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UNIVALENCE CRITERIA AND QUASICONFORMAL EXTENSIONS

J. M. ANDERSON AND A. HINKKANEN

Abstract. Let / be a locally univalent meromorphic function in the unit disk

A . Recently, Epstein obtained a differential geometric proof for the fact that

if f satisfies an inequality involving a suitable real-valued function a , then /

is univalent in A and has a quasiconformal extension to the sphere. We give

a more classical proof for this result by means of an explicit quasiconformal

extension, and obtain generalizations of the result under suitable conditions

even if a is allowed to be complex-valued and A is replaced by a quasidisk.

1. Introduction and results

1.1. Let / be a locally univalent meromorphic function in the unit disk A =

{z : \z\ < I). There are several well-known criteria which ensure that / is

univalent in A and, possibly, has an extension to a Ac-quasiconformal mapping

tp of the extended complex plane C onto itself. By this we mean that the

complex dilatation p(tp, z) = (Pj/<pz of the quasiconformal homeomorphism

tp satisfies

(1.1) ||^,z)||oo<fc<l

and that <p(z) = fi(z) for z £ A. As usual, tpz = \(dtp/dx - idtp/dy) etc.,

and \\p\\^ = esssnp{\p(tp, z)\ : z e C} .

Such univalence criteria customarily involve the Schwarzian derivative of fi

(Nehari criterion) defined by

,{/,2)=(ry(z)_.^(z)j2 .

or the logarithmic derivative /"//' of fi' (Becker criterion). The principal

difficulty attached to the proof of such results is obtaining the necessary qua-

siconformal (from now on, we often use the abbreviation qc) extension and

showing that its complex dilatation satisfies (1.1). Recently Epstein [6] has ob-

tained a very general criterion for a locally univalent meromorphic function

/ in A to have a k-qc extension. This result encompasses the conditions of

Nehari and Becker mentioned above (see [6, p. 133]) and the methods of proof

are of a differential geometric character.
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In this paper we provide an alternative and, we hope, more direct proof of

such results by means of quasiconformal reflections. Let D be a Jordan domain

in C with boundary dD. Following Ahlfors [1], we say that a qc reflection in

dD is a sense-reversing qc map of C onto itself that takes D onto C\D and

fixes each point on dD .

1.2. The theorem of Epstein is the following [6, Theorem 7.2, p. 126].

Theorem A. Let fi be meromorphic and locally univalent in A. Suppose that

there exists a real-valued function a in C5(A) suchthat

(1.2)
(l-\z\2)\ozz(z)-cz(z)2-\S(fi, z)] - 21(1 - \z\2)oz(z)

l + (l-\z\2fo-(z)
< k,

for some k £ [0, 1 ) and all z £ A, and satisfying the following two supplemen-

tary conditions:

(1.3) 1 + (l-|z|2)2az-(z)>0

and

(1.4) |rjz(z)|(l-|z|2)</c1max{|z|,(2|z|)-1},

for all z £ A and some kx £ [0, 1).   Then fi is univalent in A and has a

k-quasiconfiormal extension to C.

We remark that even though (1.2) appears to depend on / only through

S if), we may, by choosing a to depend on /, obtain conditions such as the

Becker criterion which involve / through quantities other than S(f).

A special case of interest, suggested by Pommerenke, arises from taking

a = Re log tp , for some locally univalent analytic function tp . The principal

condition ( 1.2) then becomes

(1.5) hi - \z\2)2[S(f, z) - S(tp, z)] + z(l - |z|2)^(z)
z tp

<k.

The Nehari criterion arises from taking tp(z) = z and the Becker criterion

from taking tp = fi. By the method of Löwner k-chains, Pommerenke [9]

subsequently showed that, in this case, Theorem A remains true without the

side-condition (1.4), while (1.3) is trivially satisfied since a is harmonic. Pom-

merenke made special use of the assumption that his condition involves an

analytic function tp rather than a more arbitrary function o, and a crucial

step in the proof is an application of the maximum principle. Also using the

method of Löwner chains, T. Betker has recently extended Pommerenke's result

to involve qc reflections other than 1 fiz.

1.3. Let D be a quasidisk in the finite complex plane C and let Ç(z)

be a qc reflection of order 2 in dD which is continuously differentiable in

C\(ööU{C(oo)}). If oo £ dD, we assume that l/A,(z) is continuously differ-

entiable at z = Ç(oo). We write J = J(Ç, z) for the Jacobian determinant of
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1 1
C at the point z and note that J = \Çz\ - |Ç-| < 0, since C is a reflection.

(Recall that by definition, a TC-quasidisk and a A>quasicircle are the images of

the unit disk and the unit circle, respectively, under a qc map of C onto itself

whose maximal dilatation does not exceed KA)

Epstein proved his result first for functions /, meromorphic in a neighbor-

hood of the closed unit disk A and then dealt with the general case by using

an approximation argument due to Ahlfors [1,2]. It is precisely this approxi-

mation method that gives rise to the supplementary conditions (1.3) and (1.4).

In our result, proved by the method of qc reflections in a general quasicircle

(see [1, pp. 299-300]) we also consider first the case when / is sufficiently well

behaved in the closure D of some quasidisk D.

Theorem 1. Let D and Ç be as above and suppose that the function f is locally

univalent and meromorphic in a neighborhood of D. Let g be a complex-valued

function in CX(D) such that for each z0 e dD, we have

(1.6) Jim {\(z - H(z))giz)\ + \z- t(z)\2(\gz(z)\ + \gY(z)\)} = 0.
z—»z0

z€£>

We further assume that each z0£dD has a neighborhood W suchthat |Ç-| is

bounded in W\D. Suppose that

(1.7) < k.2gÇJ(z -Q-(z- Q2{gTCz + CT[_g2 -gz + \S(f)]}

J - 2gCJ(z -Q + (z- Q2{gjCz + Cz[g2 -gz + ^S(fi)]}

for some k £ [0, 1) and all z £ D. Then f is univalent in D and has a

k-quasiconformal extension h to C given by

(1.8)       h(z) = fi(C(z)) +-(*-«*))/(«*))-
l + (z-C(z)){g(C(z))-if(f(z))}

for z£C\D.

