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Abstract— Monitoring localization safety will be necessary to
certify the performance of robots that operate in life-critical
applications, such as autonomous passenger vehicles or delivery
drones because many current localization safety methods do not
account for the risk of undetected sensor faults. One type of fault,
misassociation, occurs when a feature extracted from a mapped
landmark is associated to a non-corresponding landmark and is a
common source of error in feature-based navigation applications.
This paper accounts for the probability of misassociation when
quantifying landmark-based mobile robot localization safety
for fixed-lag smoothing estimators. We derive a mobile robot
localization safety bound and evaluate it using simulations and
experimental data in an urban environment. Results show that
localization safety suffers when landmark density is relatively low
such that there are not enough landmarks to adequately localize
and when landmark density is relatively high because of the high
risk of feature misassociation.

I. INTRODUCTION

There have been significant advancements in self-driving
vehicles resulting in an impressive number of autonomously
driven miles on public roads [1]. However, miles driven are
insufficient to prove safety— strong statistical evidence of
safety would require billions of miles all while assuming
that the on-board algorithms and sensors have not changed
during testing [2]. Simulations can help, but they might not
account for intricate real-world edge-cases [3]. Instead, more
rigorous, analytical approaches can and must be used used
to assess autonomous vehicle performance. As such, this
paper investigates the safety assessment of one subsystem
in autonomous vehicles: localization. More specifically, this
paper is the first to introduce the impact of misassociation
faults on the localization safety of landmark-based fixed lag
smoothing estimator. Misassociation event occurs when a
feature extracted from a mapped landmark is associated to
a non-corresponding landmark, which is a common source of
failure in feature-based navigation applications.

In robotics, most pose estimation research has focused on
improving the quality of batch and sequential localization and
mapping [4], [5], [6], [7], [8]. Only a few papers assessed
pose estimation safety, and they either utilized a particle
spread or covariance envelope [9], [10], [11], which are
insufficient because they do not account for measurement
faults [12]. Measurement faults are unknown deterministic
errors that cannot be modeled using a zero-mean Gaussian
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distribution. Examples include excessive Global Navigation
Satellite Systems (GNSS) clock errors, misassociations among
mapped objects, unmapped static objects mistaken as parts of
the map, and measurements due to dynamic objects. If such
faults are not detected, they might result in large pose estimate
errors with hazardous consequences.

There is some prior work on identifying such faults by
testing discrepancy among measurements [13], [14], [15], but
such approaches do not provide any statistical proofs on the
detection performance. Instead, this paper employs a more
appropriate metric to assess pose estimation safety, localization
integrity [16]. Specifically, integrity risk is the probability that
the pose estimation error will exceed an allowable tolerance
level without warning the system.

For decades, integrity risk has been the main safety metric
for open-sky GNSS aviation applications [17], [18], [19].
Lately, integrity monitoring techniques have been extended to
mobile robots in GNSS degraded environments. For example,
[20] develops an integrity monitoring-based fault detection and
isolation mechanism for fused lidar and GPS measurements
with an Unscented Kalman Filter estimator. A novel approach
to build protection levels on estimate error for optimization-
based visual localization has been proposed by [21]. Other
work has performed integrity monitoring for lidar-based Ex-
tended Kalman Filter (EKF) localization by accounting for
the risk of misassociation in global nearest neighbors [22] or
local nearest neighbors [23] data association techniques. Such
methods have been extended to account for unmapped objects
associated to mapped landmarks using a solution-separation
[24] or innovation-based approach [25]. The role of Inertial
Measurement Units (IMUs) in reducing misassociation risk
has been studied in [26], and using integrity risk in a model
predictive control framework to generate a safe trajectory has
been investigated in [27].

All of the aforementioned research upper-bounds the in-
tegrity risk given a wrong association by one. To obtain a
tighter bound, [28] developed an Extended Kalman Filter
(EKF)-based integrity monitor that can handle measurement
faults sequentially from the prior estimate to the current esti-
mate under the worst case scenario, which has been extended
in [29], [30] to account for the risk of incorrect association and
to handle measurement faults sequentially within a preceding
time window to improve the tightness of the bound.

These methods focused on landmark-based localization via
EKFs while [31] developed a method to monitor integrity
offline using fixed lag smoothing for localization and a chi-
squared residual for fault detection. Unlike EKFs, where
a robot’s current state is estimated using the current mea-
surement and the prior pose estimate, fixed-lag smoothing
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estimates a robot’s pose over a preceding time window by
employing all measurements received within this window and
the prior pose estimate at the beginning of the window. Fixed-
lag smoothing is considered by many a more robust estimator
against linearization errors as compared to EKFs.

Quantifying localization integrity risk via fixed lag smooth-
ing using a solution separation fault detector has been demon-
strated and compared to the chi-squared residual approach
by [32]. Prior work on fixed lag smoothing-based integrity
monitoring assumed that the probability of failure for each
feature is known a priori, but this is not accurate. To account
for its variability, this paper extends the previous work to
account for the risk of misassociations in the local nearest
neighbor criterion under the impact of previous and current
measurement faults.

The remainder of the paper begins with background on
localization via fixed-lag smoothing where measurements may
be affected by unknown deterministic errors (or what is re-
ferred to as measurement faults), a point that distinguishes this
work from others. Section III defines the hazardous misleading
information event. The estimate error and the fault detector
distributions as well as the upper-bound on the conditional in-
tegrity risk for each fault hypothesis are derived in Section IV.
Section V presents the probability of each fault hypothesis as a
function of the measurement failure probabilities and provides
a practical integrity monitor. The data association failure prob-
ability for each feature extracted from range measurements
is derived in Section VI. Section VII assesses the method’s
performance using simulation and experimental data. Finally,
conclusions and future work are presented in Section VIII.

II. FIXED-LAG SMOOTHING

This section presents the primary components of landmark-
based localization via fixed-lag smoothing. First, the general
non-linear optimization problem is described. Then, measure-
ment models are expressed into a generalized form that allows
us to leverage prior work in integrity monitoring for GNSS
applications. Subsequently, the sensitivity of robot’s pose
estimate error to measurement errors is analyzed. The local
nearest neighbor data association criterion, used to associate
measurements extracted from sensors (e.g. lidar or camera)
with landmarks in the map, for a fixed-lag smoothing estimator
is then illustrated. Last, the use of chi-squared residual metric
as a means of fault detection is described.

