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ON THE POWER SERIES COEFFICIENTS OF CERTAIN
QUOTIENTS OF EISENSTEIN SERIES

BRUCE C. BERNDT AND PAUL R. BIALEK

Abstract. In their last joint paper, Hardy and Ramanujan examined the
coefficients of modular forms with a simple pole in a fundamental region. In
particular, they focused on the reciprocal of the Eisenstein series E6(τ). In
letters written to Hardy from nursing homes, Ramanujan stated without proof
several more results of this sort. The purpose of this paper is to prove most of
these claims.

1. Introduction

In their epic paper [9], [18, pp. 276–309], G. H. Hardy and S. Ramanujan found
an asymptotic formula for the partition function p(n), which arises from the power
series coefficients of the reciprocal of the Dedekind eta-function, a modular form of
negative dimension (positive weight). As they indicated near the end of their paper,
their methods also apply to several analogues of the partition function generated
by modular forms of negative weight that are analytic in the upper half-plane.
In their last published paper [10], [18, pp. 310–321], they considered a similar
problem for the coefficients of modular forms of negative weight having a simple
pole in the fundamental region, and, in particular, they applied their theorem to
find interesting series representations for the coefficients of the reciprocal of the
Eisenstein series E6(τ ). Although there are some similarities in the methods of
these papers, the principal ideas in [10] are quite different from those in [9]. In [9],
Hardy and Ramanujan introduced their famous circle method, and since that time
the ideas in this paper have had an enormous impact in additive analytic number
theory. Although their paper [10] has not had as much influence, the ideas in [10]
have been extended by J. Lehner [12], H. Petersson [13], [14], [15], H. Poincaré [16],
and H. S. Zuckerman [22]. Additional comments on [10] can be found in the third
edition of [18, p. 387].

While confined to nursing homes and sanitariums during his last two years in
England, Ramanujan wrote several letters to Hardy about the coefficients in the
power series expansions of certain quotients of Eisenstein series. A few pages in
his lost notebook are also devoted to this topic. All of this material can be found
in [19, pp. 97–126], and the letters with commentary can be found in the book
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by Berndt and R. A. Rankin [6, pp. 175–191]. In these letters and in the lost
notebook, Ramanujan claims formulas for the coefficients of several quotients of
Eisenstein series not examined by Hardy and him in [10]. In fact, for some of these
quotients, the main theorem of [10] needs to be modified or improved. Ramanujan
obviously wanted another example to be included in their paper [10], for in his
letter of 28 June 1918 [6, pp. 182–183], he wrote, “I am sending you the analogous
results in case of g2. Please mention them in the paper without proof. After all
we have got only two neat examples to offer, viz. g2 and g3. So please don’t omit
the results.” This letter was evidently written after galley proofs for [10] were
printed, for Ramanujan’s request went unheeded. The functions g2 and g3 are the
familiar invariants in the theory of elliptic functions and are constant multiples of
the Eisenstein series E4(τ ) and E6(τ ), respectively. The letter was also evidently
written before Ramanujan obtained further examples.

In this paper, we establish the formulas for the coefficients of those quotients
of Eisenstein series found in [19, pp. 102–104, 117]. In Ramanujan’s notation, the
three relevant Eisenstein series are defined, for |q| < 1, by

P (q) := 1 − 24
∞∑

k=1

kqk

1 − qk
,(1.1)

Q(q) := 1 + 240
∞∑

k=1

k3qk

1 − qk
,(1.2)

and

R(q) := 1 − 504
∞∑

k=1

k5qk

1 − qk
.(1.3)

In more contemporary notation, the Eisenstein series E2j(τ ) is defined for j > 1
and Im τ > 0 by

(1.4) E2j(τ ) :=
1
2

∑
m1,m2∈Z

(m1,m2)=1

(m1τ + m2)−2j = 1 +
(2π)2j(−1)j

ζ(2j)(2j − 1)!

∞∑
k=1

k2j−1e2πikτ

1 − e2πikτ
,

where ζ(s) denotes the Riemann zeta-function. Thus, for q = exp(2πiτ), E4(τ ) =
Q(q) and E6(τ ) = R(q), which have weights 4 and 6, respectively [21, p. 50]. Since
(1.4) does not converge for j = 1, the Eisenstein series E2(τ ) must be defined
differently. First let

(1.5) E∗
2(τ ) := P (q), q = e2πiτ .

Then E2(τ ) is defined by

(1.6) E2(τ ) := E∗
2(τ ) − 3

π Im τ
.

Then E2(τ ) satisfies the functional equation of a modular form of weight 2 [21,
pp. 67–68].

As indicated above, in [10], Hardy and Ramanujan obtained representations for
the coefficients of 1/R(q) as infinite series. In this paper, we establish Ramanujan’s
similar claims for the series

1
Q(q)

,
Q(q)
R(q)

,
P (q)
R(q)

,
P 2(q)
R(q)

, and
P (q)
Q(q)

.
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In [19, pp. 97–101], Ramanujan established upper and lower bounds for the number
of terms in the aforementioned representations for the coefficients of 1/R(q) needed
to explicitly determine the actual (integral) coefficients. Although some details are
given in [19], expanded arguments can be found in Bialek’s thesis [7]. We do not
have plans to publish these details in a journal. However, they will be published
in the forthcoming book by G. E. Andrews and Berndt [1]. Other results claimed
by Ramanujan on pages 97–126 of [19] are examined in a paper by the authors and
A. J. Yee [5].

Almost all of the results in this paper can be found in Chapter 2 of Bialek’s
doctoral dissertation [7].

We complete the Introduction by setting notation. The set of rational integers is
denoted by Z, with Z+ denoting the set of positive integers. The upper half-plane
H is defined by

H = {τ : Im τ > 0}.
The residue of a function f at a pole z0 is denoted by Res (f, z0) .

We let P1 denote the fundamental region

P1 = {τ : Im τ > 0, 1
2 < Re τ < 1

2 , |τ | > 1}.

Further fundamental regions are P2, the region in H bounded by the three circles
|τ | = 1, |τ + 1| = 1, and |τ − 1| = 1; P3, the region in H bounded by the circles
|τ −1| = 1 and |τ − 1

3 | = 1
3 and the line Re τ = 1

2 ; and P4, the region in H bounded
by the circle |τ + 1| = 1 and the lines Re τ = −3

2 and Re τ = −1
2 . However,

the fundamental region most important for us is the fundamental region P in H
bounded by the circles |τ + 1| = 1 and |τ | = 1 and the lines Re τ = −1

2 − ε and
Re τ = 1

2 − ε, where 0 < ε < 1.

2. The key theorem

The principal tool in proving Ramanujan’s formulas is the following theorem,
which is essentially due to Hardy and Ramanujan [10], [18, pp. 312, 316]. However,
we need to modify it slightly (by refining the estimate of their integral). In particu-
lar, in two of our applications, we examine 1/E4(τ ), which has a pole at a point on
the boundary of P1, and so we need to work on the fundamental region P instead
of P1, both defined at the end of Section 1. For the convenience of readers who
may be reading our paper while consulting or comparing it with that of Hardy and
Ramanujan [10], we have adhered to the notation of [10]. In particular, they set
q = eπiτ instead of the more customary q = e2πiτ and therefore consider functions
with arguments q2.

Theorem 2.1. Suppose that f(q) = f(eπiτ ) = ϕ(τ ) is analytic for q = 0, is
meromorphic in the unit circle, and satisfies the functional equation

(2.1) ϕ(τ ) = ϕ

(
aτ + b

cτ + d

)
(cτ + d)n,

where a, b, c, d ∈ Z; ad − bc = 1; and n ∈ Z+. If ϕ(τ ) has only one pole in the
fundamental region P1, a simple pole at τ = α with residue A, then

(2.2) f(q) = −2πiA
∑ 1

(cα + d)n+2

1
1 − (q/q)2

, |q| < 1,
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and

(2.3) 0 = −2πiA
∑ 1

(cα + d)n+2

1
1 − (q/q)2

, |q| > 1,

where

q = exp
((

aα + b

cα + d

)
πi

)
,

and the summation runs over all pairs of coprime integers (c, d) which yield distinct
values for the set {q,−q}, and a and b are any integral solutions of

(2.4) ad − bc = 1.

Proof. Consider the integral

(2.5)
1

2πi

∫
Hm

f(z)
z − q

dz,

where f is a function which satisfies the conditions specified in the theorem, Hm

is a simple closed contour which is very close to (to be made more precise in the
sequel) and inside (or perhaps touching) the unit circle, and q is fixed and inside
Hm. By Cauchy’s Theorem, if |q| < 1,

(2.6)
1

2πi

∫
Hm

f(z)
z − q

dz = f(q) +
∑
m

Res,

where
∑

m Res is the sum of the residues of f(z)/(z − q) at the poles of f which
are inside Hm. If we can show that the integral tends to zero as m → ∞, then it
will follow that f(q) = −

∑
Res, where the sum is over all residues of poles on the

interior of |z| = 1.
First, we construct a contour Hm which will allow us to easily evaluate the inte-

gral. Our contour Hm is based on Farey fractions of order m. For basic properties
of the Farey functions of order m, which we denote by Fm, see, for example, [11,
pp. 297–300]. For instance, if h′/k′ < h/k are two adjacent Farey fractions in Fm,
then

(2.7) hk′ − h′k = 1;

also,

(2.8) k′ + k > m.