Note that (1.8) is equivalent to

(1.9) g(z) = (z- C(z))-1 + !£.(*) + f(z)[h(Ç(z)) - fi(z)fX

for z £ D. Hence g(zf) remains finite even if / has a simple pole at z = zQ,

at least if h(Ç(zf) is finite; and h(Ç(zf) is finite if the conclusion of Theorem

1 holds. In (1.7) the functions £, g, S(f) and their derivatives are, of course,

evaluated at z £ D. We understand (1.7) to mean that the denominator does

not vanish at any z £ D. In Theorem 1 we have assumed that co £ D. If

oo £ D then some technical problems arise that can be dealt with by using

Möbius transformations. This will be done in §9.

Note that (1.6) is satisfied if the domain D is bounded and if g, gz and g-

are bounded. This will be the case later on in our approximation arguments.

Finally, we note that by [1, Lemma 2, p. 295] (or [7, Lemma 6.4, p. 40]),
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any quasicircle dD admits a qc reflection ¡A, such that |£-| and hence |ÇZ| is

bounded in W\dD for some neighborhood W of dD (or indeed in C\«3D if

oo £dD).

Remark. The condition (1.6) as well as the assumption concerning the bound-

edness of \Çf, are required only to prove that the suggested qc extension / of

/ is indeed locally homeomorphic at each z0 £ dD. We mention without proof

that (1.6) can sometimes be relaxed as follows. Suppose that Ç is continuously

differentiable at z0 £ dD\ {oo}. Then we may replace (1.6) by the assumption

that

(1.10) ReCz(z0) = 0,        (C-z)g^a,

(C - z)2gz -, (1 - Cz(z0))a, (C - z)2g- -, -aC7(z0)

as z -, zQ in D, where Ç, g, gz and gY are evaluated at z and a = a(zQ) £ C

with

(1.11) |a|2<l+2(Ima)(Imfz(z0)).

The conditions (1.10) and (1.11) guarantee that / is locally homeomorphic

at z0 . Requirements of this type are probably practical only if dD is a very

smooth curve, such as a circle or a line, so that Ç e C (C). For example, in [4,

p. 36], we have D = {z : \z - zx\ < R}, Ç(z) = zx + 7?2(z - ~zx)~x , say, and

we may take g(z) = (c - l)(((z) - z)~ for z £ D where c £ C (cf. formula

(6.8) in §6 below). Thus we have Çz = 0 and a = c - I for all z0 € dD.

Therefore (1.11) is equivalent to \c - 1\ < 1, which, as pointed out in [4, p.

36], is precisely the condition required there. Note that for this function g,

the assumption (1.6) of Theorem 1 is not satisfied.

1.4. The condition (1.7) may appear awkward but, in fact, it characterizes func-

tions / having qc extensions. Note that if /, originally defined in D and not

necessarily in D, has a kQ-qc extension to C then / also has a continuously

differentiable k-qc extension h to C, where k may be slightly larger than k0.

Given such an h we may define g by (1.9). It can be verified that (1.7) is

equivalent to the statement that \p(h, C(z))| < k . This shows that, for any /

that admits a qc extension, there is some function g in C (D) such that (1.7)

holds for all z £ D and some k £ [0, 1 ). But note that if, for example, f(D)

has nonempty exterior E , one could start with any k-qc map h of C\D into

E and define g by (1.9); then (1.7) holds. Thus, given g, we need some extra

conditions such as (1.6) to guarantee that the function h defined by (1.8) is

actually connected to /. Further examples related to this will be given in §7.

If D = A, we may take Ç(z) = 1/z . Then (1.7) simplifies to

(112) (1 - \z\2)\gzjz) - g(z)2 - {-S(f, z)] -21(1- \z\2)g(z)   < k

l + (l-|z|2)2^(z)
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The function g in Theorem 1 thus corresponds to az in Theorem A. If D is the

upper half plane we may take £(z) = z, and then (1.7) reads, with z = x + iy,

-ig(z)+y[gz(z)-g(z)2-l2S(fi,z)]\
(1.13) Ay

l+4y2gJz)
<k.

Our method has not only the advantage of giving an explicit qc extension, but

it shows, in addition, that in Theorem A the condition that a be real-valued is

unnecessary and that it suffices for a to be in C2 instead of C5.

In §§3-6 we deal with the general case for the unit disk, using approximation

arguments. The case of a general quasidisk D c C is considered in §8. Un-

fortunately, technical difficulties constrain us to considering only quasidisks D

whose boundary dD admits a qc reflection £ that can be approximated in a

certain sense sufficiently well by qc reflections Çn in dDn. Here {Dn} is an

increasing sequence of quasidisks whose union is D. We do not know whether

or not every quasicircle dD admits a reflection Ç that can be so approximated.

2. Proof of Theorem 1

2.1. We must define a function h in D* = C\D such that if f(z) = h(z) for

z £ D* and f(z) = fi(z) for z £ D then / is a k-qc map of C onto itself

extending /. We set

nu »(C(z)) + (z-C(z))L/(C(z))      Ajz)
(     ' ( }     v(C(z)) + (z-az))V(C(z))     Biz)'

say, where u,v,U and V are functions, yet to be defined, in D. Such a

definition of h is analogous to a formula of Ahlfors [1, p. 299] where he made

specific choices for u, v, If and V (see also [3]). Since u, v, U and V may

be multiplied by the same function without changing h , we may, and we shall,

choose v(z) = 1 . It is evident that we can write an arbitrary function h in

the form (2.1) as long as at least one of the functions u,v,U and V remains

arbitrary. When z € dD we have Ç(z) = z and we want to have h(z) = f(z).

Hence we require that u(z) = f(z) for z £ dD and we make the reasonable

(and permissible) choice of u(z) = f(z) for all z £ D, leaving U and V still

at our disposal.

