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Y−shaped trace fossil (U−shaped upper part with a basal shaft), Parmaichnus stironensis igen. nov. et isp. nov. penetrates
from a discontinuity surface cut in Early Quaternary mudstones in the Stirone Valley, Northern Italy. It is attributed to
upogebiid decapod crustaceans. Parmaichnus differs from Psilonichnus by the presence of turning chambers in the upper
part of the burrow. The turning chambers are considered to be an important taxonomic feature of upogebiid burrows. P.
stironensis occurs together with Thalassinoides cf. paradoxicus (produced probably by callianassid crustaceans) and
wide U−shaped pyritised cylinders (supposedly produced by balanoglossid hemichordates).
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Introduction

Upogebiid crustaceans are common burrowers in the intertidal
and upper subtidal zone (e.g., Dworschak 1983). Along the
coast of the Adriatic Sea, these burrows are produced mainly
by Upogebia pusilla (Petagna, 1792) = U. litoralis (Risso,
1816) (Ott et al. 1976; Dworschak 1983, 1987a). It is surpris−
ing that very few trace fossils are referred to upogebiids (Nara
and Kotake 1997; Nesbitt and Campbell 2002; Curran and
Martin 2003). Psilonichnus Fürsich, 1981 with its type ichno−
species, P. tubiformis Fürsich, 1981 was compared to burrows
of Upogebia affinis (Holmes, 1900) illustrated by Bromley
and Frey (1974: fig. 9) (Fürsich 1981). Psilonichnus luti−
muratus Nesbitt and Campbell, 2002 was interpreted as an
upogebiid burrow (Nara and Kotake 1997; Nesbitt and Camp−
bell 2002). Nara and Kotake (1997) described up to 2 m long
“Psilonichnus isp.” with short side branches and referred it to
Upogebia major (de Haan, 1841). However, these Psilo−
nichnus ichnospecies and P. upsilon Frey, Curran, and Pem−
berton, 1984 differ from recent upogebiid burrows (Dwor−
schak 1983, 1987a, 2004) by the presence of turning cham−
bers, which are considered herein as a significant ichno−
taxobase at the ichnogenus level.

Early Quaternary marine sediments of the Stirone section
in the Parma region, Italy (Fig. 1), contain trace fossils that
share many morphological features with Recent upogebiid
crustacean burrows. These trace fossils penetrate from a dis−
tinct discontinuity surface. Their description, ichnotaxonomy,
and discussion of their ethology and palaeoecology are the
main focus of the paper.

Institutional abbreviation.—INGUJ, Institute of Geological
Sciences, Jagiellonian University, Kraków, Poland.

Geological setting

The Late Pliocene to early Pleistocene sediments in the
Western Emilia Romagna (Parma and Piacenza provinces)
were deposited in the north−western extension of the Palaeo−
Adriatic Sea. They are part of the Po Plain−Adriatic Fore−
deep, which is filled with sediments deriving from the South−
ern Alps and Apennines. The Late Pliocene sediments are in−
terpreted as a regressive succession deposited in the transi−
tion from outer to inner shelf. The overlying Pleistocene sed−
iments represent deeper shelf, nearshore, and transitional de−
posits in a shallowing−upwards trend (Dominici 2001, 2004).

The Upper Pliocene–Lower Pleistocene sections along the
Stirone river valley have been more intensively investigated
since the 1960s with regard to their sedimentology, palaeoec−
ology, micropalaeontology, taphonomy, and sequence stratig−
raphy (Pelosio 1960, 1964; Papani and Pelosio 1962; Pelosio
and Raffi 1974, 1977; Iaccarino 1996; Mutti 1996; Molinari
1997; Mutti et al. 2000; Dominici 2001, 2004; Monegatti et al.
2001. The initial ichnological report was by Dominici (2001).
Uchman and Pervesler (2007) described trace fossils from the
Late Pliocene part of the section.

The new trace fossil described in this paper penetrates
from a distinct discontinuity surface developed at the top of a
3.2 m thick interval of lower Pleistocene light grey, calcare−
ous, clayey siltstone, which occurs 17 m above the top of
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Pliocene sediments (sensu Dominici 2001, 2004) marked by
a sequence boundary (Figs. 1, 2). The sequence stratigraphic
meaning of this discontinuity surface is not so far decided.
This surface was followed for more than 600 m along the
river and is sharply demarcated and gently undulated, proba−
bly due to erosional truncation. It is covered by discontinu−
ous layers of poorly sorted fine− to medium−grained silici−
clastic sands, with poorly expressed bedding surfaces, down−
lapping the discontinuity at a low angle across the outcrop.
The sands are rich in bioclasts, mostly mollusc shells and
tubes of the serpulid Ditrupa. The trace fossils are filled with

the overlying sandy sediment, and their margins are com−
monly ferruginized or pyritised. Therefore they are highly
visible in contrast with the siltstone background (Figs. 3, 4).
The geological situation of the discussed trace fossils is simi−
lar to that from the Willlapa Bay, Washington, U.S.A, where
Y−shaped crustacean burrows penetrate Pleistocene firm−
ground muds (Glossifungites ichnofacies) covered by sands
in an estuarine setting (Gingras et al. 1999, 2000).