We now construct the desired contour. Suppose h′/k′ < h/k are adjacent Farey
fractions in Fm. Construct the two semicircles in H which have the segments

(2.9)
(

h′

k′ ,
(1 + 2ε)h′ + 2h

(1 + 2ε)k′ + 2k

)
and

(
(1 − 2ε)h + 2h′

(1 − 2ε)k + 2k′ ,
h

k

)
on the real axis as their diameters, where ε > 0. The inequalities

(2.10)
h′

k′ <
h + 2h′

k + 2k′ <
h′ + 2h

k′ + 2k
<

h

k
,

which follow from (2.7), imply that the circles intersect for ε sufficiently small.
Let us say that N is their intersection point in the upper half-plane, ωL is the

arc from h′/k′ to N , ωR is the arc from N to h/k, and ω is the union of ωL and
ωR.
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Repeat the process for each adjacent pair of Farey fractions between 0 and 1.
Thus we obtain a path from 0 to 1. Construct the mirror image of this path on the
interval [−1, 0], and call the entire contour (from −1 to 1) Ωm.

If we regard Ωm as being in the τ -plane, then the corresponding path in the
q-plane, where q = eπiτ , is a simple closed contour which starts and ends at −1 and
does not go outside the unit circle. This is our desired contour Hm. (Eventually,
we shall let m go to ∞ so that Hm approaches the unit circle, as will be shown
later.)

Now we show that each segment ωL of the path Ωm is the pre-image of part of
the left-hand boundary of the fundamental region P in H bounded by the circles
|τ + 1| = 1 and |τ | = 1 and the lines Re τ = −1

2 − ε and Re τ = 1
2 − ε under some

modular transformation, and that each segment ωR is the pre-image of the right-
hand boundary of P and a short line segment under some modular transformation.
Later we use these properties to estimate f on the contour Ωm.

If h′/k′ < h/k are adjacent Farey fractions, then

(2.11) T1(τ ) :=
k′τ − h′

−kτ + h
and T2(τ ) :=

kτ − h

k′τ − h′

are modular transformations because hk′ − h′k = 1. These are the modular trans-
formations to which we referred in the previous paragraph.

We first examine the transformation T1. Note that under T1, the pre-images of
the points i∞, 1

2 − ε, −1
2 − ε, 1, and −1 are

(2.12)
h

k
,

(1 − 2ε)h + 2h′

(1 − 2ε)k + 2k′ ,
(1 + 2ε)h − 2h′

(1 + 2ε)k − 2k′ ,
h + h′

k + k′ , and
h − h′

k − k′ ,

respectively. Recall that modular transformations map the family of circles and
straight lines onto itself, and note from the definition of T1 that T1(τ̄) = T1(τ ).

These imply that the pre-images of the half-line Re τ = 1
2 − ε, Im τ ≥ 0, the

half-line Re τ = −1
2 − ε, Im τ ≥ 0, and the upper half of the unit circle are the

semicircles in the upper half-plane H which have the segments on the real axis
(2.13)(

(1 − 2ε)h + 2h′

(1 − 2ε)k + 2k′ ,
h

k

)
,

(
h

k
,

(1 + 2ε)h − 2h′

(1 + 2ε)k − 2k′

)
, and

(
h′ − h

k′ − k
,

h′ + h

k′ + k

)
as their diameters, respectively. Unless otherwise stated, the semicircles in this
paper are assumed to be in H with their diameters on the real axis.

Similarly, under the transformation T2, the pre-images are the semicircles which
have the segments
(2.14)(

h′

k′ ,
(1 − 2ε)h′ − 2h

(1 − 2ε)k′ − 2k

)
,

(
h′

k′ ,
(1 + 2ε)h′ + 2h

(1 + 2ε)k′ + 2k

)
, and

(
h′ − h

k′ − k
,

h′ + h

k′ + k

)
as their diameters, respectively. Also, the pre-image of the semicircle centered at
−1 with radius 1 is the semicircle with the segment

(2.15)
(

h + 2h′

k + 2k′ ,
h

k

)
as its diameter.

From (2.9) and (2.14), we see that T2 maps ωL onto the half-line Re τ = −1
2 −

ε, Im τ ≥ 0. Also, by (2.9) and (2.13), we see that T1 maps ωR onto the half-line
Re τ = 1

2 − ε, Im τ ≥ 0.
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Under T1, the image of the left semicircle is the semicircle with the segment
(0, 2/(1 + 2ε)) as its diameter, while the image of the right semicircle is the half-
line Re τ = 1

2 − ε, Im τ ≥ 0. The images intersect at the point

(2.16) τ1 :=
(

1
2
− ε

)
+ i

√
3
4 − 3

2ε + ε2 − 2ε3

1 + 2ε
,

so τ1 must be the image of N . Thus the image of ωR is the half-line

(2.17) Re τ =
1
2
− ε, Im τ ≥

√
3
4 − 3

2 ε + ε2 − 2ε3

1 + 2ε
.

Similarly, under T2, the images of the semicircles are the half-line Re τ = −1
2 −

ε, Im τ ≥ 0, and the semicircle with the segment (−2/(1 − 2ε), 0) as its diameter.
These images intersect at

τ2 :=
(
−1

2
− ε

)
+ i

√
3
4 + 3

2ε + ε2 + 2ε3

1 − 2ε
,

the image of N . Thus the image of wL is the half-line

(2.18) Re τ = −1
2
− ε, Im τ ≥

√
3
4 + 3

2ε + ε2 + 2ε3

1 − 2ε
.

The intersection of the line Re τ = 1
2 − ε and the upper half of the unit circle is

the point

(2.19) τ3 :=
(

1
2 − ε

)
+ i
√

3
4 + ε − ε2 ,

which is the lowermost point on the right-hand boundary of P . Similarly, the
lowermost point on the left-hand boundary of P is

τ4 :=
(
−1

2 − ε
)

+ i
√

3
4 + ε − ε2 .

Note that for ε > 0,

(2.20)

√
3
4 − 3

2ε + ε2 − 2ε3

1 + 2ε
<

√
3
4

+ ε − ε2 ,

because
3
4 − 3

2ε + ε2 − 2ε3 <
(

3
4 + ε − ε2

)
(1 + 2ε) = 3

4 + 5
2ε + ε2 − 2ε3.

Similarly,

(2.21)

√
3
4

+ ε − ε2 <

√
3
4 + 3

2ε + ε2 + 2ε3

1 − 2ε
.

By (2.17) and (2.18), inequalities (2.20) and (2.21) imply that T2 maps ωL onto
part of the left-hand boundary of P , while the transformation T1 maps ωR onto the
right-hand boundary of P and a line segment below it. We denote by �1 the line
segment which has τ1 and τ3 as its end points. Note that, by (2.16) and (2.19), the
length of �1 tends to 0 as ε tends to 0.

Also, if ωL, ωR, and ω are curves in the τ -plane, then let CL, CR, and C be the
corresponding arcs in the q-plane where q = eπiτ .
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Next we obtain an estimate for the integral of f(z)/(z− q) over CR, one segment
of Hm. We then use this to obtain an estimate of the integral over all of Hm. We
begin by finding an upper bound for |f | on CR (which is the same as finding an
upper bound for |ϕ| on ωR).

Recall that f(q) = f(eπiτ ) = ϕ(τ ) is analytic at q = 0. So limq→0 f(q) exists
and limτ→i∞ ϕ(τ ) exists. Recall also that ϕ has only one pole in each fundamental
region. So ϕ has only one pole in P1 and one pole in P4. Thus we see that by
our choice of ε we can avoid having a pole on the left- or right-hand boundaries of
P . Since limτ→i∞ ϕ(τ ) exists, we know that |ϕ(τ )| is bounded on the right- and
left-hand boundaries of P .

Now consider the line segment �1. If ε is sufficiently small, then �1 is in at most
two fundamental regions, P2 and P3. Since each of these regions has only one pole
of ϕ, we can avoid having a pole on �1 by choosing ε carefully. Thus, |ϕ(τ )| is
bounded on �1 as well. So we can say that

(2.22) |ϕ| ≤ M

on �1 and the right- and left-hand boundaries of P , where M is some absolute
constant. Note that M is independent of m, where m is the order of Fm.

By the functional equation (2.1),

(2.23) |ϕ(τ )| =
∣∣∣∣ϕ
(

k′τ − h′

−kτ + h

)∣∣∣∣ | − kτ + h|n.

If τ is on wR, then

(2.24) |ϕ(τ )| < M | − kτ + h|n = Mkn|τ − h/k|n,

because T1 maps ωR onto �1 and the right-hand boundary of P .
For τ on ωR1 , the quantity |τ − h/k| is maximized when τ = N . We need to

estimate |N − h/k|. By (2.16), N is the pre-image of τ1 under the transformation
T1, and so

N = T−1
1 (τ1) =

hτ1 + h′

kτ1 + k′ .

Thus, by (2.7) and (2.16),∣∣∣∣N − h

k

∣∣∣∣ = 1
|kk′ + k2τ1|

=
1∣∣∣∣∣∣kk′ + k2

(
1
2 − ε

)
+ ik2

√
3
4 − 3

2ε + ε2 − 2ε3

1 + 2ε

∣∣∣∣∣∣
=

1√(
kk′ + k2( 1

2 − ε)
)2 + k4

( 3
4 − 3

2 ε + ε2 − 2ε3

1 + 2ε

)

<
1√(

1
2kk′ + 1

4k2
)2 + 3

16k4

=
2

k
√

k2 + kk′ + k′2
,(2.25)

for ε sufficiently small.
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On ωR, by (2.24) and (2.25),

(2.26) |ϕ(τ )| < Mkn

(
2

k
√

k2 + kk′ + k′2

)n

=
2nM

(k2 + kk′ + k′2)n/2
.

Thus, we have obtained a bound for |f | on CR.
If q is fixed and inside Hm, then

(2.27)
∣∣∣∣ f(z)
z − q

∣∣∣∣ < M1

(k2 + kk′ + k′2)n/2

for z on CR, where M1 is some constant which depends on q and n.
Now we estimate the length of CR. We first calculate the arc length of ωR, then

make the change of variable q = exp(πiτ), and lastly estimate CR. From (2.9) and
(2.10), we see that the length of ωR is less than

1
2
π

(
h

k
− h′

k′

)
=

1
2
π

(
1

kk′

)
by (2.7). Because ∣∣∣∣dq

dτ

∣∣∣∣ = |πieπiτ | = |πiq| ≤ π

on this arc, the length of CR is less than

(2.28)
π2

2
1

kk′ .