A. Problem Formulation

Robot pose estimation using fixed-lag smoothing is accom-
plished by determining the robot state at each epoch within
a preceding time window of size M (including the current
epoch) that minimizes the squared norm of the measurements’
weighted residual:

x̂k,M = argmin
xk,M

nk,M

∑
i=1

∥∥zi−hi
(
xk,M

)∥∥2
V−1

i
(1)

where zi ∈ Rni is the ith measurement in the preceding time
window with ni being the number of features in the ith mea-
surement, xk,M =

[
xT

k-M . . . xT
k-1 xT

k

]T is a vector of robot
pose within the time window, such that xk ∈ Rm refers to the

state at the current time, nk,M is the number of measurements
received within the time window, and ‖v‖2

V−1 = vT V−1v is
the norm squared of vector v weighted by V−1. Each of the
measurements can be expressed as a non-linear function of the
robot pose with additive noise and a possible fault:

zi = hi
(
xk,M

)
+vi + fi (2)

where vi ∼ N(0,Vi) is the ith measurement’s Gaussian white
noise with Vi being the associated noise covariance matrix,
hi(·) is the observation function of ith measurement, and
fi is the fault in the ith measurement, such that fi is a
vector of zeros if the ith measurement is non-faulted. This
formulation can handle measurements that contain colored
noise, by augmenting the dynamic model of the noise as an
additional state [33].

Measurement faults are defined as rarely occurring unknown
deterministic errors that do not obey the Gaussian white noise
assumption and thus might result in a non-zero mean of
the estimate error. The next subsection defines the different
types of measurement models used in mobile robotics and
reformulates them to match the general measurement model
in (2).

B. Measurement Modeling

Absolute measurements, such as extracted features from
lidar measurements or GNSS measurements, can be expressed
in the form of (2). In landmark-based navigation, hi(·) relates
robot pose to an extracted landmark’s feature, zi represents a
feature’s measurements extracted from a detected landmark,
and fi is a nonzero vector only when the detected landmark’s
feature measurements are faulted, e.g. associating a feature
extracted from a mapped landmark to a non-corresponding
landmark or associating an extracted feature from a moving
or unmapped static object to a landmark in the map [23],
[25]. A special case of absolute measurements that reflects the
sequential impact of prior state estimate errors on the current
robot pose estimate is the prior measurement, x̂k-M ∈ Rm,
which represents the prior estimate of robot pose at the last
epoch in the time window (or what is referred to as pseudo
measurements):

x̂k-M︸︷︷︸
zi

= xk-M︸︷︷︸
hi(xk,M)

+εεεk-M︸︷︷︸
vi

+ fk-M︸︷︷︸
fi

(3)

where εεεk-M ∼ N
(
0,ΛΛΛ−1

k-M

)
is Gaussian uncertainty in the prior

robot pose estimate and ΛΛΛk-M is its information matrix.
Relative measurements, such as those that may come from

accelerometers, gyroscopes, or wheel encoders, are commonly
modeled as:

xk−q+1 = gi
(
xk−q,ui

)
−wi ,∀q ∈ {1,2, ...,M} (4)

where gi(·, ·) is the state evolution model of the ith rela-
tive measurement, ui is the ith relative measurement, wi ∼
N(0,Wi) is the Gaussian white process noise in the ith

relative measurement with Wi as the associated process noise
covariance matrix (in this case, wi is the projection of the
ith relative measurement noise on the state space). To fit the

307

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 17,2020 at 19:26:24 UTC from IEEE Xplore.  Restrictions apply. 



format provided by (2), the relative measurement model in (4)
is reformulated as follows:

0︸︷︷︸
zi

= xk−q+1−gi
(
xk−q,ui

)︸ ︷︷ ︸
hi(xk,M)

+ wi︸︷︷︸
vi

+ 0︸︷︷︸
fi

,∀q∈ {1,2, ...,M}

(5)

C. Pose Estimation

This section describes the robot pose estimation process.
The minimization problem in (1) can be expressed in batch
form as:

x̂k,M = argmin
xk,M

∥∥z−h
(
xk,M

)∥∥2
V−1 (6)

where z ∈ RN is the measurement vector, N = ∑
nk,M
i=1 ni is the

number of independent measurements obtained during the time
window, and V ∈ RN×N is a block matrix of measurement
noise covariance matrices along its diagonal. The optimization
problem is solved by recursively linearizing the measure-
ment function, h

(
xk,M

)
, for example by using the Gauss-

Newton method. After the optimization process converges, the
observation function, h

(
xk,M

)
, is linearized around the best

robot pose estimate x∗k,M (obtained in the last iteration of the
optimization):

δ̂δδ k,M = argmin
δδδ ∗k,M

∥∥z−h
(
x∗k,M

)
−Hk,Mδδδ

∗
k,M

∥∥2
V−1 (7)

where Hk,M =
∂h(xk,M)

∂xk,M

∣∣∣
x∗k,M

is the Jacobian of the observa-

tion function and δδδ ∗k,M = xk,M − x∗k,M . By defining bk,M =

V−
1
2

(
z−h

(
x∗k,M

))
as the weighted residual vector and

Ak,M =V−
1
2 Hk,M as the standardized measurement matrix, the

pose estimate over the preceding time window, in (7), can be
written using a quadratic form:

δ̂δδ k,M = argmin
δδδ ∗k,M

∥∥Ak,Mδδδ
∗
k,M−bk,M

∥∥2 (8)

By utilizing the sparseness of the standardized measurement
matrix, the minimization problem can be solved efficiently
[34], [4]. The solution of the least squares problem in (8) is:

δ̂δδ k,M =ΛΛΛ
−1
k,MAT

k,Mbk,M (9)

where ΛΛΛk,M = AT
k,MAk,M is the information matrix over the

time window, δ̂δδ k,M = x̂k,M − xk,M is the pose estimate error,
and xk,M is the true robot pose. The pose estimate error during
the time window obtained using fixed-lag smoothing can be
expressed as a function of measurement errors by substituting
the definition of bk,M , after convergence, in (9):

δ̂δδ k,M =ΛΛΛ
−1
k,MAT

k,MV−
1
2
(
z−h

(
xk,M

))
=ΛΛΛ

−1
k,MAT

k,MV−
1
2 (v+ f)

(10)

where v ∈RN is the measurement noise vector, and f ∈RN is
the measurement fault vector.