A calculation now shows that

hz(z)B(z)2 = (U-fV) + (/-(U- fiV))Cz

(2-2) +(z- C){Cz[(U - fV)z + 2fv\ + ZfU - fV)-}

+ (z- C)2{Cz(UzV- VzU) + Cz(UYV - V-U)),

where ¡A, = C,(z), A,z and Cz are evaluated at z £ D*, and U, V, f and their

derivatives are evaluated at Ç(z). Similarly, we have

hJ(z)B(z)2 = {/-(U-fiV)}CJ

(2-3) +(z- CHCjiiU - fiV)z + 2fV] + CY(U - fiV)-\

+ (z- t:)2{C7(UzV - VzU) + UU-V - V-U)}.
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In order to simplify (2.2) and (2.3) we set U - fiV = f and note that then

U - fiV will be meromorphic in D so that (U - fiV)- = 0. This choice of

U—note that V is still arbitrary, as we require—eliminates two types of terms

in (2.2) and (2.3). The complex dilatation p(h) of h is now given by

(2.4)

(z - C)C7[f + 2f'V] + (z- Q2{(fi"V + fi'V2- f'VfCj -fVjÇj^

f + (z- QCffi" + 2fi'V) + (z- Q2{(fi"V + fi'V2- fi'Vz)Cz - fv-cz} '

Given a function g £ C (D) such that (1.7) holds, we set

(2.5) V(z) = g(z)-^jT(z).

Then V £ CX(D) so that h is absolutely continuous on lines and differentiable

everywhere in D* possibly apart from some exceptional points that will be

discussed below. It is now a technical matter to conclude, using (2.4) and (2.5),

that (1.7) is equivalent to the statement

(2.6) \p(h,z)\<k   when z ^ oo ̂ /(C(z))   and   B(z)^0.

Also h is continuously differentiable at each z £ D*, apart from the exceptions

specified in (2.6), and hence, by the inverse function theorem, h is locally

homeomorphic at each such point.

2.2. The proof now follows a standard procedure. We show that h is locally

univalent at all points z £ D* and that / is locally univalent at all z £ dD.

By a well-known topological result, used in all known proofs of this kind of

injectivity criterion (cf. [2, p. 23]), it follows that the function / is a homeo-

morphism of C onto itself. Now / is ACL with \p(f, z)\ < k for a.e. z £ D*

and / is conformai in D. Moreover, the quasicircle dD is a removable set

for qc mappings that are homeomorphic in C. We conclude that / is a k-qc

mapping, and Theorem 1 will then be proved.

To show that / is locally univalent at the exceptional points and at the

boundary points z0 of D, we apply the inverse function theorem to /, or to

l/fi if fi(zf) = oo . If z0 £ dD, the assumption (1.6) implies that / (or l/fi)

is continuously differentiable at z0 with fifzf) = f(zf and fi-fzf) = 0. If

z0 = oo £ dD, we consider /(1/z) or l//(l/z) instead. We leave the details

to the reader.
To remove the restrictions of (2.6), note first that, by assumption, we have

oo £ D so that Ç(z) 5¿ co for all z £ D*. Suppose that B(zQ) = 0 and

/(C(z0)) # co, for some z0 £ D*\{co}. Then, for all z in some neighborhood

W of z0 we have

A(z) = (z- C(z))/(C(z)) + B(z)fi(C(z)) ji 0,
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since f(^(zf)) t¿ 0, co. Hence 1/h = B/A is well defined, finite and contin-

uously differentiable in W. Since \p(l/h)\ = \p(h)\ we have \p(l/h)\ < k in
W. Thus l/h, and hence h , is locally univalent in W. In particular B(z)

can vanish in W only at z = z0.

If z0 t¿ oo but /(C(z0)) = oo then

^1(z) = [C(z)-C(z0)M(z)   and   Bx(z) = [Ç(z) - Ç(zf]B(z)

have finite limits as z ^> z0 with Bx(zf) ^ 0. We may then define h(zf) =

Ax(zf¡/Bx(zf) and conclude that h is locally univalent at z0 .

If   z0   =   oo   €   D*   we proceed as above,  multiplying   A   and   B   by

(z-i(z))-1 if /(C(z0)) # co and by (Ç(z)-Ç(z0))(z-Ç(z))-X if /(£(z0)) = oo,

so that h remains finite as z -, z0.  If it happens that f(Ç(zf) ¿ oo but

2g(Ç(zf) = 4-(C(z0)) we consider l/h instead of h . Note that, in that case,

U(zf) = f(tA,(zf)) t¿ 0 so that l/h(l/z) is well defined, finite, and continuously

differentiable in a neighborhood of z = 0. In all these cases h will be locally

univalent at z0 so that h , and hence /, has finally been shown to be locally

homeomorphic everywhere. This completes the proof of Theorem 1.

3. Approximation methods

In the standard case of the unit disk A the usual method of approximation is

to set fi(z) = f(rz) for 0 < r < 1 and to consider / as the limit lim^^ fir (z)

for a suitable sequence rn increasing to 1 . The condition (1.7) at the point

rz will not, in general, imply (1.7) for the function fi at the point z, but

various side-conditions ensuring this have been given by Epstein in Theorem A,

following Ahlfors. We may also use these arguments [6, pp. 131-132], together

with Theorem 1 to obtain Epstein's result. The point of Theorems 2 and 3

below, however, is that by using more careful approximation arguments, and

applying Lemma 1, which will be stated and proved in §4, we may further

weaken the side-conditions required in addition to (1.7).

The function fi is meromorphic in a neighborhood of A and we wish to

apply Theorem 1 to conclude that fr is univalent in A and has a A:,-qc extension

to C, for some kx £[Q, I). Therefore, at least for a sequence rn —* 1 we need

to find functions gn such that (1.7) holds for all z € A, with / and g replaced

by fin and gn . Here we write fin for fi and set gn(z) = rng(rnz). However,

it is not clear that (1.7) for / and g implies (1.7) for fin and gn and the

extra conditions are imposed to guarantee this. From now on we shall use the

reflection Ç(z) = 1/z so that (1.7) becomes (1.12).

In Theorem A the function ozl, corresponding to gr in Theorem 1, is as-

sumed to be real-valued. In this case we may replace (1.4) by the weaker con-

dition

(3.1) limsup|£(z)|(l-|z|2)<Â:, < 1.
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Theorem 2. Let fi be a locally univalent meromorphic function in A. Suppose

that (1.12) and (3.1) hold with 0 < k < k2 < 1 and that the complex-valued

function g £ C (A) is such that g- is real-valued. Suppose, further, that

(3-2) l + (l-|z|2)2^(z)>0

for all z £ A. Then fi is univalent in A and has a k-quasiconformal extension

h to C given by (1.8) with Ç(z) = 1/z.

We consider the approximation problem also when g- is complex-valued.

This case is technically complicated and it is the nature of things that we need

an extra condition on \g-\.

