

# An Ecological Land Survey and Landcover Map of the Arctic Network

Natural Resource Technical Report NPS/ARCN/NRTR—2009/270







ON THE COVER

Top to Bottom:

Noatak River in the Noatak National Preserve, Kobuk Valley National Park, and Arrigetch Peaks in Gates of the Arctic National Park and Preserve. PHOTOGRAPHS COURTESY ABR, INC.

# An Ecological Land Survey and Landcover Map of the Arctic Network

Natural Resource Technical Report NPS/ARCN/NRTR—2009/270

M. Torre Jorgenson Joanna E. Roth Patricia F. Miller Matthew J. Macander Michael S. Duffy Aaron F. Wells Gerald V. Frost Erik R. Pullman

ABR, Inc.–Environmental Research & Services P.O. Box 80410 Fairbanks, Alaska 99708

October 2009

U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center, publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public.

The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations.

All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.

Views, statements, findings, conclusions, recommendations, and data in this report are those of the authors and do not necessarily reflect views and policies of the National Park Service, U.S. Department of the Interior. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service.

This report is available from ABR, Inc.–Environmental Research & Services Web site (www.abrinc.com) and from the Natural Resource Publications Management Web site (http://www.nature.nps.gov/publications/NRPM) on the Internet.

Please cite this publications as:

Jorgenson, M. T., J. E. Roth, P. F. Miller, M. J. Macander, M. S. Duffy, A. F. Wells, G. V. Frost, and E. R. Pullman. An ecological land survey and landcover map of the Arctic Network. Natural Resource Technical Report NPS/ARCN/NRTR—2009/270. National Park Service, Fort Collins, Colorado.

# **Contents**

| Figures                                                         | iv  |
|-----------------------------------------------------------------|-----|
| Tables                                                          | vi  |
| Appendices                                                      | x   |
| Acknowledgments                                                 | xi  |
| Introduction                                                    | 1   |
| Methods                                                         | 4   |
| Field Surveys                                                   | 4   |
| Supplementary Data                                              | 6   |
| Data Management                                                 | 8   |
| Ecological Classification                                       | 8   |
| Ecological Components                                           | 8   |
| Ecotypes                                                        | 9   |
| Soils                                                           | 10  |
| Ecosystem Components Synthesis                                  | 10  |
| Landcover and Ecosystem Mapping                                 | 11  |
| Landsat Imagery Preprocessing                                   | 11  |
| Spectral Classification Development                             | 14  |
| Results                                                         | 16  |
| Ecotypes and Plant Associations                                 | 17  |
| Relationships Among Ecological Components                       | 144 |
| Landscape Relationships                                         | 144 |
| Environmental Characteristics                                   | 158 |
| Vegetation Composition                                          | 166 |
| Landcover Mapping                                               | 194 |
| Soil Landscapes                                                 | 206 |
| Classification and Description of Soil Types                    | 206 |
| Summary of Soil Characteristics                                 | 223 |
| Classification and Description of Soil Landscapes               | 228 |
| Soil Landscapes Mapping                                         | 237 |
| Factors Affecting Landscape Evolution and Ecosystem Development | 248 |
| Climate                                                         | 248 |
| Oceanography                                                    | 251 |
| Tectonic Setting and Physiography                               | 252 |
| Bedrock Geology                                                 | 253 |
| Geomorphology                                                   | 254 |
| Fire                                                            | 257 |
| Summary and Conclusions                                         | 257 |
| Literature Cited                                                | 260 |

# **Figures**

| Figure 1.  | Interaction of interrelated state factors that control the structure and function of ecosystems and the scales at which they operate                                                     | 2     |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Figure 2.  | Sampling locations for the ecological land survey and landcover map for the Arctic Network of the National Park Service                                                                  | 5     |
| Figure 3.  | Flowchart illustrating image processing steps for creating the landcover map                                                                                                             | 12    |
| Figure 4.  | A generalized toposequence illustrating relationships among topography, geology, geomorphology, permafrost, soils, and vegetation within the Nukatpiat Mountains subsection              | . 145 |
| Figure 5.  | A generalized toposequence illustrating relationships among topography, geology, geomorphology, permafrost, soils, and vegetation within the Squirrel Mountains subsection               | . 146 |
| Figure 6.  | A generalized toposequence illustrating relationships among topography, geomorphology, permafrost, soils, and vegetation within the Nigu Glaciated Upland                                | . 147 |
| Figure 7.  | A generalized toposequence illustrating relationships among topography, geomorphology, permafrost, soils, and vegetation within the Lower Noatak Floodplain subsection                   | . 148 |
| Figure 8.  | A generalized toposequence illustrating relationships among topography, geomorphology, permafrost, soils, and vegetation within the Cape Espenberg Coast subsection                      | . 149 |
| Figure 9.  | Mean thickness of the surface organic layer, depth to rock and depth of thaw for ecotypes in the Arctic Network                                                                          | . 159 |
| Figure 10. | Mean pH, electrical conductivity, and water depth for ecotypes in the Arctic Park Network                                                                                                | .161  |
| Figure 11. | Mean thickness of the surface organic layer, depth to rock and depth of thaw for plant and cryptogam species in upland and alpine ecotypes in the Arctic Network                         | . 162 |
| Figure 12. | Mean pH, electrical conductivity, and water depth for plant and cryptogam species in upland and alpine ecotypes in the Arctic Network                                                    | . 163 |
| Figure 13. | Mean thickness of the surface organic layer, depth to rock and depth of thaw for plant and cryptogam species in lowland, lacustrine, riverine and coastal ecotypes in the Arctic Network | . 164 |
| Figure 14. | Mean pH, electrical conductivity, and water depth for plant and cryptogam species in lowland, lacustrine, riverine and coastal ecotypes in the Arctic Network                            | .165  |
| Figure 15. | Detrended correspondence analysis species composition for alpine and upland ecotypes in the Arctic Network.                                                                              | . 180 |
| Figure 16. | Detrended correspondence analysis species composition for lowland and lacustrine ecotypes in the Arctic Network                                                                          | . 181 |
| Figure 17. | Detrended correspondence analysis species composition for riverine and coastal ecotypes in the Arctic Network                                                                            | . 182 |
| Figure 18. | Map of vegetation classes of Noatak National Preserve and Kobuk Valley National Park                                                                                                     | . 195 |
| Figure 19  | Map of ecotypes of Noatak National Preserve and Kobuk Valley National Park                                                                                                               | 197   |

| Figure 20. | Integrated ecotype map of the Arctic Network                                                                                                                                                  | 201 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 21. | Mean thickness of the surface organic layer, cumulative organic thickness within the top 40 cm, depth to rock and depth of thaw for common soil subgroups in the Arctic Network               | 225 |
| Figure 22. | Mean water depth above or below the ground surface, site pH, electrical conductivity and pH gradient for common soil subgroups in the Arctic Network                                          | 226 |
| Figure 23. | Map of soil landscapes derived from ecotype-soil relationships for Noatak National Preserve and Kobuk Valley National Park                                                                    | 239 |
| Figure 24. | Map of soil landscapes derived from ecotype-soil relationships for the Arctic Network                                                                                                         | 245 |
| Figure 25. | Mean annual air temperatures across the Arctic Network from the Parameter-elevation Regressions on Independent Slopes Model, by Spatial Climate Analysis Service, Oregon State University     | 249 |
| Figure 26. | Mean annual precipitation values across the Arctic Network from the Parameter-elevation Regressions on Independent Slopes Model, by Spatial Climate Analysis Service, Oregon State University | 250 |
| Figure 27. | Map of historical fire perimeters in the Arctic Network from 1942–2007                                                                                                                        | 256 |

# **Tables**

| Table 1.  | Auxilliary datasets used for mapping and analysis purposes             | 7  |
|-----------|------------------------------------------------------------------------|----|
| Table 2.  | Vegetation cover and frequency for Alpine Acidic Barrens               | 18 |
| Table 3.  | Soil characteristics for Alpine Acidic Barrens                         | 19 |
| Table 4.  | Vegetation cover and frequency for Alpine Acidic Dryas Dwarf Shrub     | 20 |
| Table 5.  | Soil characteristics for Alpine Acidic Dryas Dwarf Shrub               | 21 |
| Table 6.  | Vegetation cover and frequency for Alpine Alkaline Barrens             | 22 |
| Table 7.  | Soil characteristics for Alpine Alkaline Barrens                       | 23 |
| Table 8.  | Vegetation cover and frequency for Alpine Alkaline Dryas Dwarf Shrub   | 24 |
| Table 9.  | Soil characteristics for Alpine Alkaline Dryas Dwarf Shrub             | 25 |
| Table 10. | Vegetation cover and frequency for Alpine Cassiope Dwarf Shrub         | 26 |
| Table 11. | Soil characteristics for Alpine Cassiope Dwarf Shrub                   | 27 |
| Table 12. | Vegetation cover and frequency for Alpine Ericaceous–Dryas Dwarf Shrub | 28 |
| Table 13. | Soil characteristics for Alpine Ericaceous–Dryas Dwarf Shrub           | 29 |
| Table 14. | Vegetation cover and frequency for Alpine Lake                         | 30 |
| Table 15. | Water characteristics for Alpine Lake.                                 | 30 |
| Table 16. | Vegetation cover and frequency for Alpine Mafic Barrens                | 31 |
| Table 17. | Soil characteristics for Alpine Mafic Barrens                          | 32 |
| Table 18. | Vegetation cover and frequency for Alpine Wet Sedge Meadow             | 33 |
| Table 19. | Soil characteristics for Alpine Wet Sedge Meadow                       | 34 |
| Table 20. | Vegetation cover and frequency for Coastal Brackish Dunegrass Meadow   | 35 |
| Table 21. | Soil characteristics for Coastal Brackish Dunegrass Meadow             | 36 |
| Table 22. | Vegetation cover and frequency for Coastal Brackish Sedge–Grass Meadow | 37 |
| Table 23. | Soil characteristics for Coastal Brackish Sedge–Grass Meadow           | 37 |
| Table 24. | Water characteristics for Coastal Brackish Water                       | 38 |
| Table 25. | Vegetation cover and frequency for Coastal Brackish Willow Shrub       | 39 |
| Table 26. | Soil characteristics for Coastal Brackish Willow Shrub                 | 39 |
| Table 27. | Vegetation cover and frequency for Coastal Crowberry Dwarf Shrub       | 40 |
| Table 28. | Soil characteristics for Coastal Crowberry Dwarf Shrub                 | 41 |
| Table 29. | Vegetation cover and frequency for Coastal Dry Barrens                 | 42 |
| Table 30. | Soil characteristics for Coastal Dry Barrens                           | 43 |
| Table 31. | Water characteristics for Coastal Nearshore Water                      | 43 |
| Table 32. | Vegetation cover and frequency for Coastal Saline Sedge–Grass Meadow   | 44 |
| Table 33. | Soil characteristics for Coastal Saline Sedge–Grass Meadow             | 45 |
| Table 34. | Water characteristics for Coastal Tidal River.                         | 45 |
| Table 35. | Vegetation cover and frequency for Coastal Wet Barrens                 | 46 |
| Table 36. | Soil characteristics for Coastal Wet Barrens                           | 46 |
| Table 37. | Vegetation cover and frequency for Lacustrine Barrens                  | 47 |
| Table 38. | Soil characteristics for Lacustrine Barrens                            |    |

| Table 39. | Vegetation cover and frequency for Lacustrine Bluejoint Meadow        | 49 |
|-----------|-----------------------------------------------------------------------|----|
| Table 40. | Soil characteristics for Lacustrine Bluejoint Meadow                  | 50 |
| Table 41. | Vegetation cover and frequency for Lacustrine Buckbean Fen            | 51 |
| Table 42. | Soil characteristics for Lacustrine Buckbean Fen                      | 52 |
| Table 43. | Vegetation cover and frequency for Lacustrine Horsetail Marsh         | 53 |
| Table 44. | Water characteristics for Lacustrine Horsetail Marsh                  | 53 |
| Table 45. | Vegetation cover and frequency for Lacustrine Marestail Marsh         | 54 |
| Table 46. | Water characteristics for Lacustrine Marestail Marsh                  | 54 |
| Table 47. | Vegetation cover and frequency for Lacustrine Pendent Grass Marsh     | 55 |
| Table 48. | Water characteristics for Lacustrine Pendent Grass Marsh              | 55 |
| Table 49. | Vegetation cover and frequency for Lacustrine Pondlilly Lake          | 56 |
| Table 50. | Water characteristics for Lacustrine Pondlilly Lake                   | 56 |
| Table 51. | Vegetation cover and frequency for Lacustrine Wet Sedge Meadow        | 57 |
| Table 52. | Soil characteristics for Lacustrine Wet Sedge Meadow                  | 58 |
| Table 53. | Vegetation cover and frequency for Lacustrine Willow Shrub            | 59 |
| Table 54. | Soil characteristics for Lacustrine Willow Shrub                      | 60 |
| Table 55. | Vegetation cover and frequency for Lowland Alder Tall Shrub           | 61 |
| Table 56. | Soil characteristics for Lowland Alder Tall Shrub                     | 62 |
| Table 57. | Vegetation cover and frequency for Lowland Birch-Ericaceous Low Shrub | 63 |
| Table 58. | Soil characteristics for Lowland Birch–Ericaceous Low Shrub           | 64 |
| Table 59. | Vegetation cover and frequency for Lowland Birch–Willow Low Shrub     | 65 |
| Table 60. | Soil characteristics for Lowland Birch–Willow Low Shrub               | 66 |
| Table 61. | Vegetation cover and frequency for Lowland Black Spruce Forest        | 67 |
| Table 62. | Soil characteristics for Lowland Black Spruce Forest                  | 68 |
| Table 63. | Vegetation cover and frequency for Lowland Ericaceous Shrub Bog       | 69 |
| Table 64. | Soil characteristics for Lowland Ericaceous Shrub Bog                 | 70 |
| Table 65. | Vegetation cover and frequency for Lowland Lake                       |    |
| Table 66. | Water characteristics for Lowland Lake                                |    |
| Table 67. | Vegetation cover and frequency for Lowland Sedge Fen                  | 72 |
| Table 68. | Soil characteristics for Lowland Sedge Fen                            | 73 |
| Table 69. | Vegetation cover and frequency for Lowland Sedge–Willow Fen           | 74 |
| Table 70. | Soil characteristics for Lowland Sedge–Willow Fen                     | 75 |
| Table 71. | Vegetation cover and frequency for Lowland Willow Low Shrub           | 76 |
| Table 72. | Soil characteristics for Lowland Willow Low Shrub                     | 77 |
| Table 73. | Water characteristics for River                                       | 78 |
| Table 74. | Vegetation cover and frequency for Riverine Alder Tall Shrub          | 79 |
| Table 75. | Soil characteristics for Riverine Alder Tall Shrub                    | 80 |
| Table 76. | Vegetation cover and frequency for Riverine Barrens                   |    |
| Table 77. | Soil characteristics for Riverine Barrens                             |    |
| Table 78. | Vegetation cover and frequency for Riverine Birch-Willow Low Shrub    | 83 |