D. Data Association

This section describes the local nearest neighbor data asso-
ciation criterion for fixed lag smoothing estimator. Since this
work is tailored for landmark-based localization, the role of
the data association algorithm is to associate feature measure-
ments extracted from lidars or cameras to their corresponding
landmarks in the pre-obtained map.

It is worth mentioning that this work uses tl to designate
landmark indices, whereas l to designate the feature of land-
mark tl . In fixed lag smoothing localization, the individual
residual vector, b j,tl

k,M , between feature j and landmark tl is
used as a measure for data association, such that feature j
is correctly associated if it is associated to tl = t j, which is
defined as:

b j,tl
k,M = V−

1
2

j

(
z j−htl

(
x̂k,M

))
(11)

By expanding z j and linearizing htl

(
x̂k,M

)
around xk,M , the

individual residual vector, b j,tl
k,M , would become:

b j,tl
k,M = V−

1
2

j

(
ht j

(
xk,M

)
+v j−Htl

k,M δ̂k,M−htl

(
xk,M

))
= V−

1
2

j

(
yt j ,tl

k,M +v j−Htl
k,MΛΛΛ

−1
k,MAT

k,MV−
1
2 (v+ f)

)
= V−

1
2

j

(
yt j ,tl

k,M +v j

)
−Atl

k,MΛΛΛ
−1
k,MAT

k,MV−
1
2 (v+ f)

(12)

where yt j ,tl
k,M = ht j

(
xk,M

)
− htl

(
xk,M

)
is the relative separa-

tion between the landmark t j (unknown) and landmark tl
(known) in the measurement space and Atl

k,M = V−
1
2

j Htl
k,M is

the standardized observation matrix of the lth landmark. As
a preliminary step to describe the local nearest neighbor data
association criterion for fixed lag smoothing localization, the
individual residual vector’s distribution, b j,tl

k,M , is defined as:

b j,tl
k,M ∼ N

(
V−

1
2

j yt j ,tl
k,M−Atl

k,MΛΛΛ
−1
k,MAk,M

T V−
1
2 f,R j,tl

k,M

)
(13)

where N(µ,Σ) is a normal distribution with mean vector µ

and covariance matrix Σ, and R j,tl
k,M is the individual residual

vector’s covariance matrix, which can be expressed as follows:

R j,tl
k,M =

(
E j−Atl

k,MΛΛΛ
−1
k,MAT

k,M

)(
E j−Atl

k,MΛΛΛ
−1
k,MAT

k,M

)T
(14)

such that E j is the jth feature extraction matrix.
In landmark based fixed lag smoothing localization, the

local nearest neighbor algorithm utilizes the individual resid-
ual vector, b j,tl

k,M , to associate feature measurements with the
corresponding landmarks in the map recursively within each
iteration of the optimization until convergence. Specifically, it
associates feature j to landmark t∗ if it satisfies:

t∗ = argmin
tl

‖b j,tl
k,M‖R j,tl

k,M

−1 and ‖b j,t∗
k,M‖R j,t∗

k,M
−1 < T n (15)

where T n is a predefined threshold that determines the valida-
tion region for each landmark.
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E. Fault Detection

The fault detector, qk, which checks whether the robot’s
operation can continue, is a statistical measure of estimation’s
measurement discrepancy that is used to trigger an alarm
whenever it exceeds a predefined threshold, Tk, qk > Tk. Here,
the squared norm of the residual vector, or what is referred to
as the chi-squared metric, is used as a fault detector:

qk =
∥∥∥V−

1
2
(
z−h

(
x̂k,M

))∥∥∥2
(16)

Accordingly, the chi-squared fault detector can be expressed as
a function of measurement errors by substituting the definition
of x̂k,M = xk,M + δ̂δδ k,M in (16):

qk =
∥∥∥V−

1
2 (v+ f)−Ak,Mδ̂δδ k,M

∥∥∥2

=
∥∥∥(I−Ak,MΛΛΛ

−1
k,MAT

k,M

)
V−

1
2 (v+ f)

∥∥∥2 (17)

This section introduced fixed-lag smoothing localization, the
associated local nearest neighbors data association criterion,
and the chi-squared based fault detection mechanism. The next
will define Hazardous Misleading Information.

III. HAZARDOUS MISLEADING INFORMATION

Localization safety is quantified as integrity risk, the proba-
bility of Hazardous Misleading Information (HMI), which oc-
curs when the state-of-interest’s estimate error, ααα ∈ R(M+1)m,
(e.g. lateral error) surpasses an alert limit, l, and the fault
detector, qk, does not trigger an alarm [29]:

HMIk = qk ≤ Tk ∩
∣∣∣αααT

δ̂δδ k,M

∣∣∣> l (18)

where nH is the number of fault hypotheses. The probability
of HMI, P(HMI), is evaluated under every fault hypothesis,
Hh, ∀i∈ {0, ...,nH}, where the fault hypothesis specifies which
measurements are faulted and H0 is the fault-free hypothesis.

Since the state-of-interest estimate error and fault detector
are both influenced by measurement faults in the preced-
ing time window, the set of hypotheses must account for
measurement faults taking place within the time window.
In robotics, fixed-lag smoothing is commonly utilized as a
recursive estimator by including the prior estimate, x̂k-M (com-
puted by fixed-lag smoothing in the previous epoch, x̂k−1,M)
as a measurement. Thus, the impact of measurement faults
happening at epochs prior to the preceding time window must
be considered by incorporating the possibility of having faults
in the prior estimate among the set of hypotheses. In this work,
the probability of having faults in the prior estimate is upper-
bounded by one. Then, given a set of mutually exclusive,
collectively exhaustive fault hypotheses, {H0, . . . ,HnH}, the
P(HMI), or integrity risk, is quantified as follows:

P(HMIk) =
nH

∑
h=0

P(HMIk | Hh)P(Hh) (19)

where P(HMIk | Hh) is the current conditional integrity risk
given the hth fault hypothesis, and P(Hh) is the probability of
occurrence for the hth hypothesis.

The following sections will upper-bound the right hand side
of (19) to obtain a conservative measure of localization safety.
Next, P(HMIk | Hh) will be quantified.