Thus, by (2.27) and (2.28),

(2.29)
∣∣∣∣
∫
CR

f(z)
z − q

dz

∣∣∣∣ <
M2

kk′(k2 + kk′ + k′2)n/2
,

where M2 is some constant which depends on q and n. Using the transformation
T2, we can obtain an identical result for the integral over CL.

So far we have examined only the portion of Ωm in the right half-plane and
the portion of Hm in the upper half-plane. Because Ωm is symmetric about 0, it
follows that Hm is symmetric about the real axis. By applying the reasoning above
to the interval [−h/k,−h′/k′], we obtain identical results for the arcs in the lower
half-plane which are mirror images of the arcs CL and CR in the upper half-plane,
which we have just analyzed.

We are ready to estimate the integral over Hm. Using (2.29), we obtain the
inequality

(2.30)
∣∣∣∣
∫

Hm

f(z)
z − q

∣∣∣∣ < 4M2

∑
(h′

k′ , h
k )

1
kk′(k2 + kk′ + k′2)n/2

,

where the summation runs over all adjacent pairs of Farey fractions in Fm, and M2

is, of course, independent of m. We want to show that the right-hand side tends to
zero as m tends to ∞. To that end, observe that∑

(h′
k′ , h

k )

1
kk′(k2 + kk′ + k′2)n/2

<
∑

(h′
k′ , h

k )

1

kk′
(

k+k′

2

)n(2.31)

<

(
2
m

)n ∑
(h′

k′ , h
k )

(
h

k
− h′

k′

)
=
(

2
m

)n

.
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Therefore, by (2.30) and (2.31),

(2.32) lim
m→∞

1
2πi

∫
Hm

f(z)
z − q

= 0.

Note that for a typical arc C, the maximum distance from the arc to the unit
circle is less than the length of C. From our calculation of the maximum possible
length of CR in (2.28), we see that the length of C is less than

π2

kk′ <
π2

k(m − k)
≤ π2

m − 1

if k < m, and it is less than

π2

kk′ ≤
π2

m

if k = m. So as m tends to ∞, Hm approaches the unit circle uniformly from the
inside. Therefore all the poles of f(z) which are inside the unit circle are eventually
inside Hm. By (2.6) and (2.32)

(2.33) f(q) = −
∑

R,

where
∑

R is the sum of the residues of f(z)/(z − q) at the poles of f which are
inside the unit circle. We next determine these poles.

Recall that ϕ(τ ) has only one pole in P1, a simple pole at τ = α, with residue
A. By the functional equation (2.1), the only poles of ϕ(τ ) in the upper half-plane
are at the points τ = (aα + b)/(cα + d), where a, b, c, d ∈ Z and ad − bc = 1.

If c and d are fixed, and (a, b) is one solution to ad − bc = 1, then the complete
set of solutions is {(a + mc, b + md) : m ∈ Z}. Each of these solutions produces
a distinct pole of ϕ(τ ). However, this set yields only two distinct poles of f(q),
namely,

(2.34) q = ± exp
(

πi
aα + b

cα + d

)
,

because

exp
(

πi
(a + mc)α + (b + md)

cα + d

)
= (−1)m exp

(
πi

aα + b

cα + d

)
.

If we let (c, d) range over all pairs of coprime integers, then the two expressions in
(2.34) will eventually take on as its values each of the poles of f inside the unit
circle.

However, as we will see later when applying the theorem, it is possible that
different pairs (c, d) may produce the same poles. In our applications, we will need
to be careful when calculating the sum

∑
R so that we do not count a residue of

the same pole twice.
We now calculate the residues of f(q) at its poles. If we let T := (aτ +b)/(cτ +d),

then τ = (dT − b)/(−cT + a). When we substitute T for τ and find a common
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denominator, we find that

A = Res(ϕ(τ ), α) = lim
τ→α

(cτ + d)nϕ

(
aτ + b

cτ + d

)
(τ − α)

=(cα + d)n lim
τ→α

ϕ(T )
(

dT − b

−cT + a
− α

)

=(cα + d)n lim
T→(aα+b)/(cα+d)

ϕ(T )
(

(cα + d)T − (aα + b)
−cT + a

)

=(cα + d)n lim
T→(aα+b)/(cα+d)

ϕ(T )




T − aα + b

cα + d

−c

(
aα + b

cα + d

)
+ a


 (cα + d)

=(cα + d)n+2 lim
T→(aα+b)/(cα+d)

ϕ(T )
(

T − aα + b

cα + d

)
.(2.35)

Note that the right-hand side of (2.35) is (cα + d)n+2 times the residue of ϕ(τ ) at
τ = (aα + b)/(cα + d). Hence,

(2.36) Res
(

ϕ(τ ),
aα + b

cα + d

)
=

A

(cα + d)n+2
.

Using (2.36) and the fact that

dq

dτ

∣∣∣∣
τ=

aα+b
cα+d

= πi exp
(

πi
aα + b

cα + d

)
,

we find that
(2.37)

Res
(

f(q),± exp
(

πi
aα + b

cα + d

))
= ±

πiA exp
(

πi
aα + b

cα + d

)
(cα + d)n+2

= ±
πiAq

(cα + d)n+2
,

where

q = exp
(

πi
aα + b

cα + d

)
.

When we use (2.37) to evaluate the sum −
∑

R in (2.33), we find that (2.33)
becomes

f(q) = −
∑(

πiAq

(cα + d)n+2

1
q − q

+
−πiAq

(cα + d)n+2

1
−q − q

)

= −2πiA
∑ 1

(cα + d)n+2

1
1 − (q/q)2

,(2.38)

where the summation runs over all pairs of coprime integers (c, d) which yield
distinct values for ±q (the poles of f(q)), and (a, b) is any integral solution to
ad − bc = 1. Thus the proof of the theorem is complete for |q| < 1.

If |q| > 1, the proof is the same except now there is not a pole of f(q) inside the
unit circle. Thus, the term f(q) in (2.2) does not appear, and so we arrive at (2.3)
instead. �
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3. The coefficients of 1/E4

As we noted earlier, Hardy and Ramanujan used Theorem 2.1 to prove a formula
for the coefficients in the power series expansion of the reciprocal of the Eisenstein
series E6. In this section we will prove one of the analogous results found with the
publication of the lost notebook [19, pp. 102–104], [6, pp. 179–182]. These three
pages are apparently taken from one of Ramanujan’s letters to Hardy in 1918, but
the pages are undated and bear no salutation.

Let K = Q(
√
−3). The algebraic integral domain OK = Z[ζ] = Z ⊕ ζZ, where

ζ = exp(2πi/3), is a principal ideal domain. If (c, d) is a pair of coprime integers
which is a solution to the equation

(3.1) λ = c2 − cd + d2,

where λ is a certain fixed positive integer, then

(3.2) ±(c, d), ±(d, c), ±(c − d, c), ±(c, c − d), ±(d, d − c), ±(c − d,−d)

are solutions as well. To see this, set α = c + dζ and let A = (c + dζ) be an ideal.
Then, if N denotes the norm of A, we see that

λ = N(A) = AĀ = (c + dζ)(c + dζ̄),

where ζ̄ = ζ2. The unit group in OK is U := {±1,±ζ,±ζ2}. It follows that

A =(α) = (−α) = (αζ) = (−αζ) = (αζ2) = (−αζ2),

Ā =(ᾱ) = (−ᾱ) = (ᾱζ) = (−ᾱζ) = (ᾱζ2) = (−ᾱζ2).

Hence, one solution generates twelve solutions. For example, if

A = (αζ) = (cζ + dζ2) = (cζ + d(−1 − ζ)) = (−d + (c − d)ζ),

then (−d, c−d) is a solution if (c, d) is a solution. Note that if λ is a prime, then the
twelve solutions are the only solutions, but if λ is composite, there may be many
solutions. We will say that two solutions (c1, d1) and (c2, d2) to equation (3.1) are
distinct if they do not simultaneously belong to the same set of solutions in (3.2).

Note that each of the solutions in (3.2) has an element from two of the three sets
{±c}, {±d} and {±(c − d)}. Thus if two solutions simultaneously belong to (3.2),
then they have an element in common at least in absolute value. It follows that
(c1, d1) and (c2, d2) are distinct solutions to (3.1) if and only if

(3.3) c2, d2 /∈ {±c1,±d1}.
It is well known, see, e.g., the text by Niven, Zuckerman, and Montgomery [11,

p. 176], that the integers λ which can be represented in the form of λ = c2−cd+d2,
with c and d coprime, are integers of the form

(3.4) λ = 3a
r∏

j=1

p
aj

j ,

where a = 0 or 1, pj is a prime of the form 6m+1, and aj is a nonnegative integer,
1 ≤ j ≤ r.

Theorem 3.1. Recall that Q(q) and R(q) are defined by (1.2) and (1.3), respec-
tively. Let

1
Q(q2)

=
∞∑

n=0

βnq2n



4390 BRUCE C. BERNDT AND PAUL R. BIALEK

and

(3.5) G := R(e2πiρ) = 1 − 504
∞∑

k=1

(−1)kk5

ekπ
√

3 − (−1)k
= 2.8815 . . . ,

where ρ := −1/2 + i
√

3/2. Then

βn =(−1)n 3
G


enπ

√
3 − enπ

√
3/3

33
+

2 cos
(

2πn

7
− 6 arctan(−3

√
3)
)

73
enπ

√
3/7

+
2 cos

(
6πn

13
− 6 arctan(−2

√
3)
)

enπ
√

3/13

133
+ · · ·




=(−1)n 3
G

∑
(λ)

hλ(n)
λ3

enπ
√

3/λ.(3.6)

Here λ runs over the integers of the form (3.4),

(3.7) h1(n) = 1, h3(n) = −1,

and, for λ ≥ 7,

(3.8) hλ(n) = 2
∑
c,d

cos

(
(ad + bc − 2ac − 2bd + λ)

nπ

λ
− 6 arctan

(
c
√

3
2d − c

))
,

where the sum is over all pairs (c, d), where (c, d) is a distinct solution to λ =
c2 − cd + d2 and (a, b) is any solution to ad− bc = 1. Also, distinct solutions (c, d)
to λ = c2 − cd + d2 give rise to distinct terms in the sum in (3.6). Furthermore, if
n < 0, the sum on the far right side of (3.6) equals 0.

