn * a = Am ■ aßi ■ ■ ■ ft, a.

A vector of grade 1 which comes at both extremes of any vector of any grade of

a product may be set outside the vector symbol of that grade. This enables us

to make reductions.    For instance

aßya = aA2 ■ ßy - a + aaAo • fty;

aßyaS = aaAo • ßy • 8 + a^42 • fty • a8.

This theorem is useful in studying invariancy under rotation about linear

vectors.   The papers of Joly and M'Aulay should be consulted.

It is evident that continued application of the theorem is possible. For

instance

(ai - - • an)Vm • ßi - •■ ßr (an ••■ ai) = Vm - ai - - ■ an ßi ••• ßr an ••• ai.

22. Since the formulas we are to consider in this section are homogeneous in

all vectors on both sides, we will consider that the vectors are unit vectors, that

is to say for each vector we have

££ = Ao • ££ = 1.
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We may introduce multipliers easily to produce vectors not unit vectors.

We will occasionally indicate the opposite of a vector by a stroke over the

symbol, thus

— a = a.

We have then aa = — 1. We shall use the stroke extended to cover more

than one vector to indicate that the order is to be reversed and all the signs,

thus

«1 • • • On - an • • • «1 .

This is called, in quaternions, taking the conjugate.

This operation will not affect the form A0 • «i • • • an, for this vanishes

when n is odd, and if n = 2m we have by definition of Ao • ai • • • a2m

Ao • ai • • ■ a2m = ^2i( — )vAo- a^ aSl A0 • aÍ2 aj% • • • A0 • «,•„ a ;,i

where the subscripts are so arranged that ix < jx ( x = 1,2, • • •, m ) and p is

the number of inversions in the total collection of subscripts so arranged. It

simplifies the count a little to arrange either the subscripts i or j in their

natural order. It is evident now that as each factor may have its vectors

interchanged, and as a change of both signs does not affect the value, we will

have in any case

Ao ■ «i • • • an = Ao • «i • • • an.

Hence if we remember the expansion of the form Am • ai • ■ • an, we see that

as every term is an alternant of grade m, and as

Am ■ ßi ■ ■ ■ ßm = ( - )" Am ■ ßm • • • ft = ( - )4-C"+1) Am-ßi---ß

we shall have

m ,

Am • ai • • • On = ( - )*"!<m+1) Am • Oil ■ • • On .

Hence we have the four forms for any product ir = ai • ■ ■ an, according to

form of n,

Aim -  T = Aim * Ti ~" -44m+l  •  X  = Aim+i ' ir)

— Aim+2  • IT  = Aim+1  ' If', Aim+3  • T  =  Aim+3  • TV.

It follows that

t = (Ao • - Ai • - A2 • + A3 • + Ai • - A¡¡ • - ••• ) • 7T.

Hence

^ (tt + ir) = (A0 • + Ai • + • • O rr if ir is of even grade,

\ (it — tt) = (A2 • + As • + • • • )rr if tt is of even grade,

\ (ir + îr) = (Ai • + At, • + ■ • • )ir if ir is of odd grade,

% (tt — t) = (A3 • + At • + • • • )w if ir is of odd grade.
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We may also state the theorem thus: * in A0, Ait • • • we may reverse the order

of the product, in Ai, As, • • • we may reverse the order, in A2, A6, • • • and in

A3, At, ■ • ■ we must change the sign if we reverse the order. We may also

state it thus : the substitution (l,n)(2,n — l)(3,n — 2) ••• leaves invariant

Ao, Ai, • • •, Ai, Ab, • • • and changes the sign of A2, A6, • • •, A3, A-¡,

Again we notice that if p is a vector of grade m, then

pa = Am+i • pa + Am-i -pa,        ap = Am+i • ap + Am-i • ap,

since all other grades vanish, and by the formula in § 11 we have when we

interchange the vectors

ap = ( — )m [Am+i • pa — Am-i -pa],

pa = ( — )m [Am+i ■ ap — Am-i ■ ap].

This gives us at once

pa + ( - )m ap = 2Am+i ■ pa = ( - )m 2Am+ï ■ ap,

pa - (-)map = 2Am-i ■ pa = (- )m~l 2Am-i ■ ap.

We have from this, reverting to it = ai ■ • ■ an, and writing ir3 = As • i: • for

brevity,

ira = 2 *"« a = 5Z ( — y [Ae+i • airs — As-i ■ airs].

We also have

air = Y aira = 2 [As+iaws + ^3_x • a7rs].

It is clearer if we write these out in full, retaining only the terms actually

present,

air = Ao ■ a-Ki + Ai • a (ir0 + ir2)

+ A2 ■ a(wi + w3) + A3 ■ a (tt2 + Wi) + • • •,

ira = Ao • airi + Ai ■ a (wo — ir2)

— A2 ■ a(iri — tt3) + A3 ■ a (t2 — Wi) +

Of course when it is even all the even terms are zero in these, and when -k is

odd all the odd terms are zero.    We have from these, by combining,

\ [ air + ira] = Ao • awi + ^4i ■ cor0 + A2 ■ air3 + A3 • aw2 + • • •,

\ [air — ira] = Ai • air2 + A2 ■ airi + A3 ■ «7T4 + Ai • air3 + • • • .

We have a number of interesting results from these.    For instance, taking A0

of both sides we find that

Ao • ira = Ao ■ air.

Hence ^40 is invariant under the substitution (1,2, • • •, n).   This substitu-

tion taken with the other which leaves A0 invariant gives a group of order 2n.

* Since Ao ( fl\¡— T ) = 0, At ■ ( tt — if ) =0. etc.
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Since in the expanded form, where n = 2m, we see that there are 2m (ml)

substitutions which leave the individual terms unchanged, and there are

(2m) ! substitutions altogether, there will be in the development of

Ao • ai ••■ an

1  = (2m -1) (2m-3) ■■■3-1    terms.
2m(m!)

There will evidently be for n = 2m vectors of grade 1, § ( n — 1 ) I different

expressions A0 • «i • • • an.

Again we have

Ai • ira = Ai • air — 2Ai • air2 = — Ai ■ air + 2coro;

A2 • ira = A2 • air — 2A2 • airi = — A2 • air + 2A2 • air3;

A3 • ira = A3 • air — 2A3 • awi = — A3 • aw + 2^43 • air2;

Am • ira = Am • air — 2Am ■ airm±i = — Am • air + 2Am • airm^i,

where the upper signs are used if m is odd, the lower if m is even.    Returning

to our previous procedure we have

paß = pAo • aß + pA2 • aß = pA0 • aß + Am-2 • pA2 • aß

+ Am ■ pA2 ■ aß + Am+2 ■ nA2 • aß,

= pAo ■ aß + Am-2 ■ (A2 • aß)p

- Am ■ (A2 ■ aß)p + Am+2 ■ (A2 • aß)p,

aßp = pA0 • aß + Am-2 • (A2 ■ aß)p + Am • (A2 ■ aß)p + Am+2 ■ (A2 • aß)p.

We have at once

paß = aßp - 2Am (A2 ■ aß)p,

whence easily

iraß = aßir — 2^ Am(A2 ■ aß)irm.

We need not proceed in this fashion, for it is simpler to make use of the con-

jugates, thus: let

7T = «i • ■ • On       and       r = ft • • • ft;

then
TTT   =  rW  =   £ ( - )im^+» Am ■  TW,

and since

TIT =   £ Am •  TIT,

we have the general formula

1TT ± TT  =   J^ Am ■  (TIT ± ( - )*"><■>"+» ttt") .

Now by expanding each expression in the form
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and similarly for r, and cancelling all terms that must give 0, we arrive at any

of these forms directly.   The terms retained are of the form tp it, where

mt=\p — s\ ,       p + sSim.

If we take conjugates of the expression just written we have

± WT + TW  =   £ Am  •  [ ( - )im(-m+V> TIT ± Tw] .

By combining these formulas by addition and subtraction we arrive at a

variety of forms.

Applying the same method to three products as factors of a single product

we see that
rira- = £ ( - )*m<m+1> A, • ¿if.

We combine this with crwr = Y,Am • o-jtt to produce various formulas. In

particular let a and t be vectors of grade 1 ; then a = — a and t = — r, so that

rm - J2(-)im(m+1)Am-o-ñT.