IV. INTEGRITY MONITORING

This section upper-bounds the probability of HMI for a
given fault hypothesis, P(HMIk | Hh). To quantify the con-
ditional integrity risk, the statistical distribution of the state-
of-interest estimate error, αααT δ̂δδ k,M , and the fault detector, qk,
needs to be specified. First, from (10) and relying on the
Gaussian white noise assumption of v, the distribution of the
state-of-interest estimate error, αααT δ̂δδ k,M , is:

ααα
T

δ̂δδ k,M ∼ N
(

ααα
T

ΛΛΛ
−1
k,MAT

k,MV−
1
2 f, ααα

T
ΛΛΛ
−1
k,Mααα

)
(20)

where N(µ,Σ) is a normal distribution with mean µ , and
covariance matrix Σ. Second, from (17), and utilizing the fact
that V−

1
2 (v) is a vector of standard normal random variables

and that
(

I−Ak,MΛΛΛ
−1
k,MAT

k,M

)
is an idempotent matrix, the

distribution of the fault detector, qk, is:

qk ∼ χ
2
nk,M−(M+1)m,λk

(21)

where χ2
a,b refers to a non-central chi-squared distribution with

a degrees of freedom and non-centrality parameter b. The non-
centrality parameter for qk is:

λk = fT V−
1
2

(
I−Ak,MΛΛΛ

−1
k,MAT

k,M

)
V−

1
2 f (22)

The degrees of freedom is less than nk,M because the robot
pose estimate, x̂k,M , is linearly dependant on the measurement
vector, z. Moreover, given the distribution of qk, the current
detector’s threshold, Tk, can be chosen to limit the risk of false
alarms, or continuity risk, to a pre-allocated value, IFA:

P(qk > Tk|H0) = IFA (23)

Accordingly, the fault detector’s threshold, Tk is:

Tk = X−2
nk,M−(M+1)m [1− IFA] (24)

where X−2
b [·] is the inverse cumulative distribution function of

the central chi-squared distribution with b degrees of freedom.
The conditional probability of HMI given the hth fault

hypothesis is defined as:

P(HMIk | Hh) = P
(

qk ≤ Tk ∩
∣∣∣αααT

δ̂δδ k,M

∣∣∣> l | Hh

)
(25)

The fact that the statistical distribution of the state-of-interest
estimate error, αααT δ̂δδ k,M , and the fault detector, qk, are different,
makes the evaluation of their joint probability complex. For-
tunately, [35] proved that for batch estimators, the chi-squared
detector is statistically independent from the pose estimate
error. Thus, the conditional integrity risk can be expressed
as:

P(HMIk | Hh) = P(qk ≤ Tk | Hh)P
(∣∣∣αααT

δ̂δδ k,M

∣∣∣> l | Hh

)
(26)

By utilizing the distributions of the fault detector, qk, and
the state-of-interest estimate error, αααT δ̂δδ k,M , the conditional
integrity risk, P(HMIk | Hh), is expanded as follows:
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P(HMIk | Hh) =

(
Φ

 l−µ
αααT δ̂δδ k√

αααTΛΛΛ
−1
k,Mααα


−Φ

 −l−µ
αααT δ̂δδ k√

αααTΛΛΛ
−1
k,Mααα

)X2
nk,M−(M+1)m,λk

[Tk] (27)

where Φ [·] is the standard Gaussian Cumulative Distribution
Function (CDF), X2

a,b is the chi-squared CDF with a degrees of
freedom and non-centrality parameter b, µ

αααT δ̂δδ k,M
is the current

estimate error’s mean as defined in (20), and λk is the current
detector’s non-centrality parameter defined in (22). Note that
µ

αααT δ̂δδ k,M
and λk are both influenced by measurement faults, f.

Because the true measurement faults are unknown, quantify-
ing P(HMIk | Hh) is upper-bounded by searching for the fault
vector that maximizes it (the worst-case fault vector) given the
set of faulted measurements in the hth hypothesis, Hh:

fworst
h = fdir

h fmag
h (28)

where fdir
h is the direction of the worst-case fault vector (unit

vector), and fmag
h is the magnitude of the worst-case fault

vector (scalar). [35] showed that the worst-case fault vector’s
direction, fdir

h , can be quantified in a closed form as:

fdir
h = FT

h

[
Fh

(
I−Ak,M ΛΛΛ

−1
k,MAT

k,M

)
FT

h

]−1
FhAk,M ΛΛΛ

−1
k,Mααα

(29)
where Fh is the extraction matrix of the faulted measurements
assumed by the hth hypothesis. After substituting fdir

h in (27),
the upper-bound on P(HMIk | Hh) is evaluated by searching
for fmag

h , that maximizes (27).

P(HMIk | Hh)≤max
fmag
h

[(
Φ

 l−µ
αααT δ̂δδ k,M√

αααTΛΛΛ
−1
k,Mααα


−Φ

−l−µ
αααT δ̂δδ k,M√

αααTΛΛΛ
−1
k,Mααα

)X2
nk,M−(M+1)m,λk

[Tk]

]
(30)

This section derived an upper-bound on P(HMIk | Hh). Thus,
the only remaining part to monitor integrity is to evaluate
the probabilities of each fault hypotheses, P(Hh), which is
addressed in the following section.

V. FAULT HYPOTHESIS PROBABILITIES

This section evaluates the probability of occurrence for each
fault hypothesis, P(Hh). To do so, the individual probability of
failure for each measurement, Pi, needs to be quantified, which
can be done either theoretically or experimentally based on the
nature and quality of each measurement. The quantification of
these probabilities will be illustrated later in this paper.

Given the fault probability of every measurement within the
preceding time window, the probability of hypothesis Hh with
the set of faulted measurements j = 1, . . . ,r is given as:

P(Hh) = P(H0)
r

∏
j=1

Pj

1−Pj
(31)

where P(H0) = ∏
nk,M
i=1 1− Pi is the probability of fault-free

hypothesis [36]. Note, this work assumes that measurement
faults are statistically independent, i.e. given that one of the
measurements is faulted, the fault probability of others does
not change.

