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ON THE NON-VANISHING OF CUBIC TWISTS
OF AUTOMORPHIC L-SERIES

XIAOTIE SHE

Abstract. Let f be a normalised new form of weight 2 for Γ0(N) over Q
and F , its base change lift to Q(

√−3). A sufficient condition is given for the
nonvanishing at the center of the critical strip of infinitely many cubic twists
of the L-function of F . There is an algorithm to check the condition for any
given form. The new form of level 11 is used to illustrate our method.

0. Introduction

There has been a tremendous amount of recent research on the nonvanishing of
L-functions. On GL(2), the first results are due to Shimura [15], who proved that
a given L-function can be twisted by a character of finite order so that the twisted
L-function does not vanish at a certain point. Shimura’s nonvanishing results were
generalized by Rohrlich [14]. The study of the nonvanishing of quadratic twists
rather than arbitrary finite order twists was started by Goldfeld, Hoffstein and
Patterson [7] for the CM case, and in greater generality by Waldspurger [16]. This
was later complemented by the work of Bump, Friedberg and Hoffstein [2], [3], [5]
using metaplectic Eisenstein series and the Rankin–Selberg method. Alternately,
analytic number theoretic methods have been used by Murty and Murty [12] and by
Iwaniec [10] to obtain nonvanishing results. The first results on the non-vanishing
of cubic twists were obtained by Lieman [11]. He applied the theory of automorphic
forms on the cubic cover of GL(3) to the L-series of the CM elliptic curve x3+y3 = 1.
In this way he obtained a non-vanishing result for cubic twists of the L-series of
the automorphic form corresponding to the curve. However, because the curve has
complex multiplication, the L-series in this instance is a GL(1) Hecke L-series with
grossencharacter. It is this particular fact which made the GL(3) theory applicable.

In this paper we will give the first non-vanishing results for cubic twists of aut-
morphic L-series on GL(2) that are not lifts from GL(1). In particular, we will
show that if f is the new form of weight 2 and level 11, then infinitely many cubic
twists of the L-series of f are non-zero at the center of the critical strip. It then
follows as an immediate corollary that there are infinitely many cubic extensions
K of Q(

√−3) such that the analytic rank of E = X0(11) over K is zero.
Our approach gives a method of obtaining a similar result for any given GL(2)

automorphic form. However, for reasons that will be described below, there is one
step in the computation which can be verified for any given form, but which cannot
yet be done in general.
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Our work is based on a technique recently introduced in [5]. This method involves
the convolution of an automorphic form f with an Eisenstein series on the double
cover of GL(2). We have applied this technique to a similar Eisenstein series on
the cubic cover of GL(2) and have succeeded in obtaining information about the
non-vanishing of cubic twists of the L-series of f .

However, in order for the cubic Eisenstein series to be defined, the ground field
must include the cube roots of unity. Thus we have constructed F , the base change
of f to Q(

√−3). This is a vector valued function on the quaternionic upper half
space H . We have developed a vector version of the classical Rankin–Selberg inte-
gral used in [5], defined a 3 × 3 matrix 3−cover Eisenstein series and studied the
analytic properties, functional equations, poles and residues of the convolution.

In the quadratic case investigated by [5], the existence of infinitely many nonvan-
ishing quadratic twists of the L-series is tied to the nonvanishing of certain residues.
These residues are expressed in terms of a Rankin–Selberg convolution of f with
the quadratic theta function on GL(2). In turn, these are simply the symmetric
square L-functions of f . Their nonvanishing properties are well understood at the
relevant point, which is at the border of the critical strip.

Unfortunately, in the cubic case the corresponding residues are convolutions of
F with the cubic theta function on GL(2). This L-series does not have an Euler
product, and hence its nonvanishing is considerably more subtle. After deriving the
functional equation and analytic properties of the convolution, we will be able to
describe an algorithm to prove that this convolution is non-zero at a certain point
for any given form of f . Then we will be able to conclude that there are infinitely
many cubic twists of f which are non-zero at the center of the critical strip. The
new form of weight 2 level 11 is used as an example to illustrate our method.

1. Notation and preliminaries

We shall summarize a few basic facts about basis change of modular forms. The
reference is S. Friedberg [6].

Let f be a cusp form of weight 2 over Q for the congruence group Γ0(N) with
Fourier expansion f =

∑∞
n=1 C(n)e2πinz , where Γ0(N) =

{(
a b
c d

) ∈ SL(2, Z) |N |c}
and N is a prime≡ 2(mod 3). Here C(n) is the nth Fourier coefficient.

Let K = Q(
√−3), OK = Z[ω]

(
ω = e

2πi
3

)
be the integer ring of K. The different

of K is the ideal (λ), where λ =
√−3. Let H = {z = x + y~k| x ∈ C, y > 0}, the

quaternionic upper half space. Let SL(2, OK) act on H in the usual way. If x ∈ C,
x = u + iv, let e(x) = e4πiu.

