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Introduction. Among the topological invariants of a space X certain

spaces have frequently been found valuable. The space of all continuous

functions on X and the space of mappings of X into a circle are noteworthy

examples. It is the purpose of this paper to study two particular invariant

spaces associated with a compact metric continuum X; namely, 2X, which

consists of all closed nonvacuous subsets of X, and Q(X), which consists of

closed connected nonvacuous subsets(x). The aim of this study is twofold.

First, we wish to investigate at length the topological properties of the hyper-

spaces, and, second, to make use of their structure to prove several general

theorems.

If X is a compact metric continuum it is known that: 2X is Peanian if X

is Peanian [7], and conversely [8]; 2X is always arcwise connected [l]; 2X is

the continuous image of the Cantor star [4]; if X is Peanian, each of 2X and

Q{X) is contractible in itself [9]; and if X is Peanian, 2X and Q(X) are abso-

lute retracts [lO].

In §§1-5 of this paper further topological properties are obtained. In par-

ticular: 2X has vanishing homology groups of dimension greater than 0, both

hyperspaces have very strong higher local connectivity and connectivity

properties—including local ^-connectedness in the sense of Lefschetz for p >0,

and, the question of dimension is resolved except for the dimension of Q(X)

when X is non-Peanian. All of the results of the preceding paragraph for 2X

are shown simultaneously for 2X and Q{X) in the course of the development.

In §6 a characterization of local separating points in terms of Q{X) is

obtained and a theorem of G. T. Whyburn deduced. In §7 it is shown that

for a continuous transformation f(X) = Y we may under certain conditions

find XodX, with Xo closed and of dimension 0, such that/(X0)= F. In §8

this result is utilized in the study of Knaster continua. In order that X be a

Knaster continuum it is necessary and sufficient that Q(X) contain a unique

arc between every pair of elements. If there exist Knaster continua of dimen-

sion greater than 1 then there exist infinite-dimensional Knaster continua.

Presented to the Society in three parts, the first under the title On the hyperspaces of a

given space on December 28, 1939; the second under the present title on April 26, 1940; the

third under the title A theorem on transformations on December 30, 1940; received by the editors

May 15, 1941. The major part of the material in this paper was contained in the author's dis-

sertation, University of Virginia, June 1940.

(*) For topologization of these spaces and for definitions of terms used in the introduction

see the text. A bibliography is given at the end of the article. Numbers in square brackets refer

to the bibliography.
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1. Preliminaries. Throughout the following, X will denote a compact

metric continuum. The letters a, b, c will stand for elements of X. For

a, ö£X, p(a, b) is the distance from a to b. Given a collection a;, aiEX,

{ai\ denotes the subset of X whose elements are the a,. In particular, {a}

is the subset of X consisting of the one element a.

The letters A, B, C stand for closed subsets of X. By 2X we mean the

space of all closed, nonvacuous subsets of X metricized by the Hausdorff

metric (that is, pl(A, B)=g.Lb. {e} for all e such that A<ZVt{B) and

BdVt(A), where V,(A) is the sum of all open e-spheres about points of A

[2]). If A £2X then A C.X. The closed subspace of 2X consisting of subcon-

tinua of X is Q{X).

Similarly 2lX consists of closed, nonvacuous subsets zA, <B, Q of 2X, with

Hausdorff distance p2. If zAE22X then zAQ2X.

For A(E2X we define <p(A)= { {a,i} }, a,G4. That is, <p(A) is the subset

of 2X consisting of all elements {a} of 2X where a£i. In particular <p(X) is

the set of all sets {a}. We always have <p(A)CZ2x and <p(A)E2iX. For any

AE2X, <p(A) is isometric with A. Similarly, for zAE22X, <p{zA) denotes the

subset of 22 consisting of elements {A }, A EzA. We have <p(zA)C22X and in

particular <p(2x) C 22X.

For zAC2X we define a{zA) =]T^4 for all A EfiA- For every zA, aizA) <ZX.

Actually a is a continuous mapping of 22X onto 2X. Further:

1.1. Lemma, (a) a is a contraction, (b) cpa is a retraction of 2iX onto <p(2x).

Proof. First, lorzA£22X, cr(zA) is closed. Suppose OiEoizA), and lim a, = a.

Choose A,, aiEAiEzA. We can suppose lim A( = A. Since zA is closed, A (£zA

and aEA EzA. Hence a£o-(a/?).

Second, suppose p1(a(zA), o(cB))=d. We can choose in one of cr{zA), ff(33),

say in cr(zA), a point a which is at least d distance from every point of o-('B).

Choose A, a(EA EzA. This set A is then at least d Hausdorff distance from

every set BE'B- Hence p2(zA, £B)£:oJ and a is shown to be a contraction.

That o~ followed by <j> leaves every element of <j>(2x) fixed is clear.