Monitoring integrity for all possible hypotheses can be
computationally infeasible, even for a few number of mea-
surements in the time window. Accordingly, this work upper-
bounds the integrity risk by limiting the hypotheses to be
monitored to the ones in which the number of simultaneous
measurement faults in the time window is less than or equal
to a specific number, nmax, while accounting for the risk of
more than nmax simultaneous faults. Thus, the upper-bound on
the integrity risk would become:

P(HMIk)≤ I>nmax +
nH

∑
h=0

h/∈>nmax

P(HMIk | Hh)P(Hh)(1− I>nmax)

(32)
where I>nmax is the probability of more than nmax measure-
ments to be faulted simultaneously, which can be upper-
bounded as follows (see Appendix C of [36] for the proof):

I>nmax ≤

(
∑

nk,M
i=1 Pi

)nmax+1

(nmax +1)!
(33)

Since this work is focused on quantifying localization safety
for landmark based navigation, the next section will assess the
risk of failure for measurements extracted from feature-based
sensors, e.g. lidars or cameras.

VI. DATA ASSOCIATION FAILURE PROBABILITY

This section upper-bounds the failure probability of features
extracted from lidar or camera measurements. There are two
modes in which the features can fail. First, the Mis-Association
(MA) event: a feature extracted from a mapped landmark
is associated to a non-corresponding landmark in the map.
Second, the Unmapped Association (UA) event: a feature
corresponding to a moving or unmapped static object is
associated to a landmark in the map. Thus, the probability
of failure for any associated feature, j, can be expressed as:

Pj = P(UA j ∪MA j) (34)

Due to the fact that the unmapped association and mis-
association events cannot occur simultaneously for a specific
feature, equation (34) can be written as follows:

Pj = P(UA j)+P(MA j) (35)

The probability of unmapped association is assumed to be a
constant that can be assessed using limited experimentation.

This work focuses on quantifying the risk of mis-association
for localization via fixed-lag smoothing. Based on fixed lag
smoothing-based local nearest neighbors criterion illustrated
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in (15), the probability of mis-association for feature j is:

P(MA j) = P

( ⋃
tr

tr 6=t j

[
‖b j,tr

k,M‖R−1
j,tr

< T n

⋂
ti

ti 6=tr

‖b j,tr
k,M‖R−1

j,tr
≤ ‖b j,ti

k,M‖R−1
j,ti

])
(36)

Note, the landmark from which feature j is extracted is
unknown, but the landmark to which feature j is associated is
known, which makes the quantification of P(MA j) easier.

By denoting the landmark that feature j is associated to as
t j∗ (such that if t j∗ = t j, then feature j is not mis-associated),
the risk of mis-association for feature j will be quantified by
the probability of associating a non-corresponding feature to
landmark t j∗ :

P(MA j)≤ P

( nF
k,M⋃

i∗=1
i∗ 6= j∗

[
‖bi∗,t j∗

k,M ‖R−1
i∗,t j∗

< T n

⋂
tr∗

tr∗ 6=t j∗

‖bi∗,t j∗
k,M ‖R−1

i∗,t j∗
≤ ‖bi∗,tr∗

k,M ‖R−1
i∗,tr∗

])
(37)

where i∗ refers to the feature extracted from the ith associated
landmark, and nF

k,M is the number of associated landmarks in
the time window. Note that this interpretation of the probability
of mis-association for feature j, is an upper-bound (not exact)
because it is possible for more than one feature to be associated
to landmark t j∗ simultaneously (other than the jth feature).
The risk of mis-association for feature j will be further
upper-bounded by assuming that the mis-association event
would occur whenever a non-corresponding feature lies in the
validation region of landmark t j∗ and then by replacing the
union by the sum of the individual probabilities:

P(MA j)≤ P

 nF
k,M⋃

i∗=1
i∗ 6= j∗

‖bi∗,t j∗
k,M ‖R−1

i∗,t j∗
< T n


≤

nF
k,M

∑
i∗=1
i∗ 6= j∗

P
(
‖bi∗,t j∗

k,M ‖R−1
i∗,t j∗

< T n
) (38)

Using (12), mis-association risk will be expanded by substi-
tuting the definition of the individual residual vector, b

i,t j∗
k,M :

P(MA j)≤
nF

k,M

∑
i∗=1
i∗ 6= j∗

P

(
‖V−

1
2

i∗

(
y

ti∗ ,t j∗
k,M +vi∗

)
−

A
t∗j
k,MΛΛΛ

−1
k,MAT

k,MV−
1
2 (v+ f)‖R−1

i∗,t j∗
< T n

) (39)

Now, the probability of mis-association will be upper-bounded

by utilizing this inequality, ‖a+b‖ ≥ ‖a‖−‖b‖:

P(MA j)≤
nF

k,M

∑
i∗=1
i∗ 6= j∗

P
(
‖V−

1
2

i∗ vi∗

−A
t j∗
k,MΛΛΛ

−1
k,MAT

k,MV−
1
2 (v+ f)‖R−1

i∗,t j∗

> ‖V−
1
2

i∗ y
ti∗ ,t j∗
k,M ‖R−1

i∗,t j∗
−T n

)
(40)

where ‖V−
1
2

i∗ y
ti∗ ,t j∗
k,M ‖R−1

i∗,t j∗
is a measure of separation between

landmark ti∗ and landmark t j∗ in the measurement space, which
are known. Notice that all of the unknown terms are combined
in the left hand side, whereas the known terms are lumped in
the right hand side. From (13),

(
Ei∗ −A

t j∗
k,MΛΛΛ

−1
k,MAT

k,M

)
V−

1
2 v

follows a Gaussian distribution with Ri∗,t j∗ as the covariance
matrix. Thus, the risk of of mis-association for feature j can
be expressed as:

P(MA j)≤
nF

k,M

∑
i∗=1
i∗ 6= j∗

(
1−X2

mF ,λi∗,t j∗

[
‖V−

1
2

i∗ y
ti∗ ,t j∗
k,M ‖R−1

i∗,t j∗
−T n

]2
)

≤ nF
k,M−1−

nF
k,M

∑
i∗=1
i∗ 6= j∗

(
X2

mF ,λ
i∗,t j∗
k

[
‖V−

1
2

i∗ y
ti∗ ,t j∗
k,M ‖R−1

i∗,t j∗
−T n

]2
)

(41)

where mF is the number of independent measurements in each
feature and λ

i∗,t j∗
k is the non-centrality parameter, defined as:

λ
i∗,t j∗
k = fT V−

1
2 Ak,MΛΛΛ

−1
k,MA

t j∗
k,M

T
R−1

i∗,t j∗
A

t j∗
k,MΛΛΛ

−1
k,MAT

k,MV−
1
2 f
(42)

Note that λ
i∗,t j∗
k is a function of measurement faults and so it

is the only unknown quantity in the mis-association risk bound
of the jth feature.