Systematic ichnology

Ichnogenus Parmaichnus nov.
Type ichnospecies: Parmaichnus stironensis isp. nov.

Etymology: After the Parma region, in which the trace fossil occurs.

Diagnosis.—Vertical to oblique, tubular burrows, circular in
cross section, and composed of the U−shaped upper part and
a basal shaft. Sub−spherical swellings are present in the upper
part of the burrow.

Remarks.—To date, only three Y−shaped ichnogenera
(U−shaped upper part with a basal shaft) are distinguished.
They can be compared to Parmaichnus. Psilonichnus Frey,
Curran, and Pemberton, 1984, typified by Psilonichnus tubi−
formis (Fürsich, 1981), has no turning chambers and is much
larger (Fig. 5U). Solemyatuba Seilacher, 1990, with two
ichnospecies S. subcompressa (Eichwald, 1855) and S. ypsi−
lon Seilacher, 1990, and Recent burrows of the bivalve
Solemya velum Say, 1822 are of comparable size but they do
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Fig. 1. Location map and the geological section. A. The study region on the map of Italy. B. Location of the study area. C. Location of the studied section.
D. The studied section with indication of Parmaichnus stironensis igen. nov. et isp. nov.

Fig. 2. View of the Early Pleistocene part of the Stirone section (about 90
m), with the distinct unconformity in the middle (pointed by arrow) separat−
ing silts covered by sands.



not display turning chambers and their tubes are elliptical in
cross section (Fig. 5F, G). Polykladichnus Fürsich, 1981,
typified by P. irregularis Fürsich, 1981 (Fig. 5D), displays
multiple Y− or U−shaped bifurcation and slight enlargement
at junctions (see Schlirf and Uchman 2005).

Parmaichnus stironensis isp. nov.
Figs. 3, 4, 5P–S.

Etymology: After Stirone river, along which the type horizon is located.
Type material: Holotype: INGUJ 200P11 (a block of impregnated silt
containing the burrow) and five photographed and measured specimens
in the field.
Type horizon: Distinct discontinuity surface in the Early Pleistocene
sediments 17 m above top of the Pliocene.
Type locality: Stirone river valley close to the chapel San Nicomede, 2
km NE from Scipione Ponte, Parma region (Fig. 1).

Diagnosis.—Y−shaped, vertical to oblique tubular, unlined
trace fossil; tubes circular in cross section, composed of the
U−shaped upper part and a basal shaft coming out from its
lower part. Sub−spherical swellings are present close to the
two inflection points in the lower part of the U. Moreover, the
swellings occur commonly in the lower part of the shaft and,
in some specimens, at the shaft entrance.

Description.—As in the diagnosis, with the following addi−
tions: The trace fossil is unlined. The burrow margins are
sharp, and commonly ferruginised. The surface is smooth, i.e.
with no scratch marks. The burrow is filled with the overlying
sandy sediment, commonly containing shell debris. The holo−
type displays all the described features. It is inclined to the dis−
continuity surface: the plane of the U−part no more than 40�

and the basal shaft less than 35� in the upper part and only up
to 10� in the lower part. Other specimens observed in the field
are nearly vertical. The tube diameter ranges from 9 to 26 mm
and in the holotype from 16 to 20 mm. The chambers are irreg−
ularly ovoid to ovoid in shape. In the holotype, two chambers
are located in the lower part of the U−shaped burrow, and one
chamber is located in the lower part of the shaft. The chambers
are 25–36 mm wide. In smaller specimens, the chambers are
no less than 15 mm wide. The chambers are irregular sub−
ovoid in shape. They are located aside of the axis of the tubes.
The distance between the U−part openings is 70 mm in the
holotype and ranges from 55 to 70 mm in other specimens.
The total vertical extent is at least 120 mm in the holotype, but
the trace fossils was originally longer (the basal terminus of
the shaft is apparently broken. Given that the shaft is inclined,
its length is greater than its vertical extent, and it attains a
length of 170 mm (at least 95 mm to at least 145 mm in other
specimens). The morphometric parameters of the holotype
and other five specimens photographed in the field are listed in
Table 1. The basal shaft is curved, commonly in its distal part.
It starts from the base of the U, commonly aside from the verti−
cal axis of the U and frequently almost in continuation of one
of the U limbs. The juncture with the U is slightly swollen.