We have then
0-1TT ± TWO-  =   YAm-0-[lT±(- )*m(m+« w]t.

Remembering the grades of a and t , the only possible grades for the [ ] which

will not give zero terms are the grades m — 2, m, m + 2. The bracket there-

fore reduces to 27rm for the upper sign and 2 ( Wm-2 + irm+i ) for the lower sign.

Hence
awr + two- = 2^3 Am • <"rm r,

ffWT — TWO- = 2^ Am •  [(TWm-2 T + ffWrn+i t] .

We finally reduce these as follows :

<nrr + two- = 2]T) Am ■ cr[Am+i • wmT + Jm_i ■ wmr]

= 2^3 ( — )m Am  • 0-[Am+i  ■  TWm ~ Am-1  '  TWm ]

=   ± 2^ Wm Ao  • 0-T  — Am  •  O-Am-1  ■  TWm

— Am •  rAm-1  • 0-Wm],

aWT  — TWO-  =   ± 2Y2,Am (Ai  • 0-T)    (Wm-2 + TTm+i) ( ^ Tdd ) '

These formulas give the effect of transposing two vectors in such a product.

They are very useful For instance when we introduce V it will be seen that

we may set V for a, and for V-<4o • t ( ) + tA0 ■ V ( ) we may write 2<j>0 ( ). If

then we set wm for the value of w when in the vector of grade m in each term of

the expansion for wm (say Am • 71 • • • ym) we write (bo, thus:

Am ■ <f>0 ( 7l ) 72  • • •  ym + Am •  71 «Ao (72)   • • • 7m

+   • • •   + Am • 7l 72  • • •  00 (7">) >

we have

Vwt + tttV = ± 2^o • Vr T 2^ *»,
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where V acts only on r. The expression A0 • Vr will be called later the

divergence of t . Likewise A2 • Vt will be called the curl of t . We see then

that when curl t = 0, W = tttV . We cannot elaborate on these, but this

single example will show how simple the transformations are without any

great display of formulas of reduction.*

A few cases need to be written down, however. They will explain them-

selves. We use ir and t as products of grades i and /respectively, and a as of

grade 1 :

T» Tj —  ( — )ij [Ai+j — Ai+j-2 + Ai+j-i —   •'•]Tj7Til

I (IT,- Tj +  ( — Y* Tj TTi)   =  [Ai+j + Ai+j-i +   • • ' ]wi Tj)

| (iTi Tj —   ( — )y Tj Ti)   =   [Ai+j-2 + Ai+j-s +   ■■■]in Tj',

Ai+j-i TTi OTj = Ai+j-i [iT i Aj+i  • (TTj + (Ai-X  • TTi a) Tj

+  ( -Yo-Ai+j  ■ TTiTj];

Ai-j+iTTiOTj  = Ai-j+i [iTi Aj-i  ■ CTj +  (Ai-i • 1TiO-)Tj

+  ( -Y (J Ai+j ■ TTiTj].

23. We consider now more particularly A0 • «i • • • a2n.    In the first place

from the development it is obvious that the form is a pfaffian.    Hence if we

square it we shall have a skew determinant of even order, that is,

(Ao ■ «i • • • a2n)2

0 Ao • «i a2    Ao ■ ai a3    • • •    A0 • «i a2n

— Ao • ax a2 0 A0 ■ a2 a3    ■ • •    Aa • a2 a2n

— Ao • ai a2n-i • • • • ■ • • • •    Ao • a2n-i a2n

— Ao • «i a2n • ■ • • ■ ■ • • • 0

It is evident in this form that advancing each subscript cyclically is equivalent

to moving the first row and column to the last row and column, which does not

change the value of the determinant. Reversing all rows and columns does

not change the determinant. The number of positive terms in the pfaffian is

one greater than the number of negative terms, hence not all terms can have

their signs changed without changing the value. This shows again the permu-

tations possible in this form. If any vector is orthogonal to all the others the

pfaffian vanishes.    From the form tjitt + tito- if m = 0 we have

Ao ■ o-iTT + Ao ■ Tira = 2Ao ■ irAo • or.

Hence if <r and t are orthogonal the right side vanishes. Hence interchanging

two orthogonal vectors in the A0 • form merely changes its sign.

Let Ao • () represent A0 • «i • • • a2n, A0 • (ii, i2, ••■, i2J) represent

Ao • ax.a2n,   m < n,   and  let   ( — )i+* Aik •   be  the   minor  of

A0 • aiak.    It is clear that if we differentiate the expressions Aa • () as to

*By means of these forms we can reduce every expression Am-ai- ■ -a» to sums and differ-

ences of products alone, thus Ao-aia2 = §(«i«2 + ctioti), A^-aiat = j(«ia2 — a2«i), Ai-aiaia¡

= i(aiaia3 + a3aia¡).
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Ao • aiak partially, we have ( — )i+hrrl Ao • (i, k). If we differentiate the

determinant in the same manner we have 2 ( — )i+k Aik.   Hence

An = - A0 ■ ()A0 ■ (i, k).

From a well known theorem in determinants if

A(¿1,¿2,   ••• , in;jl,j2,   ■■■,jm)

is the determinant produced by erasing from the original determinant the rows

indicated by the i subscripts, and the columns indicated by the j subscripts,

then we have

\AiJa\ = [Ao-()]2^2A(ii---ji...)        (x,y = l,2,---,m).

In case the subscripts ¿ and j are the same, A is a skew symmetric determinant

also and is the square of A o • (¿i, • • •, im) ■ The determinant on the left in

any case reduces to

0 Ao ■   (ilii)      ■••      Ao •   (¿l¿m)

A0  (¿2¿l) 0 •••       Ao  ■   (iiin)(~)m[Ao- or

— Ao(imil) ■■• ••• 0

This vanishes if m is odd, giving a theorem as to A, and if m is even the de-

terminant is the square of a pfaffian, giving a series of theorems about expres-

sions built up from the forms A0 • (¿, j) in the same formal manner as the

forms A0 are built up from A0 • ai a¡.    We cite only the following:

Ao • (a, b)A0 ■ (c, d) — A0 ■ (a, c)A0 ■ (b, d)

+ Ao ■ (a,d)A0 ■ (b,c) = A0 ■ (a,b,c,d) • A0 ■ ();

^40 • (a,b)A0 • (c,d, e,f) - •■■ = A0 • (a, b, c, d, e, f)A0 ■ ().

They are easily written and extended to all orders.

24. Space does not permit further developments here, but enough has been

said to make it easy to continue. The particular forms that are related to the

linear vector operator, whose general form would be

<M) = E4-Í0,

furnish a complete part by themselves. When the number of vector terms

becomes infinite we have functional transformations, and functions of lines

with related subjects enter.   This development is deferred to later papers.

5. The differentiator

25. We should however mention here the differentiator (corresponding to

the Hamiltonian nabla) related to a vector p = £x, a,, expressed as depending

upon n parameters, i = 1,2, • • •, n,

V=E«i d/dxi.



222 J.  B.   SHAW [October

This symbol may be used anywhere just as if it were a vector, for all vector properties,

and is supposed to differentiate in situ any vector dependent upon the parameters

entering p. It differentiates also in situ any function or operator dependent upon

these parameters. This one simple rule enables us to write out at once an

indefinitely great number of forms for differential work. No special collection

of formulas is necessary. The mere fact that V may follow an operand is a

principle that introduces great simplicity. We observe here that in the case

of functions the process of differentiation of a function of a line used by

Volterra is a case of the use of a V in which the number of parameters is non-

denumerably infinite.

It is evident that we have

d- () = Ao ■ dp? ■ ()

for any operand dependent upon the parameters of p. (Note the parameters of

p belong to the complex in which p is variable, and do not mean the coordinates

of p, which would be usually more numerous and might be infinite in number.)

A simple example of the use of V is shown in the following.

If we have a pfaffian differential form w = £?/,■ dxi we know that it may be

reduced to a set of terms udv + pdq + rds + • • ■ . In case there is but one

term and that is dv, the expression is called integrable or exact. If the single

term is udv it is said to be integrable with a multiplier, u~1. The number of

such terms was shown by Pfaff to be not more than half the number of param-

eters x, if this is even, and not more than half the number plus one, if the

number is odd.