1.2. Lemma. IfzA is a subcontinuum of 2X and zA-Q{X) =^0 then aizA) is a

continuum.

Proof. Choose A EzA■ Q{X). Suppose ai$A) =AX+A2 is a separation, with

ACZAi. Then both the subset zAi of zA consisting of all elements contained

in A1 and the subset A2 of all elements intersecting A2 are closed and non-

vacuous. ButzAi-\-zA2=zA, a continuum, and Ai A2 = 0. We then have a con-

tradiction.

It is possible to define(2) a real-valued function p.{A), continuous on 2X,

(2) See H. Whitney, Regular families of curves, Annals of Mathematics, (2), vol. 34 (1933),

p. 246.
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with the properties:

1.3. // ACB, Aj*B then u(A)<u(B).
1.4. p(X) = 1, and for any aGZ,/j(jtt})=0.

For convenience, we shall suppose throughout that p(A) is a certain fixed

function with these properties. Since 2X is compact we can further state:

1.5. Lemma. There exists n(e)>0 such that if A, BC2X, ACB and
LL(B)-ß(A)<r,(e) then pl{A, B)<t.

2. Segments in 2X. Let A0, A\C2X. A segment from A0 to A \ is a con-

tinuous mapping At of the interval [0, l] into 2X which satisfies the two con-

ditions :

2.1. p(At) = (l-tMAo)+tp(Ai).
2.2. Ift'<t", then AfCAf.

2.3. Lemma. Given A0, A\C.2X, there exists a segment from A0 to A\ if and

only if AodAi and every component of A \ intersects A0.

Proof. First, suppose that At is a segment from Ao to A\. If Ai = B0+B\

is a separation of Ax such that AoQBo, then the subset of [0, l] consisting

of all / such that AtCZBa and the subset defined by At Bi^0 are closed, dis-

joint and they cover [0, l]. Hence Bi = 0.

Second, suppose A0, AiC2x, AoQAi and every component of Ai inter-

sects A0. Consider the collection of all sets zAC2X which have the two prop-

erties:

2.4. // BCzA then AoCBCAi and every component of B intersects A0.

2.5. // B0, BiEzA then either BaCBi or BoDBi.

The sum of a monotone family of setsc/f of this collection is surely a member

of the collection. Hence there must exist a member zAo which is saturated

with respect to 2.4 and 2.5. Since the closure of zAa also satisfies 2.4 and 2.5,

it follows that zA0 is closed.

We now define for t, OStS 1, At to be that element of zA0 if it exists, such

that u{At) = (1 —t)fj.(A0) + tp(Ai). By 2.5 we see that A t is 1-1 and continuity

follows from the continuity of the p function. Now the proof will be complete

if we show that At is defined for every /, OStS 1, or—what is the same—that

for Ar, At,,^Ao, 0£t'<t"£i, there exists A^zAo such that p{Af) <u(A)

<n(At>>). Because of the maximal character of zA0 it is sufficient to show that

there exists some A £2X satisfying ACA CA f„, p(A (<) <p(A) <p(At") with

every component of A intersecting A f. Choose then e>0 so that Vt{Ar) fails

to contain At>-, and let A consist of the components of At"- V,(At') which

intersect Ar. Now some component of At" is not contained in Vf(At') and

hence Av is a proper subset of A, while A is surely a proper subset of A tu.

The required properties follow.

Since any subarc of a segment is, with proper parametrization, a segment,

we have
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2.6. Lemma. If A£Q(X) then every segment with A as beginning is con-

tained in Q{X).

The Cantor star is the plane set obtained by joining with a straight line

every point of a discontinuum D which lies on the x-axis to the point (0, 1)

on the y-axis. Each point of the star can be identified by a point x(£D and a

coordinate y, OSyS 1.

The following theorem has been proved by Mazurkiewicz for 2X. (See [4]

and also [l ].)

2.7. Theorem. Each of 2X and Q{X) is the continuous image of the Cantor

star, and hence arcwise connected^).

Proof. We first show that the set S of all segments in 2X and the set Si

of all segments with beginning in Q(X) are compact subsets of { 2X\E, where E

is the unit interval. Now S is an equicontinuous collection of mappings, for,

for any segment At, we have | p(A ,<) — n(A ,<-) | = 11' — t" \ (p(Ai) — p(A0))

S\t'-t"\. Hence by 1.5, if \t'-t"\ <i){t) then pl{A v, A v.) < e. The relations

2.1, 2.2 clearly hold for any limit element and hence S is compact. That Si is a

closed subset of S follows from the fact that for a convergent sequence of

mappings, the limit of the beginning elements is the beginning element of the

limit.

Let At(x), for x(E.D, be a continuous mapping of the set D onto S (or Si).

Now At(x) is continuous simultaneously in x and t, and since Ai(x) = X for

any xG^, the mapping/(x, y) =Ay{x) is a continuous mapping of the Cantor

star onto 2X (or Q{X)).