Remarks.—This is the only known ichnospecies of Parma−
ichnus. Potentially, other ichnospecies can be distinguished
in the future on the basis of position of the swellings and
other morphological features.

Probably, the upper part of Parmaichnus stironensis is
truncated by erosion, at least in some cases. This can be
judged from significant differences in vertical extent of the
U−part of the burrows.

Discussion
Probable tracemaker organisms.—Comparison of the trace
fossil morphology with extant burrows—especially consider−
ing the Y−shape with turning chambers (Fig. 5A–U)—
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Fig. 3. Holotype (INGUJ 200P11) of allegedly upogebiid trace fossil
Parmaichnus stironensis igen. nov. et isp. nov. Scale bar 100 mm.

Table 1. Morphometric parameters of the holotype and the specimens of Parmaichnus stironensis igen. nov. et isp. nov. observed in the field. All val−
ues in mm. Specimens abbreviated with P are left in the field.

Specimen Tube
diameter

Maximal swelling
width

Distance between the
U−part openings

Total vertical
extent

Vertical extent
of the U− part

Length of the
basal shaft

ING UJ 200P11, holotype 16–20 25–36 70 >120 65 >170
P1070182 10–15 21 65 >95 35 >85
P1070193 9 24 ~53 >117 84 >40
P1070195 12 15–19 55 >145 37 >114
P1070198 9 ~19 79 >138 81 >75
P1140402 ~26 – 55 – 101 –



strongly suggests that thalassinidean shrimp, especially upo−
gebiids, are the tracemakers. Parmaichnus stironensis shows
the closest similarities to the Recent burrows of Upogebia
mediterranea Noël, 1992 (Fig. 5O), found in firmground mud
of Rhodes, Greece (Asgaard et al. 1997).

Recent upogebiid burrows.—A synopsis of the burrow fea−
tures of U. pusilla given by Dworschak (2004) describes the
burrows as Y−shaped, consisting of a U− or double U−shaped
gallery and a basal shaft. The burrow openings are simple
holes, flush with the substrate surface. The burrows occur in
intertidal areas and can penetrate to a depth of up to 0.8 m.
Turning chambers occur on each side of the U, and one or
more along the shaft. In the Gulf of Trieste, U. pusilla occurs
also in water depths of more than 7 m. In the subtidal envi−
ronment, U. pusilla burrows (Fig. 5H, J, K) are much shal−
lower than those from the intertidal and generally have
mostly one turning chamber on one side; the shaft has none
(Dworschak 2004). Pervesler and Hohenegger (2006) show

resin casts of subtidal U. pusilla burrows from shelly coarse
gravels close to the steep coast near Sorgenti di Aurisina in
the Gulf of Trieste. The burrows are Y−shaped with two turn−
ing chambers in the U−portion, the shafts starting from one
turning chamber branch with angles 10–60�. The total depth
of these burrows does not exceed 18 cm.

Functional morphology.—Turning chambers (Fig. 5H) are
obligatory features of Upogebia burrows. They are used to
facilitate changes in direction of movement by the shrimp in−
habitants of the burrows and also are the place where the
tracemaker spends about 40% of its time for feeding. The
trace maker is mainly feeding on suspended particles enter−
ing the burrow via the ventilation current created by intermit−
tent beating of the pleopods. The animal can also come out of
its burrow and browse the sediment around the burrow open−
ings (Dworschak 1987b).

In contrast to the feeding function of Upogebia burrows,
the burrows of ocypodid crabs are used for shelter against heat

138 ACTA PALAEONTOLOGICA POLONICA 54 (1), 2009

Fig. 4. Allegedly upogebiid Y−shaped trace fossil Parmaichnus stironensis igen. nov. et isp. nov. (specimens left in the field) from Early Pleistocene of Italy.
A. Specimen P1070182 (numbering from the field photograph collection). B. Specimen P1070193. C. Specimen P1070194. D. Specimen P1070196. Scale
bars 50 mm.



and desiccation and as a refuge against predation (Chakrabarti
1981; Chan et al. 2006). Ocypodids can produce Y−shaped
burrows (Fig. 5A) consisting of a primary arm, which extends
to the surface forming the opening, and a secondary arm that
terminates in a blind hemispherical ending or communicates
with the surface. The two arms join in a single shaft and end
with a turning chamber at the base. Such burrows closely re−
semble the ichnofossil Psilonichnus, e.g., Psilonichnus upsi−
lon Frey, Curran, and Pemberton, 1984 (Fig. 5B) and do not
show turning chambers in the upper part of the burrow.