Suppose we can reduce w to udv.    Then we have by setting a = u^v

V<r = VnVv + nV2 v,        where        V2 = VV,

whence

A2 • v^V» = A2 • V<r,       and       ^43 • crv/o" = 0.

This is a necessary condition of integrability with a multiplier. In case u = 1,

we have as the necessary condition A2 • W = 0. Considering likewise the

next form

w = udv + ds = Ao • dp ( uyv + V« ),

we set

a — uTJv + Vs,

whence

W = VnVfl + nV2 v + V2 s,

A2 • Vo" = A2 ■ VwV«,        A3 ■ (7V<r = A3 • ysyuVv,       Ai ■ v<rW = 0.

This problem has been studied by Cartan* who gives the conditions above in

»Annales  de l'École  N o r m al e (3), vol. 18 (1901), pp. 241-311.
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scalar forms which, owing to the arbitrary differentials, are equivalent to

these:
A0 • A2 VaA2 • 8ip82p = 0,

Ao • A3 • a^<rA3 • 8ip82p83p = 0,       etc.

The expression A0 • W is called the divergence of <r, and A2 ■ v<r is called

the curl of a.

We have other differential expressions, as for instance in the ordinary

relativity theory in four variables, we consider A3 ■ Vo"2 called the curl of the

2-vector (vector of grade 2 ) a2. The complement or adjunct of this in the

region of order 4 is called the Lorentzian of a.   It is Ax • A3 v<r2 Ai «4.

We may build up expressions with V which are covariant for unique and

in vertible transformations <b (p ).    Such are

Ao • V2 awA2 di pd2 p,    A0 ■ A3 • w^JwA3 • di pd2 pd3 p,

In fact the possibility of expressing a function in such wise implies certain

covariant properties.

26. In general if we write the form ^40 • dpa, and consider the equation

Ao ■ dpa = 0,       with       A2n+i • «rW W • • • Vc = 0   identically,

we undertake to find v such that A2n • VwW • • • Vc = 0, where both forms

A are alternants. From the latter, multiplying by dp and taking ^42n-i • we

have

A2n-i dpA2n • VvcrVo- • ■ • Vc = 0 = dvA2n_i • <rW • • • W

— Ao • dpcA2n-i • VWc • • • V<r

+ A2n-i V«ca(rV<r • ■ ■ — Ao dpo-A2n-i V»cW • • • + • • •

= dvAin-i crW ■ ■ • — (n — 1 ) A0 • dp<rA2n-i V^W

■ • • + ( n — 1 ) Ain-i yvdo-yo- ■ ■ ■ +

Set dv = 0, so that one solution is v = const., and the remainder of the ex-

pression furnishes an equation which must hold for arbitrary differentials of

the parameters of p. Setting their coefficients equal to 0, we are able to find v.

For instance let us have

Xi x3 dx2 + xi x2 dx3 + ( xi + x3 X5 ) dxi + x3 x4 dx$ = 0.

We have a = xi x3 a2 + Xi x2 a3 + ( Xi + x3 x¡> ) ai + x3 Xi «5, the vectors

«i, • • •, «5 being constant. It is easy to show that As • 0-^0-^0- = 0 and four

variables will suffice. To find v so as to reduce the expression, we notice that

since the form will be udv + rds

a = mV« + r^s,       A2 • w = A2 • v^V» + A2 ■ WW,

A3 • o-\ja = rA3 • VäVmV» + uA3 • wyrys.

Either V« or V* is common to both, hence At • v/wV<r = 0.    We assume the
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form for v such that

V« = »i cei + «2 a2 + v3 a3 + Vi Oi + v6 ab,

and substituting all values we have a vector of grade 4 which vanishes so that

each coefficient of the alternants Ai • ai a2 a3 ai, Ai • ai a2 a3 «5, etc.,

vanishes.    These are here

X3 X& V3 — X2 X3 X& V2 + Xi X3 Xi Vi = 0,

x3 xi V3 — X2 X3 Xi V2 + Xi X3 Xi Vi = 0,

— X2 X3 Xf, t'5 + X2 X3 Xi Vi — X3 Xi V3 + (X3 Xi Xb — Xi — X3 Xs)Vi = 0,

— Xi X3 Xi «5 + Xi X3 Xi Vi + ( X3 Xi — Xi — x3x¡)v2 = 0.

From these we have

Xl Vi — x2 v2 + x3 v3 = 0,

Xi V2 — X3 Xi Vi + x3 x& v& = 0.

These are satisfied by taking either v = Xi/x3, or x2 x3 + ¡r4, or Xi x¡.

The equation Ao • dpa = 0 means that dp is everywhere orthogonal to the

congruence given by ^42 dpa = 0. This is called the characteristic congruence.

If the equation is integrable with or without a multiplier, the congruence

satisfies A2 • V<r = 0 or A3 • a^a = 0, and this makes it a normal congruence.

That is, there is a function of n — 1 of the parameters,/, such that A0 aVf = 0.

The integral in fact is / = const. The other cases, Ai • Vc W = 0, etc., give

special congruences worthy of study.

27. The integral S Ao • a dp depends generally upon the path of p, that is,

p is taken as an arbitrary function of a single parameter, s, p = p (s), and dp

becomes p' ds. The terminal values of s furnish the limits. The integral

evidently depends in general upon the form of the function p(s). If the

initial and the final value of s are the same we say we have integrated around a

loop, and indicate the fact with the sign $. If we follow any path for which

we have Ao • <rdp = 0, it is evident that the integral from any point to any

other is zero, and such paths are orthogonal lines for the characteristic con-

gruence. In case they can be collected upon spreads (functions of one or more

parameters) these functions are called solutions of the pfaffian form.

If we follow a loop or closed circuit in the integration, and choose a spread

of order 2 (a surface), attending as usual to singularities, we may introduce

elementary areas and circuits, arriving at the generalized Stokes' Theorem,

fAo ■ o-dp = ffAo ■ A2 V<tA2 ■ dx pd2 p,

over the area. This theorem still applies in case the line-integral is not taken

over a circuit, if we can draw through the terminals of the actual path orthog-

onal lines as mentioned above so as to complete a circuit, since the integral

along the lines introduced is zero. If the curl of a is zero at all points of the

area the loop integral evidently vanishes.
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6.   Integral invariants*

28. Suppose that we have a general function linear in dp, Q(dp). If we

integrate this over a loop the form of Stokes' theorem is

fQ(dp) = ffQ'(Ai ■ VA2dipdiP),

where the accent shows the operand of the accented V- This may be con-

sidered to be the difference between two distinct paths from an initial point to

a terminal point chosen on the loop, the double integral being taken over the

enclosed area. If the paths differ infinitesimally it becomes the variation of

the integral for a variation in path.    Therefore if

Q' (Ai V'A2 []) = 0   identically,

the variation is zero, and the integral is called an integral invariant for the

variation in path. We do not necessarily have to retain the same end points,

for we may move either along any line which satisfies the equation Q(dp) = 0.

When the integral is invariant it is called the integral of the exact differential

form Q(dp) = 0. For instance, A2 • adp is exact, the integral being A2 • ap.

In this case we have identically A2 • a(Ax TjA2 []) = 0, since a is constant.

The lines which satisfy ^42 ■ adp = 0 are p = sa. The path could be moved

parallel to a, leaving the integral invariant.

29. It happens sometimes that an integral remains invariant when the

whole loop is displaced, as for instance the strength of a vortex tube. The

general condition is obtained thus: let the integral be taken over a region of

order n (that is, there are n independent parameters and these are varied

between appropriate limits),

In   = Sn Q (An  ■ di pd2 p  ■ • • dn p ) ,

where fn means n integral signs or an «-fold integral (the iteration of an

integral in order to procure an area-integral, or a space-integral, is incidental

here and may not be necessary). Suppose now that we displace the region so

that p becomes p + 8p; then we may consider the effect of this on any function

of p by noting that

5 = Ao • ôpV-
Hence

8In = Ao ■ 8pVfnQ(An ■ Sip ■■■ dnP)

= f*Ao- 8pV' ■ Q' (An ■ ■ • ) + /" Q(Andi8p d2p ■ ■ ■ dnP)

+ ••• +fnQ(An-dip---dn8p)

= f"Ao8pV'-Q'(An-dip---dnp)

+ fnQ(Andp'An-l ■  V'An ■ ¿1 p  ■•• 4 P ) •

* The contents of this division were included in a paper presented before the Society,

Chicago Section, January 2, 1913, Integral invariants in general vector analysis.
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This is called the first form. Integrate the last term by parts, combine, and

we have

&I»   = fnQ'(Án-   VAn+l 8pdiP---dnp)

+ fn[Q(An-  8p)]'An-l  ■   V'An  ■  dX p  • • •  dn p.