Proof. We apply Theorem 2.1 to the function 1/Q(q2). Then ϕ(τ ) = 1/Q(e2πiτ ) =
1/E4(τ ). Since the Eisenstein series E2j(τ ) is a modular form of degree −2j [21,
p. 50], ϕ(τ ) satisfies the functional equation (2.1) with n = 4, i. e.,

(3.9) ϕ(τ ) = ϕ

(
aτ + b

cτ + d

)
(cτ + d)4.

The function ϕ(τ ) has only one pole in P1, a simple pole at τ = −1
2 + i

√
3

2 =: ρ [20,
p. 198]. Thus, in (2.2), we have

(3.10) α = ρ.

Clearly ϕ(τ ) is meromorphic in H, which implies that f(q) is meromorphic in the
unit disc.

We now calculate A = Res(ϕ, ρ) by calculating the corresponding residue,
Res(f, eπiρ).

Suppose that a function F (q) has a simple pole at q = q1. Expanding F (q) into
its Laurent series about q = q1, we can easily see that

(3.11) Res(F, q1) =
1

d(1/F (q))/dq

∣∣∣∣
q=q1

.
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By (3.11), (1.2), and an identity of Ramanujan 3qQ′(q) = P (q)Q(q) − R(q) [17],
[18, p. 142, Table II, no. 2],

Res(f, eπiρ) =
1

d(Q(q2))/dq

∣∣∣∣
q=eπiρ

=
3
2

q

720
∞∑

k=1

k4q2k

(1 − q2k)2

∣∣∣∣∣∣∣∣∣
q=eπiρ

=
3
2

q

P (q2)Q(q2) − R(q2)

∣∣∣∣
q=eπiρ

= −3
2

eπiρ

R(e2πiρ)

= −3eπiρ

2G
,

where G is given by (3.5).
If we apply (2.37) with α = ρ and (a, b, c, d) = (1, 0, 0, 1), then we deduce that

πiAeπiρ = −3eπiρ

2G
or

(3.12) A = − 3
2πiG

.

By (2.2), (3.9), (3.10), and (3.12), we find that

(3.13) f(q) =
3
G

∑
(c,d)

1
(cρ + d)6

1
1 − (q/q)2

,

where

(3.14) q = exp
(

πi

(
aρ + b

cρ + d

))
,

and where the summation runs over all pairs of coprime integers (c, d) which produce
distinct values for the set {q,−q}, and (a, b) is any integral solution to ad− bc = 1.

By (2.34), each pair (c, d) leads to exactly two distinct poles of f in the unit
circle, q and −q, but it is possible that different pairs may lead to the same poles,
so we need to be careful that we do not count the same pole twice in the summation.

Thus, two tasks remain: find the values of (c, d) over which the summation runs,
and compare the coefficients of qn on both sides of (3.13).

First, if λ = c2 − cd + d2,

aρ + b

cρ + d
=

(aρ + b)(cρ2 + d)
λ

=
ac + bd + (ad − bc)ρ + bc(ρ + ρ2)

λ

=
ac + bd − bc − 1

2 +
√

3
2 i

λ
.

So,

(3.15) q = exp

(
−π

√
3

2λ

)
exp

(
πi

λ

(
ac + bd − 1

2
ad − 1

2
bc

))
.
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If two pairs (c3, d3) and (c4, d4) produce distinct values of λ, i.e., c2
3−c3d3 +d2

3 =
λ3 �= λ4 = c2

4 − c4d4 + d2
4, then those pairs lead to distinct values for the set {±q},

say {±q
3
} and {±q

4
}, i.e.,

(3.16) {±q
3
} ∧ {±q

4
} = ∅.

We now consider the case when different values of (c, d) produce the same values
of λ. As we saw in (3.2), each solution (c, d) to λ = c2 − cd + d2 generates a total
of twelve solutions. If λ = 1 or λ = 3, then only six of these twelve are different
solutions. If λ ≥ 7, then the twelve solutions are all different.

Suppose that the solution (c, d) leads to {±q
5
}, say. Then (−c,−d) also leads

to {±q
5
}, while (d, c) and (c, c − d) both lead to {±q̄

5
}. Since these three basic

transformations lead to either {±q
5
} or {±q̄

5
}, it follows that (c, d) and the eleven

corresponding solutions of (3.2) yield a set of only four different poles, namely,

(3.17) {±q
5
,±q̄

5
}.

This would be a set of only two poles if q
5

were real or purely imaginary. We will
prove in Lemmas 3.2, 3.3, and 3.4 at the end of this section that q can never be
real, and that it is purely imaginary only when λ = 1 or λ = 3. Thus, (3.17) is
valid only for λ ≥ 7. If λ = 1 or λ = 3, then the solutions of (3.2) produce a set of
only two poles (for each value of λ),

(3.18) {±q
5
}.

Lastly, suppose that (c1, d1) and (c2, d2) are distinct solutions to equation (3.1).
In Lemma 3.5 at the end of the section, we will prove that each distinct solution
(together with its eleven corresponding solutions in (3.2)) yields four distinct poles,
i.e.,

(3.19) {±q
1
,±q̄

1
} ∧ {±q

2
,±q̄

2
} = ∅,

where the bracketed sets correspond to (c1, d1) and (c2, d2), respectively.
We can now express the right-hand side of (3.13) not as a sum over pairs (c, d),

but as a sum over λ and over distinct pairs (c, d).
From (3.13) and (3.16)–(3.19),

f(q) =
3
G



∑
(λ)
λ≤3

1
(cρ + d)6

1
1 − (q/q)2

(3.20)

+
∑
(λ)
λ>3

(
1

(cρ + d)6
1

1 − (q/q)2
+

1
(dρ + c)6

1
1 − (q/q̄)2

)
 ,

where λ runs over all integers of the form (3.4), and where, for each fixed λ, the
sum is also over all distinct pairs (c, d).

For λ = 1, with (a, b, c, d) = (1, 0, 0, 1), by (3.15),

q = exp
(
−π

√
3/2
)

exp(−πi/2) = −ie−π
√

3/2.



COEFFICIENTS OF EISENSTEIN SERIES 4393

Thus,

(3.21)
1

(cρ + d)6
1

1 − (q/q)2
=

1
1 + eπ

√
3q2

.

Similarly, for λ = 3, with (a, b, c, d) = (1, 1, 1, 2), by (3.15),

q = exp

(
−π

√
3

6

)
exp

(
πi

3

(
3
2

))
= i exp

(
−π

√
3

6

)
.

Thus,

(3.22)
1

(cρ + d)6
1

1 − (q/q)2
= − 1

27
1

1 + eπ
√

3/3q2
.

By (3.21) and (3.22), equality (3.20) becomes

f(q) =
3
G

{
1

1 + eπ
√

3q2
− 1

27
1

1 + eπ
√

3/3q2

+
∑
(λ)
λ>3

(
1

(cρ + d)6
1

1 − (q/q)2
+

1
(dρ + c)6

1
1 − (q/q̄)2

)


=
3
G

{ ∞∑
n=0

(−1)nenπ
√

3q2n − 1
27

∞∑
n=0

(−1)nenπ
√

3/3q2n

+
∑
(λ)
λ>3

(
1

(cρ + d)6

∞∑
n=0

q−2nq2n +
1

(dρ + c)6

∞∑
n=0

q̄−2nq2n

)}
(3.23)

=
∞∑

n=0

βnq2n,(3.24)

where |q| < e−π
√

3/2 and
(3.25)

βn = (−1)n 3
G

(
enπ

√
3 − enπ

√
3/3

33

)
+

3
G

∑
(λ)
λ>3

(
1

(cρ + d)6
q−2n +

1
(dρ + c)6

q̄−2n

)
.

We now show that

(3.26)
1

(cρ + d)6
=
(

1
(dρ + c)6

)
,

and then we will use this to express the sum in (3.25) more explicitly. By an
elementary calculation, we find that

(3.27)
1

(cρ + d)6
=

1
λ3

exp

(
−6i arctan

(
c
√

3
2d − c

))
,

and similarly,

(3.28)
1

(dρ + c)6
=

1
λ3

exp

(
−6i arctan

(
d
√

3
2c − d

))
.
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Note, however, that

tan

(
arctan

(
c
√

3
2d − c

)
+ arctan

(
d
√

3
2c − d

))
=

c
√

3
2d − c

+
d
√

3
2c − d

1 −
(

c
√

3
2d − c

)(
d
√

3
2c − d

) = −
√

3.

Hence,

(3.29) arctan

(
c
√

3
2d − c

)
+ arctan

(
d
√

3
2c − d

)
= mπ − π

3
,

where m is some integer. Thus from (3.27), (3.28), and (3.29),

(3.30)
1

(cρ + d)6
1

(dρ + c)6
=

1
λ6

exp
(
−6i

(
mπ − π

3

))
=

1
λ6

,

which is, of course, real. Since 1
(cρ+d)6

1
(dρ+c)6 is real, (3.26) follows. From (3.15),

(3.31) q−2n = (−1)n exp

(
nπ

√
3

λ

)
exp

(
nπi

λ
(ad + bc − 2ac − 2bd + λ)

)
.