To address this, the non-detection event, qk ≤ Tk, at the
current time will be assumed to have occurred and will be
utilized to upper-bound the non-centrality parameter, λ

i∗,t j∗
k .

This assumption is valid because the evaluation of integrity
risk at the current time is not needed if the detector triggers an
alarm. However, since the detector’s non-centrality parameter,
λk, is different from λ

i∗,t j∗
k , the linear proportionality factor

between them, Γi∗,t j∗ , is given as:

λ
i∗,t j∗
k = Γ

i∗,t j∗
k λk (43)

where Γ
i∗,t j∗
k is:

Γ
i∗,t j∗
k =

λ
i∗,t j∗
k
λk

=
fT V−

1
2 Ak,MΛΛΛ

−1
k,MA

t j∗
k,M

T
R−1

i∗,t j∗
A

t j∗
k,MΛΛΛ

−1
k,MAT

k,MV−
1
2 f

fT V−
1
2

(
I−Ak,MΛΛΛ

−1
k,MAT

k,M

)
V−

1
2 f

(44)
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Since
(

I−Ak,MΛΛΛ
−1
k,MAT

k,M

)
is an idempotent rank deficient

matrix, the proportionality factor will be quantified for each
hypothesis alone, Γ

i∗,t j∗
k,h , as follows:

Γ
i∗,t j∗
k,h =

fT V−
1
2 Ak,MΛΛΛ

−1
k,MA

t j∗
k,M

T
R−1

i∗,t j∗
A

t j∗
k,MΛΛΛ

−1
k,MAT

k,MV−
1
2 f

fT V−
1
2

(
I−Ak,MΛΛΛ

−1
k,MAT

k,M

)
V−

1
2 f

=
fT V−

1
2 FT

h FhAk,MΛΛΛ
−1
k,MA

t j∗
k,M

T
R−1

i∗,t j∗
A

t j∗
k,MΛΛΛ

−1
k,MAT

k,MFT
h FhV−

1
2 f

fT V−
1
2 FT

h Fh

(
I−Ak,MΛΛΛ

−1
k,MAT

k,M

)
FT

h FhV−
1
2 f

(45)

By defining Nk,h = Fh

(
I−Ak,MΛΛΛ

−1
k,MAT

k,M

)
FT

h , and fh =

N1/2
h FhV−

1
2 f as the vector of measurement faults in the faulted

measurements of the hth hypothesis, the proportionality factor
for the hth hypothesis can be rewritten as:

Γ
i∗,t j∗
k,h

=
fT
h N−

1
2

k,h FhAk,MΛΛΛ
−1
k,MA

t j∗
k,M

T
R−1

i∗,t j∗
A

t j∗
k,MΛΛΛ

−1
k,MAT

k,MFT
h N−

1
2

k,h fh

fT
h fh

≤ β

(
N−

1
2

k,h FhAk,MΛΛΛ
−1
k,MA

t j∗
k,M

T
R−1

i∗,t j∗
A

t j∗
k,MΛΛΛ

−1
k,MAT

k,MFT
h N−

1
2

k,h

)
(46)

where β (·) is a function that returns the maximum eigenvalue
of the input matrix.

Given the upper-bound on the proportionality factor for each
hypothesis among h /∈> nmax, the upper-bounded proportion-
ality factor, Γ̆

i∗,t j∗
k , will be defined as follows:

Γ
i∗,t j∗
k ≤ Γ̆

i∗,t j∗
k =

nHmax
h=0

h/∈>nmax

Γ
i∗,t j∗
k,h (47)

After bounding Γ
i∗,t j∗
k , the only unknown in the upper-bound

on the non-centrality parameter, λ
i∗,t j∗
k , is the detector’s non-

centrality parameter, λk. [30] demonstrated that the non-
detection event can be utilized to upper-bound the non-
centrality parameter of any chi-squared based fault detector
(using confidence intervals), such that the probability of failure
for the bound is less than INC:

λk ≤ λ̆k =
(√

Tk +
√

X−2
nk,M−(M+1)m [1− INC]

)2
(48)

where λ̆k is the upper-bound on the non-centrality parameter
of the chi-squared fault detector, λk, and P

(
λ̆k < λk

)
≤ INC.

Using the bounds on the proportionality factor, Γ̆
i∗,t j∗
k ,

and the the detector’s non-centrality parameter, λ̆k, the non-
centrality parameter, λ

i∗,t j∗
k , defined in (43), will be upper-

bounded as follows:

λ
i∗,t j∗
k ≤ λ̆

i∗,t j∗
k = Γ̆

i∗,t j∗
k λ̆k (49)

Now, the bound on the non-centrality parameter, λ̆
i∗,t j∗
k , will

be substituted back into the bound on the probability of mis-
association for the jth feature, P(MA j), defined in (41):

P(MA j)≤ INC +P
(

MA j | λk ≤ λ̆k

)
(1− INC) (50)

Algorithm 1 Fixed-lag smoothing integrity monitoring
1: Estimate robot pose, x̂k,M within the window using (1).
2: Evaluate the detector, and its threshold using (16), (24).
3: if the alarm is not triggered then
4: Evaluate the bound on the detector’s non-centrality

parameter, λ̆k, using (48), given a predefined INC.
5: for every associated feature j do
6: Evaluate Γ̆

i∗,t j∗
k , followed by λ̆

i∗,t j∗
k , ∀i∗ 6= j∗, using

(46), (47), (49), given a specific nmax.
7: Evaluate P(MA j) using (51),(50).
8: Evaluate the upper-bound on the failure probability

of feature j, Pj, using (35).
9: Evaluate I>nmax using (33), given a specific nmax.

10: for every hypothesis Hh, ∀h ∈ 0, ...,nH , h /∈> nmax do
11: Evaluate the probability of the hth hypothesis,

P(Hh), using (31).
12: Evaluate the worst-case fault direction, fdir

h , for the
hth hypothesis using (29).