This is called the second form. The expansion of the last term gives a number

of terms each of which is integrable once, and we have

8In  = f" Q' (An ■  V'An+l ■  8p ¿i p  • ■ • dn p)

+  Hfn~l\{QAn  ■  8P)Bi -   (QAn  ■  8p)A<]An-i  •  dip- y dnP.

Let 8p follow a path so that 8p = o8t; then we have

8IJ8t = fn Q'An ■  V'An+l ■ cdi p  ■ ■ ■ dn P

+  Hfn-l[(QAn  • *)Bi -(QAn- <T)Ai]An-l ■■■.

If we had retained the first form we would have

8In/8t  = f» Ao  ■ aV  -Q'(An---)+SnQ(An- O-An-l V'An   ■■■).

If now In is an absolute invariant, we must have for the paths given by <r

Ao ■ cry' • Q' (An ■ ■ ■) + Q (An ■ o-'An-i ■ V'An ■■■) =0   identically,

or for the second form

Q' (An- V'An+i ■ <rAn ■ • ■ ) + (QAn ■ a)'An-i ■ V'An ■ ■ ■ = 0   identically.

These conditions are very general and include every form as usually stated.

As an instance, consider the integral S Ao • Tdp. This will be an absolute

invariant for the congruence <r if

Ao ■ crVAo ■ t() + Ao • t<j'Ao ■ V' () = 0.

The condition may also be written

V'^4o • <r' t = — t'Ao V' c        or        V(A0 ■ err) = — Ai ■ aA2 ■ Vt .

In case the boundary is fixed, then at the boundary 8p = 0; if the integral

is to remain invariant for all a, we see from the second form that as the second

integral is now zero, and the first holds for all a, we must have

Q' (An- V'An+i ■■•) =0   identically.

For instance, in the example just considered we would have

Ao ■ t'Ai • V'A2 • • • = 0   identically,
whence

A2 • Vt = 0    identically.

The situation considered here is the extension from an integral over two

distinct paths, with fixed terminals, to an integral over two regions of order n,

with fixed boundary.    Such an integral is indicated by Goursat* by I„.   When

♦Journal des Mathématiques (6), vol. 4 (1908), pp. 331.
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the boundary is closed we have simply an invariant, called a relative invariant,

indicated by «7„.

30. In a manner similar to that for Stokes' generalized theorem we have

Green's generalized theorem

In  = 0+1  =  fnQ(An  -dip  ■■■ dnp)

= fn+1 Q' (An  •  V' • An+l • dip  • • • dn+ip) .

The second integral is evidently of the type Id. Since now a relative invariant

integral may be written as an integral of order higher by unity, the condition

of its being invariant may be stated.   That is,

Jn  =  fnQ(An ■ dip--- dnp)

is a relative invariant if

H+1  = fn+1 Q' (An V'An+1  -dip---dn+ip)

is absolute, that is to say, if

Ao ■ 0-V' '(¿'(An-  VAn+l) + Q'(An V An+l <j" An V An+l)  = 0,

or if

Q' (An ■ VAn+i VAn+i • <J • • • ) + (Q'An ■ VAn+i • <r)"An ■ V"An+1 = 0.

This gives us the condition (since An • A2 V V'A„+2 • ■ ■ vanishes identically)

[Q'An  ■  VAn+l  ■ a}"An •  V'An+1  ■ ■ •   = 0.

For instance in the case considered above

Ao • t'Ai • VA2 • o-"Ai • V'A2 ■ () + A0 ■ t'Ai ■ VA2 • VA3 • d2 () = 0.

Hence, reducing, A2 • v^i ■ <r^2 • Vt = 0 identically.

31. Since we may always write

Ao ■ 0-V (Q'An  ■ 0- ••■)  + QAn  ■ IT An-l <*'An-2 VAn-1

= Ao • O-V  ■  Q' (An  ■ a  ■ ■ ■ )  + Q (An  ■ <j'An-l V An <x) ,

the condition above becomes

Ao ■ o-V Q' (An ■ o-An-i ()) + Q (An ■ <r'An-i VAn • <rAn-i) = 0.

Hence if In = fn QA„ is an absolute invariant,

I~.i-S~*Q(A»-*JL-i-~)

is an absolute invariant.

32. From any integrand Q ( An • • • ) may be formed by two processes two

other integrands, one by the process D, giving Q' ( An • VAn+i ■ • • ), and the

other by the process E, giving Q(An • <rAn-i • • • ).    In case the latter form

Trans. Am. Math. Soc. 16.
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vanishes identically, we mark the integral 7„ of Q ( An • • •) with an e, thus I°n.

In any case the second application of the E process gives an identically vanish-

ing form, hence from any I„ the E process produces an Iñ-i ■ Integrals are of

four types with respect to these processes, that is, according to whether or

not they can be marked with d or e. The effect of the D process on the inte-

grand is to mark the integral with d, of the E process to mark the integral

with e. We need to prove that if an integral invariant has either character

the other process will not destroy this character.    That is,

(idy = (i°y.

E produces from If an Idn'-i, that is, if the first is from an exact integrand, the

second will also be exact when the first is invariant, and also will be invariant.

For from

Q'(AnV' ■■■) =0

and

Q' (An- V'An+i ■ a • • • ) + (QAn • a •• • )'An-i V'An • • • = 0

it follows that
(QAn -a)'An-i- V ■-■ =0,

which is the condition that the result have an exact integrand. To be in-

variant we must also have

(QAn ■ <rAn-ia)'An-2 • V' • • • =0,

which is evident.    Again when QAn ■ <r • • ■ =0 and /„ is invariant we have

also
Q'An - V'An+i ■ a ■■■ =0,

showing at once that Q'An • V' • ■ • is of type E. That it is also invariant

demands that

Q'An V'An+l V'An+2 <T • • •   +  (Q'An  ■  V'A+1 ' O'^n+1 V'An  = 0,

which is evident. Hence the two operations are permutable when applied to

an invariant, one giving Q' - An V'An+x - <rAn • • •, the other

(QAnO-YAn-lV'An---.

If Q is invariant, however, the first expression is the negative of the other.

The characters are then unchanged. If we start with an invariant and apply

the E process we arrive at an Ie of one lower order, usually not identically

zero, and if we then apply the D procer we have an integral of character Ide

of the original order.    For instan ^e, from A0 • Tdp we have, by D,

— Ao • A2 VtA2 • di pd2 p,
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by E, A0to- . Using the other process in either case we have from the first

— A0 - A2 - VtA2 • o-dp, from the second (A0 ■ <tt)'Ao • V' dp. In case now

Ao • Tdp is an invariant the new forms are also invariant.

The D process is a sort of generalization of getting the curl, while the E

process fixes certain paths for integration, along which the lower integral may

be displaced.

As instances, let Ix = J"A0 • rdp, and let I have both characters d, e; that

means

A2 • Vt = 0,

and for a certain congruence given by dp = adt,

Ao • to- = 0.

The expression is exact on account of character d; hence the integral is

u = const.

This is a function of p, and such that t = zVu.   Hence we have also Vu

everywhere orthogonal to the congruence line a, by the second condition.

That is, <t gives lines lying in the spread u = c.

Let

It = f fA2 ■ ir2 A2 • di p d2p;

then

Aq ' A2 • ir2 A2 • vA3 = 0,        A0 • A2 • ir2 A2 crAi • = 0   identically.

We have easily A3 - Vr2 = 0, A0 • A2 • ir2 A2 <rX = 0 for every X; that is,

Ai • aA2 • ir2 = 0   identically.

From the first condition

TT2 = A2 v£ ;
hence

Ai • o-A2 v£ = 0.

Put dp for crdt, and we have along the congruence

Ai • dpA2 v£ = 0,       or       d£ = v'^o £' dp.

This means, if we set <j> for the linear vector function vA ■ £ ( ),

d£ = <pdp.