Following S. Friedberg [6], we have liftings of f over K. Let F =
[

~Fα

]
, α =

1, 0,−1, be a lifting of f on H . F has a Fourier expansion as follows:

F =

 F1

F0

F−1


=

∑
m∈OK

am

 i
2 ξ(λ−1m)W1(|λ−1m|y)

W0(|λ−1m|y)
−i
2 ξ−1(λ−1m)W1(|λ−1m|y)

 e(λ−1mx)

(1.1)
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where

Wα = y ·Kα(y), ξα(m) =
(

m

|m|
)α

,

and

Kα(y) =
1
2

∞∫
0

e−
y
2 (t+t−1)tα

dt

t

is the standard K-Bessel function.
The coefficients am are multiplicative and are given as follows:

a(℘n) = (N℘)−n/2

C(pn), χ−3(p) = 1, N℘ = p,
n∑

f=0

(−1)fpfC(p2n−2f ), χ−3(p) = −1, ℘ = pOK .
(1.2)

In particular

a(℘) =

{
p−1/2C(p), χ−3(p) = 1,

p−1
(
C(p2)− p

)
, χ−3(p) = −1.

It is easy to check∑
m∈OK/O∗K

a(m)(Nm)1/2

(Nm)s
=

∞∑
n=1

C(n)n−s
∞∑

n=1

C(n)χ−3(n)n−s.

For g =
(

a b
c d

) ∈ SL(2, C), z = x + y~k ∈ H ; define:

J3(g, z) =

 (cx + d)2 −(cx + d)cy (cy)2

2(cx + d)cy |cx + d|2 − |cy|2 −2cycx + d

cy2 (cx + d)cy cx + d
2


.

(1.3)

Let Λ0(N) = {(a b
c d

) ∈ SL(2, OK)
∣∣N |c, a ≡ d ≡ 1 (mod3) }. Let ωN =

(
0 −1
N 0

)
1√
N

.
Following S. Friedberg [6], page 8, we have, for γ ∈ Λ0(N),

F (γz) = J3(γ, z)F (z),(1.4)

and

F (ωNz) = J3 (ωN , z)F (z).(1.5)

Let
(•
•
)

be the cubic residue symbol; for its basic properties see [9], page 112.
For µ ∈ (λ−3), d ∈ OK , d ≡ 1 (mod3), the cubic Gauss sum is defined by

g(µ, d) =
∑

δ (mod d)

(
3δ

d

)
e

(
3µδ

d

)
.

We summarise the basic properties of the cubic Gauss sum in the following
proposition (see [4], page 486 for details).

Proposition 1.1. i) If (a, d) = 1,

g(aµ, d) =
(a

d

)
g(µ, d) =

(a

d

)2

g(µ, d).(1.6)
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ii) If (d, d′) = 1, d ≡ d′ ≡ 1 (mod 3),

g(µ, dd′) =
(

d

d′

)2

g(µ, d)g(µ, d′).(1.7)

iii) If p is prime, p ≡ 1(3), then |g(1, p)| = √Np = |p|,

g(pk, pl) =



Npk · g(1, p) if l = k + 1, k ≡ 0(3),
Npk · g(1, p) if l = k + 1, k ≡ 1(3),
−Npk if l = k + 1, k ≡ 2(3),
Npl −Npl−1 if l ≡ 0(3), k ≥ l,

0 otherwise.

(1.8)

The following L-series appears naturally in the Fourier coefficients of the meta-
plectic Eisenstein series. Define

Ψ(s, µ) =
∑

c≡1(3)

g(µ, c)
(N c)s

.

The residue of Ψ(s, µ) at s = 4/3 was established by Patterson [13]. Let us recall
some specific results of Patterson [13], page 160, and of Bump and Hoffstein [4],
page 487. Note that the function Ψ(s, µ) is Ψ(s, µ, 0) in [13].

Proposition 1.2. i)

Res
s=4/3

Ψ(s, µ) = C0
τ(µ)
|µ|1/3

(1.9)

where

C0 =
(2π)2

38 · 2 · ζ(2)
σ

V · Γ(4
3 )

(2π)4/3
, σ =

√
35/4, V = 9 ·

√
3

2

τ(µ) =



g(λ2, c) | d
c | 3n/2+2 if µ = ±λ3n−4cd3, n ≥ 1 ,

e
−2πi

9 g(ωλ2, c) | d
c | 3n/2+2 if µ = ±ωλ3n−4cd3, n ≥ 1,

e
2πi
9 g(ω2λ2, c) | d

c | 3n/2+2 if µ = ±ω2λ3n−4cd3, n ≥ 1,
g(1, c) | d

c | 3(n+5)/2 if µ = ±λ3n−3cd3, n ≥ 0,
0 otherwise,

(1.10)

with c ≡ d ≡ 1 (mod 3), c, d ∈ OK and c square free.
ii) Define

a(µ) =

{
g(1, f) | h

f | if µ = fh3, f ≡ h ≡ 1(3), f sq free, µ ∈ OK ,

0 otherwise.
(1.11)

If (µ, µ′) = 1, µ ≡ 1 (mod3), µ ∈ OK , µ′ ∈ (λ−3), then we have

τ(µµ′) =
(

µ′

µ

)
a(µ)τ(µ′).
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2. The Eisenstein series and their expansion; Theta series

In this section, we will define some metaplectic Eisenstein series and compute
their residues at the relevant poles.

Let Λ be the principal congruence subgroup modulo 3 of SL(2, OK). For γ ∈ Λ,
we define the Kubota symbol

κ(γ) =

{
1 if c = 0,(

c
d

)
if c 6= 0,

where
(•
•
)

is the usual cubic residue symbol. Kubota observed that κ is a character
of Λ.