Turning chambers in Y−shaped burrows are the important
ichnotaxobase to distinguish Psilonichnus from Parmaichnus.
Fossil burrows without turning chambers should not be attrib−
uted to the work of upogebiids.

Ecology of Recent upogebiids.—Upogebiids are known
from tropical, subtropical and temperate seas. The subtidal
tropical species Upogebia amboinensis (de Man, 1888) (Aus−
tralia) and U. operculata Schmitt, 1924 (Caribbean) live in
corals (Kleemann 1984) while Upogebia. sp. from the Carib−

http://app.pan.pl/acta54/app54−135.pdf

PERVESLER AND UCHMAN—UPOGEBIID TRACE FOSSIL FROM PLEISTOCENE OF ITALY 139

Balanoglossus
aurantiacus

Pestarella
tyrrhena

Upogebia
pusilla

Upogebia
pusilla

Upogebia
pugettensis

Solemya velum

trace fossil
Solemyatuba ypsilon

Ocypode
ceratophthalma

Acanthogobius
flavimanus

Upogebia
vasquezi

Calocaris macandreae

Upogebia
mediterranea

Cerianthus

trace fossil
Polykladichnus

irregularis

trace fossil
Psilonichnus

upsilon

trace fossil
Psilonichnus

tubiformis

holotype

trace fossil Parmaichnus stironensis

0 50 100 150 cm

?

50

100

150

200
cm

0

Fig. 5. Different Y−shaped trace fossils (B, D, G, U) and Recent burrows compared to Parmaichnus stironensis (P–S). Redrawn from photographs. A. After
Seike and Nara (2007: fig. 3c). B. Holotype of Psilonichnus upsilon, Hanna Bay, San Salvador, Bahamas, from AU photograph. C. After Bruce (1987: fig.
6). D. After Fürsich (1981: pl. 3: 2). E. After Curran and Frey (1977: pl. 1e). F. After Frey (1968: text−fig. 1). G. After Seilacher (1990: fig. 5D). H. After
Dworschak (2004: fig. 2B); arrows point the turning chambers. I. After Swinbanks and Luternauer (1987: fig. 2.1). J. After Ott et al. (1976: pl. 1: 2). K. Af−
ter Ott et al. (1976: pl. 1: 3). L. After Dworschak et al. (2006: fig. 1A). M. After Nash et al. (1984: pl. 2a); see also Bromley (1996: fig. 4.32). N. After Curran
and Martin (2003: fig. 6). O. After Asgaard et al. (1997: fig. 6). P–S. Parmaichnus stironensis igen. nov. et isp. nov. P. Holotype, ING UJ 200P11, see also
Fig. 3. Q. P1070193, see also Fig. 4B. R. P1070182, see also Fig. 4A. S. P1070196, see also Fig. 4D. T. After Atkinson and Taylor (1991: fig. 1f).
U. Psilonichnus tubiformis, after Fürsich (1981: pl. 1: 1).



bean lives in sponges (Griffis and Suchanek 1991). Upogebia
vasquezi Ngoc−Ho, 1989 was reported from intertidal tropical
sediments (Curran and Martin 2003). Temperate species set−
tling on soft substrates are described from Southeastern USA
(U. affinis), Western USA (U. pugettensis (Dana, 1852), U.
macginitieorum Williams, 1986), Southern Africa (U. afri−
cana (Ortmann, 1894)), India (U. carinicauda (Stimpson,
1860)), Japan (U. major), and the Mediterranean Sea (U.
tipica (Nardo, 1868)), U. pusilla, U. deltaura (Leach, 1815)).
The widespread U. pusilla was also reported from the Atlantic
Ocean, from Mauretania to Britanny (De Saint Laurent and
LeLoeuff 1979), and from Norway (Pesta 1918; Bouvier
1940; Zariquiey Álvarez 1968).

Upogebia affinis, U. africana, and U. pusilla live in
intertidal as well as subtidal areas. U. pusilla can be found
from the intertidal (Ott et al. 1976; Dworschak 1983, 1987a,
2004) down to a water depth of 45 m (Black Sea, Popovici
1940). U. pugettensis, U. macginitieorum, U. carinicauda,
and U. major are restricted to the intertidal, U. tipica and U.

deltaura to the subtidal. Substrates used by upogebiids are
variable, ranging from hardrock, corals (Kleemann 1984)
and gravel (Pervesler and Hohenegger 2006) to muds con−
sisting of muddy fine sand or silt (Dworschak 1983).