We have then formally dp = (¡T1 ¿£.   The complete discussion is long.

A comparison of the methods used here and those given in the coordinate

treatments of these problems will show the enormous gain in simplicity.

33. To solve the differential equation

Q ■ An • ¿pir„_i = 0
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means that we must find a congruence of curves such that if dp is taken along

any curve the equation will be satisfied, and that x(p)Q is an absolute in-

variant for the curves.    That is, setting dp = adt,

Q- An-a ••• =0,

(xQ)'An ■ VAn+l* ■■■ + (xQAn • o-)'An-i ■ VAn • • • = 0

= (xQ)'An ■ VAn+l ■ a •••,

0 = Q'An ■ VAn+i ■ o- + Ao ■ o-V log X • QAn .
Hence we must have

QAn • (7 • • •   =0, Q'^„ •  VAn+l  -a •■■   =tQAn---,

for some t, and í may be zero. For instance let Q he Ao • £áp = 0. The

condition is then

^o-<r£ = 0,        A0 • A2ViA2 -o-O = tAo ■ £().

For a particular case let £ = Ai • pA2 • ap, where a is constant.    Then

A2 ' v£ = 3^2 • ap, Ao • A2 ■ apA2 • ap = 0, Ai • aA2 • ap = tAi • pA2 ■ ap.

These are satisfied if we take

a = tp + any vector orthogonal to a and to p.

Hence dp must be in the plane through the origin containing the common

perpendicular to a and p. Hence dp is in any plane tangent to a cone of

revolution about a as an axis. This cone must therefore furnish an integral,

that is,

Ao ■ pp = c2 (A0 ■ ap)2.

34. A system of equations

0 = Ao ■ £i dp = A • £2 dp = ■ ■ ■ = A0 ■ £n ¿p„

is equivalent to a single equation

An-l ■ dp An • £1 • • • £„ = ^4„-i wndp = 0.

The conditions then reduce to

A_i ■ 7T„ <r = 0,       Ao ■ <rV^n-i ()irn — A0 • () vAn-i <Jwn = tAn-i ()irn.

We cannot enlarge on the use of these forms in the study of differential

equations, but enough has been said to indicate the procedures. We will,

however, show the application to differential geometry.

II.   DIFFERENTIAL GEOMETRY

1. Let p be a vector dependent upon n parameters Ui, u2, • • •, Un, thus

defining a region of order n.    For instance if n = 1 we would call the region
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a curve, if n = 2, a surface, etc.    We have then

P  = p(Ui,U2,   • • • , Un ) .

2. If now we let the parameters vary and assume that the function p is

differentiable as to each parameter, indicating the derivative by a correspond-

ing subscript, we have

dp = pi dui + p2 du2 + • • • + p» dun

where p» = dp/dui, and the n vectors are in general linearly independent.

We will indicate the adjunct of pi in the region by p* so that

Pi  =   ( — )i_1 Al  • An-l  • PlP2  ••• Pi-l Pi+l  ■■ ■ PnAn  ■ P1P2

■ • • Pn/Ao  • An  • Pi  • • • PnAn • pi  ■ ■ ■ Pn-

For convenience we shall write v = An pi • • • pn so that v is an alternate vector

of grade n, which is also a function of the point at which it is calculated.    We

also set (I • v)2 = Ao • vv, and Uv = v/Iv is a unit vector.    Where v = 0, we

have singular points.

It is clear that

Ao ■ Pip' = 0,       if       i t¿ j,       and       Ao • pipi = 1.

Further

An  ■ Plp2 ••■ Pn  = v/AoVV,

which is seen by expanding each in terms of pi, p2, • • •, p„ and applying

the theorems of determinants.

3. The expressions Ao • Pi Pi for i, j = 1, • • •, n are called the fundamental

quantities of the first order. They are commonly represented by ay. The

corresponding forms A0 • pl p' — alJ are the adjunct quantities of first order.

It is clear that

\aa\ - ( - )ènCn_1) Ao-w,        I a« | = ( - 1 )}b("-1) A0 ■ w.

4. The biorthogonal systems p,- and pl are useful. Suppose for instance we

have a system of values l3 which we attach to pa giving a vector

X = X)p*'«>

then we may define a new system of values

m = Ao • prX,

and from the properties of the vectors p we have

p = 2 mr Pt = 23 Pt M pr X = X.

The coefficients m and the coefficients I therefore give the same vector when

attached to the proper vectors.    For the vector p in terms of p,-, and the vector



232 j. B. SHAW [October

p in terms of p* we may introduce a new system of n independent vectors defin-

ing the region, and their biorthogonal system. As we are dealing with the

vectors themselves we shall not be concerned with their mode of expression.

Such questions however play an important part in the developments of Ricci

(Lezioni sulla Teoria delle Superficie) and those who follow him.

5. If we have a vector £ = ^Xrpr, and in the other form, £ = ~^Xr pr,

then %/Ipr is such that XT/IpT = the orthogonal projection of £ on pr. In

other words the orthogonal projections are given by A0 Upr £. Similarly for

the other form.

6. If we differentiate A0 pr ps = 0 or 1 we have in either case

AoPrtP8 + ^OPr (p")t  = 0,

a useful formula.    From it we have the Christoffel * form

AoPrsP1  =   - Aopr (p*),  =   - ^4oP» (p')r-
rs

, t

Evidently

Pr«  =   —   YPtA0 • Pr (pl), + Al  ■   UvAn+l  •   UvpTS

■ =   -  Y Pt Ao ■ p, (p')r + Ai •   UvAn+i •   Uvpr, .

The second termf in each form gives that part of pr, outside the region of order

n.   The other Christoffel form is

[7H Prs Pt-

7. Since An+i • pi p2 • • • pn Pm = 0 we have

dAn+i ■ vpm = 0,       or       An+i ■ v (pm)2 = - ^4„+i • vlPm,

and likewise

An+l • Vprs  =   — An+l  • VT Ps   =   ~ An+1  ' Vspr.

There is usually a non-vanishing expression of first degree which is orthogonal

to the region under consideration (pi, • • • , p„)

Ai ■ vAn+l • Vprs  =   - Ai ■ vAn+l  ■ V„pr  =   — Ai  • vAn+l  ' Vr P, ■

We note that Uv might as well have been used here as v.   We can construct

n4 expressions

Ao  • An+l • Pra vAn+l VPtu ,

which can also be written

Ao ■ Pr Vs An+l • Vt Pu ,    Or    A0 • pr Al • V, An+l • Vt Pu ,    Or    Ao • PuVtAn+1  • PrV„,

* This is easily reduced to the usual cartesian form by writing out p„ in terms of pi, • • • , p„.

For the other Christoffel form expand p„ in terms of p', • • •, p".

t It is to be noted that in general pr. has components not linearly expressible in terms of

pi» • • •, p», as for instance for a surface, which is imbedded in a three-dimensional space.
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and in other forms produced by permissible interchanges of the subscripts.

However this is a quadratic in pr, pu of the form A0 pr <£p«, where 0 is a linear

vector function.   Its transverse would be

Aq  ■ PrVtAn+lVspu.

We will set

At- (Uv)tAn+i- (Uv)t() = N.,(),

Ai- (Uv)tAn+i- (Uv)a() =N,( = N(8.

The difference of these two forms has received a symbol due to Riemann :

(ru, st) = Ao- Pr [(Uv),An+i • (Uv)i

—   (TJv)tAn+l  ■   (Uv)a]pu   = A0  • Pr (€N„()pu.

There is also another Riemann symbol * of order four,

{ru, st} = Ao • PrN„ptt - A0 • prNi8p" = A0pr (eNi()p",

where e(N) = § ( N — N),N being the transverse linear vector function of N .

A better form may be given these by utilizing a previous formula, f which gives

{ru, st} = A0A2prpu A2 ■ (Uv)a (Uv)t

=   — A0 ■ Pr» UvAo • Put Uv + Ao • prt Uv A0 ' Pu.Uv,

{ru, st] = AoA2prpuA2 • (Uv),(Ut>)t

=   - Ao ■ Pr. UvAo ■   (pU)t Uv + Ao ■ Prt UpA0  ■   (p")8 Uv .

From these expressions it is evident that the two symbols in each couple may

be interchanged by changing the sign, and the two couples may be

interchanged.