Theorem 3. Let fi be a locally univalent meromorphic function in A. Suppose

that (1.12) holds for all z £ A, where g is a complex-valued function in CX(A)

with

(3.3) limsup|g(z)|(l -|z|2)2<t.
1*1-1

Suppose, further, that 0 <k + 2x < 1 and that

,i a\ i- i    / mm        ,2N2     1 (,     4t2(1 +k2)\(3.4) hmsup|g-(z)|(l-|z| )   < ^    1-
l*l-i 2l O-*2)2

Then fi is univalent in A and has a k-quasiconformal extension h to C given

by (1.8) with Ç(z) = 1/z.

The condition (3.2) corresponds to (1.2) in Theorem A. By our interpretation

of (1.12), the denominator is nonzero and is continuous. Thus, in Theorem 2

the left-hand side of (3.2) is always positive or always negative; for the most

natural examples of g it is positive. Perhaps (3.2) is redundant. We know of

no examples of functions / and g for which the conclusion of Theorem 2 is

true and (1.12) and (3.1) hold but (3.2) is violated.

In Theorem 3 note that

4t2(1 + k2) < (1 - Â:)2(l + k2) < (1 - k)2(l +k)2 = (l- k2)2

so that the right-hand side of (3.4) is positive. Also note that (3.3) is a much

weaker condition than (1.6) even if x = 0. However, (3.4) seems unduly re-

strictive. If, instead of (3.3), g satisfies the stronger condition

(3.5) limsup\g(z)\(l-\z\2)<M <oo
l*l-i

then (3.3) holds with x = 0 and we may replace the right-hand side of (3.4) by

\ . Such a change in hypothesis is reasonable, for if Theorem 3 applies to g,

then (3.5) holds. To see this, note that g is then given by (1.9) with C,(z) = 1/z

so that

\g(z)\(l-\z\2)<l+X-
f"7{z) 2 |/'(Z)|(1-|Z|2)

1     |Z| ,+ \h(l/z)-fi(z)\
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Now suppose that / maps A conformally onto the simply connected domain

G. If oc i G then

Ç(z) (l-|z|2)<6

for all z £ A; see [5, p. 42]. Moreover for w £ G let kG(w) denote the density

of the Poincaré metric in G and d(w , dG) the distance of w from dG. Then

by [7, formula (1.4), p. 6], we have

|/(z)|(l - |z|2) = kG(f(z))~X < Ad(f(z), dG)

for all z £ A. Since /z(l/z) i G we have d(f(z),dG) < \h(l/l) - f(z)\.
This proves (3.5) with M = 8 when oo ^ G. If / has one pole in A we

consider (T o f)(z) as \z\ — 1 for some suitable Möbius transformation T

and the result follows again.

4. A TECHNICAL LEMMA

In the approximation arguments of §§5-8 we need the following auxiliary

result.

Lemma 1. Suppose that 0<A<C,D>0,0<k<kx, and that

(4.1) D + kA<kxC.

Let B be a given complex number. Then

(4.2) D + k\A + B\<kx\C + B\,

provided that at least one of the following four conditions is satisfied:

(i) k = kx=D = 0;
(ii) k = 0 < kx and

(4.3) \B\ < C - D/kx ;

(iii) B is real with -B < A and at least one of

(4.4) D + kA<kC

and

(4.5) D + kA<kxC + (kx - k)B

holds; or

(iv) k >0, \B\ <A and

.D.lk2C2-k2A2     D2   k\c + k2A

1   '     2 k¿C-k2A        2 (k]c - k2A)2

Proof. Cases (i) and (ii) are trivial and case (iii) nearly so. If (iii) holds then

A + B and C + 7Í are nonnegative. Then (4.2) reads D + k(A + B) < kx(C + B),

which is equivalent to (4.5). Since k < kx , it follows that (4.2) will also hold

provided that D + k\A + B\ < k\C + B\, which is equivalent to (4.4) since
-B <A.
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We suppose then that (4.6) holds, with the right-hand side positive. We write

B = BX + iB2 with Bx and B2 real. Then \A + B\2 = A2 + \B\2 + 2ABX . Using

a similar expression for \C + B\   and squaring (4.2) we obtain

(4.7) 2kD\A + B\ < a + 2ßBx + y\B\2 = Ex(B),

say, where

a = k2xC2 -k2A2 -D2 >0,        ß = k2xC-k2A>0,        y = k2-k2>0.

That a > 0 follows easily from (4.1). For (4.7) to hold we must have EX(B) >

0. If B = pew we have

(4.8) EX(B) > Ex(-p) = a-2ßp + yp2 = E(p).

Thus EX(B) > 0 whenever \B\ = p0 if and only if E(pQ) > 0.

Squaring (4.7) we obtain

4k2D2(A2 + p2 + 2Apcos0)

2 2   2        2 2
< (a + yp)  + 4ß p cos 6 + 4ßp(a + yp ) cos 6.

Differentiation shows that for a fixed positive p , the function

77(6») = [8k2D2Ap - 4ßp(a + yp2)] cos 6 - 4ß2p2 cos2 6

is maximized at 8 = n , provided that

(4.10) ß(a + yp2)-2ß2p-2k2AD2>0.

Note that, if (4.10) holds, then E(p) > 0 and it suffices to check (4.2) when

B = -p.
The right-hand side of (4.6) is equal to

(aß - 2k2AD2)(2ß2)'x = px,

say, and (4.10) holds if p < px . The condition (4.2) with B = -p reads

(4.11) D + k(A-p)<kx(C-p)

since we are assuming, in addition, that p < A < C. If kx = k then (4.11)

holds by (4.1). If kx > k then (4.11) holds for p < p2 where

p2 = (kxC - kA - D)(kx - k)~X.

Thus to show that (4.2) holds under condition (iv) it remains to show that

px < p2. The equation E(p) = 0 has distinct positive solutions pl and p4

with p3 < p4 say. But by (4.1),

(kx - k)E(pf) = 2Dk{D - kx C - (2k + kx )A) < 0.

Thus E(pf) < 0 and so p2 > pi. Since E(p) > 0 for 0 < p < px we have

also px < p3. Thus px < p2, and Lemma 1 is proved.
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Remark 1. The inequality (4.1) does not imply that px< A. For example, if

0 = 0 and kx = k > 0 then px = \(C + A) > A. For this reason, we assume

in (iv) that p = \B\ < A . Note that if k > 0, we always have

Px < l2(k2xC2 - k2 A2)(k2xC - k2 A)~x <C.