| Table 79.  | Soil characteristics for Riverine Birch–Willow Low Shrub               | 84  |
|------------|------------------------------------------------------------------------|-----|
| Table 80.  | Vegetation cover and frequency for Riverine Bluejoint Meadow           | 85  |
| Table 81.  | Soil characteristics for Riverine Bluejoint Meadow                     | 86  |
| Table 82.  | Vegetation cover and frequency for Riverine Dryas Dwarf Shrub          | 87  |
| Table 83.  | Soil characteristics for Riverine Dryas Dwarf Shrub                    | 88  |
| Table 84.  | Vegetation cover and frequency for Riverine Forb Marsh                 | 89  |
| Table 85.  | Soil characteristics for Riverine Forb Marsh                           | 90  |
| Table 86.  | Vegetation cover and frequency for Riverine Lake                       | 91  |
| Table 87.  | Water characteristics for Riverine Lake                                | 91  |
| Table 88.  | Vegetation cover and frequency for Riverine Moist Willow Tall Shrub    | 92  |
| Table 89.  | Soil characteristics for Riverine Moist Willow Tall Shrub              | 93  |
| Table 90.  | Vegetation cover and frequency for Riverine Poplar Forest              | 94  |
| Table 91.  | Soil characteristics for Riverine Poplar Forest.                       | 95  |
| Table 92.  | Vegetation cover and frequency for Riverine Wet Sedge Meadow           | 96  |
| Table 93.  | Soil characteristics for Riverine Wet Sedge Meadow                     | 97  |
| Table 94.  | Vegetation cover and frequency for Riverine Wet Willow Tall Shrub      | 98  |
| Table 95.  | Soil characteristics for Riverine Wet Willow Tall Shrub.               | 99  |
| Table 96.  | Vegetation cover and frequency for Riverine White Spruce-Alder Forest  | 100 |
| Table 97.  | Soil characteristics for Riverine White Spruce–Alder Forest.           | 101 |
| Table 98.  | Vegetation cover and frequency for Riverine White Spruce–Poplar Forest | 102 |
| Table 99.  | Soil characteristics for Riverine White Spruce–Poplar Forest           | 103 |
| Table 100. | Vegetation cover and frequency for Riverine White Spruce–Willow Forest | 104 |
| Table 101. | Soil characteristics for Riverine White Spruce–Willow Forest           | 105 |
| Table 102. | Vegetation cover and frequency for Riverine Willow Low Shrub           | 106 |
| Table 103. | Soil characteristics for Riverine Willow Low Shrub                     | 107 |
| Table 104. | Vegetation cover and frequency for Upland Alder–Willow Tall Shrub      | 108 |
| Table 105. | Soil characteristics for Upland Alder–Willow Tall Shrub                | 109 |
| Table 106. | Vegetation cover and frequency for Upland Birch Forest                 | 110 |
| Table 107. | Soil characteristics for Upland Birch Forest                           | 111 |
| Table 108. | Vegetation cover and frequency for Upland Birch–Ericaceous Low Shrub   | 112 |
| Table 109. | Soil characteristics for Upland Birch–Ericaceous Low Shrub             | 113 |
| Table 110. | Vegetation cover and frequency for Upland Birch–Willow Low Shrub       | 114 |
| Table 111. | Soil characteristics for Upland Birch–Willow Low Shrub                 | 115 |
| Table 112. | Vegetation cover and frequency for Upland Bluejoint Meadow             | 116 |
| Table 113. | Soil characteristics for Upland Bluejoint Meadow                       | 117 |
| Table 114. | Vegetation cover and frequency for Upland Dwarf Birch–Tussock Shrub    | 118 |
| Table 115. | Soil characteristics for Upland Dwarf Birch–Tussock Shrub              | 119 |
| Table 116. | Vegetation cover and frequency for Upland Mafic Barrens                |     |
| Table 117. | Soil characteristics for Upland Mafic Barrens                          | 121 |
| Table 118. | Vegetation cover and frequency for Upland Sandy Barrens                | 122 |

| Table 119. | Soil characteristics for Upland Sandy Barrens                                                                                                                                  | 123 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 120. | Vegetation cover and frequency for Upland Sedge–Dryas Meadow                                                                                                                   | 124 |
| Table 121. | Soil characteristics for Upland Sedge–Dryas Meadow                                                                                                                             | 125 |
| Table 122. | Vegetation cover and frequency for Upland Spiraea Low Shrub                                                                                                                    | 126 |
| Table 123. | Soil characteristics for Upland Spiraea Low Shrub                                                                                                                              | 127 |
| Table 124. | Vegetation cover and frequency for Upland Spruce–Birch Forest                                                                                                                  | 128 |
| Table 125. | Soil characteristics for Upland Spruce–Birch Forest                                                                                                                            | 129 |
| Table 126. | Vegetation cover and frequency for Upland White Spruce–Dryas Woodland                                                                                                          | 130 |
| Table 127. | Soil characteristics for Upland White Spruce–Dryas Woodland                                                                                                                    | 131 |
| Table 128. | Vegetation cover and frequency for Upland White Spruce–Ericaceous Forest                                                                                                       | 132 |
| Table 129. | Soil characteristics for Upland White Spruce–Ericaceous Forest                                                                                                                 | 133 |
| Table 130. | Vegetation cover and frequency for Upland White Spruce–Lichen Woodland                                                                                                         | 134 |
| Table 131. | Soil characteristics for Upland White Spruce-Lichen Woodland                                                                                                                   | 135 |
| Table 132. | Vegetation cover and frequency for Upland White Spruce–Willow Forest                                                                                                           | 136 |
| Table 133. | Soil characteristics for Upland White Spruce–Willow Forest.                                                                                                                    | 137 |
| Table 134. | Vegetation cover and frequency for Upland Willow Low Shrub                                                                                                                     | 138 |
| Table 135. | Soil characteristics for Upland Willow Low Shrub                                                                                                                               | 139 |
| Table 136. | Key to ecotypes for the Arctic Network                                                                                                                                         | 141 |
| Table 137. | Landscape relationships for ecotypes in the Arctic Network, 2002–2008                                                                                                          | 151 |
| Table 138. | Crosswalk of abbreviated ecotypes with original ecotypes, floristic classes and Viereck level IV vegetation classes in the Arctic Network                                      | 167 |
| Table 139. | Mean count of species per individual plot and total species occurrences per ecotype, Arctic Network, 2002–2008                                                                 | 177 |
| Table 140. | Mean plant cover by alpine ecotypes within the Arctic Network                                                                                                                  | 183 |
| Table 141. | Mean plant cover by upland ecotypes within the Arctic Network                                                                                                                  | 185 |
| Table 142. | Mean plant cover by lowland ecotypes within the Arctic Network                                                                                                                 | 187 |
| Table 143. | Mean plant cover by lacustrine ecotypes within the Arctic Network                                                                                                              | 189 |
| Table 144. | Mean plant cover by riverine ecotypes within the Arctic Network                                                                                                                | 190 |
| Table 145. | Mean plant cover by coastal ecotypes within the Arctic Network                                                                                                                 | 193 |
| Table 146. | Areal extent of ecotypes within Kobuk Valley National Park and Noatak National Preserve                                                                                        | 199 |
| Table 147. | Areal extent of mapped vegetation types within Kobuk Valley National Park and Noatak National Preserve                                                                         | 200 |
| Table 148. | Areal extent of ecotypes within the Arctic Network                                                                                                                             | 203 |
| Table 149. | Mean properties of surface soils from bedrock types within Noatak National Preserve, Gates of the Arctic National Park and Preserve, and Kobuk Valley National Park, 2005–2008 | 227 |
| Table 150. | Soil landscapes identified by cross-tabulation of similar soil subgroups with closely associated ecotypes                                                                      |     |
| Table 151. | Crosswalk of soil subgroups and their equivalent soil landscape in the Arctic Network                                                                                          | 243 |
| Table 152. | Areal extent of soil landscapes within the Arctic Network                                                                                                                      |     |

# **Appendices**

| Appendix 1.  | Coding system for characterizing ecological characteristics of field plots                                                                          | 268 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Appendix 2.  | Complete species list for the Arctic Network based on data from ABR, Parker, and the NPS Fire Program                                               | 270 |
| Appendix 3.  | Newly documented species for GAAR, based on data collected by ABR in 2008 and data collected during the NPS floristic inventory                     | 284 |
| Appendix 4.  | Newly documented species for KOVA, based on data collected by ABR in 2007 and data collected during the NPS floristic inventory                     | 287 |
| Appendix 5.  | Newly documented species for NOAT, based on data collected by ABR in 2008 and data collected during the NPS floristic inventory                     | 291 |
| Appendix 6.  | Rare species documented within the Arctic Network, 2005–2008, based on the Alaska Natural Heritage Program's Rare Plant Tracking List.              | 296 |
| Appendix 7a. | Landsat ETM+ and TM data used for mosaic and spectral classification of the Arctic Network                                                          | 301 |
| Appendix 7b. | Landsat ETM+ and TM scene parameters by data source                                                                                                 | 301 |
| Appendix 8.  | Crosswalk between Ecotype, Map Ecotype, the Regional Map Ecotype, Vegetation Class and the Regional Vegetation Class for the Arctic Network, Alaska | 302 |
| Appendix 9.  | Cross-tabulation of clustering of spectral characteristics of training polygons and ecotypes                                                        | 303 |
| Appendix 10. | Map accuracy assessed by tabulating mapped ecotype against ground plots used to create the map                                                      | 305 |
| Appendix 11. | Map accuracy assessed by tabulating mapped vegetation type against ground plots used to create the map                                              | 307 |

# **Acknowledgments**

We thank Jim Lawler and Diane Sanzone of the National Park Service for their support and management of this project. Jennifer Mitchell, Tara Whitesell, Kumi Rattenbury and Eric Miller provided excellent assistance in the field. We appreciate the safe helicopter flying provided by Troy Cambier and Stan Hermans, and fixed wing support provided by Bettles Air and Brooks Range Aviation. We thank Carolyn Parker, Misha Zhurbenko and Olga Afonina for their plant identification skills. We appreciate the helpful review of Janet Kidd, Sue Bishop, Dave Swanson, Peter Neitlich, and Beth Koltun. We give Pam Odom a special thanks for producing this report.

# **Introduction**

An ecological land survey (ELS) and classification in conjunction with landcover mapping improves the ability of resource managers to evaluate land resources and develop management strategies that are appropriate to the varying conditions of the landscape. An ELS can be used to efficiently allocate inventory and monitoring efforts, to partition ecological information for analysis of ecological relationships, to develop predictive ecological models, and to improve techniques for assessing and mitigating impacts. The Arctic Network (ARCN) of the National Park Service (NPS) adopted this integrated approach of inventorying and classifying ecological characteristics from the "bottom up" and using satellite image processing and environmental modeling to better differentiate the distribution of ecosystems from the "top down."

This report provides the results of a eight-year effort (2002–2009) by ABR, Inc. –Environmental Research & Services to survey, compile, analyze, and map ecosystems across the five parks of the Arctic Network, including Gates of the Arctic National Park and Preserve (GAAR), Noatak National Preserve (NOAT), Kobuk Valley National Park (KOVA), Cape Krusenstern National Monument (CAKR), and Bering Land Bridge National Preserve (BELA). Initial ecological surveys and mapping were done for CAKR and BELA during 2002–2003 (Jorgenson et al. 2004). Subsequent field surveys were done in NOAT (2005–2006), KOVA (2007), and GAAR (2008). We compiled existing vegetation and soils data from a variety of sources and included them in a standardized database for analysis. We used satellite image processing and rule-based modeling incorporating the landscape analysis of the large dataset to produce a new landcover map for NOAT

and KOVA, taking advantage of extraordinarily clear and comprehensive Landsat imagery from 2002. Using the new mapping, we then developed an integrated, seamless landcover map for the entire network by integrating our previous BELA-CAKR mapping and the existing landcover map for GAAR (Boggs et al. 1999). Finally, the analysis of geomorphology-soils-vegetation relationships allowed us to develop a map of soil landscapes across the network.

The structure and function of natural ecosystems are regulated largely along gradients of energy, moisture, nutrients, and disturbance. These gradients are affected several ecological components including climate, physiography, geomorphology, soils, hydrology, vegetation, and fauna, and have been referred to as state factors (Barnes et al. 1982, ECOMAP 1993, Bailey 1996). We used the state-factor approach (Jenny 1941, Van Cleve et al. 1990, Vitousek 1994, Bailey 1996, Ellert et al. 1997) to evaluate relationships among individual ecological components and to develop a reduced set of ecotypes (Figure 1a).

An ecological land classification also involves organizing ecological components within a hierarchy of spatial and temporal scales (Wiken 1981, Allen and Starr 1982, Driscoll et al. 2004, O'Neil et al. 1986, Delcourt and Delcourt 1988, Klijn and Udo de Haes 1994, Forman 1995, Bailey 1996). Local-scale features (e.g., vegetation) are nested within regional-scale components, (e.g., climate and physiography) (Figure 1b). Climate, particularly temperature and precipitation, accounts for the largest proportion of global variation in ecosystem structure and function (Walter 1979, Vitousek 1994, Bailey 1998). Within a given climatic zone, physiography (characteristic geologic substrate, surface shape, and relief) controls the rates and spatial arrangements of geomorphic

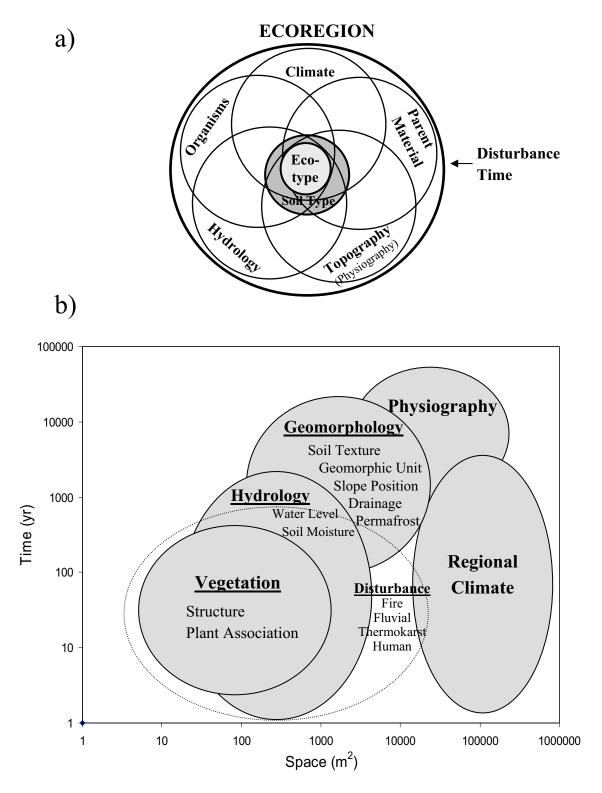



Figure 1. Interaction of interrelated state factors that control the structure and function of ecosystems (a) and the scales at which they operate (b).

processes and energy flow. These processes result in the formation of geomorphic units with characteristic lithologies, textures, and surface forms, which in turn affect soil properties and the movement of water (Wahrhaftig 1965, Swanson et al. 1988, Bailey 1996). Water movement through soil is a critical factor in determining the distribution of vegetation (Fitter and Hav 1987, Oberbauer et al. 1989), due to its influence on both water balance and nutrient availability for plants. Finally, vegetation provides structure and energy that affect the distribution of many wildlife species. The interrelated processes that operate across these components at the various scales can also be sources of disturbance that greatly influence the timing and development of ecosystems (Watt 1947, Pickett et al. 1989, Walker and Walker 1991, Forman 1995). Official systems for classifying ecosystems across scales have been developed for both the United States (Cleland et al. 1997) and Canada (Wiken and Ironside 1977), while the proposed system for Europe incorporates elements of both the U.S. and Canadian systems (Klijn and Udo de Haes 1994).

A hierarchical approach to mapping vegetation and landcover was developed for northern Alaska by Everett and Walker (Everett 1978; Walker 1981, 1983, 1999). They also applied an integrated geobotanical approach to mapping ecosystem components in the Prudhoe Bay region, but did not group the integrated units hierarchically (Walker et al. 1980). Recently, an integratedterrain-unit (ITU) approach was developed for large-scale mapping of ecosystems on the Arctic Coastal Plain (Jorgenson et al. 1997, Jorgenson et al. 2003a), the entire North Slope (Walker 1999, Jorgenson and Heiner 2003), Wrangell-St. Elias National Park and Preserve (Jorgenson et al., 2008), Cape Krusenstern National Monument and

Bering Land Bridge National Preserve (Jorgenson et al., 2004), Yukon-Kuskokwim Delta (Jorgenson 2000), interior Alaska (Jorgenson et al. 1999, Jorgenson et al. 2001), and south-central Alaska (Jorgenson et al. 2003b). The ITU approach also has been used for mapping circumpolar arctic vegetation (Walker et al. 2002).