Thus, by (3.30), (3.27), and (3.31), each summand in the sum of (3.25) is

2 Re

(
q−2n

(cρ + d)6

)

= 2(−1)nenπ
√

3/λ

× Re




exp
(

nπi

λ
(ad + bc − 2ac − 2bd + λ)

)
exp

(
−6i arctan

(
c
√

3
2d − c

))

λ3




=
(−1)n

λ3
2 cos

(
(ad + bc − 2ac − 2bd + λ)

nπ

λ
− 6 arctan

(
c
√

3
2d − c

))
enπ

√
3/λ.

(3.32)
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From (3.25) and (3.32), the coefficient of q2n in the power series expansion of f(q)
is

βn =(−1)n 3
G




enπ
√

3 − enπ
√

3/3

33

+
∑
(λ)
λ>3

2 cos

(
(ad + bc − 2ac − 2bd + λ)

nπ

λ
− 6 arctan

(
c
√

3
2d − c

))

λ3
enπ

√
3/λ




= (−1)n 3
G

∑
(λ)

hλ(n)
λ3

enπ
√

3/λ,

(3.33)

where hλ(n) is defined in (3.7) and (3.8). This proves (3.6).
To obtain the displayed terms in the expansion (3.6), we choose (a, b, c, d) =

(1, 0, 3, 1) for λ = 7 and (a, b, c, d) = (1, 0, 4, 1) for λ = 13.
Lastly, we consider the case for n < 0. Up until (3.23), we did not use the fact

that |q| < 1, except that, if |q| > 1, by Theorem 2.1, the left side of (3.23) would
equal 0. Instead of expanding the summands on the left side of (3.23) in powers of
q, we expand the summands in powers of q−1 when |q| > 1. We thus find that, for
|q| > eπ

√
3/2,

0 =
3
G

{ ∞∑
n=1

(−1)ne−nπ
√

3q−2n − 1
27

∞∑
n=1

(−1)ne−nπ
√

3/3q−2n

+
∑
(λ)
λ>3

(
1

(cρ + d)6

∞∑
n=1

q2nq−2n +
1

(dρ + c)6

∞∑
n=1

q̄2nq−2n

)}

=
∞∑

n=1

β−nq−2n.

This then completes the proof of the theorem for n < 0.
Thus the proof of Theorem 3.1 is complete apart from several technical lemmas.

�

Lemma 3.2. Given a coprime pair of integers (c, d), we can always choose integers
a and b such that ad − bc = 1 and

(3.34)
∣∣ac + bd − 1

2 (ad + bc)
∣∣ ≤ 1

2 (c2 − cd + d2).

Proof. Let (a1, b1) be a solution to ad− bc = 1. Then the complete set of solutions
is {(a1 + mc, b1 + md) : m ∈ Z}. Substituting this expression into the left side of
(3.34), we see that∣∣(a1 + mc)c + (b1 + md)d − 1

2 (a1 + mc)d − 1
2 (b1 + md)c

∣∣
=
∣∣a1c + b1d − 1

2a1d − 1
2b1c + m(c2 − cd + d2)

∣∣ .
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For some unique integer m1, we have

a1c + b1d − 1
2a1d − 1

2b1c + m1(c2 − cd + d2) ≤ 0

and

a1c + b1d − 1
2a1d − 1

2b1c + (m1 + 1)(c2 − cd + d2) ≥ 0,

since c2 − cd + d2 > 0. Thus one of the two pairs,

a = a1 + m1c, b = b1 + m1d or a = a1 + (m1 + 1)c, b = b1 + (m1 + 1)d

will be our desired solution. �

Lemma 3.3. If ad − bc = 1, where a, b, c, d ∈ Z, then the quantity

(3.35) q = exp

(
−π

√
3

2(c2 − cd + d2)

)
exp

(
πi

(
ac + bd − 1

2 (ad + bc)
c2 − cd + d2

))

cannot be real.

Proof. By (2.34), if c and d are fixed and (a, b) is a solution to ad − bc = 1 which
leads to q, then other solutions to ad− bc = 1 will lead to either q or −q. Therefore
if q is real for some solution (a, b), then it is real for all solutions.

Suppose that a certain pair (c, d) leads to a value of q that is real. We can assume
without loss of generality that (a, b) satisfies (3.34). Since q is real, we have, by
(3.35),

ac + bd − 1
2 (ad + bc) ≡ 0 (mod (c2 − cd + d2)),

and so, by (3.34),

ac + bd − 1
2 (ad + bc) = 0.

Adding the equations 0 = (ac + bd − 1
2 (ad + bc))2 and 1 = (ad − bc)2 gives

1 = a2c2 + a2d2 + b2c2 + b2d2 − a2cd − abc2 − abd2 − b2cd

+ 1
4 (a2d2 + 2abcd + b2c2)

= (c2 − cd + d2)(a2 − ab + b2) + 1
4 (ad − bc)2

= (c2 − cd + d2)(a2 − ab + b2) + 1
4 ,

Hence,
3
4 = (c2 − cd + d2)(a2 − ab + b2),

which is impossible since the variables are integers. Thus q cannot be real. �

Lemma 3.4. Under the conditions of Lemma 3.3, the quantity q is purely imagi-
nary only when λ = 1 or λ = 3, where λ = c2 − cd + d2.

Proof. Suppose that a certain pair (c, d) leads to a value of q that is purely imagi-
nary. We can assume without loss of generality that (a, b) satisfies (3.34). Since q
is purely imaginary, we have, by (3.35),

(3.36) 2
∣∣ac + bd − 1

2 (ad + bc)
∣∣ = c2 − cd + d2.
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Thus, by (3.36) and the equality ad − bc = 1,(∣∣ac + bd − 1
2 (ad + bc)

∣∣− (a2 − ab + b2)
)2

=
(
ac + bd − 1

2 (ad + bc)
)2 − 2

∣∣ac + bd − 1
2 (ad + bc)

∣∣ (a2 − ab + b2)

+ (a2 − ab + b2)2

=
(
ac + bd − 1

2 (ad + bc)
)2 − (c2 − cd + d2)(a2 − ab + b2) + (a2 − ab + b2)2

=(a2 − ab + b2)2 − 3
4 (ad − bc)2

=(a2 − ab + b2)2 − 3
4

=Λ2 − 3
4 ,(3.37)

where
Λ := a2 − ab + b2.

Since Λ ∈ Z,

(3.38) |ac + bd − 1
2 (ad + bc)| = 1

2W,

where W is odd and positive. Therefore, by (3.37) and (3.38),(
1
2W − Λ

)2 = Λ2 − 3
4

or
W
(

1
4W − Λ

)
= −3

4 .

Hence, the quantity 1
4W − Λ is negative. Clearly, its absolute value is at least 1

4 .
Since

3
4 = |W

(
1
4W − Λ

)
| ≥ |14W |,

we deduce that W = 1 or W = 3. But by (3.38) and (3.36),

W = 2|ac + bd − 1
2 (ad + bc)| = c2 − cd + d2 = λ.

We conclude that if q is purely imaginary, then λ can be only 1 or 3. When λ = 1
and (c, d) = (1, 0), say, we have, from (3.35),

q = ±e−π
√

3/2eπi/2 = ±ie−π
√

3/2.

When λ = 3 and (c, d) = (2, 1), say, we have

q = ±e−π/(2
√

3)e−πi/2 = ∓ie−π/(2
√

3).

So if λ = 1 or λ = 3, the quantity q is indeed purely imaginary. �

In Lemma 3.5, we establish (3.19) by proving the contrapositive statement,
namely, that if two different solutions (c, d) to the equation λ = c2 − cd + d2

lead to the same set of poles, then the solutions are not distinct.

Lemma 3.5. If (c6, d6) and (c7, d7) are two pairs of coprime integers such that

(3.39) c2
6 − c6d6 + d2

6 = c2
7 − c7d7 + d2

7 = λ,

and if

(3.40) {±q
6
,±q̄

6
} = {±q

7
,±q̄

7
},

where q is defined in (3.15), then the two solutions of (3.39) are not distinct. In
other words,

(3.41) {c7, d7} ∧ {±c6,±d6} �= ∅.
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Proof. From (2.34), we see that for fixed (cj , dj), the set {±q
j
,±q̄

j
} is not affected

by our choice of (aj , bj). Thus we can assume without loss of generality that (aj , bj)
satisfies (3.34) for j = 6 and 7. In other words, if we define ej by

(3.42) ej = ajcj + bjdj − 1
2ajdj − 1

2bjcj ,

then we can assume that

(3.43) |ej | ≤ 1
2λ, j = 6, 7.

We will show that (3.40) implies e6 = ±e7 by considering four different cases.
If q

6
= q

7
, then by (3.15) and (3.42), πie6/λ = πie7/λ + 2πim, where m is some

integer. In other words,

(3.44) e6 ≡ e7 (mod 2λ).

If, however, q
6

= q̄
7
, then, by (3.15) and (3.42), πie6/λ = −πie7/λ + 2πim1,

where m1 is some integer. Thus,

(3.45) e6 ≡ −e7 (mod 2λ).

If q
6

= −q
7
, then, by (3.15) and (3.42), πie6/λ = πie7/λ + πi + 2πim2, where

m2 is some integer, or, in other words,

(3.46) e6 ≡ e7 + λ (mod 2λ).

Similarly, if q
6

= −q̄
7
, then πie6/λ = −πie7/λ + πi + 2πim3, where m3 is some

integer, which implies that

(3.47) e6 ≡ −e7 + λ (mod 2λ).

From (3.44)–(3.47), we see that the set equality {±q
6
,±q̄

6
} = {±q

7
,±q̄

7
} implies

that e6 ≡ ±e7 (mod λ), which implies that, by (3.43),

(3.48) e6 = ±e7.

Observe that, by (2.4) and (3.42),

e2
j + 1 = e2

j + (ajdj − bjcj)2 = (c2
j − cjdj + d2

j )(a
2
j − ajbj + b2

j ) + 1
4 .