13: Quantify the conditional integrity risk given the hth

hypothesis, P(HMIk|Hh), using (30).
14: Evaluate the integrity risk, P(HMIk), using (32).

where the conditional probability of mis-association given that
the upper-bound on the detector’s non-centrality parameter is
valid:

P
(

MA j | λk ≤ λ̆k

)
≤

nF
k,M−1−

nF
k,M

∑
i∗=1
i∗ 6= j∗

(
X2

mF ,λ̆
i∗,t j∗
k

[
‖V−

1
2

i∗ y
ti∗ ,t j∗
k,M ‖R−1

i∗,t j∗
−T n

]2
)
(51)

This section quantified the probability of data association
failure for features extracted from lidar or camera measure-
ments, thus allowing integrity to be monitored using (32).
Algorithm 1 summarizes the main bounds needed to monitor
localization safety. In the next section, simulation and exper-
imental results will be used to demonstrate and assess the
proposed integrity risk bound in practical scenarios.

VII. RESULTS

This section quantifies mobile robot localization safety for
a fixed lag smoothing estimator while accounting for the
risk of data association errors (mis-association and unmapped
association events) in both simulation and experimentation.
Simulation results assess the impact of mis-association and
unmapped association events on the state-of-interest estimate
error and on the the fault detector as well as the impact
of different landmark densities in the map on mobile robot
localization safety. Experimental results demonstrate the per-
formance of the proposed integrity risk bound in quantifying
fixed lag smoothing-based localization safety in a landmark-
rich, urban environment.

A. Simulation Results
The simulations depict a mobile robot modeled using a

constant-speed bicycle-model navigating through predefined
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Fig. 1. Estimated mobile robot trajectory while traversing a pre-mapped
environment. Blue plus-signs represent landmarks, the yellow cross-sign is
the starting location, and the red circle is the end.

TABLE I
SIMULATION PARAMETERS

Velocity 25 kmh−1 σvelocity 0.1 ms−1

Time step 0.1 s σgyro 2 ◦ s−1

Sensor range 25 m σlidar 0.2 m
Alert limit 1.0 m σsteering angle 0.4◦

INC 10−8 IFA 10−5

PUA 10−9 nmax 2

way-points in a landmark-rich environment (see Fig. 1). Steer-
ing angle as well as linear and angular velocities comprise
the robot’s relative measurements. Absolute measurements are
composed of range and bearing to mapped landmarks. We
assume that relative measurements are fault free, and that
absolute measurements can be faulted, either from unmapped
association or mis-association events. To maintain acceptable
computational requirements, the time window is continuously
resized to include the minimum number of landmark detec-
tions above 15, which has previously been shown to be a rea-
sonable compromise between computation time and tightness
of the integrity risk bound [32]. The simulation parameters are
shown in Table I.

The simulation results have been divided into two parts.
The first simulation investigates the superiority of the pro-
posed integrity monitoring methodology over the common 3σ

covariance bound when accounting for measurement faults.
The second simulation shows the trade-off between landmark
density and localization safety.

To assess the effectiveness of the proposed method, the
landmark map has been configured so that all landmarks are
well-separated except for two, one on each side of the path
at X = 60 m (see Fig. 1). The estimate error in the state-

TABLE II
OBSERVATIONS FROM THE SIMULATION

Landmarks Density [m−2]
1e-3 2.5e-3 6.5e-3

Avg. time window size (epochs) 10.6 4.9 3.1
Avg. # of landmarks in the window 15.6 17.0 24.7
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Fig. 2. The top figure shows the estimate error and the 3σ covariance bounds
in the state-of-interest (robot’s lateral direction) versus robot’s longitudinal
position. Moreover, the middle figure presents the chi-squared fault detector
(blue) and the associated threshold (red) versus robot’s longitudinal position,
whereas the bottom figure shows the localization integrity risk (blue) and the
predefined safety requirement (red) versus robot’s longitudinal position.

of-interest (lateral error) and the associated 3σ covariance
bounds versus the robot’s position in the longitudinal direction
are shown in the top of Fig. 2. The middle section of Fig.
2 presents the chi-squared fault detector and the associated
threshold as a function of robot’s position in the X direction.
The localization integrity risk and the predefined safety re-
quirement (chosen to be 1e−7 based on the FAA requirement
on extremely hazardous remote events, [37]) versus the robot’s
longitudinal position are shown in the bottom part of Fig. 2.

The integrity risk approaches one when the robot is between
X = 60 and 85 m while the detector is not triggered and
the state-of-interest estimate error is not bounded by the 3σ

covariance bounds. This is because, in addition to the lack
of sufficient redundancy, there are two close landmarks on
each side of the road at X = 60m, which results in a high
risk of having undetected large positioning errors due to the
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Fig. 3. Estimated robot trajectory while navigating through a set of way-
points in each of the three randomly generated landmark maps (1e−3 (top),
2.5e−3 (middle), and 6.5e−3 (bottom) landmarks/m2). Blue plus-signs refer
to landmarks, the yellow cross-sign is the robot’s starting location, and the
red circle represents the set of way-points.

mis-association event. In landmark-based fixed lag smooth-
ing localization, redundancy is influenced by the number of
landmark detections in the preceding time window and the
percentage of them that are close to the most recent state in
the time window. Therefore, unlike the 3σ covariance bounds,
the proposed integrity risk metric provides a sufficient measure
of localization safety.

To study the relationship between landmark density and
localization safety, three landmark maps have been generated
randomly with different densities (see Fig. 3 and Table II).
Note, the size of the preceding time window decreases as
landmark density increases to maintain the smallest number
of landmark detections in the window above 15. For each
landmark density, the simulated robot navigates through the
way-points in the corresponding landmark-rich environment,
and the corresponding integrity risk is evaluated twice (with
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Fig. 4. The proposed integrity risk that accounts for the risk of misassociation
(blue), the integrity risk that ignores the risk of misassociation (pink) and
the predefined safety requirement (red) versus time for the three different
landmarks densities 1e-3, 2.5e-3 6.5e-3 landmarks/m2 (top, middle, bottom).
Too few landmarks (top) results in an integrity risk that peaks above the
integrity requirement because a minimum number of landmarks is needed to
guarantee integrity. Too many landmarks (bottom) results integrity risk that
peaks above the integrity requirement because more landmarks results in a
higher chance of misassociations.

and without accounting for the risk of misassociation), see Fig.
4.