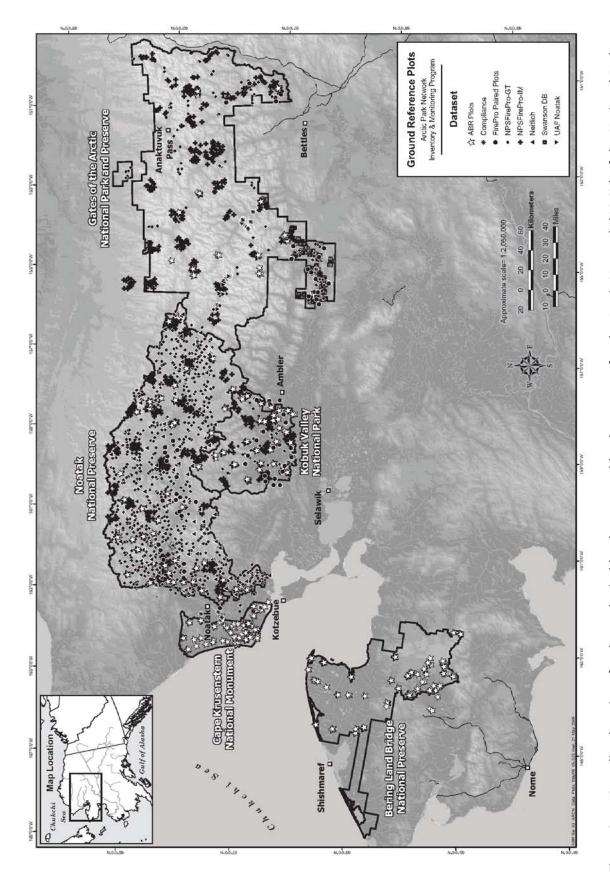
To implement the ecological land classification portion of the overall mapping effort, we used a simplified ITU approach that incorporates physiography, surface form, and vegetation; these features are readily mapped or modeled. The physiographic units are derived from the existing landscape-level ecological subsection maps for northern Alaska (Jorgenson et al. 2002) and are closely related to surficial geology and geomorphology. The surface forms are derived from the digital elevation model (DEM) (primarily slope-related features). The vegetation classes are derived from the landcover spectral classification. This ITU approach, along with the landscape relationships developed from the analysis of the field survey information, allows us to develop an enhanced set of ecosystem types from remote sensing that essentially differentiate ecosystems at the site level ("ecotypes") of ecological land classification. This integrated approach has several benefits. First, it incorporates the important effects of geomorphic processes on natural disturbance regimes (e.g., flooding, thermokarst) and the flow of energy and material. Second, it preserves the diversity of environmental characteristics. Finally, it uses a systematic approach to classifying landscape features for applied analyses. To demonstrate one application of this approach, we analyzed the relationships among soil and ecotypes and used these relationships to develop a map of soil landscapes. Thus, the maps can serve as the spatial database with differing ecological components to aid resource managers evaluating ecological

impacts and develop land management strategies appropriate for a diversity of landscape conditions.

Specific objectives of the project were to:

- conduct field inventories of vegetation, soils and environmental characteristics in NOAT, KOVA and GAAR,
- compile pre-existing field-survey data with data collected by ABR for use in classification and mapping,
- 3. input the comprehensive data set into analysis of terrain-soil-vegetation for all parks to classify ecotypes based on analysis of vegetation characteristics and relationships among ecological components,
- 4. classify soil types based on field soil descriptions,
- 5. develop a spectral database to map ecotypes and soil-landscape maps through processing Landsat ETM+ satellite imagery and rule-based modeling,
- 6. document survey results for the users of the map, and
- 7. integrate the landcover maps for the five parks into one seamless map.

# **Methods**


# **Field Surveys**

We conducted field work over a four-year period (Figure 2). Surveys focused on NOAT during 23–31 July 2005 and 19–23 July 2006. Surveys in KOVA were conducted from 25 July- 4 August 2007, and surveys in GAAR were completed during 1–10 August 2008. We used a gradient-directed sampling scheme

(Austin and Heyligers 1989) to sample the range of ecological conditions and to provide the spatially-related data needed to interpret ecosystem development. Intensive sampling was done along toposequences (transects) located within major physiographic units, including riverine, lacustrine, lowland, upland, subalpine and alpine areas using the ecological subsection mapping for ARCN (Swanson 2001, Jorgenson 2001, Jorgenson et al. 2002). Data were collected at 763 plots along 91 toposequences. Along each transect, 1–20 plots were sampled, each in a distinct vegetation type or spectral signature identifiable on aerial photographs. All sample locations were located on aerial photographs and coordinates (including approximate elevations) were obtained with a Global Positioning System (GPS) receiver (accuracy ±15 m). At each plot (~10-m radius), descriptions or measurements of geology, hydrology, soil stratigraphy, soil chemistry and vegetation structure and cover were recorded (Appendix 1). Photos were taken at all sample locations. Data and photos are archived at ABR and NPS.

Geologic and surface-form variables recorded include physiography, surface geomorphic unit, slope, aspect, surface form, and height of microrelief. Hydrologic variables measured at each sampling site included depth of water above or below ground surface, depth to saturated soil, pH, and electrical conductivity (EC). Water quality measurements (pH and EC) were made with Oakton or Cole-Palmer portable meters that were calibrated daily with standard solutions.

To assess differences in bedrock chemistry, we collected soils from the C horizon at 39 sites; these samples were sent to the Soil, Plant and Water Testing Laboratory at Colorado State University, Boulder, Co for analysis. Laboratory



Sampling locations for the ecological land survey and landcover map for the Arctic Network (ARCN) of the National Park Service. Figure 2.

analyses included: (1) routine analyses for pH (paste), EC, organic matter (OM), lime, and extractable (AB-DTPA: NH4HCO3-Ammonium bicarbonate-diethylene triamine pentaacetic acid) NO<sub>3</sub>, P, K, Zn, Fe, Cu, Mn; (2) total N and C; and (3) Inductively Coupled Plasma (ICP) analysis after total soil digestion (EPA 3050 Nitric Acid, Perchloric Acid) for Ca, Mg, Na, K, P, Al, Fe, Mn, Ti, Cu, Zn, Ni, Mo, Cd, Sr, Se, Ba, Pb, and V.

Soil stratigraphy was described from a shallow soil core or soil pit at each plot. Most soil profiles were limited to the seasonally thawed layer (~0.5–1 m) above the permafrost and were described from soil plugs dug with a shovel. For all plots, the dominant mineral texture, the depth of surface organic matter, cumulative thickness of all organic horizons, depth to rock (>15% by volume), and depth of thaw were recorded. When water was not present, EC and pH were measured from a saturated soil paste. A single simplified texture (i.e., loamy, sandy, organic) was assigned to characterize the dominant texture in the top 40 cm at each plot for ecotype classification. A more complete soil stratigraphy was described at 322 plots using standard methods (SSS 2003). Detailed soil horizon descriptions were summarized into more general lithofacies classes for the purposes of consolidating sites by depositional setting.

Vegetation composition and structure were assessed semiquantitatively. If cover was <10% or >90%, then cover of each species was visually estimated to the nearest 1%; for cover of 10–90%, it was estimated to the nearest 5%. Isolated individuals or species with very low cover were assigned a cover value of 0.1%. A species list was compiled that included most vascular plants and the dominant nonvascular plants observed in the plot. Although we searched for infrequently occurring and rare species, this project was designed as a field survey and not a

comprehensive plant inventory. Total cover of each plant growth form (e.g., tall shrub, dwarf shrub, lichens) was estimated independently of the cover estimates for individual species. Data were cross-checked to ensure that the summed cover of individual species within a growth form category was comparable to the total cover estimated for that growth form. Taxonomic nomenclature is based on Viereck & Little (1972) for trees and shrubs, and Hultén (1968) for all other taxa, with references to currently accepted synonyms throughout the text. We also used floristic data complied by the park for guidance (Parker 2006). Unknown dominant vascular species were identified by Dave Murray and Carolyn Parker, University of Alaska Museum of the North Herbarium (ALA), Fairbanks. Nomenclature for bryophytes and lichens followed the USDA PLANTS National Database (USDA 2008). Identification of mosses and lichens during field sampling was limited to dominant, readily identifiable species. Dominant cryptogams that could not be identified in the field were collected and sent to Mikhail Zhurbenko and Olga Afonina, Komarov Botanical Institute, Russia, for identification. Plant species identified are listed in Appendix 2. The ranking and status of rare plants follows guidelines of the Alaska Natural Heritage Program, which monitors rare and endemic species in Alaska (AKNHP 2007). Notable plant species, including taxa that are rare within Alaska (Rank S3 or less) or that were newly documented within NOAT, KOVA and GAAR, are listed in Appendices 3–6.

# **Supplementary Data**

In order to increase the accuracy of the landcover map, we acquired ecological datasets from several additional sources throughout the duration of the project. These were used for mapping, except for one dataset, which was used for floristic analysis (Table 1). Several datasets

Table 1. Auxilliary datasets used for mapping and analysis purposes. Values in parentheses are number of plots that met the minimal criteria for mapping.

| Data Set                     | Source                                                                           | Location               | Description                                                                                                  | Data<br>collection<br>Range | Used for floristic analysis | Used for mapping | Number of<br>Plots   |
|------------------------------|----------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|------------------|----------------------|
| Cooper<br>Arrigetch<br>Data  | D. Cooper's PHD thesis                                                           | GAAR                   | Floristic analysis in the<br>Arrigetch Peaks<br>Region.                                                      | 1980                        | Yes                         | No               | 376 (0)<br>(releves) |
| •                            | NPS- BRIM database<br>(J. Chakuchin); Bear<br>Survey photo points<br>(S. Miller) | GAAR                   | Photo points only                                                                                            | -                           | No                          | Yes              | 53 (49)              |
| NPS Firepro-<br>GT           | NPS                                                                              | GAAR,<br>KOVA,<br>NOAT | Fire Program ground<br>truth data- mixed<br>collection methods,<br>aerial and ground.                        | 1984-<br>1988               | No                          | Yes              | 1048 (932)           |
| NPS Firepro-<br>IM           | NPS                                                                              | GAAR,<br>KOVA,<br>NOAT | Fire Program intensive mapping data- mostly aerial data.                                                     | 1985-<br>1992               | No                          | Yes              | 822 (531)            |
| NPS Firepro-<br>Paired Plots | NPS- J. Allen                                                                    | GAAR,<br>KOVA,<br>NOAT | Fire Program paired<br>burned and non-<br>burned plot data. High<br>quality location and<br>vegetation data. | 1984-<br>1987               | No                          | Yes              | 174 (116)            |
| NPS- Neitlich                | NPS- P. Neitlich                                                                 | NOAT                   | Lichen dataset. Used location, site and dominant vascular species data.                                      | 2004-<br>2005               | No                          | Yes              | 88 (84)              |
| NPS Swanson                  | NPS- D. Swanson                                                                  | GAAR                   | Landscape ecosystems data for the Kobuk Boot.                                                                | 1992-<br>1993               | No                          | Yes              | 249 (249)            |
| UAF Plot Data                | UAF- D. Bret-Harte                                                               | NOAT                   | Shrub expansion data in the upper Noatak River Basin.                                                        | 2006                        | No                          | Yes              | 45 (45)              |
| Talbot<br>Selawik Data       | USFWS- S. Talbot                                                                 | Selawik<br>NWR         | Site and species data in the Refuge                                                                          | 2005                        | No                          | Yes              | 159 (159)            |
| USFWS-<br>Prehoda            | USFWS                                                                            | Selawik<br>NWR         | Moose herbivory<br>dataset, only used veg<br>class data.                                                     | 2004-<br>2005               | No                          | Yes              | 664 (663)            |
| USFWS-<br>SVMP               | USFWS                                                                            | Selawik<br>NWR         | Vegetation dataset for land-cover mapping                                                                    | 1996 &<br>1998              | No                          | Yes              | 98 (92)              |

contained vegetation and site environmental factors and were mostly comparable to ABR's. The majority of these additional data points were obtained from the NPS Fire Program (Firepro), including ground-truth (GT) and intensive mapping (IM) data (NPS) 2005), and a paired-plot (PP) data set (Allen, unpublished data). Another large dataset consisted of ecosystem data from the Kobuk Boot of GAAR (Swanson 1995), and a smaller dataset focused on eastern NOAT (Bret-Harte et al. 2007). Additionally, we attained several other datasets with useful but more limited data (Table 1), primarily site data and photos. These data were primarily useful for mapping. Most data were in electronic format when acquired although some were entered from original field sheets. We entered floristic data from a study in the Arrigetch Peaks region of GAAR from a doctoral thesis (Cooper 1983).

The final major component of the comprehensive data consisted of three ecological datasets in the Selawik National Wildlife Refuge (SELA) adjacent to KOVA (Table 1). ABR, Inc. collected field data for an ELS and landcover map for SELA during 2007–2008 (Jorgenson et al. in prep) and these data were compiled with the ARCN data to create a seamless map for both management units. Two additional datasets in SELA were acquired from the U.S. Fish and Wildlife Service (USFWS) and were appended to the database.

# **Data Management**

Data were processed through several screening steps. All datasets were imported into a comprehensive Microsoft Access database and variable codes were converted into ABR's coding system. Plot photos were linked to plot data, and the entire dataset was run through quality control routines. Records that lacked location data

(excepting Cooper 1983), were excluded from the dataset; as were records without photos that had sparse or suspect data. In addition, plot locations were screened using a Geographic Information System (GIS). In some cases we moved plot locations to an area that was more accurate based on the plot data and photos (i.e. moving water plots into lakes from the margins). This was primarily applied to the FirePro IM plot data because location coordinates were mathematically derived from the centroids of map polygons (NPS 2005), resulting in coordinates that occurred outside of irregularly shaped polygons. We screened plots against fire history data and excluded plots where fire disturbance or post-fire succession effects have affected accuracy of the data. For example, data collected at plots that burned 25 years ago and were sampled 20 years ago would not accurately reflect current conditions. For some variables, such as water, organic matter, or thaw depth, the measured parameter occurred below the depth of observation. For water we assigned 2 m in the final observation field for analysis. For organic matter and thaw depth we assigned a rough estimate for analysis. Results of analysis for these parameters involving these estimates are noted with an asterisk in appropriate tables.

# **Ecological Classification**

Ecosystems were classified at two levels. First, individual ecological components were classified and coded using standard classification systems developed for Alaska. Second, these ecological components were integrated to classify ecotypes (local-scale ecosystems) that best partitioned the range of variation for all the measured components.

# **Ecological Components**

Geomorphic units were classified according to a system based on landform-soil characteristics for Alaska,

originally developed by Kreig and Reger (1982) and the Alaska Division of Geological and Geophysical Survey (1983), and modified for this study. We relied on previous landscape analysis of northern Alaska (Jorgenson et al. 2002) as a guide to our identification of geomorphic and geologic units. We emphasized materials near the surface (<2 m) because they have the greatest influence on ecological processes. Within the geomorphic classification, we also classified waterbodies based on their depth, salinity, and genesis.

Surface forms (macrotopography) were classified according to a system modified from that of Schoeneberger et al. (1998). Microtopography was classified according to the periglacial system of Washburn (1973).

Vegetation generally was classified in the field to Level IV of the Alaska Vegetation Classification (AVC) developed by Viereck et al. (1992). Additionally, plant associations were classified and named according to standard methods (Vegetation Subcommittee 2008, Jennings et al. 2009). First, unknown specimens were identified and taxonomic nomenclature resolved for species with varying level of identification. Second, vegetation data (species cover by plot) were ordered into species groups using Program R (http://www.cran.r-project. org/). Third, sorted table analyses (Mueller-Dombois and Ellenberg 1974) were used to refine the groups and identify potential outlier plots. Finally, non-metric multidimensional scaling was used to chart the plots in species space to assess their dispersion and further identify outliers. After groups were finalized, each plant association was identified by dominant and characteristic species.

# **Ecotypes**

Classification of ecotypes was accomplished in three general steps: (1) the ecological components were individually classified for each detailed ground description, (2) relationships along transects were examined to illustrate trends across the landscape, and (3) contingency tables were used to identify the common relationships and central tendencies among ecological components. In developing the ecotype classes, we emphasized ecological characteristics (primarily geomorphology and vegetation structure) that could be interpreted from aerial photographs. We also developed a nomenclature for ecotypes that describes ecological characteristics (climate, physiography, soil chemistry, moisture, vegetation structure, and dominant species) using a terminology that can be easily understood.