If z = x + y~k ∈ H , let y = y(z). Define

E∞(z, s) =
∑

γ∈Λ∞\Λ0(N)

(
N

π(γ)

)2

κ(γ)y(γz)2s ,(2.1)

where π

((
a b
c d

))
= d and Λ∞ = {γ ∈ Λ0(N) | γ(∞) = ∞}. Then we have

E∞(γz, s) =
(

N

π(γ)

)
κ(γ)E∞(z, s), ∀γ ∈ Λ0(N) .(2.2)

Define

E0(z, s) = E∞(ωNz, s), i.e. E∞

(
1√
N

(
0 −1
N 0

)
z, s

)
.(2.3)

Then it is easily checked that

E0(γz, s) = κ(γ)E0(z, s), ∀γ ∈ Λ0(N).(2.4)

As E0(z + 3 OK , s) = E0(z, s), E0(z, s) has a Fourier expansion

Proposition 2.1.

E0(z, s) =
∑

m∈(λ−3)

am(s, y)e(mx)

=
(2π)2sN−2s

Γ(2s)V (C/3OK)

∑
m∈(λ−3)

m 6=0

Am(s)N (m)s−1/2

N (m)1/2
W2s−1(|m|y)e(mx)

+ a0(s, y) ,

(2.5)

where

a0(s, y) = y2−2s π

2s− 1
ζN (6s− 3)
ζN (6s− 2)

,

ζN (s) = (1 −NN−s)ζ(s),

Am(s) =
∑

d≡1(3)
(d,N)=1

g(m, d)
(Nd)2s

, ζ(s) =
∑

d≡1(3)

1
(Nd)s

,

(2.6)

and V (C/3OK) is the Euclidean volume of C/3OK .
It is clear from the term a0(s, y) that E0(z, s) has a simple pole at s = 2/3. The

residue can be taken out at this point yielding the cubic theta function.
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Define the theta series,

θ(z) = Res
s=2/3

E0(z, s)

= C2

∑
m∈(λ−3)

m 6=0

Ress=2/3 Am(s)N (m)1/6

N (m)1/2
W1/3(|m|y)e(mx) + Cy2/3

= C1

∑
m∈(λ−3)

m 6=0

τ(m)
N (m)1/2

W1/3(|m|y)e(mx) + Cy2/3

(2.7)

where

C2 =
(2π)4/3N−4/3

Γ(4/3)V (C/3OK)
, C1 =

1
2
· C2C0

1−N−2

1−N−4
,

and C is a constant which we shall not need.

The coefficients τ(m) are those of Patterson’s theta function and are described
in (1.10). In (2.7) we make use of the following lemma.

Lemma 2.2. For m ∈ (λ−3), we have

Res
s=4/3

∑
d≡1(3)
(d,N)=1

g(m, d)
(Nd)s

= C0
τ(m)
|m|1/3

· 1−N−2

1−N−4
.(2.8)

Note that the residue in (2.8) has an extra condition (d, N) = 1 when compared
to Patterson’s result (1.9).

Proof of Lemma 2.2. For m ∈ (λ−3), define

Ãm(s) =
∑

d≡1(3)
(d,N)=1

g(m, d)
Nds

, B̃m(s) =
∑

d≡1(3)
(d,N)=1

g(N2m, d)
Nds

,

C̃m(s) =
∑

d≡1(3)
(d,N)=1

g(Nm, d)
Nds

,

(2.9)

Set

um = Res
s=4/3

Ãm(s) = 2 · Res
s=2/3

Am(s),

vm = Res
s=4/3

B̃m(s), wm = Res
s=4/3

C̃m(s).
(2.10)
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To compute vm, (m, N) = 1, we start with

0 = C0
τ(N2m)
|N2m|1/3

= Res
s=4/3

∑
d≡1(3)

g(N2m, d)
Nds

= Res
s=4/3

 ∑
d≡1(3)
(d,N)=1

g(N2 m, d)
Nds

+
∑

d≡1(3)
(d,N)=1

g(N2 m, N3d)
Nds


= vm + Res

s=4/3

g(N2 m, N3)
(NN3)s

·
∑

d≡1(3)
(d,N)=1

g(N2 m, d)
Nds

= vm +
−(NN)2

(NN)4
vm

= (1−N−4)vm.

Thus

vm = 0.(2.11)

Using a similar technique for um, wm, with (m, N) = 1, we have a linear system

um +
(m

N

)2

g(1, N)N−8/3wm = C0
τ(m)
|m|1/3

,(m

N

)
g(1, N)N−10/3um + wm = C0

τ(m)
|m|1/3

=
g(1, N)

(
m
N

)
N4/3

C0
τ(N m)
N |m|1/3

.

(2.12)

Solving this linear system, we have proved (2.8) for (m, N) = 1. We have

um = C0
τ(m)
|m|1/3

1−N−2

1−N−4
(2.13)

and

wm = C0
τ(m)
|m|1/3

N4/3(1−N−2)
(

m
N

)
g(1, N)

1−N−4
.(2.14)

Now write m = N jm′, with (m′, N) = 1.
Then in each of the three cases j ≡ 0, 1, 2 (mod 3), we write the answer in terms

of m′ first, using the previous result for (m′, N) = 1, then write the answer in terms
of m. We find the answers are the same as the right side of (2.8) in terms of m for
all cases. This completes the proof of Lemma 2.2.