Remark 2. If (4.10) does not hold then 77(0) is maximal at 8 = 0, where

2ß2pcos8x = 2k2AD2 - ß(a + yp2).

Taking 8 = 8X in (4.9) we obtain an inequality equivalent to

(4.12) p2ß(ß - y A) < ßA(a - ßA) - (kAD)2,

where ß - y A = kx(C - A) > 0 and

ß(a - ßA) - k2AD2 = C{(kxC - k2A)(C -A)-D2}>0.

In this case, we require that (4.12) holds and that E(p) > 0. Thus (4.6) might

be weakened somewhat, but we do not pursue this.

5. Proof of Theorem 2

We consider fn(z) = f(rnz) and gn(z) = rng(rnz) corresponding to a se-

quence [rf) increasing to 1 such that / has no poles on {z :\z\ = rn). By

Theorem 1 each fin will be univalent with a kx -qc extension fi to C provided

that (1.12) holds with /, g and k replaced by fin, gn and kx. Note that

the function gn certainly satisfies (1.6). The functions fin then form a normal

family so that a subsequence will tend uniformly in C to a limit function F.

Clearly F(z) = fi(z) for z e A, and F(z) = h(z) for z € C\A where h is

given by (1.8). The function F is, in fact, k-qc since F = h in C\A and

(1.12) is equivalent to 11^(^)11^ < k.
For fin and gn the left-hand side of (1.12) has denominator

(5.1) l+(l-|z|2)2r2%(r„z)

while (3.2) applied at the point rnz reads

(5.2) l + (l_|rnZ|2)2£_(/.nZ)>0.

That (5.1) is positive now follows from (5.2) since we only need to consider the

case gj(rnz) < 0 and use the obvious inequality (1 - |z|2)2r2 < (1 - |r„z|2)2.

We choose p and kx with 0 < p < 1 and k < k2 < kx < 1 such that

2\g(z)\ <kx(l + p2)(l - \z\2yX    for p2 < \z\ < 1.

This is possible by (3.1). Choose n so large that rn> p. Then

(5.3) 2rn\zg(rnz)\ < kfl - r2|z|4)(l - \z\2)~x(l - r2n\z\2yx

for \z\ > p since for such z we have

l + /,2<1 + |z|2<(1_r2|z|4)(1_|z|2r'.
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We now set r = rn and define

j4 = r2(l-r2|z|2r2,        B = r2g-(rz),        C = (1 - \z\2)'2,

D = 2r\zg(rz)\(l - r2)(l - \z\2)~x(l - r2\z\2)~x,

a = r2{gz(rz) - g(rz)2 - {-S(fi, rz)},        ß = 2r3zg(rz)(l - r2\z\2)~x.

The assumption (1.12) for / and g at the point rz states that

(5.4) \a-ß\<k\A + B\.

We want to show that

(5.5) \a-2rzg(rz)(l-\z\2yX\<kx\C + B\

which is (1.12) for fin and gn at the point z, with k replaced by kx.

Following Ahlfors and Epstein we note that (5.4) implies (5.5) provided that

(5.6) 2r\zg(rz)\{(l - \z\2)~X -r2(l- r2|z|2)-1} + k\A + B\<kx\C + B\.

This is equivalent to (4.2), and since B is real, we may use part (iii) of Lemma

1 to conclude that (5.6) holds provided that (4.5) and (4.1) are true.   From
2 2      2 —2

(3.2) with z replaced by rz we obtain B > -r (1 - r \z\ ) = -A. Thus

(4.5) and (4.1) will both hold if D <kx(C -A), which is equivalent to (5.3).

Hence (1.12) is valid for fin and gn if \z\ > p and r = rn> p. For \z\ < p

the inequality (1.12) follows for fin and gn with a suitable kx by the uniform

convergence of {fn) . This completes the proof of Theorem 2.

6. Proof of Theorem 3

6.1. The proof of Theorem 3 follows that of Theorem 2. We use the same

notation but the proof is more complicated. As before, it suffices to show that

(5.6), or, equivalently, (4.2) holds when \z\ > p and r = rn> p for a suitable

p £ (0, 1). In particular, p is chosen sufficiently close to 1 so that (3.4) comes

into effect and the denominator in (1.12) for fin and gn does not vanish for

\z\ > p and rn > p. We choose numbers kx, k2, X, p and v such that, with

the notation of Theorem 3,

0.4 < p2 < 1,        k + 2x < h. < k, < 1,
(f\\\

0<k<v = l-(k2- k)2(k2x + k2)(k2 - k2)~2,

and such that, for p  < \z\ < 1,

(6.2) 2|zg(z)|<(¿2-/c)(l-|z|2r2,

(6.3) |^(z)|(l-|z|2)2<A/2.

This is possible by (3.3) and (3.4) provided that kx is chosen sufficiently close

to 1 and k2 sufficiently close to k + 2x.

Since X < 1, we have by (6.3) that

(6.4) \B\ = r2\g-(rz)\<lA/2<A
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for \z\ > p. Furthermore, an elementary calculation shows that

(l_r2)(l_r2|z|2)-3<(l_|z|2)-1

if 0 < r < 1 and |z|2 > p2 > 0.4. Hence

(6.5) D<(k2-k)C

and consequently D + kA < D + kC < k2C <kxC so that (4.1) holds. To prove

that (4.2) holds, there are two cases to consider.

Case I: k = 0. By part (ii) of Lemma 1 we conclude that (4.2) will hold if

kx \B\ + D < kx C. But from (6.4) and (6.5) we have

(kx\B\ + D)C~x <kxX/2 + k2 < \(kx-k22k~x) + k2<kx

as required.

Case II: k > 0. Since |7?| < A we deduce from part (iv) of Lemma 1 that

(4.2) will be valid provided that

2\B\(k2C - k2A)2 + D2(k2C + k2 A) < (k]c2 - k2 A2)(k2xC - k2 A).

By (6.4) and (6.5) this will be true if

(6.6) vA(k\C-k2A)2 + (k2-k)2C2(k2xC + k2A) < (k\c2 -k2A2)(k2C-k2A),

where v is given by (6.1). This is equivalent to fifC/A) > 0 for a certain cubic

polynomial fiffi). Using (6.1) one can verify that fiffl) = 0 and fft) > 0 for
t > 1. Thus fft) > 0 for all í > 1 and in particular fQ(C/A) > 0. Thus (6.6)
holds and Theorem 3 is proved.