3. Contractibility(4). We now have the following lemma

3.1. Lemma. The following properties are equivalent:

(a) <j>(X) is contractible in 2X.

(b) 2X is contractible.

(c) Q(X) is contractible {in itself).

Proof. The proof is in three steps. First, (a) implies (b). If <p(X) is con-

tractible in 2X there exists a continuous mapping F(a, t) of XXE, where E is

the unit interval, into 2X, such that F(a, 0) = {a}, F(a, l)=a constant. De-

fine for A(£2X, J{A, t)= {F(a, t) \ for a£i. Since F(a, t) is a continuous

mapping of XXE into 2X, J(A, t) maps continuously 2XXE into 2iX. The

deformation o{J(A, t)) is then continuous and contracts 2X in itself.

Second, (b) implies (c). Suppose 2X is contractible. There exists a mapping

(3) Actually, in order that a compact metric space X be the continuous image of the Cantor

star it is necessary and sufficient that there exist an equicontinuous family of mappings of E

into X which includes a map of E covering any pair of points. The proof of this proceeds ex-

actly as that above.

C) A space X d Y is contractible in Y if the identity transformation on X is homotopic to

a constant in Y.
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F(A, t) of 2XXE into 2X such that F(A, 0)=A and F(A, l)=a constant.

Since 2X is arcwise connected we can suppose F(A, I) =X for all A £2X. Let

7(^1, t) = \ F(A ,t')} for 0 S t' S t. Now J{A, t) is surely a continuous mapping

of 2XXE into 2aX. The deformation G(A, t)=<r(J(A, t)) will then be continu-

ous and will have the properties: G(A, 0)=A; G(A, 1)=X; if 0£#'<f"gl,

then G(A, t')CG(A, t"). Hence for A fixed, G(A, t'), OSt'St defines with

proper parametrization, a segment from G(A, 0) to G(A, t). Hence by 2.6

if A^Q(X) then G(A,t)EG(X) for every t, O^J^l. Hence Q{X) is contract-

ible.
Third, (c) implies (a). This is obvious.

Remark. It follows from the above arguments that if 2X and Q{X) are

contractible then the deformation G(A, t) can be chosen to satisfy

If 0St'<t"Sl then G(A, t')CG(A, t").
We shall consider spaces X having the following property:

3.2. For e>0 there exists 5(e)>0 such that if a, b(EX,, p(a, 6) < 5(e) and

aGA GCPO. then there exists B, bEB^Q(X) with px(A, B)<e.

As a generalization of a theorem of Wojdyslawski (see [9]) we prove

3.3 Theorem. If X has the property of 3.2 then 2X and Q{X) are contract-

ible.

Proof. In view of 3.1 it is sufficient to show that 4>{X) is contractible

in 2X. We define now a mapping of XXE into 22* as follows: J(a, t)= [A]

where aGA^Q{X) and p{A) = t. Now for G(a, t)=cr{J{a, t)) we have

G(a, 0) = {a} and G(a, 1)=X. Hence the proof reduces to showing the con-

tinuity of J(a, t).

First, for a£X we show uniform continuity in t. Suppose 0£t'£t"£1.

Then from 2.3 we see that for each A\dJ{a, t') there exists A2€zJ(a, t") such

that A2Z)AU and similarly, given A2E.J(a, t") we can find some A\dJ{a, t')

with A{2)A\. Hence if \t'—1"\ < 77(e) of 1.5 then every element of each of

J(a, t') and J(a, t") is within e of some element of the other and p2(J(a, t'),

J(a, t"))<e.
Finally, if / is fixed J(a, t) is continuous in a. If a and b are near and

A GJ(a, t) then by 3.2 we can choose B near A, bGB£.£(X). Now p.{B) is

near p.(A). If n(B) >p(A) we can choose B\ on a segment from \b\ to B, B\

near A (see 1.5) with p.(Bi) =p(A). If n(B) <p,(A) we can choose B\ on a seg-

ment from B to X, with u{Bi) =fi(A). In either case we find Bi near A,

Bi(£j(b, i), and continuity is demonstrated.

Examples. Let X be the curve in the rry-plane defined by

G(A+B, t) = G(A, t)+G(B, t).

1
y = sin — >

x
for   0 < x S 1,

for   x = 0.
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It is easy to verify that condition 3.2 is satisfied for X and hence 2X and Q(X)

are contractible.

If we add to X the interval

then 3.2 is not satisfied for the curve Xi so obtained. Nevertheless, since Xi

can be deformed into X, 2xi and Q(X\) are contractible. This shows that con-

dition 3.2 is sufficient without being necessary.