8. The expression Ao • dpdp = J^.A0 ■ pr ps dur dua is called the first funda-

mental form. In case the Riemann symbols vanish it can be reduced to the

sum of not more than n squares, that is, new variables may be found in terms

of which the parameters u may be expressed so that, for the new derived

vectors p', we will have

A0 • dpdp = X^op'p' ((¿Mr)2.

The condition is both necessary and sufficient. If some or all of the Riemann

symbols do not vanish, then it will be necessary to express A0 • dpdp as the

sum of not more than \n ( n + 1 ) squares. From one point of view this is

equivalent to considering the region to be embedded in a region of not more

than %n(n + 1 ) dimensions in which we may take the directions of p,- as

orthogonal.

For instance a curve on an ordinary surface has a normal in the surface and

* These may be identified with the forms commonly used by substituting and reducing,

t Ao A* p, p. Ai(.Uv),(Ui>), = + Aop,(Uv)tAoPu(Ui>). — A0p, ( Uv), Aop«(CMt.
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also has the normal to the surface as a normal, or indeed all lines in the plane

of these two. Hence the ds2 is expressible in terms of three differentials in

ordinary space which encloses the surface, in the form

ds2 = dx> + dy2 + dz2.

On the surface alone it would usually have terms of the form

du2,    dudv,    dv2,

and would not be reducible to the sum of two squares.

9. We may improve the forms we have reached so far by the introduction

of the operator which generalizes the Hamilton V • On account of this general-

ization we shall use V in a general sense.    It is defined thus:

V= Yp'à/dui.

It follows that d () = A0 ¿pV • 0 for any function of the parameters u only.

Hence we will have d/dur = Ao • pr V • ; therefore we may write for (Uv)r

(Uv)r  = A0PrV ■   Uv.

The operator
Ao () V • Uv = $

plays a very important part in all these problems and gives of course the

vector rate of change of Uv in the direction given by the unit vector operated

upon.    With this symbol we may write the Riemann symbols in the forms

(ru,st) = AoA2prpuA2$pli$pt

with the understanding that s, t may be interchanged with r, u;

{ru,st} = A0A2prpu A2$p8$pt.

The number of Riemann symbols with two pairs of identical subscripts is

\n ( n — 1 ), with one pair of similar indices \(n — 1) (n — 2), and with all

different ^n (n ~ 1 ) (n ,— 2 ) ( n — 3), giving a total of -fan1 (n2 — 1 ).

It is clear that for any four directions in the region we may have a symbol

A0 A2 aß Ai $y$8, which for unit vectors may be called the Riemann symbol

for those directions. There is also, if we take differentials for the intensities

of the vectors, a differential quadrilinear expression

Gi = Ao- A2 • d'pd" PA2 • $d'" p$d"" p.

Since every symbol is invariant for a change of parameters, this is a co variant.

We see at once that for any six directions we have a similar form

676 = Ao • dip d2p d3p A3 • <i> ¿4p <i> d¡p $ ¿6P,

and there will be higher forms as high as G2n. These are all covariants, and

are generalizations of the Christoffel quadrilinear covariant Gi.
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10. From these we derive covariant quotients, which give us in the first

instance the Riemann curvature for the plane of di p, d2 p, and by generaliza-

tions, Riemann curvatures for the regions oí dxp, d2p, • • • .    These are

K   (d        (L1 -^'^'^''"'^ pAm $di p $¿2 P • • • $dm p
Ao • Am ■ dipd2p • ■ ■ dmpAm ■ dipd2p • • • dmp

When we arrive at the covariant of order Kn it is evidently the single coefficient

of the Christoffel form for the same order. This number is called the

Kronecker-Gaussian curvature of the space.

11. If we construct the second differential of p, c¿2 p, we have two parts to it,

namely, that part which has components in the region, and the part which is

orthogonal to the region.    Since we have identically

An+i • Uvdp = 0,

it follows that

An+i • dUvdp = — An+i • Uvd?p.

But

d2p = J^PiAo ■ p'cPp + Ai • UvAn+i ■ Uvd2p

= 22p»'^o • P'd2p — Ai • TJvAn+i ■ dUvdp.
We set now

£ = Ai • UvAn+i • dUvdp.

It is evident that Ao • Pi £ = 0 for t = 1, • • •, n, so that £ is not in the

region. £ is called the vector second differential form since the coefficients of

its expansion are scalar second differential forms.*   We evidently have

£ = J^Ai- UvAn+i • (Uv)rP.durdu>.

The coefficients Ai • UvAn+i ( Uv)rpt are fundamental vectors of second

order. They depend upon the parameters and are not covariants, but they

furnish a number of covariants.   We see that

An+i ■ dUvdp = - An+i ■ Uv£.

Also

Ai • UvAn+i • dUvdp = — Ai • UvAn+i • Uv%.

But in general

Ai • An «i a2 ■ • • an An+i 7ft ft • • • ft

=  ( - )» 7^0 • An ■ aAn ß + ( - )" Al ■  (An-l • jAn • a )  • An ß,

hence

Ai ■ UvAn+i • dUvdp = dpAo • UvdUv + Ai ■ (An-i ■ dpAn • Uv) An • dUv

= Ax • (An-i • dpAn • Uv)An • dUv,

* Cf. Wilson and Moore, Proceedings of the American Academy of

Arts and Sciences, vol. 52 (1916), pp. 270-368.
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and also

Ai •   UvAn+l -Uv^t + Al-  (An-l-  £Uv)An  ■   Uv.

But £ is orthogonal to all vectors p, hence An-i • %JJv = 0.    Hence

£ = Ai • (An-idpUv)An ■ dUv.

If we go back to the theory of curves we see that if we write the differential

arc in the usual form dp = ds • a* then d?p = d?sa + dsda and as Ao ada = 0

it follows that the part of d2 p outside the region consists of part of the term

containing da. If da = cßds, £ = Ai ■ An • UvAn+i • Uvß • c • ds2, which is

the part of ß ■ c • ds2 orthogonal to every vector pi, • • •, p„.

12. It is evident that the first differential quadratic and whatever is deriv-

able from it of a covariantive or invariantive character will be true of a region

which is flexible but inextensible. That is to say, bending the region would

have no effect upon the first fundamental form nor upon the quantities derived

from it without differentiation. However the second fundamental vector

form does not possess this character and demands a rigid space. This is due

to the fact that d2 p contains a part which is not in the region itself. For

instance if we are dealing with a curve in three or more dimensions, the first

fundamental form is merely ds2, and as long as we do not consider d2 p we

merely work in the line itself which for all such purposes might as well be

straight. If however we consider d2p = d2s-a + ds-da where a is the

unit tangent (or better the hypernumber belonging to that particular tangent),

then we must either abandon the line or consider da = 0 which makes the

line really straight.

It is to be noticed that the expressions (Christoffel symbols) Ao • pr« pt can

be found from the region itself, since

2A0Pr,Pt  =  (AoPrPt), + (AoPsPt)r  —  (Aoprp,)i,

all of which could be computed in a practical case from measurements inside

the region. From these we can compute the expressions Ao • pr,pl. The

Riemann symbols are also computable in the same manner, since

(rt, SU)   =   (Ao ■ Pr,Pt)u —  (A0 • PruPt)*

+  YlAo • Pkpk (Ao  ■ PruPhAo ■ pstPk  - Ao  • PnPhAo • PtuPk)]-

Covariants built out of these forms can likewise be computed directly in the

space, and would be independent of any particular directions such asr,s,t,u.

13. If a = Udp, then da has two components, one in the region, and one

exterior to the region. The latter is £/ds. The former is called the geodesic

vector curvature of the curve of which a is the tangent. If it vanishes the

curve is called a geodesic for the region.   This may also be found as a curve of

* Where a is the unit tangent vector.
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minimal length.    For let _

s = f aU0 • dpdp;
then

8s =  f 8^1 Ao dpdp =  j A0d8pdp/ds =  f AodSpa.

Integrating by parts, the first part being then exact and vanishing for an

extremal, we have as the condition of a minimum (or maximum) A0 8pda = 0

for every 8p in the space. That is to say, we have da wholly exterior to thé

space.    We might also write this fact in the form

An-i daAn Uv = 0.

It is understood here of course that the da is for a displacement along the

curve.