When landmark density is relatively low (see Fig. 3, top),
the integrity risk exceeds the safety requirement due to the
lack of sufficient redundancy. This results in an availability of
76%, which is the percentage of time integrity risk is below a
predefined safety requirement (chosen here to be IREQ = 10−7).
Moreover, the difference between the proposed integrity risk
and the integrity risk that ignores the risk of misassociation is
negligible due to the relatively large distance (in the measure-
ment space) among the landmarks in the map. Last, when the
integrity risk is low, the difference between the integrity risk
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Fig. 5. The test setup used for the experiment. The sensor suite consists of
STIM-300 tactical-grade IMU, two Velodyne VLP-16 lidars, one Ouster-64
lidar and Novatel SPAN-CPT DGPS attached to a roof-rack of a vehicle. For
this experiment only the STIM-300 and Ouster lidar were used. Columns, tree
trunks, and lamp posts are used as landmarks for localization.

with and without accounting for the misassociation probability
is due to the allocated risk for the non-centrality parameter,
INC.

Note that the integrity risk after 45 s approaches one,
although the time window is continuously resized to include
a minimum of 15 landmark detections. This is because, after
45 s there are no landmarks in the robot’s field of view, which
results in a large increase in the size of the time window.
Therefore, the proportion of landmark detections that are close
to the most-recent state in the time window reduces, and
accordingly the uncertainty in the state-of-interest estimate
increases.

On the other hand, when the landmark density is moderate
(see Fig. 3, middle), the integrity risk stays below the safety
requirement along the trajectory, yielding 100% availability.
This is because sufficient redundancy exists throughout the
trajectory while all of the landmarks are well-separated. Sim-
ilar to the low landmark density case, the difference between
the proposed integrity risk and the integrity risk that ignores
the risk of misassociation is negligible due to the relatively
moderate distance (in the measurement space) among the
landmarks.

Finally, when landmark density is relatively high (see Fig.
3, bottom), the integrity risk surpasses the safety requirement,
resulting in a 69% availability. Although there is sufficient
redundancy, high inter-landmark proximity results in a high
risk of having undetected mis-association events that sub-
sequently lead to large estimate errors. Unlike the low and
moderate landmark density cases, the difference between the
proposed integrity risk and the integrity risk that ignores the
risk of misassociation is significant due to the relatively small
distance (in the measurement space) among the landmarks.
This example provides a clear rationale for the necessity to
account for the risk of misassociation and demonstrates that in
fixed-lag smoothing, high localization safety can be achieved
if landmarks are both well-separated and have sufficient re-

Fig. 6. The transect used for experiments consists of S. State Street from
31st to 33rd in Chicago, IL.

TABLE III
EXPERIMENT PARAMETERS

PSDAccelNoise 0.002 m2/s5 Alert limit 1.0 m
PSDGyroNoise 3.05×10−6 rad2/s3 σlidar 0.3 m
PSDAccelBias 2.40×10−7 m2/s6 frequencylidar 10 Hz
PSDGyroBias 2.12×10−12 rad2/s4 frequencyIMU 125 Hz

INC 10−12 PUA 10−9

IFA 10−5 nmax 2

dundancy.

B. Experimental Results

The proposed localization safety method was tested in an
urban environment (S. State Street from 31st to 33rd St.) in
Chicago, IL USA where GPS signals are denied or degraded
due to dense tree coverage and tall buildings lining the
street (see Fig. 6). The sensor suite mounted on a vehicle’s
roof rack (see Fig. 5) consists of a STIM-300 tactical grade
inertial measurement unit for relative measurements, and a
64-beam Ouster lidar for range and bearing measurements
to lamp posts, columns, and tree trunks that comprise the
mapped landmarks. In this experiment, GPS was not utilized
because, even when it was available, multi-path errors made
the measurements unsuitable.

Table III shows the parameters of the experiment. SLAM
was used to build the landmark map prior to the experiments.
The state vector is composed of fifteen variables: six for
the position and orientation, three for the linear velocities,
and six for the accelerometers and gyroscopes biases. The
landmark map and the estimated trajectory are shown in Fig.
7. The state-of-interest is the vehicle’s lateral position with
an alert limit of 1.0 m. Finally, the preceding time window is
continuously resized so that it includes the minimum number
of landmark detections above 30.

The number of landmark detections in the preceding time
window and the number of landmark detections in the current
time versus the distance travelled by the vehicle are presented
in Fig. 8. Note that the proportion of landmark detections
that are close to the most recent state in the time window
is relatively high. This is an indication for the existence of
sufficient redundancy.
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Fig. 7. (Top) The vehicle’s estimated trajectory and landmark map.
The yellow dot, at (0,0), is the vehicle’s starting location, the red circle
refers to the ending location, and the blue-plus signs represent the mapped
landmarks (columns, tree trunks, and lamp posts). (Bottom) The 3D point-
cloud generated from the lidar.

Localization integrity risk with and without considering
the risk of misassociation versus the distance travelled by
the vehicle are shown in Fig. 9. Note that the difference
between the proposed integrity risk that accounts for the risk
of misassociation and the integrity risk that ignores the risk
of misassociation is significant in a large proportion of the
trajectory, resulting in 61% availability. Although there exists
sufficient redundancy, several landmarks are very close to each
other, which results in high risk of undetected misassociation
events that cause large estimate error in the state-of-interest.

This scenario provides a strong evidence for the necessity to
account for the risk of misassociation and demonstrates that in
fixed-lag smoothing, high localization safety can be achieved
if the mapped landmarks provide sufficient redundancy and
are well-separated.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a mobile robot localization safety
method for landmark-based fixed-lag smoothing estimation
that accounts for data association errors. The results show
that the risk of misassociation has a significant impact on
localization integrity risk if landmark density in the map
is high, as well as that robot localization safety is high if
the landmarks in the map are well-separated while having
enough redundancy. The future work will focus on deriv-
ing integrity monitoring techniques for the more challeng-
ing Simultaneous Localization And Mapping (SLAM) prob-
lem. The computer code utilized to evaluate integrity is
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Fig. 8. The number of landmark detections in the preceding time window
(blue) and current time (red) versus distance travelled.
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Fig. 9. The proposed integrity risk that accounts for the risk of misassociation
(blue), the integrity risk that ignores the risk of misassociation (pink) and the
predefined safety requirement (red) versus distance travelled.

available at https://github.com/mspenko/RoboticsLab-Integrity-
Evaluation.
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