To reduce the number of ecotype classes, we aggregated the field data for individual ecological components (e.g., soil stratigraphy and vegetation composition), using a hierarchical approach. Geomorphic units were assigned to physiographic settings based on their erosional or depositional processes. Surface-forms were aggregated into a reduced set of slope elements (crest, upper slope, lower slope, toe, and flat). For vegetation, we used the structural levels of the AVC (Viereck et al. 1992), because they are readily identifiable on aerial photographs and a typical species common name (e.g., White Spruce Forest). Frequently, we grouped textural classes because the vegetation associated with them was similar, and some vegetation structures (e.g., open and closed shrub) were grouped because their species composition was similar. Full ecotype names were then based on the aggregated ecological components and include physiography, texture, soil moisture, chemistry, and vegetation (e.g., Riverine Gravelly Dry Circumalkaline Spruce–Poplar Forest).

Ecotypes are similar in concept to the Landtype Phase of the national ECOMAP classification (Cleland et al. 1997) and "ecotope" of Klijn et al. (1994), but we chose to use the term "ecotype" because it is a simple conjuntion of "ecosytem type" and because many tundra ecosystems have long persisting plant associations that do not have readily identifiable successional stages as indicated by the landtype phase (successional stage).

Common relationships among ecosystem components were identified by use of contingency tables. The contingency tables sorted plots by physiography, soil texture, geomorphic unit, slope position, drainage, soil chemistry (pH and salinity), vegetation structure, and plant association. From these tables, common associations were identified and unusual associations either were lumped with those having similar characteristics or excluded as atypical (outliers). Finally, ecotype names were abbreviated to emphasize primary characteristics of the class and facilitate discussion (e.g., Boreal Riverine Spruce-Poplar Forest). The resulting final ecotypes were used for mapping and to summarize the ground data.

#### Soils

Soils were classified to the soil subgroup level according to NRCS soil taxonomy, Ninth Edition (NRCS 2003). When data needed for the taxonomic keys were not available, a best guess was used when assigning classes. For example, it was difficult to determine if permafrost was present in rocky soils. Consequently, permafrost was assumed to be present in alpine environments assuming mean annual air temperatures were low. Similarly, differentiating eutrocryepts from dystrocryepts was based on a cutpoint of 5.5 for the pH reaction, although the actual diagnostic criteria is based on a cutpoint of 60% base saturation from laboratory analyses.

Soil landscapes were developed to characterize and map broader relationships among soil type, physiography, and vegetation. The soil landscapes were developed by cross-tabulating ecotypes and soil subgroups to identify associations of similar ecotypes that group with similar soil subgroups. The resulting associations were named based on physiography, soil texture, and dominant vegetation structure (e.g., dwarf shrub, woodland forest).

We did not use the standard NRCS term "soil association" because that term has a specific concept of widely differing soils being associated with each other across a repeating toposequence across the landscape. In addition, "soil associations" are used in mapping to be large map units with aggregated soil types. In our situation where the map is based on the 28-m pixel size, the term "soil landscape" is meant to be closely related soil types on a portion of the landscape at a large mapping scale.

# **Ecosystem Components Synthesis**

Ecosystem components were analyzed to identify responses to evolving landscapes comprising a wide variety of geomorphic processes associated with physiographic regimes within ARCN. Identification of the patterns associated with geomorphic units and vegetation, along with analysis of changes in soil properties within physiographic settings, helps identify processes (e.g., acidification, sedimentation) that affect the changing patterns on the landscape. Understanding these ecological relationships provided parameters to recode the ecotype map into a derived map of other ecological characteristics, such as a soils map or a lichen map (see Section on Soils).

The contingency table analysis also was used to evaluate how well these general relationships conformed to the data set, and how reliably they could be used to

extrapolate trends across the landscape. During development of the relationships, outliers were excluded from the table because of inconsistencies among physiography, texture, geomorphology, drainage, soil chemistry, and vegetation. We excluded these points because our primary goal was to identify the most distinct and consistent trends. These sites may be transitional ecotones, or sites where vegetation and soils have been affected by historical factors (e.g., changes in water levels, disturbances) in ways that are not readily explainable based on current environmental conditions.

# Landcover and Ecosystem Mapping

# Landsat Imagery Preprocessing Acquistion

**Enhanced Thematic Mapper Plus** (ETM+) imagery was reviewed for the study area and a period in late July and early August 2002 was identified that provided nearly complete cloud-free cover of the study area. Additional ETM+ and Thematic Mapper (TM) scenes were acquired to fill in holes that were cloudy or hazy. Three different sources of Landsat data were used. First, we worked with the National Park Service to order several scenes which covered most of the study area. Second, circa 2000 GeoCover scenes were downloaded from the Goddard Land Cover Facility. Finally, additional scenes as well as new versions of the previously acquired scenes were ordered after the USGS opened the entire Landsat archive for free access starting in September 2008. These three data sources had some different processing parameters (Appendix 7). After the USGS free Landsat program went into effect, the capability to order scenes using userspecified processing parameters was removed. A flow chart demonstrating the imaging processing routine is in Figure 3.

# Reprojection and Georeferencing

Following selection and import of the Landsat data from various sources, all of the imagery was reprojected and georeferenced to a consistent coordinate system and resolution. The project horizontal coordinate system is the Alaska Albers Conical Equal Area, NAD1983 horizontal datum. A pixel resolution of 28.5-m was selected as this is closest to the actual pixel resolution. The raster cell alignment followed the same convention as the GeoCover imagery. This results in a cell alignment where the center of one pixel would be located at (0,0) in the target coordinate system.

The GeoCover and most of the USGS imagery was precision terrain corrected. That is, it was geolocated with subpixel accuracy to match the circa 1990 GeoCover global Landsat mosaic. An informal assessment of the geolocation accuracy of the precision terrain corrected imagery was conducted. It was compared to a set of GPS tracks that followed water body edges and to the orthorectified IKONOS imagery. These comparisons indicated that the precision terrain corrected imagery was generally within ~15-m of these other independent data sources. Based on this finding, precision terrain corrected scenes were simply reprojected into the project coordinate system (all precision terrain corrected scenes were in a Universal Transverse Mercator (UTM) coordinate system). The non-precision terrain corrected scenes were georeferenced to a panchromatic (14.25 m) mosaic constructed from the precision terrain corrected scenes using first- or second-order polynomials.

When reprojecting or georeferencing Landsat scenes, the resampling algorithm is important. Nearest-neighbor (NN) resampling preserves the original pixel values, but introduces geolocation errors of up to a half pixel horizontally and vertically. Cubic convolution (CC) resampling alters pixel values but does a

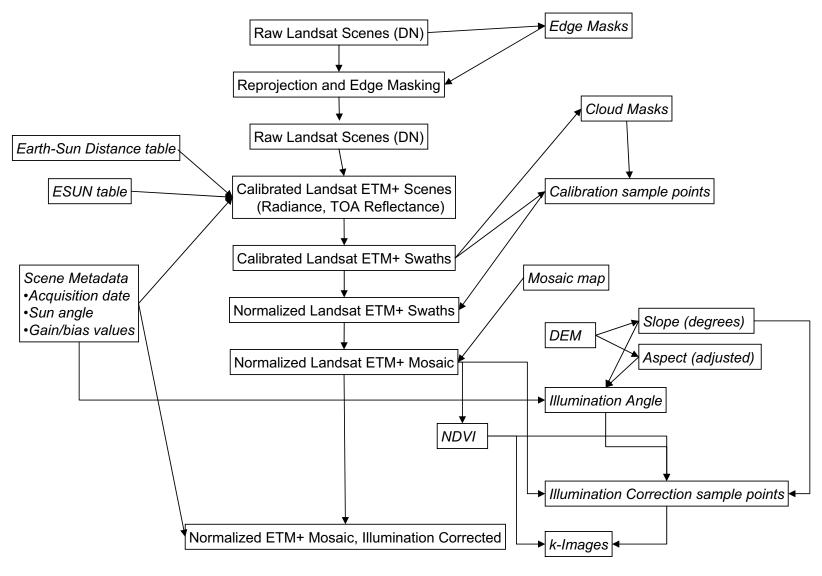



Figure 3. Flowchart illustrating image processing steps for creating the landcover map. DN = Digital Number. DEM = Digital Elevation Model. NDVI = Normalized Difference Vegetation Index

better job of preserving image smoothness and geolocation. Generally, the NN approach is preferred when performing a single image analysis such as classification. However, the CC approach produces better results when comparing one image to another, as in the radiometric normalization. The resampling history of the scenes used for the classification depended on the source. The NPS scenes were processed by the data provider with NN resampling and were then georeferenced using NN resampling a second time. The GeoCover scenes were processed by the data provider with the NN resampling and were then reprojected using NN resampling. Finally, the USGS free Landsat scenes were processed by the data provider with CC resampling and were then reprojected using NN resampling.

# Edge Masking

Following reprojection all of the scenes were masked to remove both inconsistent edge data and large empty borders. The USGS scenes include all of the data for each band, including at the edges where the coverage of each band is different. Also, the cubic convolution resampling results in spurious values at the top and bottom of the scenes where the zero (background) values affect the resulting pixel values. An edge mask was manually digitized for each scene to remove these edge artifacts.

## Radiometric Calibration

The scenes were then converted to top-of-atmosphere reflectance using the scene metadata and calibration coefficients from the Landsat 7 Science Data Users Handbook (<a href="http://landsathandbook.gsfc.nasa.gov/handbook.html">http://landsathandbook.gsfc.nasa.gov/handbook.html</a>). Landsat 5 data was calibrated using the coefficients from Chander et al. 2009. The scenes were stored in a 16-bit format to preserve

precision. Adjacent scenes from the same acquisition date were then mosaicked into swaths.

#### Radiometric Normalization

The primary reference image for the mosaic was the Landsat ETM+ scenes acquired July 29, 2002 (path 78, rows 13–15). The objective of radiometric normalization is to correct the other scenes so that their pixel values are compatible with those of the reference images. Mainly this corrects for the effect of different atmospheric conditions on different acquisition dates. Scenes that did not overlap the primary swath were normalized using Landsat images that had already been normalized.

A set of stratified random points was generated for the mosaic area. Stratification ensured that the full range of scene brightness was represented, including rarer, bright pixels. Points within a preliminary cloud mask were excluded. Random points were used to sample the reference image and the target images. The resulting values were assessed interactively using scatterplots in ArcMap V. 9.3 (ESRI, Redlands, CA). The sample set was screened and, typically, snow, small clouds, and calibration points located near abrupt brightness changes were filtered out. A table containing the resulting set of filtered points was analyzed in a statistical package to determine linear regression coefficients. The normalization then applied these coefficients to the target image.

## Mosaicking

A mosaic map layer (a non-overlapping vector polygon dataset) was maintained that identified which scene will be passed through to the final mosaic for each region of the study area. The construction of the final mosaic was an iterative process where a mosaic was created and then reviewed visually. Adjustments were made to the mosaic map layer, the mosaic

was regenerated, and the process was repeated. When completed, the mosaic was maintained at 16-bit radiometric resolution (reflectance scaled by 10,000). In addition, an 8-bit version following the MRLC2001 convention (USGS 2006) was produced. The 8-bit version stored reflectance scaled by 400, and truncated at 0.6375. The mosaic map layer allows the scene specific information (such as solar elevation and azimuth) to be compiled for all portions of the mosaic.

#### Illumination Normalization

The radiometric calibration and normalization techniques described above do not address the problem of topographic effects on remote-sensing imagery. The Arctic Network parks contain extensive mountainous terrain, where these topographic effects are most pronounced. At high latitudes, sun angles are low, further increasing topographic effects. An illumination normalization procedure was performed to minimize these topographic effects. A backwards radiance correction transformation (Colby 1991) was performed. Rather than using a single Minnaert constant (k) for each band, a k-image was constructed for each band, similar to the procedure used by Lu et al. (2008). Lu et al. related the k value to slope, while we related the k value to the Normalized Difference Vegetation Index (NDVI). NDVI is fairly resistant to topographic effects and was used to distinguish a gradient of barren, partially vegetated and densely vegetated landcover types for the illumination normalization. An arc-second National **Elevation Dataset Digital Elevation** Model (NED DEM, about 30 by 60 m native resolution), reprojected to Alaska Albers NAD1983, with 28.5-m resolution and CC resampling was used. The geolocation of the DEM was assessed as part of the illumination normalization procedure and adjustment of the DEM was considered.

To perform the illumination correction, the DEM data were compiled and several derivatives were calculated. These include the slope, aspect, and illumination angle (which varies with sun-sensor geometry). The adjusted aspect (corrected for the map projection distortion; see below) was used for this analysis. Areas without direct sunlight were masked out using the ArcGIS hillshade function to model shadows. Stratified random points were generated, ensuring that a full range of illumination and brightness conditions are sampled. The points were used to sample the mosaic pixel values, DEM derivatives, and NDVI. The samples were reviewed and filtered interactively. An analysis of how the estimated k-value varied with band, slope, and NDVI was conducted, and models were produced to calculate k-images for each band as a function of NDVI. The *k*-images were applied in the backwards radiance correction transformation to produce a normalized mosaic in floating point formats. The mosaic was converted to 8-bit format using the MRLC conventions (reflectance scaled by 400, and truncated at 0.6375).

# Spectral Classification Development

# Preliminary Unsupervised Classifications

Several preliminary unsupervised classifications were generated from the illumination normalized mosaic. These were intended primarily to identify spectrally homogeneous patches to guide the supervised training set development. The mosaic was stratified using NDVI thresholds to segregate the image into vegetated and non-vegetated strata. Initially values greater than 0.3 were assigned to a vegetated strata and unsupervised classifications were performed in ERDAS Imagine 9.3.1 to generate preliminary spectral classes.

Three unsupervised vegetated strata classifications were produced, with 50, 75, and 100 classes (referred to as Veg50, Veg75 and Veg100). A 25-class non-vegetated strata classification (Nonveg25) was also produced based on pixels with NDVI less than or equal to 0.3. A 75-class non-vegetated strata classification (Nonveg75) was produced from pixels with NDVI less than or equal to 0.4.

#### Supervised Training Set Development

Plot locations were displayed in ArcGIS overlaid on the Landsat image mosaic, IKONOS imagery, and the preliminary unsupervised classifications. Training polygons were digitized so that they included a discrete vegetation patch consistent with interpretation of the plot data, Landsat imagery and IKONOS imagery. In addition the training polygons should be at least 10 Landsat pixels in area and should include a maximum of one or two spectral classes in at least one of the unsupervised strata (Veg50, Veg75, Veg100, or Nonveg75).

Some training polygons were digitized in areas without plot data. These non-plot training polygons were mainly generated for non-vegetated or partially vegetated types, primarily water and barrens. These types could be easily recognized on the IKONOS imagery and/or the Landsat mosaic. In addition, some non-plot training polygons were digitized over types for which plot data was rare, but which could be reliably distinguished on the IKONOS imagery.

The training polygons were compiled into a comprehensive vector GIS dataset. The training polygons were labeled with the plot GID based on an overlay with the plot points. The polygons were converted to a raster at the same resolution and cell alignment as the Landsat mosaic. The raster included all pixels whose center was contained within the polygon

boundary. The training polygons were used to generate maximum likelihood signatures for each training polygon. The plot data, pixel data, and signature data for each training polygon was saved to a spectral database in Microsoft Access format. Several criteria were applied to remove problematic signatures—for example, those with a covariance matrix that was not invertible; those below the size threshold of ten pixels; and those with high spectral heterogeneity based on the diversity of classes from the preliminary unsupervised classifications.

Signature separability was evaluated based on the Bhattacharyya distance (which is also used to calculate the Jeffries-Matsushita distance commonly used). Lee and Choi (2000) estimated the probability of class confusion between two normally distributed maximum likelihood signatures. Pairs of signatures with high probabilities of confusion were reviewed and in this problematic training polygons and/or plot data were identified. Training polygons were revised or deleted to improve spectral separability. In addition a spectral cluster analysis was performed and overlap among similar signatures identified. Signature clusters were compared with ecotypes and poorly characterized signatures were eliminated. Signature fidelity (self-classification) was evaluated by assessing the classification of the pixels within training polygons. Training polygons that did not classify to the correct vegetation class (Viereck Level 4) with a frequency of at least 70% were reviewed carefully.