14. The covariant (r4 can be written

Gi = A0 • A2 ■ ¿i p(¿2 pA2 • c¿3 Uvdi Uv

and is thus dependent upon the four directions of differentiation. Now we

have

dUv = d(v/Iv) = dv/Iv - UvAo Uvdv/Iv.

Hence as A2 An «i • • • an An «i • • • an = 0,* and therefore A2 • UvUv = 0,

Gi = Ao • A2 • dip d2p[A2 • d3v div

— A2 • Uv(d3 vAo ■ di v — di v • Aq • ck v) Uv]/A0 • vv.

If we let four tangents to the space, that is, four unit directions, be

ai, a%, «a, a4, we have

Ki = Ao - A2 • «i a2 A2 • $ «3 $ Oi/Ao • A2 • ai a2 A2 • a3 on.

The Riemann symbol (rs, tu) may be computed from observations in the

space as follows:

We find first
(Ao • PrtP»)u —   (Ao  • PruPt)t-

Then we find in the region A0 p'r, p',u — A0 • p'rup'.t which is subtracted from the

other value (§ 12). The difference is (rs,tu). The accents onp indicate that

we are measuring so much of prt, etc., as we observe in the region in question.

In the first expression these accents are not needed, as the form shows that the

other parts of the second derivatives drop out anyhow. If we multiply by

duu and dut and sum for all values of the differentials we have

«¿i Ao • d2 pr p, — d2 Ao • di pT p, — Ao ' ck pr «¿i p. + Ao • di pr (¿2 p,.

* At A„ «i • • • an An ai ■■ ■ ct„ = 2 Ao An-i a¡ ■•• an An-\ ot\ • • • an At a< a¡,  which will

contain (A] a¿ <x,- + At a, ai) At An-t on • • • «„ ¿1 „_i en • • • a», and thus all terms cancel.
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Multiply again by du, dur and sum again, and we have

Gi = di Ao • ¿2 d3 pdi p — ch Ao • did3 pd4 p

— Ao • d3d2p' di di p' -\- Ao • didi p' d2 di p'.

This is the best form for this quadrilinear covariant, since by choosing the

directions of the four differentials properly we may obtain any one of the

Riemann forms.

15. The Riemann-Christoffel tensor GI can be written in the form

(A0 • A2 • aßA2 • Vi v2 A0 ■ y8)",

where Vi acts on y only, V2 on 8 only, a, ß are purely arbitrary, the double

accent means that only components exterior to the space are concerned.

a, ß, y, 8 are unit vectors.    If this is to vanish for any a, ß, then

(A, • ViV2A0-y8)" = 0,

and this may be written

(A,- Vb'y8)" = 0,

where <p7 is the derivative dyad of 7, or <by Çdt = d( y, the differential of 7 in

the f direction.    In other terms <py = Ao • ( ) V • 7 and <p'y = VA0 • 7 0 •

If this vanishes for every 8 we must have (A2 • V7)" = 0. This can

vanish for every 7 only when all the Riemann symbols vanish, which inter-

prets the meaning of the vanishing of all these symbols.

16. The Einstein gravitation equations translated into our notation are

Gij = - ( Y Ao • p'ijPk)k -Y-Ao- Pik (Pk)j

+ (Ao ■ vPi)j + Y Ao ■ p'ij (Pkh

= - Ao Vp'ij - Y Ao • p'ij (pk)k - Y Ao ■ Pik (pk)j

+ (A0-Vpi)j+ YAo ■ Pij (Pk)k

= - Ao • Vp'ij - Y A0 ■ pit (p*)y + (Y A0pkpik)j

= -Ao- Vp'ij -YAo- Pu (pk)j + Y Ao ■ Pik (Pk)j + Y Ao ■ PkPijk

= — Ao • Vp'a + Ao ■ VPa = (Ao • VPij)" = 0 for all i,j:

Therefore the significance is easily seen to be that the convergence of the

exterior parts of the second differentials is zero. That is, if a is a unit tangent,

Ao • Vda" = 0. Hence the sum of the normal curvatures of n orthogonal

geodesies at the point is zero.    The Einstein curvature is

E 9i¡ Gij =YA0-Pl VV = Zr« Ao ■ prP> Ao • p' ptra.

The Riemann-Christoffel covariant is written also without the accents (since

components in the space lead to terms that cancel)

Ao- A2 • aßA2 ■ Vi V2 Ao ■ y8,
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and if we substitute for 7 the adjunct of ß, and sum for n linearly independent

values ft with ft*, we have the Einstein covariant in the form

GaS = 2 A0 A2 aßt A2 Vi V2 Ao ft 8 = 0   for all a, S.

This gives Y,Ao A2 aft- A2 V4>'e ft where V operates only on the ft1'.    This takes

the form

E Mo • 4>a «ft' Ao ßi V - Ao aVAo ft <ps ßi),

which is another form of the potential.

If we start from the forms (A0 ■ ptrP'Yi — (A0 • Prup')" and, making

s = u, sum, we have

Grt  =  Ao •  VPrt +  £ A0Prt (p')s  =   (A0 VPr)t  = A0  •   VPrt

as before.

The simplest way to get the second derivatives is to choose paths in the region

on the geodesies. There is then no normal in the region. If then the con-

vergence in the region of these geodesic normals vanishes, the space is of the

gravitational character.

If the Riemann-Christoffel covariants vanish for an ordinary space we know

it is a plane, and a surface nabla of the normals (which would run out into

three-dimensional space) all vanish. To be an Einstein space of two dimen-

sions it would be necessary for the convergence in the space of the geodetic

normals to vanish. For a sphere, for instance, the normals all pass through

the center, their differentials have any direction on the surface, and would

not necessarily give a convergence equal to zero. A sphere is therefore not a

possible Einstein surface.

Tensors

17. As commonly used the term tensor means merely a multiplex of coeffi-

cients obtained when we substitute in a lineo-linear function of m variables the

various vectors chosen m at a time from the set pi, • • ■, p„. We shall use S to

indicate a tensor, which from our point of view is an operator. To indicate the

operands we will'insert m parentheses after S. A tensor is an extension of the

term dyad, triad, etc., used by Gibbs. We will write then a tensor of order 1

as S (), one of order 2 as S () (), etc. The first fundamental form is a tensor

since it has the form A0 • () (). From it we derive the set of quantities

Ao • Pr Pa • It is clear that all our A symbols, Am, • • • furnish tensors. A

tensor is a covariant tensor when it reduces to a form independent of pi, • • •, p„.

All the symbols A and their combinations furnish tensors that are covariant.

A tensor is a derivative tensor, and of order higher by unity than another,

when it is formed from the other by the process

E()()--.(Mo-v().
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For instance from the tensor £ (a covariant, as pi, • • •, p„ are not in evidence)

we derive £.4 o VO where V operates only on £. If £ = vX then we have

VXAo V ( ) •    If £ is a differential operator, as A0 • ( ) V ■ <r, then we derive

Ao ■ ()V ■ o- ■ Ao ■ V().

If we indicate direction by a subscript as o>, then the derived tensor demands

that o>« = <rjr. This condition is necessary. It is further a sufficient condi-

tion that S be a derived or differential tensor.

All differentials or derivatives taken in this manner without reference to

the parameters u are called covariant differentials. The so-called contra-

variant systems would be found by using the system p'.

18. To make translations from the ordinary notations we have to notice

that the covariant tensor Axv means the form J^A^Ao • px () Aa ■ pv (), the

contravariant tensor Axv means Y^AxyA0 • px()A0 • pv(), and the mixed

tensor Ayx means J^A% A0 • px () AQ • pv ().

The so-called product of two tensors of orders a, b is a tensor of order a + b.

For instance the product Auv Brs means

Y An, Br,Ao • p« ()A0 -p^OAo-p'OAo- p. ().

In expressions where "dummy" indices appear, that is to say, duplicated

indices, the expressions are summed as to the operational terms indicated, for

instance, Aur> means Y.» Aur, A0 ■ p" ( ) A0 ■ pr () A0 ■ p' () A0 • p,().

We will translate some of the current notations into these forms:

Out., w  =  [UV, W]  = A0 ■ PuvPw, {UV, W]   = Ao ■ PuvPw,

A'= YA'Ao-pH), (A<)j = YAiAo-p'OAo- Vi(),

where the subscript 1 shows the operand of V- This is covariantive

differentiation.