Therefore since e2
6 = e2

7 and c2
6 − c6d6 + d2

6 = c2
7 − c7d7 + d2

7, we deduce that

(3.49) a2
6 − a6b6 + b2

6 = a2
7 − a7b7 + b2

7.

Later we will use this observation.
We now prove (3.41) by using matrices. We consider two cases.

Case 1. Assume that e6 = e7. If we let, for j = 1, 2,

(3.50) Mj :=


cj − 1

2dj

√
3

2 dj

aj − 1
2bj

√
3

2 bj


 ,

then

(3.51) MjM
T
j =


 c2

j − cjdj + d2
j ajcj + bjdj − 1

2ajdj − 1
2bjcj

ajcj + bjdj − 1
2ajdj − 1

2bjcj a2
j − ajbj + b2

j


 .

Observe that

(3.52) M6M
T
6 = M7M

T
7
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by (3.39), (3.42), (3.49), and the assumption that e6 = e7. After multiplying both
sides of (3.52) by M−1

7 on the left side and then by (MT
6 )−1 on the right side, we

obtain

(3.53) U := M−1
7 M6 = MT

7 (MT
6 )−1 = (M−1

6 M7)T = (U−1)T .

We want to determine the entries of U , because these may give us information
about the entries of the matrices M6 and M7. We start by calculating the values
of the determinants |Mj | and |U |. From the definition of Mj in (3.50), a straight-
forward calculation gives

(3.54) |Mj | = −
√

3
2

,

by (2.4). Thus, by (3.53) and (3.54),

(3.55) |U | =
(
− 2√

3

)(
−
√

3
2

)
= 1.

If

U =
[
w x
y z

]
,

then, by (3.55) and so (3.53), we find that[
w x
y z

]
=
[

z −y
−x w

]
.

Thus, U is of the form

(3.56) U =
[

w x
−x w

]
.

By (3.53), (3.54), and a straightforward calculation,
(3.57)

U =


 −b7(c6 − 1

2
d6) + d7(a6 − 1

2
b6) −

√
3

2
b7d6 +

√
3

2
b6d7

2√
3
(a7 − 1

2
b7)(c6 − 1

2
d6) − 2√

3
(a6 − 1

2
b6)(c7 − 1

2
d7) d6(a7 − 1

2
b7) − b6(c7 − 1

2
d7)


 .

Thus, we see that U has the form

(3.58) U =


 1

2 P
√

3
2 Q

1
2
√

3
R 1

2 S


 ,

where P , Q, R, S ∈ Z. By (3.56) and (3.58), we conclude that U is of the form

(3.59) U =




1
2 P

√
3

2 Q

−
√

3
2 Q 1

2 P


 ,

where P , Q ∈ Z.
By (3.55) and (3.59), we deduce that

1
4

P 2 +
3
4

Q2 = 1,

so either P , Q ∈ {±1} or P = ±2 and Q = 0.
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If P = ±2 and Q = 0, then

(3.60) U = ±
[
1 0
0 1

]
.

But, by (3.53), we deduce that

(3.61) M6 = ±M7,

which implies that d6 = ±d7. Thus, the statement we wanted to prove, (3.41),
holds.

If, however, P , Q ∈ {±1}, then U is of the form

(3.62) U =

[
±1

2

√
3

2

−
√

3
2 ±1

2

]
or U =

[
±1

2 −
√

3
2√

3
2 ±1

2

]
.

We consider two subcases.

Case 1A. Assume the first case in (3.62). By the definition of U in (3.53),

(3.63)


c6 − 1

2d6

√
3

2 d6

a6 − 1
2b6

√
3

2 b6


 =


c7 − 1

2d7

√
3

2 d7

a7 − 1
2b7

√
3

2 b7




 ±1

2

√
3

2

−
√

3
2 ±1

2


 .

The entry in the first row and second column of the matrix on the left-hand side of
the equation is

(3.64)
√

3
2

d6 =
√

3
2

(
c7 −

1
2
d7

)
±

√
3

4
d7 =

√
3

2
c7 +

(
−
√

3
4

±
√

3
4

)
d7.

If we choose the plus sign in the first matrix of (3.62) (and, hence, in (3.64)),
then we conclude that d6 = c7, from which (3.41) follows. If, however, we choose
the minus sign in (3.62), then we conclude that d6 = c7 − d7. We will show that
this implies that c6 = c7 or c6 = −d7, from which (3.41) follows.

The pairs (c6, d6) and (c7, d7) are solutions to the equation λ = c2 − cd + d2.
Note that, if λ and d6 are fixed, then there are at most two solutions c6 to the
equation. If we set d6 = c7 − d7, then it follows from (3.2) that two solutions for c6

(indeed, the only two possible solutions for c6) are c6 = c7 or c6 = −d7. It follows
that (3.41) holds, and the proof for Case 1A is complete.

Case 1B. The proof for Case 1B is very similar to that for Case 1A. Assume that
the second case in (3.62) holds. Note that

U =


±

1
2 −

√
3

2

√
3

2 ±1
2


 = −


 ∓1

2

√
3

2

−
√

3
2 ∓1

2


 ,

which is the matrix in Case 1A multiplied by the scalar −1. Thus, by (3.63) or
(3.64),

(3.65)
√

3
2

d6 = −
(√

3
2

c7 +

(
−
√

3
4

±
√

3
4

)
d7

)
,

which implies that d6 = −c7 or d6 = −c7 + d7. But note that d6 = d7 − c7 would
imply that c6 = −c7 or c6 = d7 by (3.2). Hence, (3.41) follows, and the proof for
Case 1B is complete.
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Case 2. The proof of Case 2 is very similar to that of Case 1. Assume that

(3.66) e6 = −e7.

If we let

(3.67) M̃7 =


 c7 − 1

2d7 −
√

3
2 d7

−
(
a7 − 1

2b7

) √
3

2 b7


 ,

then a brief calculation gives

M̃7M̃
T
7 =

[
−c2

7 − c7d7 + d2
7 −(a7c7 + b7d7 − 1

2a7d7 − 1
2b7c7)

−(a7c7 + b7d7 − 1
2a7d7 − 1

2b7c7) a2
7 − a7b7 + b2

7

]
.

Note that the definition of M̃7 is the same as that of M7 in (3.50), except that
the entries along one diagonal are multiplied by −1. A straightforward calculation
gives

(3.68) |M̃7| = −
√

3
2

.

By (3.51), (3.39), (3.49), and (3.66), M6M
T
6 = M̃7M̃

T
7 or

(3.69) Ũ := M̃−1
7 M6 = (M−1

6 M̃7)T .

Then, from the definitions of M6 in (3.50) and M̃7 in (3.67) and the value of |M̃7|
from (3.68) we find that, after multiplying the requisite matrices,

Ũ =


 −b7(c6 − 1

2
d6) − d7(a6 − 1

2
b6) −

√
3

2
b7d6 −

√
3

2
b6d7

− 2√
3
(a7 − 1

2
b7)(c6 − 1

2
d6) − 2√

3
(a6 − 1

2
b6)(c7 − 1

2
d7) −d6(a7 − 1

2
b7) − b6(c7 − 1

2
d7)


 .

Thus, Ũ has the shape

(3.70) Ũ =




1
2 P̃

√
3

2 Q̃

1
2
√

3
R̃ 1

2 S̃


 ,

where P̃ , Q̃, R̃, S̃ ∈ Z.
As in Case 1, where (3.52) implies (3.53) and thus (3.54), the condition (3.69)

implies that Ũ = (Ũ−1)T , so that Ũ is of the form

(3.71) Ũ =
[

w̃ x̃
−x̃ w̃

]
.

By (3.70) and (3.71), we see that Ũ is of the form

(3.72) Ũ =

[
1
2 P̃

√
3

2 Q̃

−
√

3
2 Q̃ 1

2 P̃

]
,

where P̃ , Q̃ ∈ Z. But note that, by (3.68) and (3.54),

|Ũ | = |M̃−1
7 ||M6| =

(
− 2√

3

)(
−
√

3
2

)
= 1,

which implies that
1
4
P̃ 2 +

3
4
Q̃2 = 1.
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If P̃ = ±2 and Q̃ = 0, then, by (3.60) and (3.61), d6 = ±d7. If, however, P̃ ,
Q̃ ∈ {±1}, then Ũ has the form

(3.73) Ũ =


 ±1

2

√
3

2

−
√

3
2 ±1

2


 or Ũ =


±

1
2 −

√
3

2

√
3

2 ±1
2


 .

If the first case of (3.73) holds, then, by (3.69),

(3.74)


c6 − 1

2d6

√
3

2 d6

a6 − 1
2b6

√
3

2 b6


 =


 c7 − 1

2d7 −
√

3
2 d7

−
(
a7 − 1

2b7

) √
3

2 b7




 ±1

2

√
3

2

−
√

3
2 ±1

2


 .

The entry in the first row and second column of the matrix on the left-hand side of
the equation is

(3.75)
√

3
2

d6 =
√

3
2

(
c7 −

1
2
d7

)
∓

√
3

4
d7 =

√
3

2
c7 +

(
−
√

3
4

∓
√

3
4

)
d7,

which implies (3.41), because (3.75) is the same as equation (3.64) which ultimately
implied (3.41).

If, however, the second option in (3.73) holds, then by a similar argument,

(3.76)
√

3
2

d6 = −
√

3
2

(
c7 −

1
2
d7

)
∓

√
3

4
d7 = −

√
3

2
c7 +

(√
3

4
∓

√
3

4

)
d7,

which implies (3.41), because (3.76) is the same as equation (3.65) which ultimately
implied (3.41).

Thus, (3.41) holds both in Case 1 and Case 2, and the lemma is proved. �

4. The coefficients of E4/E6

In a letter to Hardy written from Matlock House, an English sanitarium, Ra-
manujan [19, p. 117] communicated a result which is very similar to formula (3.6)
in Theorem 3.1. We describe that result in this section. More details can be found
in [1].