If we now add to X\ the points

we obtain a curve X2 for which 2X* and Q(X2) fail to be contractible. If Q(X2)

were contractible we could suppose the deformation F(A, /) satisfied the con-

dition: If 0St'<t"Sl then F(A, t')CF(A, t"). If s£Is and a has a posi-

tive x-coordinate, there will exist to such that F(a, to)(ZX and F(a, to) con-

tains the interval — l^y^l for x = 0. If bCX2 has a negative x-coordinate,

every continuum containing b is at least one-half unit from F(A, to). But a

and b can be chosen arbitrarily close, and we have a contradiction.

3.4. Theorem. The space 2X is acyclic in all dimensions.

Proof. Suppose Z is a 5-cycle in 2X, that is, an abstract cycle with vertices

in 2X, with the diameter of every simplex less than or equal to 5. For A £2X

let F(A) be the set of points in X each of which is at most 5 distance from

some point of A. Now if pl(A, B) S 5, then p1(F(A), F(B)) S 5, for every point

of F(A) is at most 5 distance from some point of A, and this point belongs to

F(B). Hence if we map each vertex A,; of Z into F(Ai) we obtain a 5-cycle Z\

with each vertex at most 5 from the corresponding vertex of Z. But from the

definition of Pit follows that there is an integer n such that the «th iteration

of F carries every A£2X into X. Hence Z is 35 homologous to a cycle on

X£2X. The theorem follows.

Remark. In case X satisfies the condition 3.2 then the preceding theorem

as well as a similar theorem for Q(X) is an obvious consequence of 3.3.

Problem. Is Q(X) always acyclic in all dimensions?

4. Local connectedness and retraction properties. Before proceeding we

note two lemmas:

4.1. Lemma. If X is Peanian then 2X and Q(X) are contractible.

Proof. Any Peano continuum surely has the property of 3.2.

4.2. Lemma. IfzAis a Peanian subset of 2X (or Q(X)) then A is contractible

over a subset <B of 2X (or Q(X)) such that diameter zA=diameter 'B.

3
for   x = 0,

1 . 1
=-h sin — i

2 x
for   - 1 = x S 0,
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Proof. If J(A, t) is a function contracting <p(zA) in Q(zA), (Q(zA) is a sub-

set of Q(2X)), then (t(J(A, /)) contracts zA in a(Q(zA)). Further, Q(zA) has

the same diameter as zA, and a is a contraction.

The following local connectivity property implies local /'-connectedness in

the sense of Lefschetz(5) for p>0.

4.3. Theorem. Let K be a finite complex, K\ a subcomplex including all the

l-dimensional simplices of K, and f(K\)<Z_2x (or Q(X)) a continuous mapping

such that the partial image of any simplex of K is of diameter less than e. Then

f may be extended to a mapping of all of K into 2X (or Q(X)) so that the diameter

of the image of any simplex is less than e.

Proof. First, Iet/(S")C2X (or Q(X)), n ^ 1, be a map of the surface of an

(w + l)-cell En+1. Then, by 4.2, / may be extended to a map of all of En+1

into 2X (or C(X)), for the image of S" is a Peano continuum. Now let/(.?M)

be the mapping given in the lemma. Then <j>f is a map of Ki into <p(2x) CC(2X).

We can now extend / to all of each 2-simplex x2 of K so that x2 maps into

Q(f(x2 ■ Ki)). Repeating this process, one dimension at a time, we arrive at a

mapping f of all of K, identical with <j>f on K%, and such that the image of

any simplex xn is contained in Q(f(xn ■ K\)). Hence the diameter of f(xn) equals

the diameter of f(xn-K\). Since a is a contraction, we see that of is the re-

quired extension of/.

We now reprove a theorem of Wojdyslawski (see [10]; also [7] and [8]).

4.4. Theorem (Wojdyslawski). The following statements are equivalent:

(a) X is Peanian.

(b) 2X is Peanian.

(W) Q(X) is Peanian.

(c) 2X is an absolute retract.

(c') Q(X) is an absolute retract(*).

Proof. The proof is contained in the following three assertions:

First, (a) implies (b) and (b')- Suppose that any two points of X less than

v(e) apart can be joined by a continuum of diameter less than e. Then if A,

.B(E2X, px(A, B)<v(t), the set C consisting of all points which can be joined

to A by continua of diameter at most e has the properties: p1(A, C) 5=e, p1(B,

C) S 2t, A +B C C and every component of C intersects both A and B. Hence

by 2.3 there exist segments At and Bt from A to C and B to C, respectively.

The continuum oA'= {A,} + [B t}, 0 St SI, is of diameter less than or equal

(6) See S. Lefschetz, Topology, American Mathematical Society Colloquium Publications,

vol. 12, 1930, p. 91.

(6) A space Xd Eis a retract of Fif there exists a continuous transformation^ Y) =X where

/ is the identity on X. The metric separable space X is an absolute retract if it is a retract of every

metric space in which it can be imbedded. See K. Borsuk, Sur les retractes, Fundamenta Mathe-

maticae, vol. 17 (1931), pp. 152-170.
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to 3e, andzACC(X) HA and B belong to Q(X). Hence 2X and (j^X) are Pean-

ian.