The classification area was stratified based on physiography, geology and treeline layers that were developed for this project. Each stratum was classified independently, with a set of signatures based on a lookup table for each stratum. Pixels that were not classified with high confidence were reclassified using the full signature set.

Coastal and riverine physiographic zones were derived from ecosubsection mapping (Jorgenson et al. 1992). Alpine and sub-alpine zones were derived from lower and upper elevation cutpoints defined for points on a 100-km grid. The remaining area was comprised of upland and lowland physiographies, which were often difficult to distinguish using subsections or topographic metrics. Some upland and lowland zones were defined using topographic metrics while much of the area was categorized to upland or lowland based on spectral signatures.

For the alpine and sub-alpine strata, the ecosubsection mapping was used to categorize the predominant geology and substrate chemistry into four classes: acidic/circumacidic, alkaline/circumalkaline, alkaline, and mafic. A treeline layer was developed to delineate regions where no trees were present (tundra), white spruce was present (boreal white spruce), and black spruce was also present (boreal black spruce). This was based primarily on the linework from the subsection mapping with some editing.

The completed classification was reviewed for consistency across the landscape and appropriate regional specificity. Some signatures were removed because they failed to classify well consistently and some signatures were restricted to particular regions using the ecosubsection mapping.

# Results

# **Ecotypes and Plant Associations**

Descriptions of 69 ecotypes are presented for ARCN (Tables 2–135). They were defined by general distribution, landscape features, plant associations, dominant plant species, dominant soil textures and chemistry, and hydrologic characteristics. A key to these ecotypes is provided in Table 136. Most ecotypes were only associated with a single plant association, however 10 ecotypes had multiple plant associations, and 11 plant associations were used to describe more than one ecotype. This overlap resulted from communities that were floristically comparable but had very different site factors (i.e. alpine communities on different bedrock types), or from communities that were immediately adjacent in a successional sequence (e.g., Riverine Poplar Forest and Riverine Spruce–Poplar Forest). There were a total of 64 plant associations. We did not describe or map an additional 7 ecotypes that were uncommon.

**Ecotypes and Plant Associations** 

# **Alpine Acidic Barrens**



### Geomorphology:

This ecotype occurs throughout ARCN on non-carbonate bedrock, hillside colluvium, and talus. Bedrock types include granite, schist, sandstone and shale. It is typically found on upper slopes and crests at greater than 500 m elevation. Slope varies from gradual to steep, and it occurs at all aspects.

#### Plant Association:

Dryas octopetala-Hierochloe alpina

Fruticose lichen-Racomitrium sp.-Cassiope tetragona

Alpine Acidic Barrens is diverse in nonvascular plants, which can have up to 75% cover (Table 2). Lichens are more common than mosses due to dry soils. Individual species cover is usually less than 5%. Trees and shrubs taller than 20 cm are absent. Common species include *Cassiope tetragona*, *Selaginella sibirica*, *Hierochloe alpina*, *Flavocetraria nivalis*, and *Cladina stellaris*.

Alpine Acidic Barrens is most similar to Alpine Alkaline Barrens and Alpine Mafic Barrens, but has different parent material with lower pH and lower total species diversity, but higher lichen diversity. It is also similar to Alpine Acidic Dryas Dwarf Shrub and Alpine Acidic Ericaceous Dwarf Shrub, but with lower species cover.

#### Soils:

Soils are blocky or rubbly and surface organic horizons are very thin or completely lacking (Table 3). Thaw depths often could not be determined in the rocky soils, but permafrost is presumed to be present below 1 m due to the cold temperatures at the high elevations. Frost boils are uncommon, and surface fragments are common and abundant. Loess caps are absent. Soil pH is acidic to circumneutral, and electrical conductivity (EC) is generally low. The soils are typically excessively to somewhat excessively drained. Depth to water table often could not be

Table 2. Vegetation cover and frequency for Alpine Acidic Barrens (n=43).

| r                                           | `             |              | Fr              |
|---------------------------------------------|---------------|--------------|-----------------|
|                                             | Cover         |              | Freq            |
| Total Live Cover                            | Mean          | SD           | <u>%</u><br>100 |
| Total Vascular Cover                        | 115.1<br>31.1 | 46.6<br>22.8 | 94              |
| Total Evergreen Tree Cover                  | 0.0           | 0.0          | 3               |
| Total Evergreen Shrub Cover                 | 14.6          | 14.4         | 91              |
| Cassiope tetragona                          | 14.0          | 13.0         | 71              |
| Diapensia lapponica                         | 0.2           | 0.7          | 17              |
| Dryas octopetala                            | 0.2           | 1.3          | 11              |
| Empetrum nigrum                             | 0.1           | 0.3          | 14              |
| Juniperus communis                          | <0.1          | 0.2          | 6               |
| Ledum decumbens                             | 0.6           | 2.1          | 26              |
| Loiseleuria procumbens                      | 0.6           | 2.0          | 23              |
| Vaccinium vitis-idaea                       | 1.7           | 2.9          | 49              |
| Total Deciduous Tree Cover                  | 0.0           | 0.0          | 3               |
| Total Deciduous Shrub Cover                 | 2.6           | 4.6          | 63              |
| Arctostaphylos alpina                       | 0.1           | 0.2          | 6               |
| Rosa acicularis                             | <0.1          | 0.2          | 6               |
| Salix phlebophylla                          | 0.1           | 0.5          | 9               |
| Salix planifolia ssp. pulchra               | 0.1           | 0.5          | 14              |
| Salix polaris                               | 0.2           | 0.9          | 9               |
| Salix reticulata                            | 0.3           | 1.7          | 6               |
| Salix rotundifolia                          | 0.8           | 3.3          | 14              |
| Vaccinium uliginosum                        | 0.8           | 3.0          | 26              |
| Viburnum edule                              | 0.1           | 0.3          | 6               |
| <b>Total Forb Cover</b>                     | 3.3           | 4.8          | 86              |
| Anemone narcissiflora                       | 0.9           | 1.4          | 46              |
| Antennaria rosea                            | 0.1           | 0.3          | 3               |
| Arnica lessingii                            | <0.1          | 0.2          | 6               |
| Artemisia alaskana                          | 0.1           | 0.5          | 6               |
| Artemisia arctica ssp. arctica              | 0.1           | 0.5          | 6               |
| Campanula lasiocarpa                        | 0.1           | 0.2          | 17              |
| Cardamine bellidifolia                      | <0.1          | 0.2          | 17              |
| Dryopteris fragrans                         | 0.1           | 8.0          | 3               |
| Epilobium angustifolium                     | 0.5           | 1.8          | 11              |
| Galium boreale                              | <0.1          | 0.2          | 6               |
| Lycopodium selago                           | 0.2           | 0.3          | 34              |
| Minuartia macrocarpa                        | 0.1           | 0.3          | 11              |
| Pedicularis kanei                           | 0.1           | 0.2          | 11              |
| Polygonum bistorta                          | 0.2           | 1.0          | 3               |
| Saxifraga bronchialis                       | 0.3           | 1.1          | 14              |
| Saxifraga oppositifolia                     | 0.1           | 0.3          | 3               |
| Saxifraga reflexa                           | <0.1          | 0.2          | 6               |
| Selaginella sibirica                        | 0.1           | 0.3          | 17              |
| Woodsia ilvensis Total Grass Cover          | 0.1           | 0.7          | 3               |
|                                             | 4.0           | 4.5          | 80              |
| Calamagrostis canadensis<br>Festuca altaica | 0.2           | 1.0          | 3               |
| Hierochloe alpina                           | 0.1<br>3.6    | 0.2<br>4.5   | 6<br>77         |
| Poa glauca                                  | 0.1           | 0.2          | 9               |
| Total Sedge & Rush Cover                    | 6.5           | 9.8          | 86              |
| Carex microchaeta                           | 5.7           | 9.9          | 60              |
| Carex podocarpa                             | 0.6           | 1.4          | 31              |
| Luzula arcuata                              | 0.0           | 0.9          | 11              |
| Total Nonvascular Cover                     | 84.0          | 32.3         | 100             |
| Total Moss Cover                            | 4.8           | 4.3          | 89              |
| Anastrophyllum sp.                          | 0.1           | 0.2          | 14              |
| Chandonanthus sp.                           | 0.1           | 0.5          | 31              |
| Dicranum sp.                                | 0.2           | 0.9          | 20              |
| Pohlia sp.                                  | <0.1          | 0.2          | 9               |
|                                             |               | J            | -               |

Table 2. Continued.

|                                  | Cover |            | Freq    |
|----------------------------------|-------|------------|---------|
|                                  | Mean  | Mean SD    |         |
| Polytrichastrum alpinum          | 0.3   | 1.0        | 9       |
| Polytrichum juniperinum          | 0.1   | 0.5        | 9       |
| Polytrichum piliferum            | 0.2   | 0.7        | 6       |
| Polytrichum sp.                  | 0.2   | 0.6        | 23      |
| Polytrichum strictum             | 0.2   | 0.5        | 26      |
| Racomitrium lanuginosum          | 1.2   | 2.6        | 29      |
| Racomitrium sp.                  | 1.6   | 2.4        | 49      |
| Unknown moss                     | 0.1   | 0.6        | 9       |
| Total Lichen Cover               | 79.2  | 31.4       | 100     |
| Alectoria ochroleuca             | 0.2   | 0.8        | 9       |
| Alectoria sp.                    | 0.3   | 0.6        | 17      |
| Arctoparmelia sp.                | 0.1   | 0.4        | 9       |
| Asahinea chrysantha              | 0.2   | 0.7        | 14      |
| Asahinea sp.                     | 0.1   | 0.2        | 9       |
| Cetraria cf. islandica           | 0.2   | 0.7        | 14      |
| Cetraria nigricans               | 0.4   | 1.8        | 11      |
| Cetraria sp.                     | 1.3   | 2.0        | 49      |
| Cladina arbuscula                | 10.5  | 11.3       | 63      |
| Cladina mitis                    | 0.3   | 0.9        | 11      |
| Cladina rangiferina              | 6.2   | 6.7        | 60      |
| Cladina stellaris                | 33.3  | 31.4       | 71      |
| Cladina stygia                   | 0.4   | 1.1        | 11      |
| Cladonia amaurocraea             | 0.2   | 0.9        | 6       |
| Cladonia sp.                     | 2.4   | 2.6        | 80      |
| Dactylina sp.                    | 0.8   | 1.1        | 51      |
| Flavocetraria cucullata          | 2.0   | 3.3        | 51      |
| Flavocetraria nivalis            | 0.8   | 1.7        | 46      |
| Lobaria linita                   | 0.1   | 0.8        | 6       |
| Masonhalea richardsonii          | 0.2   | 0.5        | 17      |
| Nephroma arcticum                | 0.1   | 0.2        | 6       |
| Parmelia omphalodes              | 0.8   | 3.5        | 9       |
| Parmelia sp.                     | 0.2   | 1.0        | 14      |
| Rhizocarpon geographicum         | 0.7   | 2.3        | 14      |
| Rhizocarpon sp.                  | 0.6   | 3.4        | 3       |
| Sphaerophorus fragilis           | 0.1   | 0.7        | 6       |
| Sphaerophorus sp.                | 0.3   | 0.7        | 14      |
| Stereocaulon sp.                 | 0.1   | 0.2        | 9       |
| Stereocaulon subcoralloides      | 1.0   | 5.9        | 6       |
| Thamnolia sp.                    | 0.6   | 0.9        | 43      |
| Thamnolia vermicularis           | 0.0   | 0.5        | 29      |
| Umbilicaria caroliniana          | 0.2   | 1.4        | 9       |
| Umbilicaria proboscidea          | 0.8   | 2.4        | 26      |
| Umbilicaria sp.                  | 0.7   | 2.1        | 17      |
| Unknown crustose lichen          | 6.8   | 16.1       | 23      |
| Unknown foliose/fruticose lichen | 2.3   | 9.4        | 23<br>6 |
| Unknown lichen                   | 2.3   | 9.4<br>7.9 | ь<br>14 |
| Xanthoria sp.                    |       |            |         |
| <b>'</b>                         | <0.1  | 0.2        | 6<br>42 |
| Total Bare Ground Bare Soil      | 20.9  | 27.6       | 43      |
|                                  | 20.6  | 27.4       | 43      |
| Litter alone                     | 0.2   | 0.6        | 34      |



measured but it is assumed to be at substantial depths given the well drained soils.

Table 3. Soil characteristics for Alpine Acidic Barrens.

| Property                                   | Mean   | SD    | n  |
|--------------------------------------------|--------|-------|----|
|                                            |        |       |    |
| Elevation (m)                              | 713.1  | 213.0 | 15 |
| Slope (degrees)                            | 22.2   | 14.9  | 13 |
| Surface Organics Depth(cm)                 | 2.0    | 1.4   | 2  |
| Cumulative Org. in 40 cm (cm)              | 2.0    | 1.4   | 2  |
| Loess Cap Thickness (cm)                   |        |       | 0  |
| Depth to Rocks (cm)                        | 7.0    | 4.2   | 2  |
| Surface Fragment Cover (%)                 | 92.9   | 10.6  | 7  |
| Frost Boil Cover (%)                       | 4.8    | 6.8   | 4  |
| Thaw Depth (cm)                            | 36.0   | 22.6  | 2  |
| Site pH at 10-cm depth                     | 4.8    | 0.5   | 10 |
| Site EC at 10-cm depth (µS/cm)             | 43.0   | 25.4  | 10 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -187.7 | 42.7  | 12 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soils in this ecotype are Typic Gelorthents (poorly developed with permafrost below 1 m) and Typic Dystrogelepts (acidic, well drained, moderately thin organic horizon, permafrost below 1 m). Less common subgroups include Lithic Cryorthents (poorly developed, <50 cm to bedrock, permafrost lacking), Lithic Haploturbels (<50 cm to bedrock, permafrost within 1 m, with cryoturbation), Typic Haploturbels (mineral soil over permafrost with cryoturbation), and Lithic Dystrogelepts (<50 cm to bedrock, acidic, partially developed, permafrost below 1 m). This ecotype and associated soils are part of the Alpine Rocky Acidic Barrens and Shrub soil landscape. Also included in this soil landscape are Alpine Acidic Dryas Dwarf Shrub and Alpine Ericaceous-Dryas Dwarf Shrub.

# **Alpine Acidic Dryas Dwarf Shrub**



### Geomorphology:

This is one of the most common alpine ecotypes in ARCN and provides quality habitat for Dall's sheep, marmots and ground squirrels. It occurs on weathered bedrock, hillside colluvium, older moraine and solifluction deposits. It mainly occurs on ridge crests, slopes and plateaus, generally between 450 and 900 m elevation. Slopes are typically gentle and this ecotype occurs on all aspects.

#### Plant Association:

Dryas octopetala-Hierochloe alpina

Alpine Acidic Dryas Dwarf Shrub has the 3rd highest average number of species per plot and the 3rd highest total species count overall (Table 4). We documented two rare species, *Arenaria chamissonis* (syn: *Stellaria dicranoides*) and *Oxytropis kokrinensis* in this ecotype. Trees and tall shrubs are absent. Dwarf shrubs and lichens are the most common life forms. Most species except *Dryas octopetala* have less than 3% cover. Common species include *Dryas octopetala*, *Vaccinium vitis-idaea*, *Saxifraga bronchialis*, *Hierochloe alpina*, *Flavocetraria nivalis* and *Flavocetraria cucullata*.

This ecotype is similar to Alpine Acidic Barrens, except it has higher species cover, and Alpine Ericaceous—Dryas Dwarf Shrub, but differs in the reduced presence of Ericaceous dwarf shrubs. It has different species assemblages relative to the alpine alkaline ecotypes.