Densities can go up to several hundred burrows per square
meter (Ott et al. 1976; Griffis and Suchanek 1991). Salinity
range is from normal marine (36‰) in subtidal areas down to
9‰ in freshwater−influenced areas (Dworschak 1987b). Due to
the ventilation activity, the wall of modern burrows throughout
its length has the same tan colour as the oxidized sediment sur−
face, whereas the surrounding reduced sediment appears black.
Following Griffis and Suchanek's (1991) classification, the
trace fossil Parmaichnus stironensis can be interpreted as an
upogebiid shrimp burrow of the type 5 (simple Y) constructed
on seafloors without mounds and eelgrass. Such burrow shapes
are used for suspension and filter feeding behaviour. The basal
pattern of morphology in Recent Adriatic upogebiid burrows is
a simple Y−shape, with turning chambers similar to the fossil
examples from the Stirone River Quaternary.
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Associated trace fossils

Two different trace fossils, Thalassinoides cf. paradoxicus
(Woodward, 1830) and pyritised cylinders are associated
with Parmaichnus stironensis. They penetrate from the same
discontinuity surface.

Thalassinoides cf. T. paradoxicus (Woodward, 1830).—
This trace fossil occurs as branched, cylindrical, unlined bur−
rows, 10–22 mm in diameter, which penetrate obliquely
down (commonly under 30–40�) from the discontinuity sur−
face up to at least 32 cm. Some of them contain wide, shal−
low, irregular, branched U−shaped elements of the same mor−
phology (Fig. 6A–C). Some of the joints are swollen, and
measure up to 25 mm in diameter. Also, chambers of the
same diameter are scattered along the cylinders. The overly−
ing sand fills this trace fossil. Commonly, its margin is
ferruginised. Some specimens display wide and shallow fun−
nel entrances or constrictions.

These branching burrows can be assigned to the trace fos−
sil Thalassinoides Ehrenberg, 1944, and are similar to Tha−
lassinoides paradoxicus (Woodward, 1830) in their differ−
ently oriented elements and lack of dominant horizontal gal−
leries. However, the Parma trace fossils do not display com−
mon T−shaped branches without swellings, which are typical
of T.  paradoxicus.

The morphology of these trace fossils, inclined cylinders
and wide, irregular U−shaped elements in particular, are typi−
cal of unlined callianassid crustacean burrows (Dworschak
1983, 2004).

Pyritised cylinders.—Differently inclined, from sub−verti−
cal to sub−horizontal, long, almost straight to slightly curved,
rarely branched, smooth, cylindrical tubes are ascribed to
this trace fossil. They are 5–7 mm diameter and at least 90 cm
long (Fig. 6D). Some of the longer cylinders form gentle,
open up arcs. Their length is probably much larger, because
burrow fragments are found up to 53 cm below the disconti−
nuity surface. This trace fossil is filled by pyritised material
and is coated by limonite−like iron minerals, which origi−
nated probably from oxidisation of the pyrite. The coating
probably enlarges the original width of the burrow. The trace
fossil displays only rare, short branches up to 30 mm long,
coming out from the sub−horizontal part of the burrow.

It is possible that this trace fossil forms very wide and deep
U−shaped structures when complete, but only their fragments
are observed in outcrops. Thus it is hard to assign this trace
fossil to any known ichnotaxon. Strong pyritization and large
depth of sediment penetration in comparison to width suggest
anoxic conditions inside the burrow. In analogy with much
smaller (<1 mm wide) Trichichnus Frey, 1970, it can be sup−
posed that this trace fossil was produced by a chemosymbiotic
invertebrate. Some enteropneusts produce thin and long bur−
rows, like Balanoglossus aurantiacus (Girard, 1853) (Duncan
1987a) (Fig. 5C). It is not excluded that the tracemaker of the
pyritised tubes belongs to this group of hemichordates. Other

candidates are echiuran worms, like Maxmuelleria lankesteri
(Herdman, 1898), that produces long, thin horizontal tunnels
at about 50 cm depth connected to the substrate surface by two
steep shafts (Huges et al. 1996).

Conclusions
Parmaichnus stironensis is a new trace fossil attributed to
upogebiid crustaceans, which can be distinguished by its
U−shaped cylinders with swellings and a basal shaft. The
swellings are significant morphological elements considered
as an ichnotaxobase at the ichnogenus level. This element al−
lows separating Psilonichnus produced mostly by crabs from
Parmaichnus produced by upogebiid crustaceans. Morphol−
ogy of Parmaichnus stironensis is very close to morphology
of Upogebia mediterranea burrows.
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