Using the multiplier J3(g, z), we can define a Eisenstein series:

E3
∞(z, w) =

∑
γ∈Λ∞\Λ0(N)

κ(γ)J3(γ, z)y2s(γz) .(2.15)

This is a 3× 3 matrix function satisfying

E3
∞(δz, s) = E3

∞(z, s)κ(δ)J−1
3 (δ, z), ∀δ ∈ Λ0(N).(2.16)
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We will need the expansion of E3
∞(z, s) at the cusp 0. We define

E3
0 (z, s) = E3

∞(ωNz, s)J3(ωN , z)

=
∑

γ∈Λ∞\Λ0(N)

κ(γ)J3(γωN , z)y2s(γωNz) .(2.17)

It transforms as follows:

E3
0(δz, s) = E3

0(z, s)
(

N

π(δ)

)
κ(δ)J−1

3 (δ, z) .(2.18)

It is easy to check that E3
0(z+3 OK , s) = E3

0(z, s). Thus E3
0(z, s) has the Fourier

expansion

Proposition 2.3.

E3
0 (z, s) =

∑
m∈(λ−3)

a3
m(s, y)e(mx) .(2.19)

Then, for m 6= 0

a3
m(s, y) = y2sN1−2sy4−4s 1

V (C/3OK)

∑
d≡1(3)

(d,N)=1


(

d
|d|
)2

1 (
d
|d|
)2


×
(

N
d

)
g(m, d)

(Nd)2s−1

∫
C

x2 −x 1
2x |x|2 − 1 −2x
1 x x2

 e(mx)
(|x|2 + 1)2s

dx .

(2.20)

When m = 0, we have

J · a3
0(s, y) =

ζN (6s− 6)
ζN (6s− 5)

· π

2s− 2
· 3− 2s

2s− 1
· y4−2s ,(2.21)

where ζN (s) is as in (2.6), J = [0, 1, 0].

We can see that E3
0(z, s) has a pole at s = 7/6. Let us define a new theta series

Θ3(z) = Res
s=7/6

J ·E3
0 (z, s),

which is a 3-dimension row vector. Assembling the above information from (2.8)
and (2.20), we have
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Proposition 2.4.

Θ3(z) = C̃y5/3 +
y5/3N−8/6

V (C/3OK)

∑
m∈(λ−3)

m 6=0

Res
s=7/6

∑
d≡1(3)
(d,N)=1

g(N2m, d)
(Nd)2s−1

· e(mx)

·


2i−1 (2π)7/3

Γ(7/3) ξ−1(m)|my|4/3K1/3(4π|my|)
(2π)4/3

Γ(4/3) |my|1/3K1/3(4π|my|)− 2 (2π)7/3

Γ(7/3) |my|4/3K4/3(4π|my|)
−2i−1 (2π)7/3

Γ(7/3) ξ(m)|my|4/3K1/3(4π|my|)


t

= C̃y5/3 +
N−4/3.(2π)4/3C0

2 · V (C/3OK)Γ(4/3)
· 1−N−2

1−N−4

∑
m∈(λ−3)

m 6=0

τ(N2m)
|N2m|1/3

.

× y5/3.

 −3iπξ−1(m)|my|1/3W1/3(|my|)
|my|−2/3W1/3(|my|)− 3π|my|1/3W4/3(|my|)

3iπξ(|m|)|my|1/3W1/3(|my|)

t

e(mx)

where C̃ is a constant which we shall not need.

3. Convolutions and their residues

In this section, we will define a convolution of F (z) with a metaplectic Eisenstein
series. The convolution may be written as a product of a Dirichlet series with a
convolution of Whittaker functions. Using the technique of [5], we may express
the Dirichlet series as a sum of weighted cubic twists L

(
s, F ⊗ ( •d)) . Further we

compute the residue of the convolution at the relevant poles.
Define a convolution as follows:

R(F, s, w) =

 R1

R0

R−1

 =
∫∫
D

E3
∞(z, w + s)F (z)E0(z, s)

dx dy

y3
(3.1)

where D = Λ0(N)\H .
This is a well defined 3−dimensional integral. As one can easily verify, y−3dx dy

is an invariant volume element, and the integrand is invariant under the action of
z −→ γz, for any γ ∈ Λ0(N). Furthermore the integral converges if Re w, Re s
are sufficiently large. This is because the Eisenstein series converges absolutely for
those values of w and s.

Substituting for the Fourier expansion of F (z), E0(z, s) from (1.1) and (2.5) and
“unfolding”, we have

R0(F, s, w) =
(2π)2sN−2s

Γ(2s)V (C/3OK)3−w

∑
m∈OK

amAλ−1m(s)
(Nm)w

×
∞∫
0

y2(w+s)−2W0(y)W2s−1(y)
dy

y

= L(s, w) ·G(s, w),

(3.2)
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where

L(s, w) =
∑

m∈OK

amAλ−1m(s)
(Nm)w

,(3.3)

G(s, w) =
(2π)2sN−2s3w

Γ(2s)V (C/3OK)

∞∫
0

y2(w+s)−2W0(y)W2s−1(y)
dy

y
,(3.4)

and both L(s, w), G(s, w) converge if Re w, Re s are sufficiently large.
We now apply the technique of [5] and interchange the order of summation to

rewrite L(s, w):

L(s, w) =
∑

m∈OK

am

(Nm)w

∑
d≡1(3)
(d,N)=1

g(λ−1m, d)
(Nd)2s

=
∑

d≡1(3)
(d,N)=1

1
(Nd)2s

( ∑
m∈OK

amg(λ−1m, d)
(Nm)w

)

=
∑

d≡1(3)
(d,N)=1

1
(Nd)2s

∑
p|m
⇒p|d

amg(λ−1m, d)
(Nm)w


 ∑

(m,d)=1
m∈OK

(
m
d

)
am

(Nm)w


=

∑
d≡1(3)

(d,N)=1

1
(Nd)2s

B(d)L
(
w, F ⊗

(•
d

))
,

(3.5)

where

B(d) =


∑
p|m
⇒ p|d
m∈OK

amg(λ−1m, d)
(Nm)w


,

L
(
w, F ⊗

(•
d

))
=

∑
m∈OK

am

(
m
d

)
(Nm)w

.