6.2. Although the supplementary conditions of Theorems 2 and 3 are mean-

ingful for all functions g £ C (A), they do not always give the best possible

results. For example, Ahlfors [2, p. 25] obtained the criterion

(6.7) \$S(f, z)(l - |z|2)2 -c(l - c)-z2\ < k\c\

which guarantees that the function /, defined in A, is univalent in A and has

a k-qc extension to C. Here c £ C satisfies \c - 1\ < k < 1. Now (6.7) is

obtained from (1.12) by taking

(6.8) g(z) = (c- l)z(l - |z|2)-' = (c- l)(l/z - z)-1

so that g-(z) = (c- l)(l - \z\2)~2. If c is real then (3.1) and (3.2) hold if

\c - l\ < 1. Hence Theorem 2 applies and (6.7) is a criterion for univalence if

\c - 1| < 1 even if \c - l\ > k . This difference arises since Ahlfors constructs

k-qc approximating functions fin while we have used the fact that the fin may

be just kx-qc for some kx < 1 that need not be related to k .

If c is not real we must apply Theorem 3 where (3.3) holds with x = 0. Now

(3.4) is valid if and only if \c - 1| < \ so that we do not recover the result of

Ahlfors in its full generality. This demonstrates the loss of generality suffered

when passing to simpler but cruder conditions involving only |g|  and |gz|.
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When dealing with g , given by (6.8), Ahlfors in fact considers the relationship

between (5.4) and (5.5) and makes use of the cancellation occurring in (1.12)

between the terms (1 - |z|2)2(gz(z) - g(z)2) and -2z(l - |z|2)g(z). We may

write (5.6) as

(6.9)
2r\zg(rz)\(l - r2)(l - \z\2)  \l - r2\z\2)~X + kr2\(l - r2\z\2)~2 + g-(rz)\

<kx\(l-\z\2y2 + r2g-(rz)\

which is Epstein's inequality (7.13) in [6, p. 132], and which indicates a more

complicated connection between g and g-. For a given function g it may

be best to deal with (6.9) directly to obtain a larger region of variability for

the parameters involved. But our conditions (3.3) and (3.4) seem to be of the

simplest available type which will make sense for all g £ C (A).

We remark that (6.7) guarantees that / is univalent and has a k-qc extension

to C whenever ceC and \c - 1\ < 1. For one can verify that (6.9) holds with

g given by (6.8) and with kx = max{k, \c - 1\) < 1. Thus our method yields a

slight generalization of Ahlfors' result in [2]. Further, if (6.7) holds with k = 1

and if \c - 1| < 1, then / is univalent in A (cf. the argument in [4, p. 39]).

7. Some examples

There may be conditions of a different type from (3.1), (3.3) and (3.4) which,

together with (1.12) imply that the conclusion of Theorems 2 and 3 remains

valid. However some additional conditions are required, otherwise there may

be no connection between the function / and the function h defined by (1.8).

More precisely / could be a totally arbitrary locally univalent meromorphic

function in A such as f(z) = eaz where a > n. Even if / happens to be

univalent, such as f(z) = enz, it is possible that the exterior of /(A) has more

than one component so that / does not have a qc extension.

Nonetheless, if we suppose, for example, that fi(A) has nonempty exterior,

one of whose components is G, say, we may choose as our function h an

arbitrary Cx qc mapping or even a conformai mapping of A* = C\A into G.

Now define g by (1.9). Then (1.12) will be satisfied simply because h is qc,

and there need be no connection whatsoever between / and h .

The following example illustrates this in an even more striking fashion. We

let ipx(z) = \px(x + iy) be the affine stretch y/x(x + iy) = Kx + iy , for some

K > 1, and set \p(z) = (1 + z)(l - z)~  . Define

f(z) = z + z~X,     \z\<l,        and       h(z) = X(z) + /(z)"1 ,     |z| > 1,

where x = V~X ° <PX ° V ■ Then h(z) = f(z) for \z\ = 1 and h(A) = f(A) =

C\[-2, 2]. Thus fi(A) is not a Jordan domain and has no exterior so that /

has no qc extension. However the function g of (1.9) with Ç(z) = 1/z is well

defined even at the origin where / has a pole. Also (1.12) holds for all z £ A

with k = (K - l)(K + iy1 ; note that k can be made arbitrarily small.
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If the right-hand side of (3.4) could be replaced by 1 (assuming, for example,

in addition that (3.5) holds or that in any case (3.3) holds with x = 0) then the

resulting condition would be best possible of its kind. To see this, take f(z) =

enz as above and let h map A* conformally onto a domain whose closure is a

compact subset of the exterior of f(A). We assume that h is conformai in a

neighborhood of A*. Then if g is given by (1.9) with Ç(z) = 1/z, we have

g-(z)(l - |z|2)2 = -1 + 0(1 - \z\)   as \z\ - 1
1   1

so that limsup,, j |g-(z)|(l - \z\ ) = 1. But fi(A) is not even a Jordan

domain, let alone a quasidisk.

One might say that the extra conditions can arise for two reasons. In The-

orem 1, we needed (1.6) to guarantee that / is locally homeomorphic and, in

particular, continuous on dD. In Theorems 2 and 3, we required (3.1)—(3.4) to

ensure that approximation arguments based on the use of the triangle inequality

would go through.

8. Approximable quasidisks

8.1. Let D be a 7C-quasidisk in the finite plane C and let z = tp(w) be a

conformai mapping of A onto D with \p = tp" as its inverse. For z £ D we

write XD(z) = \y/'(z)\(l - \ip(z)\ )~ for the density of the Poincaré metric in

D. Let {Dn}^=x be a sequence of Kx-quasidisks with Dn c Dn+X c D for all

n, such that D = \JnDn. Then, for each r £ (0, 1) we have viDf d {w :

\w\ < r} for all sufficiently large n . We suppose that for some Kx there are

tfj-qc reflections Ç in dD and Çn in dDn for n > 1, such that Ç £ CX(D)

and Cn € Cx(Dn), and denote by J and Jn the Jacobian determinants of Ç

and C„ • Given k ,kx £ [0, 1 ) with k < kx, we write

E = \C/-k2\Cz\2>0   and   En = \(Cn)-\2-k2\(Cn)z\2>0.