Second, (a) implies (c) and (c')- Combining the result of the previous

paragraph with that of 4.3 we have: If K is a finite complex ,K~o a subcomplex

including all of the vertices of K, and if f(K0)(Z2x (or Q(X)) is a mapping

such that the partial image under / of any simplex of K is of diameter less

than i>(e/6), then/can be extended to a mapping of all of K into 2X (or Q(X))

such that the image of any simplex of K is of diameter at most e. This result,

by a characterization of Lefschetz(7), implies that 2X and Q(X) are absolute

retracts.

Third, either one of (b) or (b') implies (a). If a, b(E_X, and <p(a) and <p(6)

can be joined in 2X by a continuum zA of diameter d, then by 1.2 <r{zA) is a

continuum in X about a-\-b of diameter at most d.

4.5. Theorem. Let Y be a compact, locally connected subset of a metric

space Z, and letf(Y) be a continuous mapping of Y into 2X {or Q(X)). Then f

can be extended to a continuous mapping of all Z into 2X {or Q{X)).

Proof. The set/( Y) is locally connected, and since each hyperspace is arc-

wise connected, we can find a Peano continuum zA, f{Y)<Z_zA, zA in 2X or

Q{X), respectively. Since Q{zA) is an absolute retract we can extend(8) the

transformation <f>f of Y to a mapping f of Z into Q{zA). The mapping of is

then the required extension of/.

Remark. Consider any closed subset zA of 2X having the property: If

A^zA and if B^)A and every component of B intersects A then B^zA. All

the results of §§2, 3, 4 for 2X (except 3.4) can be shown by precisely the same

reasoning to hold for such a set zA. In particular the space Qn(X) consisting

of all closed subsets of X having at most n components, and the space Qd{X)

consisting of all closed sets of diameter greater than or equal to d have these

stated properties of 2X.

5. Dimension of hyperspaces. Further topological properties are now ob-

tained.

5.1. The space 2X always contains the homeomorph of the "fundamental

cube."

Proof. Choose Ai£zQ(X), a sequence of nondegenerate disjoint continua

tending to a point aQ_Ai for any i. Now each 2Ai contains a nondegener-

ate arc B{ and 2X contains topologically the infinite cartesian product

BiXB2X ■ • ■ ■ The theorem follows.

If X is Peanian and A^Q(X) then the order of A in X is the smallest

integer n such that there exists within any Vt(A) a neighborhood of A with

(') Annals of Mathematics, (2), vol. 35 (1934), pp. 118-129.

(8) This is a property of absolute retracts. See Footnote 6.
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boundary consisting o/ at most n points. If no such integer exists then A is

said to be of non-finite order.

5.2. Lemma. If X is Peanian the order of A is finite for every A (E.Q(X) if

and only if X is a graph.

Proof. We need only show that if X is not a graph, X contains a con-

tinuum of non-finite order. If X contains no point constituting a continuum

of non-finite order, X must contain an infinite sequence at of ramification

points, and we can suppose a,—>a. If there exists an arc containing infinitely

many of the a* this arc is of non-finite order. Otherwise, we can choose in-

finitely many arcs a,„a, forming a null sequence and with each a,„ contained

in only one arc of the sequence. Then 32,na-ina is a continuum of non-finite

order.

HA is a closed subset of X, Q{X, A) is the subset of Q(X) consisting of

continua which contain A. UA£.£(X) then AEG(X,A). Also Q(X, 0) = C{X).

5.3. Lemma. If X is Peanian, then for every A^Q{X) we have order A

= A\mAQ(X, A).

Proof. If A£:ß(X) is of order n, then, using the «-Bogensatz(9), we can

choose arcs B\, ■ ■ ■ , B„, Bi-A = at- and (Bi — ai) a collection of disjoint sets.

Toeach (ti,tt, ■ ■ ■ ,<„)G-SiX52X ' " ■ X-Bn assign the continuum A +31" a it i.

This correspondence is a homeomorphism and the theorem is proved.

5.4. Theorem. If X is Peanian then dim Q(X) < °o if and only if X is a

linear graph.

Proof. If dim Q{X) is finite then 5.3 and 5.2 imply that X is a linear graph.

The other half of the theorem is contained in the following sharper statement.

5.5. Theorem. If X is a connected linear graph then

dim Q{X) =   max   (order A)

= 2 + 31 (order a - 2),

the last summation being extended over all points a£X such that order a 1=2.

Proof. Let A\, A%, • • ■ , Am be the collection of connected sub-graphs of X.