Suppose that (c, d) is a pair of coprime integers which is a solution to the equation

(4.1) µ = c2 + d2,

where µ is fixed. Let K = Q(
√
−1). Then O = Z[

√
−1] = Z ⊕ Zi is a principal

ideal domain. Thus, from (4.1), λ = N(A) = AĀ, where A = (c + di) =: (α) and
Ā = (ᾱ). The group of units in OK is then given by U = {±1,±i}. Thus,

A =(α) = (−α) = (iα) = (−iα),

Ā =(ᾱ) = (−ᾱ) = (iᾱ) = (−iᾱ).

Hence one solution generates a total of eight solutions, namely,

(4.2) ±(c, d), ±(c,−d), ±(d, c), ±(d,−c).

We say that two solutions (c1, d1) and (c2, d2) to equation (4.1) are distinct if they
do not simultaneously belong to the same set of solutions in (4.2). Note that (c1, d1)
and (c2, d2) are distinct solutions to (4.1) if and only if

(4.3) c2 /∈ {±c1,±d1}.
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Recall that [11, p. 164] the integers µ which can be represented in the form
µ = c2 + d2, with c and d coprime, are integers of the form

(4.4) µ = 2a
r∏

j=1

p
aj

j ,

where a = 0 or 1, pj is a prime of the form 4m+1, and aj is a nonnegative integer,
1 ≤ j ≤ r.

Theorem 4.1. Let

(4.5)
Q(q2)
R(q2)

=
∞∑

n=0

δnq2n

and

(4.6) J = Q(e−2π) = 1 + 240
∞∑

k=1

k3

e2πk − 1
= 1.45576 . . . .

Then, if n ≥ 0,

δn =
2
J


e2nπ − (−1)n

22
enπ +

2 cos
(

4πn

5
+ 4 arctan 2

)
52

e2nπ/5

+
2 cos

(
3πn

5
+ 4 arctan 3

)
102

e2nπ/10 + · · ·




:=
2
J

∑
(µ)

vµ(n)
µ2

e2nπ/µ.

(4.7)

Here, µ runs over the integers of the form (4.4),

(4.8) v1(n) = 1, v2(n) = (−1)n+1,

and, for µ ≥ 5,

(4.9) vµ(n) = 2
∑
c,d

cos
(

(ac + bd)
2nπ

µ
+ 4 arctan

c

d

)
,

where the sum is over all pairs (c, d), where (c, d) is a distinct solution to µ = c2+d2

and (a, b) is any solution to ad−bc = 1. Also, distinct solutions (c, d) to µ = c2+d2

give rise to distinct terms in the sum in (4.7). If n < 0, then the sum on the far
right side of (4.7) equals 0.

Proof. Let |q| < 1. We apply Theorem 2.1 to the function f(q) = Q(q2)/R(q2).
Then ϕ(τ ) = E4(τ )/E6(τ ). Since E4(τ ) and E6(τ ) are modular forms of degrees
−4 and −6, respectively, ϕ(τ ) satisfies the functional equation (2.1) with n = 2.
The only zero of E6(τ ) in P1 is at

(4.10) τ = i

(Rankin [20, p. 198]), while by (3.10), E4(τ ) does not have a zero at τ = i. Thus,
in the notation of Theorem 2.1,

(4.11) α = i.
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Lastly, because 1/E6(τ ) is meromorphic in the upper half-plane [21, p. 50], we
see that ϕ(τ ) is also meromorphic there and that f(q) is meromorphic in the unit
circle.

We now calculate A = Res(ϕ, i). By (3.11), (4.6), and an identity of Ramanujan
[17], [18, p. 142, Table II, no. 3],

Res(f, e−π) =
Q(q2)

dR(q2)/dq

∣∣∣∣
q=e−π

=
−qQ(q2)

1008
∞∑

k=1

k6q2k

(1 − q2k)2

∣∣∣∣∣∣∣∣∣
q=e−π

=
−qQ(q2)

Q2(q2) − P (q2)R(q2)

∣∣∣∣
q=e−π

=
−qQ(q2)
Q2(q2)

∣∣∣∣
q=e−π

=
−e−π

J
.(4.12)

Thus, by (4.12) and (2.37),

(4.13) A = Res(ϕ, i) =
Res(f, e−π)

πie−π
=

−1
Jπi

.

By (2.2), (4.11), and (4.13), we deduce that

(4.14) f(q) =
2
J

∑
(c,d)

1
(ci + d)4

1
1 − (q/q)2

,

where

(4.15) q = exp
(

πi

(
ai + b

ci + d

))
,

and the conditions on a, b, c, and d are the same as in (3.13) and (3.14). We need
to explicitly determine the values over which (c, d) runs.

The analysis used to determine which pairs (c, d) are counted in the summation
is very similar to that in Theorem 3.1. Now,

(4.16) q = exp
(

πi

(
(ac + bd) + i

c2 + d2

))
= exp

(
−π

µ

)
exp

(
πi

µ
(ac + bd)

)
,

where µ = c2 + d2. As in (3.16), we can show that if the two pairs (c1, d1) and
(c2, d2) produce distinct values of µ, then they lead to distinct values for the set
{±q}, i.e.,

(4.17) {±q
1
} ∧ {±q

2
} = ∅.

When µ = 1 or µ = 2, then only four of the eight pairs in (4.2) are distinct.
Each value of µ corresponds to only two values of q, say, {±q

3
}. When µ ≥ 5, all

eight pairs in (4.2) are distinct. However, if (c, d) leads to {±q
4
}, say, then (−c, d)

and (d, c) each lead to {±q̄
4
}. It follows that the eight pairs of solutions in (4.2)

lead to only four different poles, namely,

(4.18) {±q4,±q̄
4
}.

These four poles are indeed distinct, because, as we will show, in Lemmas 4.2–4.4
at the end of the section, q is real only for µ = 1, and q is purely imaginary only
for µ = 2.
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Lastly, in Lemma 4.5, we prove that if µ ≥ 5 and (c1, d1) and (c2, d2), say, are
distinct solutions to equation (4.1), then each solution, taken together with the
seven corresponding solutions in (4.2), yields four distinct poles, i.e.,

(4.19) {±q
1
,±q̄

1
} ∧ {±q

2
,±q̄

2
} = ∅.

In summary, we have so far shown, by (4.14) and (4.17)–(4.19), that

f(q) =
2
J

{∑
(µ)
µ≤2

1
(ci + d)4

1
1 − (q/q)2

(4.20)

+
∑
(µ)
µ>2

(
1

(ci + d)4
1

1 − (q/q)2
+

1
(−ci + d)4

1
1 − (q/q̄)2

)}
,

where µ runs over all integers of the form (4.4), and where, for each fixed µ, the
sum is also over all distinct pairs (c, d).

For µ = 1 and, say, (a, b, c, d) = (1, 0, 0, 1), we find that, by (4.16), q = e−π, so
that the summand in (4.20) is

(4.21)
1

1 − q2e2π
.

For µ = 2 and, say, (a, b, c, d) = (1, 0, 1, 1), we find that q = ie−π/2, so that the
summand in (4.20) is

(4.22) − 1
22

1
1 + q2eπ

.

Thus, by (4.21) and (4.22), we can rewrite (4.20) as

f(q) =
2
J

{
1

1 − q2e2π
− 1

22

1
1 + q2eπ

+
∑
(µ)
µ>2

(
1

(ci + d)4
1

1 − (q/q)2
+

1
(−ci + d)4

1
1 − (q/q̄)2

)}

=
2
J

{ ∞∑
n=0

e2nπq2n − 1
22

∞∑
n=0

(−1)nenπq2n

+
∑
(µ)
µ>2

(
1

(ci + d)4

∞∑
n=0

q−2nq2n +
1

(−ci + d)4

∞∑
n=0

q̄−2nq2n

)}

=
∞∑

n=0

δnq2n,(4.23)
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where |q| < e−π and

δn =
2
J


e2nπ − (−1)n

22
enπ +

∑
(µ)
µ>2

(
1

(ci + d)4
q−2n +

1
(−ci + d)4

q̄−2n

)


=
2
J


e2nπ − (−1)n

22
enπ +

∑
(µ)
µ>2

2 cos
(

(ac + bd)
2nπ

µ
+ 4 arctan

c

d

)
µ2

e2nπ/µ




=
2
J

∑
(µ)

vµ(n)e2nπ/µ

µ2
,(4.24)

where vµ(n) is defined in (4.8) and (4.9). To obtain the displayed terms in (4.7),
we choose (a, b, c, d) = (1, 0, 2, 1) for µ = 5 and (a, b, c, d) = (1, 0, 3, 1) for µ = 10.

Thus, apart from the lemmas below, the proof of Theorem 4.1 is complete for
n ≥ 0. For n < 0, we repeat the argument above but with |q| > 1. Then, by
Theorem 2.1, the left side of (4.23) equals 0 instead of f(q). We now expand the
series on the left side of (4.23) in powers of 1/q instead of powers of q. We complete
the argument as in the proof of Theorem 3.1. �

The following four lemmas are analogous to Lemmas 3.2–3.5, and their proofs are
very similar. We forego the proofs, since they are similar to those in the previous
section.

Lemma 4.2. Given a pair of coprime integers (c, d), we can always choose integers
a and b such that ad − bc = 1 and

(4.25) |ac + bd| ≤ 1
2 (c2 + d2).

Lemma 4.3. If ad − bc = 1, where a, b, c, d ∈ Z, then the quantity

(4.26) q = exp
(

−π

c2 + d2

)
exp

(
πi

c2 + d2
(ac + bd)

)

is real only when c2 + d2 = 1.

Lemma 4.4. The quantity q is imaginary only when c2 + d2 = 2.