(3.6)

Here p|m ⇒ p|d means that every prime factor of m is a prime factor of d.
To compute B(d), write d = Md3

1, (M, d1) = 1, that is,

M =
∏
p|d

ordp d 6≡0(3)

pordp d, d1 =
∏
p|d

ordp d≡0(3)

p
ordp d

3 .(3.7)

Let Supp (q)={p prime | p | q}; then we have that Supp (d) = Supp (M) ∪
Supp (d1) and Supp (M) ∩ Supp (d1)= ∅, (∅ is the empty set).

For m ∈ OK , Supp (m) ⊆ Supp (d), write m = m1m2, with Supp (m1) ⊆
Supp (M) and Supp (m2) ⊆ Supp (d1), i.e. (m2, M) = 1, (m1, d1) = 1.
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Then we have,

g(λ−1m, d) = g(λ−1m1m2, Md3
1)

=
(

M

d3
1

)2

g(λ−1m1m2, M)g(λ−1m1m2, d
3
1)

=
(m2

M

)2

g(m2, d
3
1)g(λ−1m1, M).

As am is multiplicative, we have

B(d) =
∑

Supp (m2)
⊆Supp (d1)

(
m2
M

)
g(m2, d3

1)am2

(Nm2)w

∑
Supp (m1)
⊆Supp (M)

g(λ−1m1, M)am1

(Nm1)w
.(3.8)

Now, it is easily checked that the first summation in (3.8) is multiplicative. We
have

B(d) =

 ∏
pt‖d3

1

Dt(p)

 ·DM ,(3.9)

where

Dt(p) =
∞∑

r=0

(
pr

M

)
g(pr, pt)apr

(Npr)w

=
φ(pt)(Np)−tw [apt − (Np)−w

(
p
M

)
apt−1 ](

1− ( p
M

)
ap(Np)−w +

(
p
M

)2 (Np)−2w
)

−
( p

M

)2

(Np)t−1apt−1(Np)−(t−1)w,

DM =
∑

Supp (m1)
⊆Supp (M)

g(λ−1m1, M)am1

(Nm1)w

=
g(λ−1M0, M)aM0

(NM0)w
,

(3.10)

with

M0 =
∏
p|M

pordp M−1, φ(pt) = Npt −Npt−1.

Thus, we have

Proposition 3.1.

L(s, w) =
∑

d≡1(3)
(d,N)=1

1
(Nd)2s

B(d)L
(
w, F ⊗

(•
d

))

=
∑

d ≡ 1(3)
(M, d1) = 1, (Md1, N) = 1

p|M⇒ordp M 6≡0(3)

1
(NMd3

1)2s
DM ·

∏
pt‖d3

1

D̃t(p)·L
(
w, F ⊗

( •
M

))
,

(3.11)
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where D̃t(p) and DM are both functions of w and

D̃t(p) = Dt(p)
(

1−
( p

M

)
ap(Np)−w +

( p

M

)2

(Np)−2w

)
.(3.12)

Let us compute the residues of the convolution R(F, s, w). Recall that E0(z, s)
has a pole at s = 2/3, and its residue is θ(z), as computed in (2.7). Thus R(F, s, w)
has a pole at s = 2/3. Let R0(F, s, w) = J · R(F, s, w), with J = [0 1 0]. Then, we
have

Proposition 3.2.

Res
s=2/3

R0(F, s, w) = L(w + 1/6) ·G(w + 1/6)(3.13)

where

L(s) =
∑

m∈OK

amτ(λ−1m)
(Nm)s

,(3.14)

the am are the coefficients of F (see (1.2)), the τ(λ−1m) are coefficients of θ(z),
as given in (1.10), and

G(s) = C1 · 3s · (4π)−2(s+1) · 22s−2 · Γ2(s + 1/3)Γ2(s + 2/3)
Γ(2s + 1)

.(3.15)

Proof. Using the “unfolding” trick and recalling (1.1), (2.7), we have

Res
s=2/3

R0(F, s, w) = C1

∞∫
0

∫
C/3

y2(w+2/3)

( ∑
m∈OK

amW0(|λ−1m|y)e(λ−1mx)

)
.

 ∑
m∈(λ−3)

τ(m)
(Nm)1/2

W1/3(|m|y)e(mx)

 dx dy

y3

= C1

∞∫
0

∑
m∈OK

amτ(λ−1m)
(Nλ−1m)w+1/6

y2(w−1/3)W0(y)W1/3(y)
dy

y

= L(w + 1/6) ·G(w + 1/6).

Note that (cf. I. Gradshteyn and I. Ryzhik [8], page 716 (6.576) and page 1068
(9.122)),

C13s

∞∫
0

y2(s−1/2)W0(y)W1/3(y)
dy

y
= G(s).

This completes the proof of the proposition.
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To find the other residue of R(F, s, w), first changing variables z → ωNz, we
have

R(F, s, w) =
∫∫
D

E3
∞(z, w + s)F (z)E0(z, s)

dx dy

y3

=
∫∫
D

E3
0(z, w + s)F (z)E∞(z, s)

dx dy

y3

=

∞∫
0

∫
C/3

E3
0 (z, w + s)F (z)y2s dx dy

y3
.