With each Ai there is associated the collection zAi of continua in X for which

Ai is the maximal sub-graph. Clearly, Q(X) is the sum of the zAi. If the order

of Ai is n, then there are, say, m 1-cells containing a single 0-cell of Ai and

k 1-cells containing 2 0-cells of Ait where m + 2k = n. By the argument used

in 5.3, we see that zAi is homeomorphic with the F„-set in «-space given by

the inequalities Q^Xi<l for i=l, ■ • • , n, x2,_i+X2,<l for j=l, • ■ • , k.

Since zAi is an Fa(10),

(9) See "w-Bogensatz," K. Menger, Kurventheorie, p. 216.

(10) See "Summensatz," K. Menger, Dimensiontheorie, p. 92.



1942] HYPERSPACES OF A CONTINUUM 31

dim Q{X) < max (dima/f,) = max (orderA{) =   max (ordert).

The other necessary inequality is contained in 5.3.

The equality maxAeC(^) (ordert) =2+31 (order a —2) can be obtained by

a simple induction argument.

Remark. If X is a linear graph Q(X) is actually a polyhedron. We have

also the property: If X is Peanian and Q(X) has finite dimension at every one

of its points then Q{X) must have finite dimension.

6. Local separating points. In this section we prove a theorem of G. T.

Whyburn.

6.1. Theorem. If X is Peanian, A any closed subset of X, a^X—A, then

a is a local separating point of X if and only if Q(X, A +a) contains interior

points relative to Q{X, A).

Proof. First, let a be a nonlocal separating point, a^X—A. For

B(EC(X, A+a) and e>0 choose a connected neighborhood U of a of di-

ameter less than e so that U -A =0. Choose a neighborhood V of a, V(ZU,

suchthat U- V is connected. Then (B+U- V)<EC(X, A)-Q(X, A +a) and

is at most e distance from B. Hence Q(X, A)—Q{X, A+a) is dense in

e(X, A).
Second, let a be a local separating point of X and U a connected neighbor-

hood of a such that U — a = Ui+ U2, Ui- U2 = a. Let V be a connected neigh-

borhood of a with FC U. Choose a continuum BZ)A + V and intersecting the

boundary of only one of Ui and U2 in points other than a. Any continuum

sufficiently near B intersects both V- Ui and V- U2 and fails to intersect the

boundary of one of Ui and Z72 in a point different from a. Hence a is a point

of this continuum and B is interior to Q{X, A+a) relative to Q(X, A).

Remark. If X is non-Peanian and a is a local separating point then Q(X, a)

contains interior points relative to C(X). The converse is not necessarily true,

however.

If A is the null set we have this corollary.

6.2. Corollary. If X is Peanian, a(£X then a is a local separating point

if and only if Q(X, a) contains interior points relative to Q{X).

6.3. Theorem (G. T. Whyburn(11)). If X is Peanian and a^X is a se-

quence of nonlocal separating points, then X* = X — 32ai is connected and locally

connected.

. In fact, if 0i, biZHX*, and b\ and 62 can be joined in X by a continuum of

diameter less than e then the same holds in X*.

Proof. The setllfXcX^. bi + b2)-Q(X, bi + b2+an)) is by the theorem of

(n) Semi-closed sets and collections, Duke Mathematical Journal, vol. 2 (1936), pp. 684-690.

The above theorem is contained in Theorem 3.2 of the paper cited. I owe this proof to

S. Eilenberg.
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Baire, dense in Q(X, 61 + 62), since by 6.1 each set in the product is dense and

open in Q(X, 61+62). Hence any continuum about 61 + 62 is the limit of con-

tinua about 61 + 62 in X*. The theorem follows.

7. Continuous transformations. Here we show that for a continuous trans-

formation f(X) = Y we may under certain conditions find X0(ZX, with XQ

closed and of dimension 0, such that/(X0) = Y.

7.1. Lemma. If f(E2) =El is a continuous mapping of the unit square onto

the unit interval, then there exist two disjoint arcs ab and cd in E2, each containing

at most one boundary point of E2, such that f (ab + cd) =El.

Proof. The interior of E2 maps into a connected set which is dense in El.

Choose aGf-^O), 6£/-1(2/3), cG/_1(l/3), dE/-1(l) so that 6 and c do not
belong to the boundary E2. Choose ab and cd disjoint arcs in E2 having at

most a and d in common with the boundary of E2. Then f(ab) 3(0, 2/3) and

/(«OD (1/3, 1).

7.2. Theorem(12). Iff(E2)=E1 is a continuous mapping of the unit square

onto the unit interval then there exists a closed totally disconnected subset Z of E2

such thatf(Z) =El.

Proof. Let zA be the subset of 2£2 consisting of all subsets of E2 which

map onto El under /. Let zAt be the subset of zA consisting of sets having

only components of diameter less than e. Clearly zA( is open in zA, and we

shall show zA( is dense in zA. Since a residual set in a complete space is non-

vacuous, it will be true that JJi/fi/„^0, and any A^Yh^^/n w^u De a totally

disconnected closed set mapping on E1.