With these indications it is easy to reduce any expression into the vector

forms, and then to reduce the vector forms to compact expressions which

from their forms alone show that they are covariantive.

Curves

19. Let a be the unit tangent to a curve (that is, a function of one parameter

s), which gives Ao • aa = 1.    We have therefore at once

Ao • a da = 0.

Hence da is orthogonal to a.   Let ß be a unit vector so that

da = c[ ß ds.

c[ is called the curvature and ß the principal normal.    Usually part of ß is
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in the space of the curve, part not in the space. For instance, a curve on a
sphere may have its principal normal lying in the embedding three-dimensional

space.    We may also write, then,

da = ( gx X + ni v ) ds,

where now gi is the geodesic curvature, ni is the normal curvature, X is a unit

normal in the space, and v is a unit normal out of the space.

Since A0 • aß — 0, differentiating again, A0 • adß = — A0 • ßda = — c[.

Hence we have for dß (the dp is still along the curve)

dß = -c'ia + c'íy,

where 7 is called the binormal, and c" is the second curvature. Since the

first term gives the entire projection on a we must have A0 • ay = 0, and

since Ao • ßdß = 0, we must have also Ao • ßy = 0. Continuing we find the

trinormal, etc., and the third, etc., curvatures, giving the generalized Frenet

equations:
da — c'i ßds,

dß = (cÎ7 - c[a)ds,

dy = (ci'S -c"xß)ds,

dp = — ci(m) K ds.

When c'i = 0 the other curvatures become indefinite but are taken as zero by

convention.    If ci ^ 0 and cx = 0, from the equations above

A3 • dpd2p<Pp = 0.

The condition is necessary and sufficient.    Hence, differentiating,

A3 • dpd2 pdA p = 0 = A3 • dpcPpdhp,

and all higher curvatures may be taken as zero.

20. A congruence of curves is defined by the equation

A2 ■ \dp = 0,

where X is a given unit vector in the region.* Let us consider n independent

congruences, one curve of each congruence through any one point, and at the

point let all the congruences be mutually orthogonal. To indicate the

orthogonality we shall use a instead of X.   Then

Ao • ai an = 8ih,

and using fa. to indicate A0 • () V • on, the operator that gives the differential

* The notation of Ricci is as follows in vector forms: X¡/r = A0 ■ Xj Up,, X^i' = A0 • X»/>r,

where i and h define different congruences; X¡/r, = A0 • pr(\i)t, yah — A<, • X,- (X,-)*.
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of a, in the direction of the unit operand, we have

^4o • ai <pa, ak = — Ao ■ ay <pai ak   for all   ¿ j¿ j ^ k.

Such an expression is called a coefficient of rotation for a reason that will appear.

There are \n2 ( n — 1 ) such expressions.    We have also

Aq ■ ah <pah ai = 0   if   h p* I.

We may expand ^40 • Pr <j>ah p« in terms of J^Ao • aiprA0 ■ a¡ p8 Ao • ai <p«4 a¡.

This is the Ricci formula

Aft/r» =   2^ "Yhii A,'/r Ay/« ,

but such expansion is not needed in the vector forms.

21. Let
Ö = iYA2 ■ ai<pai()

be an operator which converts vectors of grade unity into vectors of grade 2.

Of course it is a very special operator of this kind.    The coefficient of rotation

7t;* = Ao ■ ai ay A2 ■ Qak ■

We see that Qdp = %J^A2 • ai dai gives what may be called the instantaneous

rotation for a displacement dp about a plane. That is to say, the plexus of

congruences rotates about this plane through an infinitesimal amount given

by the intensity of the 2-vector. (Rotation about a plane or other spread is

possible in hyperspace.)    We can look at the situation in this way: let

t = Ai ■ a On = — Y 0«, yAo • ay cr

and A0 • ak t = Ao • o-<f>ai n = A0 • adak/dt, A0 • <tt = 0. The coefficients of

rotation are the components in the directions of the elementary bivectors

.42 • ai aj of the bivector Qak.

We can also express 0 a little differently in a form useful in the study of

n-tuply orthogonal congruences.*

Let
f = Y Ai ■ V a'i Ao • ai () = - Y Ai ■ V a¿ Ao • a- (),

the accents showing the operand of V •   Then

& - Ï = IA2()Y A3 ■ aia'iV = - hA2 • ()Y A3 a{ Va,.

"^he expression A2 • Va,- is of course the curl of a,-.

22. If/(p) = 0 is a spread of order n — 1, the normals are V/and form a

normal congruence.    Since fa = fkh, we have

^4o • ah VAq ■ akV • f — A0 ■ ak VA0 ■ ah V • f = 0.

* See Shaw, Triply orthogonal congruences, these Transactions, vol. 21 (1920),

p. 391. The present articles contain the results of a paper read December 31, 1915, before

the Chicago section, On orthogonal congruences in space of three and more dimensions.



1922] GENERAL  VECTOR  CALCULUS 243

As V operates upon following a's we have from this

Ao ■ Vf(fakotk - faah) = 0.

This might be written

Z) ( y m - yihk ) Ao ■ a¡ vf = o.

Let the unit part of Vf be an; then the equation gives

Ao • (an<pahcik — an 4>akoth) — 0.

That is, for the entire set of curves in the spread and normal to it,

ynkh = "Ynhk (h,k = 1,2, ■■• ,n — 1).

The equation also states that <pak is self-transverse (symmetric) so far as the

spread is concerned. The condition is also sufficient. For when it is satisfied

Ao • A2 ■ ah ak A2 ■ Veto = 0 for all A, 4 = 1, • • •, n — 1.    But

A2 Van = X xi A2 an aj,

hence we have

A3 • an V«n = 0,

whence tA2 ■ Van = A2 £are for any £.    Choose £ = — V t and we have

A2 V(totn) = 0,        tan = Vf.

From this we have also A2 • V log ta„ = — A2 ■ V«« = A2 ■ a„ ir, where ir is

in the spread and is indeed <£„n an.

23. Let us suppose now that an is the principal normal of a system of curves

through the point, that is, a, is the unit tangent, dai/ds for dp along the curve is

c\ an, where t = 1, • • • , n — 1.    That is,

4>«i ai — ci an    for all    t = 1, • • ■ , n — 1.

Hence

Ai ■ On 4><xí olí = 0,        A0 ■ aj 4>ai a¡ = — A0 ■ ai <f>a. ai = 0

(i,j = 1, ••• ,n - 1).

This majr also be written to parallel the treatment in three variables referred

to above:

^4i • aiQai = d an,

Ao • an <f>a¡ai = Ci.

If the curves all lie in a spread as in the preceding article,

V log t = <pan anT + xan,

Ao ■ an <pa¡ aj = Ao • an d>aj ai.

In the general case of all the curves merely such that a„ is their common

principal normal, the sum of the curvatures is

Ao ■ an E 4>at a« (t = 1, • • •, n).
Trans. Am. Math. Soc. 17.
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which reduces to

— Y Ao • an Ai ■ ai 0a,        or        Y ~ Ao ■ a,- <pa„ ai = — A0 ■ Va0.

This shows on the one hand that the sum of the curvatures of the normal

curves is independent of the particular system chosen, if they are mutually

orthogonal, but on the other hand it gives significance to the geometric con-

vergence of On. Dividing by n — 1 would give the mean curvature of the

system.

The second curvature of the curve with a¿ as tangent is

<t>a, a{ = c"i y i — c'i ai.

Since a and y are orthogonal,

A2 ■ ai <l>an ai = c" ai y i,

and we may write

c" is the intensity of A2 • a¿ </>„„ ai.

24. The spread of order n — 1 is called isothermal when

Ao Wf=0 = V2f.

The resulting equations are simple.

25. In case the curves in the region through the point in question are

geodesic we have <pa„.On = 0 in the region, that is, for every ¿

Ao ■ ai 4>»„ a„ = 0.
That is,

Ao ■ an 4>ai an = 0

for every i.    This may also be written A0 ■ a„ ai 0a„ = 0.    This form enables

us to state the condition in the form Ai ■ a„ 0a„ = 0 in the region, and this

vector must lie outside the region therefore.*

Further applications must be deferred.

*See page 213.
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