Lemma 4.5. If (c1, d1) and (c2, d2), say, are two pairs of coprime integers such
that

(4.27) c2
1 + d2

1 = c2
2 + d2

2 = µ,

and if

(4.28) {±q
1
,±q̄

1
} = {±q

2
,±q̄

2
},

where q is defined in (4.16), then the two solutions of (4.27) are not distinct. In
other words,

(4.29) c2 ∈ {±c1,±d1}.
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5. The coefficients of (πE∗
2/3)/E6 and (πE∗

2/3)2/E6

The following theorem is from the fragment published with the “lost notebook”
[19, pp. 102–104] and is similar to the previous theorems. However, since this result
involves a function which is not a modular form, we need to modify Theorem 2.1
in order to prove the result.

Theorem 5.1. Let

(5.1)

π

3
P (q2)

R(q2)
=

∞∑
n=0

η1,nq2n

and

(5.2)

(π

3
P (q2)

)2

R(q2)
=

∞∑
n=0

η2,nq2n.

If

(5.3) C := 1 + 480
∞∑

k=1

k7

e2πk − 1
,

then, if n ≥ 0,

η1,n =
2
C


e2nπ − (−1)n

23
enπ +

2 cos
(

4πn

5
+ 8 arctan 2

)
53

e2nπ/5

+
2 cos

(
3πn

5
+ 8 arctan 3

)
103

e2nπ/10 + · · ·




=:
2
C

∑
(µ)

Wµ(n)
µ3

e2nπ/µ(5.4)

and

(5.5) η2,n =
2
C

∑
(µ)

Wµ(n)
µ2

e2nπ/µ,

where µ runs over the integers of the form (4.4). Here,

(5.6) W1(n) = 1, W2(n) = −(−1)n,

and, for µ ≥ 5,

(5.7) Wµ(n) = 2
∑
c,d

cos
(

(ac + bd)
2nπ

µ
+ 8 arctan

c

d

)
,

where the sum is over all pairs (c, d), where (c, d) is a distinct solution of µ = c2+d2.
Also, distinct solutions (c, d) to µ = c2 + d2 give rise to distinct terms in the sums
in (5.4) and (5.5). If n < 0, then the sums on the right sides of (5.4) and (5.5)
are both equal to 0.
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Note that the definition of Wµ(n) is almost identical to that of vµ(n) in Theorem
4.1.

Proof. For j = 1 or 2, let fj(q) denote the quotients on the left sides of (5.1) and
(5.2), respectively. Define ϕj(τ ) = fj(eπiτ ). Then, by (1.5) and (1.4),

(5.8) ϕ1(τ ) =
πE∗

2(τ )/3
E6(τ )

and ϕ2(τ ) =
(πE∗

2(τ )/3)2

E6(τ )
.

Recall that E2(τ ), defined by (1.6), satisfies the functional equation

(5.9) E2 (V τ ) = E2(τ )(cτ + d)2

for any modular transformation V τ = (aτ + b)/(cτ + d). Although E∗
2 (τ ) is not

a modular form, we see from Ramanujan’s work [3, p. 320] that it does satisfy a
modified functional equation:

(5.10) E∗
2 (V τ ) = E∗

2(τ )(cτ + d)2 − 6ci

π
(cτ + d).

Since E6 is a modular form of weight 6,

(5.11) E6 (V τ ) = E6(τ )(cτ + d)6.

Taking (5.10) and (5.11) together, we find that

(5.12) ϕ1(τ ) = ϕ1 (V τ ) (cτ + d)4 +
2ci

E6 (V τ )
(cτ + d)5

and, after squaring both sides of (5.10),

(5.13) ϕ2(τ ) = ϕ2(V τ )(cτ + d)2 + 4ciϕ1(V τ )(cτ + d)3 − 4c2

E6(V τ )
(cτ + d)4.

We now prove that modified versions of Theorem 2.1 hold when the functional
equation (2.1) is replaced by either (5.12) or (5.13).

When we replace (2.1) by either (5.12) or (5.13), the parts of the proof which are
affected are the estimation of the integral (2.5) and the calculation of the residues
of ϕj . The only resulting change in the statement of the theorem itself is a slight
modification of (2.2).

When we replace (2.1) by (5.12) or (5.13), the function ϕj(τ ) satisfies the con-
ditions of Theorem 2.1 for j = 1 or 2 with α = i, because P (q) is analytic in the
unit circle.

We now estimate the integral (2.5). Let V ∗τ = (k
′
τ − h

′
)/(−kτ + h). By (5.12)

and (5.13), our estimates for ϕ in (2.24) are replaced by, respectively,

(5.14) |ϕ1(τ )| < |ϕ1 (V ∗τ )| | − kτ + h|4 +
2k

|E6 (V ∗τ )| | − kτ + h|5

and

|ϕ2(τ )| < |ϕ2 (V ∗τ )| | − kτ + h|2 + 4k |ϕ1 (V ∗τ )| | − kτ + h|3

+
4k2

|E6 (V ∗τ )| | − kτ + h|4.(5.15)
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As we have seen, Theorem 2.1 can be applied to the function 1/E6(τ ) (as Hardy
and Ramanujan [10] did). Thus, on the boundary of P ,

(5.16)
∣∣∣∣ 1
E6(τ )

∣∣∣∣ < M̃,

for some positive constant M̃ . By (5.14), (5.16), (2.22), and (2.25),

|ϕ1(τ )| < M | − kτ + h|4 + 2kM̃ | − kτ + h|5

= k4M |τ − h/k|4 + 2k6M̃ |τ − h/k|5

<
16M

(k2 + kk′ + k′2)2
+

64kM̃

(k2 + kk′ + k′2)5/2

<
M0

(k2 + kk′ + k′2)2
,(5.17)

where M0 is some positive constant.
Similarly,

(5.18) |ϕ2(τ )| <
M̂0

k2 + kk′ + k′2 ,

where M̂0 is some positive constant. Note that the inequalities (5.17) and (5.18)
are similar to (2.26). The remainder of the argument is the same as before, and so
the integral in (2.5) approaches 0 as m approaches ∞ in the cases of ϕ1 and ϕ2.

Next we evaluate Res(ϕj , i) using the following lemma.

Lemma 5.2. Let V τ = (aτ +b)/(cτ +d), where a, b, c, and d are integers satisfying
ad − bc = 1. Then

(5.19)
π

3
E∗

2 (V i) =
π

3
P (q2) = c2 + d2,

where

q = exp
(

πi

(
ai + b

ci + d

))
.

Proof. Consider the modular form E2(τ ) defined in (1.6). From [2, p. 159] and [3,
p. 256],

(5.20) E2(i) = 1 − 24
∞∑

k=1

k

e2πk − 1
− 3

π
= 0.

By (5.20), (1.6), and the definition of q above,

0 = E2(V i) = 1 − 24
∞∑

k=1

kq2k

1 − q2k
− 3

π Im(V i)

= 1 − 24
∞∑

k=1

kq2k

1 − q2k
− 3

π
(c2 + d2),

and hence we obtain (5.19). �

By (2.36), or more precisely the sentence preceding (2.36), and (4.13),

Res
(

1
E6(τ )

, V i

)
=

Res (1/E6(τ ), i)
(ci + d)8

=
−1/(J2πi)
(ci + d)8

=
−1/(Cπi)
(ci + d)8
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by a result of Ramanujan [17, Table I, Entry 4], [18, p. 141], where J is defined in
(4.6) and C is defined in (5.3). By (2.37) and the calculation above,

(5.21) Res
(

1
R(q2)

, q

)
= −

q

C(ci + d)8
.

It follows from (5.19) and (5.21) that

(5.22) Res
(
fj(q), q

)
= −(c2 + d2)j

q

C(ci + d)8
.

When we replace (2.37) with (5.22), the analogue of (2.38) becomes, or, alterna-
tively, (2.33) becomes

(5.23) fj(q) =
2
C

∑
(c,d)

µj

(ci + d)8
1

1 − (q/q)2
,

where µ = c2 + d2.
Thus, the conclusion of Theorem 2.1 is valid for ϕj if we replace (2.2) by (5.23).
Since the quantity q is the same for ϕj as for ϕ in Theorem 4.1, the analysis

involving the values of (c, d) counted in the summation in (4.14) is valid for ϕj as
well. So by (4.20), (4.23), and (4.24), we find that

fj(q) =
∞∑

n=0

ηj,nq2n,

where, for j = 1, 2,

ηj,n =
2
C


e2nπ − (−1)n

24−j
enπ +

∑
(µ)
µ>2

2 cos
(

(ac + bd)
2nπ

µ
+ 8 arctan

d

c

)
µ4−j

e2nπ/µ




(5.24)

=
2
C

∑
(µ)

Wµ(n)e2nπ/µ

µ4−j
,(5.25)

by (5.7). In (5.24), as in (4.20), µ runs over all integers of the form (4.4), and for
each fixed µ, the sum is also over all distinct pairs (c, d).

Thus, the proof of (5.4) is complete. �

6. The coefficients of (πE∗
2/2

√
3)/E4

The theorem in this section is from the same fragment [19, pp. 102–104] as the
previous theorem, and the proof is very similar, and so we forego it. More details
may be found in [1].

Theorem 6.1. Let

(6.1) f(q) :=
πP (q2)

2
√

3Q(q2)
=

∞∑
n=0

θnq2n.
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Then, if n ≥ 0,

(6.2) θn = (−1)n 3
G

∑
(λ)

hλ(n)
λ2

enπ
√

3/λ,

where λ runs over the integers of the form (3.4), and G and hλ(n) are defined in
(3.5) and (3.8), respectively. Also, distinct solutions (c, d) to λ = c2 − cd + d2,
which were defined before Theorem 3.1, give rise to distinct terms in the sum in
(6.2). If n < 0, the sum on the right side of (6.2) equals 0.

We are grateful to R. J. Evans, L.–C. Zhang, and the referee for very helpful
suggestions.
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