Suppose A^zA and e>0 are given. We shall find B(E.zA(, pl(A, B)<e.

Choose a subdivision of E2 into closed squares Si, S2, ■ • • , Sq, each of di-

ameter less than e/4. For each Sp which intersects A choose arcs avbv and

Cpdp by 7.1, each mapping onto/(5p), and let B be the sum of the arcs so

chosen. Since dia Sp<e/4, B has only components of diameter less than e.

Since B intersects those and only those squares Sp which are cut by A,

pl(A, B)<e and f(B)Z)E1. Hence B£zAt and the proof is complete.

We now obtain a similar theorem with more general space and more spe-

cial type of transformation. First, consider a transformation f(X) = Y where

7.3. (a) X is compact and metric and dim F< °o.

(b) f is monotone and interior(i3).

(c) dia/-Hy) >0for all y£ F.

(12) I owe this theorem to S. Eilenberg and L. Zippin.

(13) A transformation is monotone if the inverse of every point in the image space is con-

nected. See R. L. Moore, Foundations of Point Set Theory, American Mathematical Society

Colloquium Publications, vol. 13, 1932, chap. 5. The term "monotone" is due to C. B. Morrey,

American Journal of Mathematics, vol. 57 (1935), pp. 17-50. A transformation is interior if

open sets map into open sets. For references see G. T. Whyburn, Duke Mathematical Journal,

vol. 3 (1937), pp. 370-381.
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7.4. Lemma. Under the hypothesis of7'.3 for any 4£2X where j'{A) = Y and

for any e>0 there exists B(£2X such that

(a) pi(A,B)<e.

(b) /(B) =y.
(c) Every component of B is of diameter less than e.

Proof. It is sufficient to find B(ZVt(A) and satisfying (b) and (c) since

by adding a finite number of points to such a B we may obtain a set within e

of A. Let Vo = Vt 12(A). We shall need these three lemmas:

7.5. Lemma. There exists r(e) >0 such that f(Vt(x))Z}VT(t)(f(x)) for every

x(EX.

7.6. Lemma. There exists d>0 such that for any y£ Y there is a component

Ay of IV/_1(y) such that dia Ay = d.

7.7. Lemma. There exists an integer N such that Y allows an arbitrarily fine

covering by open sets, W\, ■ • ■ , Wm such that at most N of the sets Wi intersect

any given Wr.

The first of these is a simple consequence of interiority, the second follows

since dia/_1(y) >0 for all y£ Y, and the third is true since Fcan be imbedded

in a finite-dimensional euclidean space.

Let s = min [e/3, d/8N] and construct a covering of Y of the type 7.7

with dia Wt<t(s) for r=l, • • ■ , m. Let Ui=f-1(Wi). Choose aiEtA- V0 and

let A\= Ui- Vs(ai). Choose successively then ar(E Ur- Vo and Ar= UT- V8(aT) so

that Ar ■ A i = 0 for i<r. That this is always possible is shown as follows:

Choose y£ Wr and Av of 7.6. At most A of the sets A1 • • • , Ar-i intersect Ur,

and each Ai is of dia less than 2s. If 32i~1V3(Ai - UT) intersected V,(a) for

every a^Ay then 32[~1V2,(V,(Ai-Ur))DAy and dia Ay = N-8s<d which is

impossible. Hence it is possible to choose Ai, • • • , Am as prescribed. Finally,

f(.AT)DWr and 32ArCVt(A). Let B=J2.Ar and the result follows.

7.8. Theorem. Letf(X) =Ybea monotone interior transformation of a com-

pact metric space X into a set Y of finite dimension. Then there exists a closed

totally disconnected subset Xa of X mapping onto Y if and only if the set of

points on which f is 1-1 is a totally disconnected subset of Y.

Proof. First, suppose /_1(y) contains more than a single point for every

y£ F. If <tA(Z2x is the set of all sets mapping onto F under/, then by 7.4

the subset <i/fi/„ of sets with components of diameter less than 1/n is dense

in zA. Any set belonging to the residual set JJ<vfi/„ then satisfies the theorem.

Second, suppose f~l{y) consists of a single point for all y€E-B, B a totally

disconnected set. Since / is interior, B is closed. Let F„= Vyn{B) and using

the result of the previous paragraph choose A„, closed, totally disconnected

and mapping on F„— F„+i. Then X0=3lAn+f~1(B) is easily seen to be totally

disconnected and maps onto F.
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Finally, if/ is 1-1 on a continuum, it is clearly impossible to find X0 satis-

fying the theorem.

8. Knaster continua. A compact metric continuum is indecomposable if it

cannot be written as the sum of two proper subcontinua.

8.1. Lemma. // X is indecomposable and zAab is an arc in Q{X) with

a{zAAB)=X then XE.zAAB.