(3.16)

Now, we know that E3
0 (z, s) has a pole at s = 7/6. Its residue is computed in

Proposition 2.4. Thus R(F, s, w) has a pole at s = 7/6− w. We have

Proposition 3.3.

Res
s=7/6−w

R0(F, s, w) = (−1) ·G(7/6− w) · L̃(7/6− w) · 3
4
· (7/6− 2w)(3.17)

where L̃(s) = N−2/3
∑

m∈OK

τ(λ−1N2m)am

(Nm)s .

Proof. By Proposition 2.4 and (1.1), substituting Fourier expansion of F (z) and
Θ3(z), we have

Res
s=7/6−w

R0(F, s, w)

=
N−4/3 · (2π)4/3C0

2 · V (C/3OK)Γ(4/3)
· 1−N−2

1−N−4

∑
m∈(λ−1)

τ(N2m)aλm

|N2m|1/3

×
∞∫
0

[|my|−2/3W0 (|my|)W1/3 (|my|)− 3π|my|1/3W0 (|my|)W4/3 (|my|)

− 3π|my|1/3W1 (|my|)W1/3 (|my|)]y4−2w dy

y3

= C1(4π)2w− 10
3 · 2−2w+1/3 · (−1)

3
4

Γ2(7
6 − w)Γ2(3

2 − w)
Γ(7

3 − 2w)
(
√

3)7/2−w

×
∑

m∈OK

τ(λ−1N2m)am

(Nm)7/6−w
·N −2

3

= (−1)G(7/6− w) · L̃(7/6− w)
3
4
(7/3− 2w),

where

L̃(s) = N−2/3
∑

m∈OK

τ(λ−1N2m)am

(Nm)s
.(3.18)

4. The functional equations

The purpose of this section is to find the functional equations for L(s). We start
with computing the functional equations for the Eisenstein series defined in Section
2.
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Let p be a cusp of Λ0(N), Λp = {γ ∈ Λ0(N)|γ(p) = p} . A cusp is called essential
if the restriction of the Kubota map κ to Λp is trivial. It is easily checked that Λ0(N)
has eight essential cusps,

{∞, 0, 1,−1, 1
3 , 3

N ,− 1
N , 1

N

}
. If p is an essential cusp, then

there is σp ∈ SL(2, R), such that σp(∞) = p, and σpΛ∞σ−1
p = Λp, σpΛσ−1

p = Λ.
We may define the Eisenstein series at a essential cusp as follows:

E3
p(z, s) =

∑
γ∈Λ∞\Λ0(N)

κ(γ)J3(γσ−1
p , z)y2s(γσ−1

p z).(4.1)

Let us put all J · E3
p(z, s) in the same order as in

{∞, 0, 1,−1, 1
3 , 3

N ,− 1
N , 1

N

}
to

form a eight dimensional vector ~E3(z, s). That is,

~E3(z, s) =


...

J ·E3
p(z, s)
...


8×1

.(4.2)

In particular the entry on the top is E3
∞(z, s).

For this vector ~E3(z, s), we have a functional equation as follows:

Proposition 4.1.

~E3(z, s) = Φ(s) · ~E3(z, 2− s) · V −1 · 36s−5 − 1
36s−6 − 1

· ζ(6s− 6)
ζ(6s− 5)

· π

2s− 2
· 3− 2s

2s− 1
,

(4.3)

where

Φ(s) = [aij(s)]8×8

=
(

36s−5 − 1
36s−6 − 1

)−1


2

36s−6−1 1 1 1
1 2

36s−6−1 1 1
1 1 2

36s−6−1 1
1 1 1 2

36s−6−1


⊗
(

AN BN

BN CN

)
.

(4.4)

Here ⊗ is the Kronecker product and

AN =
(N2 − 1)N10−12s

1−N10−12s
,

BN = N1−2s 1−N12−12s

1−N10−12s
,

CN =
(N2 − 1)N2−4s

1−N10−12s
.

Proof. For reasons of space we omit this easy but lengthy computation. Basically,
one gets the scattering matrices from the constant terms of the Fourier expansions
of the Eisenstein series at the various cusps. A similar computation can be found
in [13].

We will be using the functional equation of L(s) in Section 5 to compute L(2/3)
under the assumption that L(s) has no pole at s = 2/3. Here we are going to find
the exact functional equation of L(s). Let J be the row vector

[
0 1 0

]
. Then,
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J ·R(F, s, w) = R0(F, s, w), and the residue of R0(F, s, w) involves L(s). Referring
to Proposition 3.2, we have

L(s)G(s) = J ·
∫∫
D

E3
∞(z, s + 1/2)F (z)θ(z)

dx dy

y3

= J ·
∫∫
D

8∑
j=1

a1j(s + 1/2)Ej(z, (1− s) + 1/2)F (z)θ(z)
dx dy

y3

=
8∑

j=1

a1j(s + 1/2) · J ·
∫∫
D

Ej(z, (1− s) + 1/2)F (z)θ(z)
dx dy

y3

=
8∑

j=1

a1j(s + 1/2)a2j(7/6)Lj(1− s)G(1 − s)

× ζ?(6(1− s)− 2)
ζ?(6s− 2)

· 1− s

s
· 33−6s ,

(4.5)

where

Lj(s) =
∑

m∈OK

aj
mτ(λ−1m)
(Nm)s

.(4.6)

In the above aj
m is the Fourier coefficient of F (z) expanded at the cusp j. In

particular L∞(s) = L(s), and the aij(s) are the entries of Φ(s). Refer to (4.4).
Also,

ζ?(s) = ζ(s)(1 − 3−s)−1 · (2π)1−sΓ(s)

=
√

3 · 3−s · ζ?(1− s) .
(4.7)

In (4.5), we used an important fact that θj(z) = Ress=2/3 Ej(z, s) are in fact the
same up to a scalar a2j(7/6) at all eight cusps, similar to the case of S.J. Patterson
[13], page 152.