We say that D is an approximable 7Í-quasidisk if the following holds:

(i) there exists Kx and an exhaustion of D by Kx-quasidisks Dn of the type

indicated above;

(ii) each Dn has a Kx-qc reflection Çn £ Cx(Df) of order 2 (that is, Cn(Cn(z))

= z) and for each z £ D, we have Çn(z) — Ç(z) as n -, oo ;

(iii) for each ô > 0 there is p £ (0, 1) such that if wiDf) d {w : \w\ < p}
and z £ Dn with \y/(z)\ > p, then, for such a point z ,

(8.1) -lCjJl    7<(1+S)     l(C")7'/"1   ,,

£|z-C(z)|2- X|z-C„(z)|2

<ô(8.2)
KW,

z-C(z))2     En(z-Cfz

(8.3) |Cz|>c>0   and   c <_

(8-4) KCMA"1^-
where c depends on Kx and K only.

En\z - Cniz)\2

(8-4) \(tnyjnE-nx(z-t;n(z)yx\>cxD(z),
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We can always choose {C„} so that (8.3) and (8.4) are satisfied (see [7, pp. 40-

41, Lemmas 6.3 and 6.4]). It is not clear if such reflections Çn satisfy (8.1) and

(8.2). In particular, (8.2) means that |£z| and |(C„)ZI are much smaller than \Çf

and |(C„)ZI • The conditions (8.1)—(8.4) are of an arbitrary and unsatisfactory

nature. They arise in applying the triangle inequality in the proof of Theorem 4

below. However it seems likely that, even if one were more careful, one would

still need to know that D was approximable in some sense similar to the above.

A quasidisk with a sufficiently smooth boundary is approximable, but we do not

know whether or not every quasidisk is.

Theorem 4. Let D be an approximable K-quasidisk contained in C and suppose

that Kx, Ç, tp, ip and XD are as defined above. Let fi be meromorphic and

locally univalent in D and suppose that g is a complex-valued function in C (D)

satisfying (1.7) for some k £ [0, 1) and all z £ D. There is a positive number

s depending only on K and Kx such that, if

(8.5) limsup\g(z)\(XD(z)yx <(l-k)e
Z-.ÖD

and

(8.6) limsup|%(z)|(/0(z))-2 < (l-k)e,
z^dD

then fi is univalent in D and has a k-quasiconformal extension h to C given

by (1.8) for zeC\D.

Here Ç(z) is the qc reflection with respect to which D is approximable. If D

is unbounded we understand z — dD in (8.5) and (8.6) to mean \ip(z)\ — 1 .

We have had to replace (3.3) by the more restrictive condition (8.5), but it seems

likely that (8.5) could be replaced by

(8.7) limsup\g(z)\(Xn(z)yx <M <oc.
z^dD

This condition would then also be necessary. For if / is analytic and univalent

in D then a result of Osgood [8, Theorem 1, p. 450], shows that

(AD(z))-1 < 8   forallzeD.

Thus, if (1.9) holds, we may use the reasoning applied earlier to prove (3.5)

to conclude that (8.7) is valid with M = 12, since \z - Ç(z)\ > d(z, dD) >

(4XD(z))~x . The case when / has a simple pole in D is dealt with by a Möbius

transformation as before.

8.2. To prove Theorem 4 we apply Theorem 1. We show first that (1.7) holds for

C = C„ and k replaced by kx for all z £ Dn. Note that since Dn is bounded

and the restrictions of g, gz and g- to Dn are bounded, the condition (1.6)

holds. Then Theorem 1 yields, for each n, a «^,-qc extension fi   of / from

fi"
fi

ri*)
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Dn to C with fin(z) = hn(z) for z e C\Dn, where hn(z) is given by (1.8)

with C = C„ ■ As in the proof of Theorem 2, we see that a subsequence of {fn}

tends to a «^-qc mapping F, uniformly in C. Since F(z) = f(z) for z £ D

and F(z) = h(z) for z e C\Z>, where h is given by (1.8), we conclude that,

in fact, F is k-qc and Theorem 4 will be proved.

We denote the left-hand side of (1.7) by L(z), or by Ln(z) if £ is replaced

by C„ • For any p £ (0, 1), we have Lfz) —> L(z) as n — oo uniformly for

|v(z)| < />> and in particular the denominator in (1.7) is nonzero for \y/(z)\< p

and sufficiently large n . So if kx > k then \Ln(z)\ < kx for such z and «.

With a = g(z)  - gz(z) + jS(f, z), our assumption (1.7) reads

(8.8)
L 2g

a + g^-z-C <
_k_

Ifrl
J 2gÇz

(z-Q2     z-C
+ gYCz + af-

while we need to prove that

(Uz        2g

(8.9)

a + ft

<

(CJz

_A_
\itn)z\

c„
/„

:*-Cr
2g(CA

+ %(C„)z+a(C„)1

Note that £- / 0 ^ (C„)7 for z e 7)^ since the qc reflections Ç and C„ are in

Cx(Dn). We need to prove (8.9) only when \\p(z)\ > p for a suitable p and

when n is large enough; and if oo £ C\D we may take /? so close to 1 that

\tpid°o))\<p.
An elementary calculation shows that if 0 < k0 < 1 , the inequality |a-a, | <

y 2    _1
k0\a — a2\  holds if \a - a3| < 7Î where a3 = (aj - â:0q2)(1 - k0)      and