Proof. Let C be the first element in order from A to B such that

o{zAAc) = X. For each G preceding C the continuum oi^AAc/) is contained in

the composant about A of X, and hence crizAc^) contains points both in

this composant and in its complement. Thus o(zACic)=X for all G preced-

ing C, and therefore C = X.

8.2. Theorem. In order that X be indecomposable it is necessary and suffi-

cient that C(X) —X fail to be arcwise connected.

Proof. If X is indecomposable then for any arc zAab where A and B lie

in different composants of X we have o{zAAB) =X and hence JG^b- Thus

C(X) —X is not arcwise connected.

If X is not indecomposable write X = Ai+A2, A^GiX), A{^X for

t = l, 2. If B£:£(X), B^X, and aG^-irij then there exists a segment

joining {a} to B, and also segments joining {a} to both Ai and A2. IfBC^i

there is a segment from B to Ai. In any event B can be joined by an arc to

both of A \ and A2 in Q{X) —X and the theorem is proved.

A compact metric continuum is a Knaster continuum(u) if every subcon-

tinuum is indecomposable. If X is a Knaster continuum and if A, B£iQ(X),

then either AB = Q, A^B or B~2)A. Hence:

8.3. Lemma. // X is a Knaster continuum, A, BQ.Q(X), ABy^O and

p(A) = p(B) then A = B.

8.4. Theorem. The continuum X is a Knaster continuum if and only if

Q{X) contains a unique arc between every pair of its elements.

Proof. If Q{X) contains a unique arc between every pair of elements then

for any A(£Q(X), Q(A)—A must fail to be arcwise connected and hence by

8.2 indecomposable. Therefore X is a Knaster continuum.

Suppose X is a Knaster continuum and zAab an arc in Q{X). Since o(qAab)

is indecomposable by 8.1 we have o-{$Aar)£l<zAab. Hence the function p as-

sumes a unique maximum on any simple arc, and if C = a{zAAB) then ll must

be strictly monotone on each of zAAC and zAcb- For GGcyfjc we then have

Ci = o-(zAACl). It follows that zAAC and zAcb are, with proper parametrization,

(u) The only known example of a continuum of this type was given by B. Knaster in his

dissertation, Un continu dont tout sous-continu est indecomposable, Fundamenta Mathematicae

vol. 3 (1922), pp. 247-286.
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segments. From 8.3 we see that there exists a unique continuum containing A

at which u assumes any specified value. Hence the arc zAab is unique.

8.5. Theorem. If X is a Knaster continuum, for every e>0 there exists a

monotone interior transformation /(X) = Y such that 0<dia f~l(y)<e for all

yG F.

Proof. Choose d>0 such that if fi(A)=d then dia A <e. For each o£I

there is, by 8.4, a unique A(a)£Q(X) such that a^A{a) and p(A(a))=d. If

A (a) -A(b)^0 then by 8.3 A (a) = A(b). If lim a, = a, then since u is continu-

ous and A(a) single-valued lim A(ai)=A(a). The map A{a) is then a con-

tinuous monotone interior transformation of X into (j?(X) and satisfies the

conditions of the theorem.

8.6. Theorem. If X is a Knaster continuum and if there exists, for every

e>0, a monotone interior transformation f(X) = Y such that:

(a) 0<dia/"l(y)<eforallyEY;

(b) dim F< °o ,

then dim X= 1.

Proof. Under the hypotheses of the theorem we shall exhibit an e-covering

of order 2 of X by closed sets. Choose X0CX, by 7.8, closed, totally discon-

nected, with /(X0) = F. Let U be an open set about X0 so that the diameter

of any component of U is less than e. Every component of X— U is of di-

ameter less than e, for if A CX— U, dia A fee then for aG A, f~x(f (a)) (Z A. But

this contradicts the fact that /(X0) = F. Write each of U and X — U as the

sum of a finite number of closed disjoint sets of diameter less than e. The re-

sulting covering of X is surely of order 2.

From 8.4 and 8.6 and the fact that the monotone image of a Knaster con-

tinuum is also a Knaster continuum we have:

8.7. Theorem. If X is a Knaster continuum of dimension greater than 1

then:

(a) for every e > 0 there is a monotone interior transformation /(X) = F

0<dia/_1(y) <*for all yG F, with dim F= co ;

(b) there exists an e>0 smcA that for any monotone interior f{X)= Y, with

0 <dia/_1(y) <*for ally^ Y, it is true that dim F= w ;

(c) <Aere exw/ Knaster continua of infinite dimension.

Remark. Theorem 8.6 could be demonstrated without the restriction (b)

on dimension if instead of 7.8 we had at at our disposal the theorem: If

/(X) = F is monotone interior then there exists Xo, closed in X, withf(Xo) = F,

such that X0-f~l(y) is totally disconnected for all yG F; that is, such that f is

light on X0. This statement is much weaker, except for restriction on dim F,

than 7.8, and its truth would imply that every Knaster continuum is of di-

mension one.
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