# Soils:

Soils are blocky or rubbly and are overlain by thin organic horizons (Table 5). Thaw depths often could not be determined in the rocky soils, but permafrost is presumed to be present below 1 m due to the cold temperatures at the high elevations. Frost boils are uncommon, and surface fragments are

Table 4. Vegetation cover and frequency for Alpine Acidic Dryas Dwarf Shrub (n=21).

| Alpine Acidic Diyas Dwart Siliub (II–21) |       |      |          |  |
|------------------------------------------|-------|------|----------|--|
|                                          | Cover |      | Freq     |  |
|                                          | Mean  | SD   | <u>%</u> |  |
| Total Live Cover                         | 86.1  | 29.7 | 100      |  |
| Total Vascular Cover                     | 51.7  | 25.4 | 100      |  |
| Total Evergreen Shrub Cover              | 31.1  | 14.5 | 100      |  |
| Cassiope tetragona                       | 0.5   | 1.3  | 37       |  |
| Diapensia lapponica                      | 0.8   | 1.6  | 47       |  |
| Dryas octopetala                         | 23.3  | 18.0 | 84       |  |
| Dryas octopetala ssp.                    |       |      |          |  |
| alaskensis                               | 3.7   | 11.0 | 11       |  |
| Empetrum nigrum                          | 0.4   | 0.8  | 32       |  |
| Ledum decumbens                          | 0.2   | 0.5  | 21       |  |
| Loiseleuria procumbens                   | 0.5   | 1.6  | 26       |  |
| Vaccinium vitis-idaea                    | 1.3   | 2.0  | 58       |  |
| Total Deciduous Shrub Cover              | 9.5   | 6.6  | 95       |  |
| Arctostaphylos alpina                    | 0.8   | 2.3  | 32       |  |
| Betula nana                              | 0.5   | 1.0  | 32       |  |
| Salix arctica                            | 0.2   | 0.6  | 21       |  |
| Salix glauca                             | 0.1   | 0.2  | 16       |  |
| Salix phlebophylla                       | 3.2   | 3.7  | 68       |  |
| Salix planifolia ssp. pulchra            | 0.1   | 0.2  | 16       |  |
| Salix polaris                            | 0.5   | 1.6  | 16       |  |
| Salix reticulata                         | 1.0   | 3.4  | 32       |  |
| Salix rotundifolia                       | 0.9   | 2.5  | 16       |  |
| Vaccinium uliginosum                     | 1.7   | 3.1  | 68       |  |
| Total Forb Cover                         | 7.3   | 6.7  | 100      |  |
| Anemone narcissiflora                    | 0.2   | 0.4  | 53       |  |
| Antennaria friesiana                     | 0.3   | 0.4  | 68       |  |
| Arnica alpina ssp. angustifolia          | 0.1   | 0.2  | 16       |  |
| Arnica lessingii                         | 0.3   | 1.2  | 21       |  |
| Artemisia arctica ssp. arctica           | 0.4   | 0.7  | 53       |  |
| Campanula lasiocarpa                     | 0.1   | 0.2  | 47       |  |
| Castilleja hyperborea                    | 0.1   | 0.2  | 16       |  |
| Epilobium latifolium                     | 0.1   | 0.2  | 11       |  |
| Geum glaciale                            | 0.1   | 0.5  | 16       |  |
| Lupinus arcticus                         | 0.4   | 1.2  | 16       |  |
| Minuartia arctica                        | 0.6   | 0.9  | 58       |  |
| Oxytropis arctica                        | 0.2   | 0.5  | 21       |  |
| Oxytropis bryophila                      | 0.1   | 0.3  | 21       |  |
| Oxytropis nigrescens                     | 0.2   | 0.6  | 11       |  |
| Pedicularis capitata                     | 0.1   | 0.2  | 37       |  |
| Polygonum bistorta                       | 0.1   | 0.5  | 21       |  |
| Polygonum viviparum                      | 0.2   | 0.6  | 21       |  |
| Potentilla uniflora                      | 0.3   | 0.5  | 53       |  |
| Saxifraga bronchialis                    | 0.3   | 0.6  | 68       |  |
| Saxifraga eschscholtzii                  | 0.1   | 0.2  | 16       |  |
| Saxifraga flagellaris                    | 0.1   | 0.2  | 21       |  |
| Selaginella selaginoides                 | 0.4   | 1.1  | 16       |  |
| Selaginella sibirica                     | 0.6   | 1.1  | 47       |  |
| Senecio fuscatus                         | 0.1   | 0.2  | 16       |  |
| Total Grass Cover                        | 2.1   | 1.8  | 100      |  |
| Festuca altaica                          | 0.3   | 1.2  | 21       |  |
| Hierochloe alpina                        | 1.1   | 1.3  | 89       |  |
| Poa arctica                              | 0.2   | 0.4  | 47       |  |
| Poa glauca                               | 0.1   | 0.5  | 32       |  |
| Trisetum spicatum ssp. spicatum          | 0.1   | 0.3  | 53       |  |
| Total Sedge & Rush Cover                 | 1.7   | 2.8  | 89       |  |

Table 4. Continued.

|                                           | Cov        | Freq       |          |
|-------------------------------------------|------------|------------|----------|
|                                           | Mean       | SD         | %        |
| Carex microchaeta                         | 0.4        | 0.8        | 47       |
| Carex podocarpa                           | 0.5        | 1.8        | 37       |
| Carex scirpoidea                          | 0.1        | 0.5        | 21       |
| Luzula arctica                            | 0.1        | 0.2        | 11       |
| Total Nonvascular Cover                   | 34.4       | 15.4       | 100      |
| Total Moss Cover                          | 8.2        | 9.1        | 100      |
| Abietinella abietina                      | 1.1        | 4.6        | 11       |
| Dicranum sp.                              | 0.5        | 1.0        | 21       |
| Polytrichum piliferum                     | 0.4        | 1.0        | 16       |
| Polytrichum sp.                           | 0.6        | 1.3        | 42       |
| Racomitrium lanuginosum                   | 1.2        | 2.0        | 53       |
| Rhizomnium sp.                            | 0.5        | 1.6        | 11       |
| Rhytidium rugosum                         | 1.7        | 2.7        | 47       |
| Unknown moss                              | 0.4        | 0.8        | 21       |
| Total Lichen Cover                        | 25.9       | 14.1       | 100      |
| Alectoria ochroleuca                      | 0.6        | 1.3        | 37       |
| Alectoria sp.                             | 0.2        | 0.5        | 11       |
| Asahinea chrysantha                       | 0.6        | 1.1        | 32       |
| Asahinea sp.                              | 0.1        | 0.2        | 16       |
| Bryocaulon divergens                      | 1.0        | 1.3        | 53       |
| Bryoria nitidula                          | 0.2        | 0.5        | 11       |
| Bryoria sp.                               | 0.3        | 1.2        | 11       |
| Cetraria cf. islandica                    | 0.5        | 8.0        | 42       |
| Cetraria nigricans                        | 0.8        | 2.0        | 32       |
| Cladina arbuscula                         | 0.3        | 8.0        | 16       |
| Cladina rangiferina                       | 0.5        | 1.2        | 16       |
| Cladina sp.                               | 0.4        | 1.2        | 11       |
| Cladonia coccifera                        | 0.2        | 0.5        | 11       |
| Cladonia sp.                              | 0.5        | 0.7        | 53       |
| Cladonia subfurcata                       | 0.1        | 0.5        | 16       |
| Flavocetraria cucullata                   | 1.2        | 1.4        | 79       |
| Flavocetraria nivalis                     | 1.9        | 1.5        | 95       |
| Lopadium pezizoideum                      | 0.3        | 0.8        | 11       |
| Nephroma arcticum                         | 0.2        | 0.5        | 11       |
| Ochrolechia frigida                       | 0.1        | 0.5        | 16       |
| Parmelia omphalodes                       | 2.7        | 6.7        | 26       |
| Parmelia sp.                              | 0.3        | 0.7        | 16       |
| Pertusaria dactylina                      | 0.4<br>1.3 | 0.8        | 26<br>16 |
| Pertusaria subobducens                    |            | 3.3        | 16       |
| Rhizocarpon geographicum                  | 0.6<br>0.9 | 2.8<br>2.5 | 11<br>16 |
| Rhizocarpon sp.<br>Sphaerophorus globosus | 1.1        | 2.5<br>1.5 | 42       |
| Sphaerophorus sp.                         | 0.3        | 0.7        | 21       |
| Stereocaulon apocalypticum                | 0.3        | 2.4        | 11       |
| Stereocaulon sp.                          | 1.0        | 1.7        | 47       |
| Thamnolia sp.                             | 0.1        | 0.5        | 16       |
| Thamnolia sp.                             | 1.1        | 1.1        | 79       |
| Umbilicaria caroliniana                   | 0.3        | 0.8        | 11       |
| Umbilicaria proboscidea                   | 0.3        | 0.7        | 16       |
| Umbilicaria sp.                           | 1.1        | 3.5        | 21       |
| Unknown crustose lichen                   | 2.1        | 3.4        | 37       |
| Total Bare Ground                         | 36.0       | 21.5       | 100      |
| Bare Soil                                 | 30.5       | 22.1       | 100      |
| Litter alone                              | 5.4        | 6.3        | 100      |
| Litter dione                              | ٦.٦        | 0.5        | 100      |



common and abundant. Loess caps are absent. Soil pH is acidic to circumneutral and EC is generally low. The soils are typically somewhat excessively to somewhat excessively drained. Depth to water table often could not be measured but it is assumed to be at substantial depths given the well drained soils.

Table 5. Soil characteristics for Alpine Acidic Dryas Dwarf Shrub.

| Property                                   | Mean      | SD         | n  |
|--------------------------------------------|-----------|------------|----|
| Elevation (m)                              | 685.3     | 201.1      | 19 |
| Slope (degrees)                            | 13.9      | 10.7       | 12 |
| Surface Organics Depth(cm)                 | 2.6       | 1.1        | 15 |
| Cumulative Org. in 40 cm (cm)              | 2.6       | 1.1        | 15 |
| Loess Cap Thickness (cm)                   |           |            | 0  |
| Depth to Rocks (cm)                        | 6.3       | 8.6        | 10 |
| Surface Fragment Cover (%)                 | 42.5      | 35.5       | 11 |
| Frost Boil Cover (%)                       | 8.8       | 6.5        | 5  |
| Thaw Depth (cm)                            | 30.0      |            | 1  |
| Site pH at 10-cm depth                     | 5.2       | 0.4        | 19 |
| Site EC at 10-cm depth (µS/cm)             | 43.3      | 47.5       | 18 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -200.0    | 0.0        | 18 |
| aMeasurements > 1 m indicate mir           | nimum den | th. not tr | ue |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soils in this ecotype are Typic Dystrogelepts (acidic, well drained, moderately thin organic horizon, permafrost below 1 m), Lithic Cryorthents (poorly developed, <50 cm to bedrock, permafrost absent), and Typic Haploturbels (mineral soil over permafrost with cryoturbation). A less common subgroup is Typic Cryorthents (poorly developed soils, lacking permafrost). This ecotype and associated soils are part of the Alpine Rocky Acidic Barrens and Shrub soil landscape. Also included in this soil landscape are Alpine Acidic Barrens and Alpine Ericaceous–Dryas Dwarf Shrub.

## **Alpine Alkaline Barrens**



# Geomorphology:

Alpine Alkaline Barrens occurs on carbonate sedimentary bedrock, metamorphic carbonate (marble) bedrock, weathered bedrock, hillside colluvium, and talus. Site chemistry is alkaline due to carbonate-rich parent material. It occurs at elevations above 400 m through ARCN. Macrotopography consists of upper slopes, shoulders, ridge crests, and plateaus. Slopes are typically steep and it occurs on all aspects.

#### Plant Association:

Dryas octopetala–Saxifraga oppositifolia Salix arctica–Minuartia arctica

Vegetation cover is sparse in this ecotype, although species diversity is high, with the 9th highest total number of species documented. Plants are present in trace quantities (Table 6). Trees and shrubs taller than 20 cm are absent. Total non-vascular cover is low, and not always present at sites. Due to the limestone substrate, several rare species occur in this ecotype, including *Papaver gorodkovii*, *Papaver walpolei* and *Campanula aurita*. Common species include *Dryas octopetala*, *Saxifraga oppositifolia*, *Androsace chamaejasme*, and *Minuartia arctica*.

The most similar ecotype is Alpine Alkaline Dryas Dwarf Shrub, except that vegetative cover is greatly reduced. It is also similar to Alpine Acidic Barrens and Alpine Mafic Barrens except for differences in bedrock type, soil chemistry, and plant assemblages.

Table 6. Vegetation cover and frequency for Alpine Alkaline Barrens (n=52).

| , upine , ukumie i                                 |              | 3_,.       |          |
|----------------------------------------------------|--------------|------------|----------|
|                                                    | Cove         | er         | Freq     |
|                                                    | Mean         | SD         | %        |
| Total Live Cover                                   | 34.3         | 25.9       | 100      |
| Total Vascular Cover Total Evergreen Tree Cover    | 27.2<br>0.0  | 20.8       | 98<br>2  |
| Total Evergreen Shrub                              | 4.0          | 5.0        | 56       |
| Cassiope tetragona                                 | 0.1          | 0.7        | 7        |
| Dryas integrifolia                                 | 0.7          | 2.1        | 14       |
| Dryas octopetala                                   | 2.8          | 4.5        | 37       |
| Dryas octopetala ssp.                              | 0.4          | 1.7        | 7        |
| Total Deciduous Shrub                              | 9.5          | 12.0       | 84       |
| Potentilla fruticosa                               | 0.1          | 0.8        | 5        |
| Salix arctica                                      | 0.1          | 0.4        | 21       |
| Salix brachycarpa ssp.                             | 0.1<br><0.1  | 0.9<br>0.2 | 2<br>7   |
| Salix glauca                                       | 0.1          | 0.2        | 5        |
| Salix lanata ssp. richardsonii<br>Salix reticulata | <0.1         | 0.5        | 12       |
| Salix reticulata Salix rotundifolia                | 8.8          | 12.0       | 53       |
| Salix rotundifolia ssp.                            | 0.1          | 0.4        | 12       |
| Total Forb Cover                                   | 12.1         | 12.4       | 98       |
| Androsace chamaejasme                              | 0.1          | 0.2        | 35       |
| Anemone drummondii                                 | <0.1         | 0.2        | 7        |
| Anemone parviflora                                 | <0.1         | 0.2        | 12       |
| Artemisia furcata                                  | <0.1         | 0.2        | 14       |
| Boykinia richardsonii                              | 0.1          | 0.5        | 7        |
| Braya humilis ssp. richardsonii                    | <0.1         | 0.2        | 7        |
| Castilleja elegans                                 | 0.1          | 0.5        | 23       |
| Chrysosplenium tetrandrum                          | <0.1         | 0.2        | 5        |
| Crepis nana                                        | 0.1          | 0.2        | 19       |
| Draba nivalis                                      | 0.1          | 0.3        | 12       |
| Epilobium latifolium                               | <0.1<br>0.3  | 0.2<br>0.7 | 5<br>28  |
| Erigeron hyperboreus                               | 0.3          | 0.7        | 28<br>12 |
| Hedysarum mackenzii<br>Minuartia arctica           | 0.1          | 0.3        | 26       |
| Minuartia arctica<br>Minuartia obtusiloba          | <0.1         | 0.2        | 7        |
| Minuartia rubella                                  | <0.1         | 0.2        | 7        |
| Oxytropis arctica                                  | <0.1         | 0.2        | 7        |
| Oxytropis nigrescens                               | 1.8          | 4.8        | 33       |
| Parrya nudicaulis                                  | 0.1          | 0.2        | 23       |
| Pedicularis kanei                                  | <0.1         | 0.2        | 21       |
| Phlox sibirica spp. sibirica                       | 0.1          | 0.2        | 14       |
| Potentilla biflora                                 | <0.1         | 0.2        | 5        |
| Potentilla hookeriana                              | <0.1         | 0.2        | 7        |
| Potentilla uniflora                                | 0.2          | 0.4        | 28       |
| Saussurea angustifolia                             | <0.1         | 0.2        | 7        |
| Saxifraga eschscholtzii                            | 0.1          | 0.5        | 9        |
| Saxifraga nivalis                                  | <0.1<br>7.0  | 0.2<br>8.9 | 5<br>95  |
| Saxifraga oppositifolia<br>Saxifraga punctata ssp. | 0.1          | 0.4        | 95<br>7  |
| Saxifraga rivularis                                | <0.1         | 0.4        | 5        |
| Saxifraga tricuspidata                             | 0.2          | 0.8        | 7        |
| Selaginella sibirica                               | 0.1          | 0.8        | 5        |
| Senecio ogotorukensis                              | 0.4          | 0.9        | 21       |
| Tofieldia coccinea                                 | <0.1         | 0.3        | 5        |
| Total Grass Cover                                  | 8.0          | 2.7        | 37       |
| Calamagrostis purpurascens                         | 0.5          | 1.5        | 16       |
| Poa glauca                                         | 0.2          | 0.9        | 19       |
| Trisetum spicatum ssp.                             | 0.1          | 0.3        | 14       |
| Total Sedge & Rush Cover                           | 0.8          | 1.8        | 53       |
| Carex franklinii                                   | <0.1         | 0.2        | 2        |
| Carex lachenalii                                   | <0.1         | 0.2        | 2        |
| Carex nardina                                      | 0.5          | 1.8        | 23       |
| Carex petricosa                                    | <0.1<br><0.1 | 0.3<br>0.2 | 2<br>12  |
| Carex rupestris                                    | <0.1         | 0.2        | 12       |