7? ^ol«! [l-k0)    . Suppose that A,- ̂  0 and set ^n

Then (8.8) holds if and only if a is contained in a closed disk A0 with centre

ß0 and radius 7?0 where

klCj/t-z <k< 1

«y- = k2JCz(z - O'2 - gYCzCz(l - k2) + 2g(z - C)_1(!CZ|2 - k2C2z)

and

7?07i k\JUz - Q-2 - g-J - 2g(z - Q-XUL «I-
The same is trivially true if tA- = (£z) = 0. Similarly (8.9) holds if and only if

a lies in a closed disk An with centre ßn and radius 7?n, where ßn and 7?M

are defined like ß0 and 7?0 with (,, J, E and fc replaced by Cn, Jn, En and

kx , respectively. Thus (8.8) implies (8.9) if and only if A0 c An for all large n

and this is true if and only if

(8.10) R0 + \ß0-ßn\<Rn-

By (8.5) and (8.6) there is a number p £ (0, 1) such that \g(z)\ < exXD(z)

and \gj(z)\ < ex(XD(z))2 for p < \ip(z)\ < 1 where ex = (1 - k)e. Using these

estimates we may calculate \ß0 - ßn\ and use the triangle inequality to conclude
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that (8.10) will hold for n sufficiently large and for z £ Dn with \\p(z)\ > p,

provided that

(8.11)

ex(XD(z))2{kEn + kxE + |ízí A(l - k2) - (Cn)z(Cn)zE(l - k¡)\}

+ 2exXD(z){2kEn\CJ(z - C)"1 ImCz| + 2kxE\(Çn)J(z - Q'x Im(C„)z|

+ \En(z-cyx(\i:J\2-k2c22)

-E(z-cnyl(\(cn)z\2-k2(cn)2z)\}

+ \k2jEnçz(z - cy2 - k2jnE(çn)z(z - cny2\ + kEn\jcY(z - çy2\

<kxE\jnii;n)riz-i;ny2\.

It is now that the inequalities (8.1)—(8.4) in the definition of approximable

quasidisks are used. There is a number k = k(Kx) £ (0, 1) such that |£z| <

ic|Cr| and |(CJZ| < K\(Cn)T\ for all z £ Dn. Dividing (8.11) by EnE and using
(8.1)-(8.4) we see that (8.11) will hold if

(,12)      ^{(-?H<-™}
-|z-t^)|{fc'-^¿(1+fc + fe2)}

where c is as in (8.3) and (8.4). Choosing kx = \(l + k) and taking e and

ô small enough, with e depending on c and k only, we can satisfy (8.12)

provided that XD(z) < c,|z - £n(z)|-1 for some cx= cx(K, Kx). This, in turn,

follows from (8.3) and (8.4) since \Jn\ < En . Theorem 4 is proved.

9.  MÖBIUS INVARIANCE PROPERTIES

9.1. Let / be meromorphic and locally univalent in a quasidisk D. We may

write fi = fix /fi2 where /, and fi2 are linearly independent solutions of y" +

\S(fi)y = 0. The Ahlfors-Weill extension [3, p. 975], corresponds to the situ-

ation g = 0 in (1.7) and is obtained by taking u = fix, v = fi2, U = fx and

V = f2 in (2.1). It is an observation, due to Thurston, that for the Ahlfors-Weill

extension we have, for each z0 £ C\D, that h(zf) = M(zf). Here h is given

by (1.8) and M is the Möbius transformation dependent on / and zQ such

that

(9.1) M(C0) = /(C0),        M'(C0) = /(C0)

and

(9.2) M"(C0) = /'(Co)

where £0 = i(zn) e D > an(l £ is tne Qc reflection in dD. A calculation shows

that the extension, given by (1.8), has a similar interpretation in the general

case with (9.1) unaltered but (9.2) replaced by

(9.3) M"(Ç0) = f(Ç0)-2f(Ç0)g(Ç0).
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Here g is the function in CX(D) for which (1.7) is satisfied. This interpre-

tation, therefore, is valid for all continuously differentiable qc extensions. We

note that

ÇiCo) = jiCo)-2giC0) = -2ViC0)

if we choose »si in (2.1). Thus g and V play, to some extent, the role of

/"//' in the Ahlfors-Weill extension.

9.2. Let fi, g, h and D be as in Theorem 1, and let M be a Möbius trans-

formation. We set F = M q fi and 77 = M o h so that 77 is the natural qc

extension of F . Since S(F) = S if), we see that F satisfies (1.7) instead of

/ with the same g and k . A calculation shows that if we replace / by F on

the right-hand side of (1.8) then we indeed get 77 = M o h instead of h . Thus

the formula (1.8) for the qc extension is Möbius invariant in this respect.

9.3. Let fi, g,h,D and ( be as in Theorem 1, and let M be a Möbius

transformation. We define Dx = M~X(D) c C, so that Dx is a quasidisk

possibly containing infinity. Now put n(w) = (M~x o £ o M)(w) so that n is a

qc reflection in dDx, F = fo M in Dx , and

(9.4) G(w) = g(M(w))M'(w)   for w£Dx.

A calculation shows that (1.7) is satisfied for all w £ Dx with / and g replaced

by F and G. Further, then (1.8) yields the natural qc extension H(r\) =

h(M(n)) for F, where n = r](w) £ C\DX. This indicates another Möbius

invariance property of the extension (1.8).
2 3

If oo G Dp a calculation shows that w G(w) — a, w Gz(w) -, -2a and

\w\AGj(w) — ß as w — oo, for some a, ß £ C, so that G(w) -, 0 rather

strongly as w -, oo .

We are now ready to make use of the Möbius invariance properties to extend

Theorems 1 and 4 to the case when oo G D. For such a quasidisk D we

understand (1.7) in the extended sense that, not only does (1.7) hold for all

finite z £ D but that it holds also in some neighborhood of the origin with /, g

and C replaced by /(1/z), -z~2g(l/z) and l/C(l/z), respectively. This is

the natural substitute for (1.7) at z = oo e D.

Theorem 5. Let the assumptions of Theorem 1 or of Theorem 4 be satisfied,

except that now oo £ D and suppose that (1.7) holds in the above extended

sense. Suppose, in addition, that Cil/z) and z~2g(l/z) are in CX(U) for

some neighborhood U of the origin and that Ç(l/z) has nonzero Jacobian in

U. Then fi is univalent in D and has a k-quasiconformal extension h to C

given by (1.8).

The proof of the above generalized form of Theorem 1 follows the proof

of Theorem 1 given in §2. We need only show, in addition, that / is locally
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univalent at z0 e C\D where Ç(z0) = co. Our assumptions imply that the

extension /(1/z) of/(1/z) is locally univalent at the point l/z0eC\D¡ where

Dx = M(D) and M is the Möbius transformation M(z) = 1/z. This follows

since n(l/zf) = 0 ^ oo for the corresponding qc reflection r¡ = M~ o Co M in

dDx. Thus / is locally homeomorphic at z0 as required.

The proof of the extended version of Theorem 4 is similar and is omitted.
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