In a manner similar to the case of L(s), we can find the functional equation of
L̃(s).

5. The Main Theorem and an example

It is a well known fact that the convolution of a cusp form with the quadratic
theta series is analytic, i.e. the inner product of f with the product of the quadratic
theta series and its conjugate is zero. But in the cubic case we are presently
investigating this inner product might or might not be zero. It is highly probable
that it is non-zero. In fact one could probably prove this by a very unpleasant
computation of the inner product. However, we choose the simpler approach of
simply checking both alternatives.

We are now in a position to state the theorem.
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Theorem 5.1. Let f be a weight 2 newform of Γ0(N) over Q, F be its lifting to
K = Q(

√−3). Let

L(s) =
∑

m∈OK

amτ(λ−1m)
(Nm)s

, L̃(s) = N−2/3
∑

m∈OK

amτ(λ−1N2m)
(Nm)s

,

where am and τ(m) are the Fourier coefficient of F and the cubic theta series θ(z)
respectively. If under the assumption L(s) has no pole at 2/3, L(2/3) 6= L̃(2/3),
then there are infinitely many cube free M ∈ OK , such that

L
(
1/2, F ⊗

( •
M

))
6= 0 .

Proof. Let us recall that in Proposition 3.2, we proved R0(F, s, w) has a pole at
s = 2/3 with residue L(w + 1/6) · G(w + 1/6), and in Proposition 3.3, we com-
puted that R0(F, s, w) has pole at s = 7/6 − w, with residue (−1) · L̃(7/6 − w) ·
G(7/6−w) · 3

4 · (7/6− 2w). As an analytic function of two variables cannot vanish
at an isolated point, we have

R0(F, s, w) =
L(w + 1/6)G(w + 1/6)

s− 2/3

+
(−1)L̃(7/6− w) ·G(7/6− w) · (3/4) · (7/3− 2w)

s− (7/6− w)
+ analytic part,

(5.1)

where

L(s) =
∑

m∈OK

τ(λ−1m)am

(Nm)s
,

L̃(s) = N−2/3
∑

m∈OK

τ(λ−1N2m)am

(Nm)s
,

and G(s) is as given in (3.15).
Define

α =
∫∫
D

Res
s=7/6

J ·E3
∞(z, s)F (z) · Res

s=2/3
E0(z, s)

dx dy

y3
(5.2)

Changing variables z → ωNz, and because the residues of the Eisenstein series
satisfy the same transformation formulas as the Eisenstein series itself, we have

α =
∫∫
D

Res
s=7/6

J · E3
0(z, s)F (z) · Res

s=2/3
E∞(z, s)

dx dy

y3
.(5.3)

If α 6= 0, then both L(s) and L̃(s) have simple pole at s = 2/3, and by taking
residues on both side of (3.13) at w = 1/2, we have

Res
s=2/3

L(s) =
α

G(2/3)
.(5.4)

Thus

L(s) =
α

(s− 2/3)G(2/3)
+ analytic part.(5.5)
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Similarly, we have

Res
s=2/3

L̃(s) =
−α

G(2/3)
,(5.6)

L̃(s) =
−α

(s− 2/3)G(2/3)
+ analytic part.(5.7)

Now substituting (5.5) and (5.7) into (5.1), we have

R0(F, s, w) =
α

(s− 2/3)(s− 7/6 + w)
+

analytic part
s− 2/3

+
analytic part
s− 7/6 + w

+ analytic part.
(5.8)

Thus, R0(F, s, w) has a double pole at s = 2/3, w = 1/2.
If α = 0, then L(s) and L̃(s) are both analytic at s = 2/3 and (5.1) reads

R0(F, s, 1/2) =
G(2/3)
s− 2/3

[L(2/3)− L̃(2/3)] + analytic part.(5.9)

If, under the assumption that L̃(s) and L(s) are both analytic at s = 2/3,
L̃(2/3) 6= L(2/3), then R0(F, s, w) has a simple pole at s = 2/3, w = 1/2.

In both cases, R0(F, s, w) has poles at s = 2/3, w = 1/2. By (3.2), we know
that L(s, w) has a pole at the same point.

Now assuming Deligne’s bound for the coefficients of holomorphic cusp forms,
it is easily checked that the sum (over d1) of all the terms with fixed M in (3.11)
converges absolutely at s = 2/3, w = 1/2 and that the sum (over M) of all the
terms with the same cubic free part in (3.11) converges absolutely at the same
point. Thus we conclude that there are infinitely many cubic free M , such that
L
(
1/2, F ⊗ ( •M )) 6= 0. The proof is thus completed.
Now let us describe a method to compute L(2/3) under the assumption that

L(s) has no pole at 2/3.
We prove the following bound for Lj(s), assuming Deligne’s bound for the coeffi-

cients of holomorphic cusp forms. Let Re s > 1, and let σ0(m) = number of factors
of m. Then

|Lj(s)| =|
∑

m∈OK

aj
mτ(λ−1m)
(Nm)s

|

≤
∑

m∈OK

σ0(m)|τ(λ−1m)|
(Nm)Re s

.