Table 6. Continued.

|                           | Cover |      | Freq |
|---------------------------|-------|------|------|
|                           | Mean  | SD   | %    |
| Carex scirpoidea          | <0.1  | 0.2  | 16   |
| Kobresia simpliciuscula   | <0.1  | 0.2  | 2    |
| Total Nonvascular Cover   | 7.1   | 7.7  | 88   |
| Total Moss Cover          | 1.4   | 2.3  | 56   |
| Abietinella abietina      | <0.1  | 0.2  | 5    |
| Ditrichum flexicaule      | <0.1  | 0.2  | 5    |
| Ditrichum sp.             | 0.6   | 1.4  | 19   |
| Hypnum sp.                | 0.3   | 0.7  | 16   |
| Racomitrium lanuginosum   | 0.1   | 0.5  | 7    |
| Rhytidium rugosum         | <0.1  | 0.2  | 7    |
| Schistidium sp.           | <0.1  | 0.2  | 5    |
| Unknown moss              | 0.1   | 0.3  | 12   |
| <b>Total Lichen Cover</b> | 5.7   | 6.4  | 88   |
| Acarospora sp.            | 0.1   | 0.4  | 7    |
| Alectoria ochroleuca      | 0.1   | 0.2  | 12   |
| Alectoria sp.             | 0.1   | 0.3  | 7    |
| Asahinea chrysantha       | <0.1  | 0.2  | 9    |
| Cetraria sp.              | 1.1   | 2.1  | 42   |
| Cetraria tilesii          | 0.1   | 0.4  | 21   |
| Cladonia sp.              | 0.1   | 0.5  | 23   |
| Cornicularia sp.          | <0.1  | 0.2  | 7    |
| Dactylina sp.             | 0.1   | 0.2  | 19   |
| Diploschistes sp.         | 0.5   | 2.6  | 7    |
| Evernia perfragilis       | <0.1  | 0.2  | 7    |
| Flavocetraria cucullata   | 0.3   | 0.7  | 35   |
| Flavocetraria nivalis     | 0.7   | 1.8  | 33   |
| Lecanora sp.              | 0.1   | 0.3  | 19   |
| Nephroma arcticum         | <0.1  | 0.2  | 5    |
| Ochrolechia frigida       | 0.1   | 0.5  | 5    |
| Ochrolechia sp.           | 0.1   | 0.5  | 5    |
| Pannaria cf.              | <0.1  | 0.2  | 5    |
| Pertusaria sp.            | 0.1   | 0.3  | 9    |
| Psora sp.                 | 0.1   | 0.3  | 12   |
| Rhizocarpon sp.           | 0.1   | 0.3  | 7    |
| Sphaerophorus sp.         | 0.1   | 0.5  | 5    |
| Stereocaulon sp.          | <0.1  | 0.2  | 7    |
| Thamnolia sp.             | 1.2   | 2.6  | 49   |
| Thamnolia subuliformis    | 0.1   | 0.6  | 2    |
| Thamnolia vermicularis    | 0.3   | 0.9  | 26   |
| Toninia sp.               | 0.1   | 0.5  | 7    |
| Unknown crustose lichen   | 0.2   | 1.0  | 7    |
| Unknown lichen            | 0.3   | 0.9  | 9    |
| Vulpicida tilesii         | 0.1   | 0.3  | 16   |
| Total Bare Ground         | 43.9  | 45.8 | 49   |
| Bare Soil                 | 43.4  | 45.3 | 49   |
| Litter alone              | 0.5   | 1.1  | 40   |

#### Soils:

Soils are blocky or rubbly and typically lack a surface organic horizon (Table 7). Thaw depths often could not be determined in the rocky soils, but permafrost is presumed to be present below 1 m due to cold temperatures at the high elevations. Frost boils are rare, and loess caps are absent. Surface fragments are common and abundant. Soil pH is alkaline to circumneutral and EC is low. The soils are typically excessively to well drained. Depth to water table often



could not be measured but it is assumed to be at substantial depths given the well drained soils.

Table 7. Soil characteristics for Alpine Alkaline Barrens.

| Property                                   | Mean   | SD    | n  |
|--------------------------------------------|--------|-------|----|
| Elevation (m)                              | 605.2  | 243.7 | 21 |
| Slope (degrees)                            | 22.9   | 10.8  | 19 |
| Surface Organics Depth(cm)                 | 4.0    | 1.4   | 2  |
| Cumulative Org. in 40 cm (cm)              | 4.0    | 1.4   | 2  |
| Loess Cap Thickness (cm)                   |        |       | 0  |
| Depth to Rocks (cm)                        | 1.0    |       | 1  |
| Surface Fragment Cover (%)                 | 98.1   | 3.4   | 10 |
| Frost Boil Cover (%)                       | 2.2    | 1.9   | 4  |
| Thaw Depth (cm)                            | 30.0   |       | 1  |
| Site pH at 10-cm depth                     | 8.2    | 0.3   | 18 |
| Site EC at 10-cm depth (µS/cm)             | 111.7  | 42.3  | 18 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -176.5 | 57.5  | 20 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soils in this ecotype are Typic Gelorthents (poorly developed soils, permafrost below 1 m) and Typic Eutrogelepts (non-acidic, partially developed with permafrost below 1 m). Less common subgroups include Typic Cryorthents (poorly developed soils, lacking permafrost) and Lithic Cryorthents (poorly developed, <50 cm to bedrock, permafrost lacking). This ecotype and associated soils are part of the Alpine Rocky Alkaline Barrens and Shrub soil landscape. Also included in this soil landscape are Alpine Mafic Barrens, Alpine Alkaline Dryas Dwarf Shrub, and Alpine Cassiope Dwarf Shrub.

# **Alpine Alkaline Dryas Dwarf Shrub**



### Geomorphology:

Alpine Alkaline Dryas Dwarf Shrub occurs on carbonate substrates on stable slopes and crests. Parent material consists of weathered bedrock, hillside colluvium, talus, young moraine, solifluction deposits and inactive alluvial fan deposits.

#### Plant Association:

Dryas octopetala- Saxifraga oppositifolia Dryas integrifolia-Carex scirpoidea-Silene acaulis

Vegetation is dominated by dwarf shrubs, mainly *Dryas* species, and has a strong subcomponent of forbs and sedges (Table 8). Trees and shrubs taller than 20 cm are absent. Nonvascular species are always present in low quantities. This is a diverse ecotype with the highest total count of species, and has the 4th highest species richness per plot. Due to the limestone substrate, several rare species occur in this ecotype, including *Oxytropis huddelsonii*, *Papaver walpolei* and *Arenaria chamissonis* (syn: *Stellaria dicranoides*). Common species in addition to the floristic class components include *Minuartia arctica*, *Polygonum viviparum*, *Dactylina arctica*, and *Vulpicida tilesii*.

The most similar ecotype is Alpine Alkaline Barrens, except Alpine Alkaline Dryas Dwarf Shrub has much higher vegetative cover. It is also similar to Alpine Acidic Dryas Dwarf Shrub except for differences in bedrock type, higher soil pH, and much higher plant diversity.

#### Soils:

Soils are blocky or rubbly and are overlain by thin organic horizons (Table 9). Thaw depths often could not be determined in the rocky soils, but permafrost is presumed to be present below 1 m due to the cold temperatures at the high elevations. Frost boils are uncommon, and surface fragments are common and abundant. Loess caps are rare, however when they occur they tend to be thick (>20 cm). Soil

Table 8. Vegetation cover and frequency for Alpine Alkaline Dryas Dwarf Shrub (n=160).

| (11=100).                                    |       |      |      |  |
|----------------------------------------------|-------|------|------|--|
|                                              | Cover |      | Freq |  |
|                                              | Mean  | SD   | %    |  |
| Total Live Cover                             | 98.1  | 36.6 | 100  |  |
| Total Vascular Cover                         | 78.5  | 29.0 | 100  |  |
| Total Evergreen Shrub<br>Cover               | 42.5  | 17.1 | 100  |  |
| Andromeda polifolia                          | <0.1  | 0.2  | 4    |  |
| Cassiope tetragona                           | 2.4   | 7.4  | 31   |  |
| Dryas integrifolia                           | 3.3   | 12.0 | 9    |  |
| Dryas octopetala                             | 35.3  | 18.6 | 91   |  |
| Dryas octopetala<br>Dryas octopetala ssp.    | 33.3  | 10.0 | ٥.   |  |
| alaskensis                                   | 1.4   | 8.7  | 4    |  |
| Rhododendron lapponicum                      | 0.1   | 0.5  | 8    |  |
| Total Deciduous Tree                         |       |      | _    |  |
| Cover                                        | 0.0   | 0.0  | 1    |  |
| Total Deciduous Shrub<br>Cover               | 6.1   | 10.7 | 72   |  |
|                                              | 2.4   | 9.1  | 18   |  |
| Arctostaphylos rubra<br>Potentilla fruticosa | 0.3   | 1.2  | 10   |  |
| Potentilia truticosa<br>Salix arctica        | 0.3   | 1.2  | 13   |  |
| Salix arctica<br>Salix reticulata            | 2.3   | 4.3  | 51   |  |
| Salix reticulata<br>Salix rotundifolia       | 0.3   | 1.8  | 11   |  |
| Vaccinium uliginosum                         | 0.3   | 1.8  | 15   |  |
| Total Forb Cover                             | 9.3   | 5.6  | 100  |  |
| Androsace chamaejasme                        | 0.3   | 0.5  | 61   |  |
| Anemone parviflora                           | 0.4   | 0.9  | 32   |  |
| Artemisia furcata                            | <0.1  | 0.3  | 9    |  |
| Astragalus aboriginum                        | 0.1   | 0.3  | 7    |  |
| Astragalus umbellatus                        | 0.1   | 0.3  | 16   |  |
| Boykinia richardsonii                        | 0.1   | 0.5  | 5    |  |
| Braya humilis ssp. richardsonii              | <0.1  | 0.1  | 8    |  |
| Castilleja elegans                           | 0.1   | 0.3  | 10   |  |
| Chrysanthemum integrifolium                  | 0.2   | 0.4  | 37   |  |
| Epilobium latifolium                         | 0.3   | 1.2  | 15   |  |
| Erigeron hyperboreus                         | <0.1  | 0.1  | 10   |  |
| Gentiana propingua                           | <0.1  | 0.1  | 20   |  |
| Geum glaciale                                | <0.1  | 0.3  | 6    |  |
| Hedysarum alpinum                            | 1.1   | 2.3  | 29   |  |
| Hedysarum mackenzii                          | 0.1   | 0.3  | 5    |  |
| Minuartia arctica                            | 0.1   | 0.5  | 12   |  |
| Minuartia obtusiloba                         | <0.1  | 0.1  | 5    |  |
| Minuartia rossii                             | <0.1  | 0.1  | 5    |  |
| Oxytropis borealis                           | 0.4   | 1.4  | 9    |  |
| Oxytropis campestris ssp.                    |       |      |      |  |
| jordalii                                     | 0.1   | 0.4  | 4    |  |
| Papaver macounii                             | <0.1  | 0.1  | 4    |  |
| Parnassia palustris                          | <0.1  | 0.1  | 7    |  |
| Pedicularis capitata                         | <0.1  | 0.1  | 12   |  |
| Pedicularis kanei                            | 0.3   | 0.5  | 40   |  |
| Pedicularis sudetica                         | <0.1  | 0.1  | 7    |  |
| Phlox sibirica sibirica                      | <0.1  | 0.2  | 7    |  |
| Polygonum viviparum                          | 0.1   | 0.2  | 23   |  |
| Potentilla biflora                           | 0.1   | 0.4  | 7    |  |
| Saussurea angustifolia                       | <0.1  | 0.2  | 7    |  |
| Saxifraga oppositifolia                      | 3.3   | 4.3  | 71   |  |
| Senecio lugens                               | <0.1  | 0.1  | 4    |  |
| Senecio ogotorukensis                        | <0.1  | 0.2  | 11   |  |
| Senecio resedifolius                         | 0.1   | 0.2  | 22   |  |
| Silene acaulis                               | 0.8   | 1.4  | 47   |  |
| Solidago multiradiata                        | 0.1   | 0.4  | 5    |  |

Table 8. Continued.

|                          | Cover |      | Freq     |
|--------------------------|-------|------|----------|
|                          | Mean  | SD   | %        |
| Thalictrum alpinum       | 0.1   | 0.4  | 26       |
| Tofieldia coccinea       | <0.1  | 0.2  | 9        |
| Tofieldia pusilla        | 0.2   | 0.4  | 24       |
| Zygadenus elegans        | 0.1   | 0.6  | 12       |
| Total Grass Cover        | 3.0   | 8.1  | 36       |
| Elymus innovatus         | 2.4   | 6.8  | 20       |
| Festuca altaica          | 0.5   | 2.2  | 11       |
| Total Sedge & Rush Cover | 17.6  | 16.7 | 93       |
| Carex franklinii         | 2.8   | 9.0  | 14       |
| Carex glacialis          | 0.9   | 3.8  | 15       |
| Carex misandra           | 0.3   | 1.3  | 15       |
| Carex nardina            | 0.4   | 2.7  | 9        |
| Carex rupestris          | 4.9   | 7.0  | 57       |
| Carex scirpoidea         | 4.6   | 5.4  | 66       |
| Kobresia simpliciuscula  | 3.3   | 12.2 | 10       |
| Total Nonvascular Cover  | 19.6  | 18.2 | 99       |
| Total Moss Cover         | 5.0   | 8.3  | 83       |
| Abietinella sp.          | 0.1   | 0.3  | 7        |
| Cynodontium sp.          | 0.2   | 8.0  | 4        |
| Dicranum sp.             | 0.3   | 2.2  | 8        |
| Distichium sp.           | 0.1   | 0.3  | 7        |
| Ditrichum sp.            | 1.1   | 2.3  | 64       |
| Hylocomium splendens     | 0.4   | 2.8  | 8        |
| Hypnum sp.               | 0.8   | 2.5  | 26       |
| Racomitrium lanuginosum  | 0.2   | 1.5  | 5        |
| Racomitrium sp.          | 0.4   | 1.6  | 11       |
| Rhytidium rugosum        | 0.6   | 2.0  | 23       |
| Tomentypnum nitens       | 0.4   | 2.4  | 7        |
| Tortella sp.             | <0.1  | 0.1  | 5        |
| Unknown moss             | 0.2   | 1.3  | 7        |
| Total Lichen Cover       | 15.6  | 15.5 | 98       |
| Alectoria sp.            | 0.1   | 0.3  | 11       |
| Asahinea sp.             | 0.1   | 0.5  | 6        |
| Cetraria cf. islandica   | 0.3   | 2.6  | 7        |
| Cetraria sp.             | 4.6   | 5.1  | 78       |
| Cetraria tilesii         | <0.1  | 0.2  | 6        |
| Cladina arbuscula        | 0.5   | 1.8  | 26       |
| Cladina mitis            | 0.1   | 0.4  | 4        |
| Cladonia sp.             | 0.8   | 1.9  | 35       |
| Dactylina arctica        | 0.1   | 0.3  | 12       |
| Dactylina sp.            | 0.5   | 1.0  | 46       |
| Flavocetraria cucullata  | 2.9   | 4.8  | 67       |
| Flavocetraria nivalis    | 1.4   | 3.1  | 52       |
| Lecanora sp.             | 0.1   | 0.3  | 12       |
| Masonhalea richardsonii  | 0.4   | 1.2  | 33       |
| Ochrolechia frigida      | 0.2   | 1.6  | 4        |
| Pertusaria sp.           | 0.2   | 1.3  | 7        |
| Stereocaulon sp.         | <0.1  | 0.1  | 5        |
| Thamnolia sp.            | 1.2   | 2.0  | 51<br>13 |
| Thamnolia vermicularis   | 0.4   | 1.7  | 13       |
| Unknown crustose lichen  | 0.1   | 0.4  | 4        |
| Vulpicida tilesii        | <0.1  | 0.2  | 7        |
| Total Bare Ground        | 7.5   | 17.3 | 20       |
| Bare Soil                | 5.5   | 15.0 | 20       |
| Litter alone             | 2.0   | 5.3  | 19       |



pH is alkaline to circumneutral and EC is low. The soils are typically excessively to well drained. Depth to water table often could not be measured but it is assumed to be at substantial depths given the well drained soils.