Here the functions σ0 and |τ | are multiplicative. After computing the p−factors we
can prove the following proposition.

Proposition 5.2.

|Lj(s)| ≤ 2 ·
√

3 · 27 · ζ(3s− 1/2)
ζ(s)
ζ(2s)

1 + 2 · 31/2−3s + 2 · 3−1/2−s + 3−4s

(1 + 3−s)2
,

where Lj(s) is as given in (4.6) and aj
m are the coefficients of F at the cusp j.

We will make use of the following lemma from T.M. Apostol [1], page 281, Lemma
3.
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Lemma 5.3.

1
2πi

α+i∞∫
α−i∞
α>0

Hsds

s(s + 1/2) · · · (s + r/2)
=

{
2r

r!

(
1− 1√

H

)r

, H > 1,

0, 0 ≤ H ≤ 1 .

Let us write

l(s) =
∞∑

n=1

bn

ns
= L(s) · ζ(6s− 2) · (1 − 32−6s)−1,

g(s) =
(
310 · 2−8 · π−8

)s · Γ(2s− 2/3) · Γ(2s− 1/3) · Γ2(s + 1/3) · Γ2(s + 2/3) .

(5.10)

The functional equation (4.5) can be rearranged as follows:

l(s)g(s) =
8∑

j=1

a1j(s + 1/2)a2j(7/6)lj(1 − s)g(1− s) · 1− s

s
· 33−6s ,(5.11)

where lj(s) = Lj(s) · ζ(6s − 2) · (1 − 32−6s)−1, aij(s) are entries of Φ(s), which is
the scattering matrix.

Then by the lemma we have

INT =
1

2πi

1+i∞∫
1−i∞

l(s + 2/3)xsds

s(s + 1/2) · · · (s + r/2)

=
2r

r!

∑
n≤x

bn

n2/3

(
1−

√
n

x

)r

,

(5.12)

where as Re(s + 2/3) = 5/3 > 1 implies that the series for l(s + 2/3) converges
absolutely.

On the other hand moving the line of integration to the left

INT =
1

2πi

−β+i∞∫
−β−i∞

β=2/3+δ0
1/3>δ0>0

l(s + 2/3)xsds

s(s + 1/2) · · · (s + r/2)
+

l(2/3)2r

r!

+
l(1/6)x−1/2

(−1/2)(1/2) · · · ({r − 1}/2)
.

(5.13)

Set s = 1/6 in (5.11). Then the right hand side of the equation is analytic,
because both lj(5/6) and g(5/6) are analytic. In the left hand side of the equation
g(s) has a pole at 1/6. Thus we conclude that l(1/6) = 0.

Set r = 10, δ0 = 1/16.
Let

B =
1

2πi

−β+i∞∫
−β−i∞
β=35/48

l(s + 2/3)xsds

s(s + 1/2) · · · (s + r/2)
.
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Then

|B| = ∣∣ 1
2πi

−β+i∞∫
−β−i∞
β=35/48

l(s + 2/3)xsds

s(s + 1/2) · · · (s + r/2)

∣∣

=
∣∣ 1
2πi

∞∫
t=−i∞

l(−δ0 + it)x−35/48+itdt(−35
48 + it

) (−35
48 + it + 1

2

) · · · (−35
48 + it + r

2

) ∣∣
≤ M

π
x
−35
48

∞∫
0

| g(1+δ0+it)
g(−δ0+it) | dt

|
11∏

i=1

(−35
48 + it + i−1

2

) |
= α(N) · x−35

48 .

(5.14)

Note that by (5.11) and the Proposition 5.2, we have

l(−δ0 + it) ≤ M | g(1 + δ0 + it)
g(−δ0 + it)

|

where

M = Max
t

Φ̃(7/16 + it) · l̃(1 + 1/16)· | 17/16 + it

1/16 + it
| · | 33−6(−1/16+it) | ,

l̃(s) = 2 ·
√

3 · 27 · ζ(3s− 1/2) · ζ(6s− 2) · ζ(s)
ζ(2s)

· 1 + 2 · 31/2−3s + 2 · 3−1/2−s + 3−4s

(1 + 3−s)2(1− 32−6s)
,

Φ̃(s) =

 8∑
j=1

| a1j(s + 1/2)a2j(7/6) |
 | 36s−6 − 1

36s−5 − 1
|

The constant α(N) in the last line of (5.14) can be computed by a simple Mathe-
matica program. For instance α(11) = 0.18.

Combining (5.12) and (5.13), we have

l(2/3) =
x∑

n=1

bn

n2/3

(
1−

√
n

x

)r

− 10!
210

B.(5.15)

Now observe that when x → ∞, |B| → 0; thus (5.15) will always give us the ever
wanted accuracy.

The same method can be used to compute L̃(2/3) under the assumption that
L̃(s) is analytic at 2/3.

Example. Let f = η2(τ)η2(11τ) be the newform of weight 2 level 11. Using
Mathematica, set x = 1000; we have l(2/3) = ζ?(2)L(2/3) = 105.92+C, with |C| <
4.14 . l̃(2/3) = ζ?(2)L̃(2/3) = 9.57 + C, with |C| < 4.14 .

Thus the hypothesis of the theorem is satisfied and so there are infinite many
M ∈ OK , such that L

(
1/2, F ⊗ ( •M )) 6= 0, where F is the lifting of f over Q(

√−3).
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