Table 9. Soil characteristics for Alpine Alkaline Dryas Dwarf Shrub.

| Property                                   | Mean   | SD    | n  |
|--------------------------------------------|--------|-------|----|
| Elevation (m)                              | 475.2  | 202.7 | 27 |
| Slope (degrees)                            | 17.8   | 10.3  | 25 |
| Surface Organics Depth(cm)                 | 3.4    | 2.1   | 20 |
| Cumulative Org. in 40 cm (cm)              | 4.0    | 2.7   | 20 |
| Loess Cap Thickness (cm)                   | 18.0   | 17.0  | 2  |
| Depth to Rocks (cm)                        | 8.2    | 10.9  | 19 |
| Surface Fragment Cover (%)                 | 32.1   | 24.4  | 11 |
| Frost Boil Cover (%)                       | 9.8    | 14.7  | 10 |
| Thaw Depth (cm)                            | 40.5   | 19.6  | 4  |
| Site pH at 10-cm depth                     | 7.8    | 0.4   | 27 |
| Site EC at 10-cm depth (µS/cm)             | 157.9  | 70.7  | 27 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -162.5 | 58.5  | 22 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soils in this ecotype are Typic Eutrogelepts (non-acidic, partially developed with permafrost below 1 m). Less common subgroups include Typic Haplorthels (mineral soil over permafrost lacking cryoturbation), Typic Gelorthents (poorly developed soils, permafrost below 1 m), Typic Haploturbels (mineral soil over permafrost with cryoturbation), and Humic Eutrogelepts (non-acidic, well drained, a moderately thick organic-rich A horizon, permafrost below 1 m). This ecotype and associated soils are part of the Alpine Rocky Alkaline Barrens and Shrub soil landscape. Also included in this soil landscape are Alpine Mafic Barrens, Alpine Alkaline Barrens, and Alpine Cassiope Dwarf Shrub.

# **Alpine Cassiope Dwarf Shrub**



# Geomorphology:

Alpine Cassiope Dwarf Shrub is distributed in small patches throughout the mountainous regions of ARCN. It occurs at elevations above 450 m on upper and lower slopes on hillside colluvium. It generally occurs on north aspects and in late-lying snow beds, where soils are generally colder and moister than other alpine ecotypes. Slopes vary from gradual to steep.

### Plant Association:

Cassiope tetragona–Dryas octopetala–Polygonum bistorta

This ecotype is dominated by dwarf shrubs, specifically *Cassiope tetragona*. Other common dwarf shrubs include *Dryas octopetala*, *Salix reticulata*, and *Vaccinium uliginosum* (Table 10). Within ARCN parklands, Alpine Cassiope Dwarf Shrub has the 11th highest average species diversity per plot and is moderately diverse. Across the study area, we documented two rare species, *Oxytropis kokrinensis* and *Papaver walpolei* in this ecotype.

Similar ecotypes include Alpine Ericaceous—Dryas Dwarf Shrub and Alpine Alkaline Dryas Dwarf Shrub. In these types the dominant species that defines the vegetation type is *Dryas* as opposed to *Cassiope*. Also, site chemistry is more acidic in Alpine Ericaceous—Dryas Dwarf Shrub and more alkaline in Alpine Alkaline Dryas Dwarf Shrub.

### Soils:

Soils are blocky or rubbly and are overlain by thin organic horizons (Table 11). Thaw depths often could not be determined in the rocky soils, but permafrost is presumed to be present below 1 m due to the cold temperatures at the high elevations. Frost boils are rare, however when present they tend to occur at high abundance. Surface fragments are common and moderately abundant, and loess caps are absent. Soil pH is circumneutral and EC is low. The

Table 10. Vegetation cover and frequency for Alpine Cassiope Dwarf Shrub (n=38).

| ,pc 200510pc                            | Cov                  | Freq        |          |
|-----------------------------------------|----------------------|-------------|----------|
|                                         |                      | SD          | %        |
| Total Live Cover                        | <b>Mean</b><br>180.5 | 50.0        | 100      |
| Total Vascular Cover                    | 119.2                | 35.2        | 100      |
| Total Evergreen Shrub                   | 113.2                | 33.2        | 100      |
| Cover                                   | 69.7                 | 21.5        | 100      |
| Cassiope tetragona                      | 29.3                 | 18.1        | 100      |
| Dryas octopetala                        | 36.1                 | 20.1        | 89       |
| Dryas octopetala ssp.                   |                      |             |          |
| alaskensis                              | 3.4                  | 11.2        | 9        |
| Ledum decumbens                         | <0.1                 | 0.2         | 9        |
| Vaccinium vitis-idaea                   | 0.3                  | 1.0         | 11       |
| Total Deciduous Shrub                   | 24.4                 | 40.6        | 0.0      |
| Cover                                   | 21.1                 | 19.6        | 96       |
| Arctostaphylos rubra                    | 0.3                  | 1.1         | 11       |
| Potentilla fruticosa                    | 0.2                  | 1.2         | 13       |
| Salix arctica                           | 0.9                  | 2.8         | 26       |
| Salix glauca                            | 0.1                  | 0.7         | 13       |
| Salix lanata ssp. richardsonii          | 4.4                  | 13.1        | 24       |
| Salix reticulata                        | 8.9                  | 8.6         | 87       |
| Salix rotundifolia                      | 1.4                  | 3.2         | 28       |
| Vaccinium uliginosum                    | 3.1<br>21.6          | 6.9<br>13.0 | 39       |
| Total Forb Cover                        |                      |             | 100      |
| Androsace chamaejasme                   | 0.1                  | 0.2         | 24       |
| Anemone narcissiflora                   | 0.1                  | 0.2         | 15       |
| Anemone parviflora                      | 1.8                  | 2.2<br>1.2  | 76       |
| Astragalus umbellatus                   | 0.6<br>9.3           | 10.3        | 48<br>67 |
| Boykinia richardsonii                   | 9.3<br>0.3           | 0.7         | 67<br>30 |
| Chrysanthemum integrifolium             | 0.8                  | 2.0         | 30       |
| Dodecatheon frigidum                    | 0.6                  | 1.5         | 30<br>30 |
| Epilobium latifolium                    | 0.6                  | 1.6         | 30<br>11 |
| Equisetum scirpoides                    | 0.4                  | 0.2         | 26       |
| Gentiana propinqua                      | 0.1                  | 1.6         | 20       |
| Geum glaciale                           | 0.8                  | 2.5         | 15       |
| Hedysarum alpinum<br>Lycopodium selago  | <0.1                 | 0.1         | 22       |
| Minuartia arctica                       | 0.1                  | 0.4         | 15       |
| Papaver macounii                        | <0.1                 | 0.1         | 17       |
| Parnassia palustris                     | 0.1                  | 0.4         | 26       |
| Pedicularis capitata                    | 0.2                  | 0.5         | 37       |
| Pedicularis capitata  Pedicularis kanei | 0.1                  | 0.2         | 24       |
| Pedicularis sudetica                    | 0.1                  | 0.2         | 20       |
| Polemonium acutiflorum                  | 0.2                  | 0.7         | 9        |
| Polygonum bistorta                      | 0.2                  | 0.7         | 17       |
| Polygonum viviparum                     | 0.2                  | 0.4         | 33       |
| Pyrola grandiflora                      | 0.2                  | 0.6         | 15       |
| Saussurea angustifolia                  | 0.2                  | 0.6         | 24       |
| Saxifraga bronchialis                   | 0.1                  | 0.4         | 15       |
| Saxifraga hieracifolia                  | 0.1                  | 0.5         | 15       |
| Saxifraga oppositifolia                 | 1.2                  | 2.4         | 41       |
| Saxifraga punctata ssp.                 |                      |             | • •      |
| nelsoniana                              | 0.1                  | 0.2         | 9        |
| Senecio resedifolius                    | 0.1                  | 0.4         | 15       |
| Silene acaulis                          | 1.2                  | 1.8         | 54       |
| Solidago multiradiata                   | <0.1                 | 0.1         | 11       |
| Thalictrum alpinum                      | 0.2                  | 0.6         | 17       |
| Tofieldia coccinea                      | <0.1                 | 0.1         | 13       |
| Tofieldia pusilla                       | <0.1                 | 0.1         | 17       |
| Total Grass Cover                       | 3.1                  | 4.2         | 63       |

Table 10. Continued.

|                                       | Cov  | er   | Freq     |
|---------------------------------------|------|------|----------|
|                                       | Mean | SD   | %        |
| Arctagrostis latifolia                | 0.2  | 1.2  | 9        |
| Festuca altaica                       | 2.6  | 4.2  | 48       |
| Hierochloe alpina                     | 0.1  | 0.5  | 13       |
| Poa arctica                           | 0.1  | 0.2  | 11       |
| Total Sedge & Rush Cover              | 3.7  | 5.6  | 59       |
| Carex bigelowii                       | 0.3  | 1.1  | 11       |
| Carex microchaeta                     | 0.4  | 2.2  | 11       |
| Carex misandra                        | 0.8  | 3.8  | 17       |
| Carex podocarpa                       | 0.8  | 1.7  | 22       |
| Carex rupestris                       | 0.6  | 1.7  | 13       |
| Carex scirpoidea                      | 0.5  | 1.6  | 20       |
| Total Nonvascular Cover               | 61.3 | 32.1 | 98       |
| Total Moss Cover                      | 34.0 | 24.4 | 96       |
| Abietinella sp.                       | 0.2  | 0.7  | 11       |
| Blepharostoma sp.                     | 0.1  | 0.5  | 15       |
| Brachythecium sp.                     | 1.3  | 3.1  | 22       |
| Bryum sp.                             | 0.1  | 0.4  | 9        |
| Campylium sp.                         | 1.8  | 4.0  | 20       |
| Cinclidium sp.                        | 0.2  | 0.9  | 9        |
| Dicranum sp.                          | 3.2  | 4.6  | 57       |
| Distichium sp.                        | 0.1  | 0.4  | 11       |
| Ditrichum sp.                         | 0.8  | 1.2  | 43       |
| Drepanocladus sp.                     | 0.8  | 2.7  | 13       |
| Hylocomium splendens                  | 12.3 | 17.3 | 72       |
| Hypnum sp.                            | 2.7  | 5.1  | 43       |
| Pleurozium schreberi                  | 0.8  | 1.6  | 22       |
|                                       | 1.4  | 2.7  | 28       |
| Racomitrium sp.                       | 0.9  | 2.8  | 22       |
| Rhytidium rugosum<br>Sanionia sp.     | 1.4  | 3.9  | 13       |
|                                       | 0.2  | 0.6  | 13       |
| Timmia sp.                            | 3.2  | 6.2  | 39       |
| Tomentypnum nitens Total Lichen Cover | 28.0 | 21.7 | 98       |
| Alectoria sp.                         | 0.1  | 0.5  | 11       |
|                                       | 0.1  | 1.0  | 17       |
| Cetraria cf. islandica                | 6.5  | 7.5  | 63       |
| Cetraria sp.                          |      |      |          |
| Cladina arbuscula                     | 3.8  | 6.8  | 57<br>22 |
| Cladina rangiferina                   | 0.6  | 1.8  | 22       |
| Cladina stellaris                     | 4.0  | 8.2  | 37       |
| Cladonia sp.                          | 1.1  | 2.0  | 65       |
| Dactylina arctica                     | 0.1  | 0.5  | 22       |
| Dactylina sp.                         | 1.0  | 1.5  | 54       |
| Flavocetraria cucullata               | 4.0  | 5.0  | 78       |
| Flavocetraria nivalis                 | 0.5  | 1.1  | 35       |
| Lobaria sp.                           | 0.2  | 0.9  | 9        |
| Masonhalea richardsonii               | 1.1  | 3.4  | 43       |
| Peltigera aphthosa                    | 0.3  | 0.7  | 26       |
| Peltigera sp.                         | 0.2  | 0.6  | 13       |
| Pertusaria sp.                        | 0.2  | 0.7  | 9        |
| Stereocaulon sp.                      | 0.3  | 0.8  | 22       |
| Thamnolia sp.                         | 0.3  | 0.9  | 37       |
| Thamnolia vermicularis                | 0.3  | 0.8  | 15       |
| Unknown crustose lichen               | 1.3  | 3.7  | 15       |
| Total Bare Ground                     | 4.8  | 9.9  | 26       |
| Bare Soil                             | 1.6  | 3.9  | 26       |
| Litter alone                          | 3.2  | 6.7  | 26       |



soils are typically somewhat excessively to well drained. Depth to water table often could not be measured but it is assumed to be at substantial depths given the well drained soils.

Table 11. Soil characteristics for Alpine Cassiope Dwarf Shrub.

| Property                                   | Mean   | SD    | n  |
|--------------------------------------------|--------|-------|----|
| Elevation (m)                              | 713.6  | 250.4 | 12 |
| Slope (degrees)                            | 20.3   | 10.2  | 12 |
| Surface Organics Depth(cm)                 | 5.4    | 3.6   | 10 |
| Cumulative Org. in 40 cm (cm)              | 5.4    | 3.6   | 10 |
| Loess Cap Thickness (cm)                   |        |       | 0  |
| Depth to Rocks (cm)                        | 6.2    | 3.6   | 9  |
| Surface Fragment Cover (%)                 | 13.8   | 11.0  | 10 |
| Frost Boil Cover (%)                       | 10.5   | 13.4  | 2  |
| Thaw Depth (cm)                            |        |       | 0  |
| Site pH at 10-cm depth                     | 6.8    | 0.6   | 11 |
| Site EC at 10-cm depth (µS/cm)             | 106.2  | 59.5  | 10 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -200.0 | 0.0   | 12 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soils in this ecotype are Typic Eutrogelepts (non-acidic, partially developed with permafrost below 1 m) and Typic Gelorthents (poorly developed soils, permafrost below 1 m). A less common subgroup is Typic Dystrogelepts (acidic, well drained, moderately thin organic horizon, permafrost below 1 m). This ecotype and associated soils are part of the Alpine Rocky Alkaline Barrens and Shrub soil landscape. Also included in this soil landscape are Alpine Mafic Barrens, Alpine Alkaline Barrens, and Alpine Alkaline Dryas Dwarf Shrub.

# **Alpine Ericaceous-Dryas Dwarf Shrub**



# Geomorphology:

Alpine Ericaceous–Dryas Dwarf Shrub occurs on hillside colluvium, older moraine, talus, weathered bedrock and abandoned alluvial fan deposits above 450 m elevation throughout ARCN. Macrotopography includes slopes, shoulders and crests. Slopes vary from gentle to steep and include all aspects.

## Plant Association:

Betula nana-Loiseleuria procumbens Betula nana-Vaccinium vitis-idaea-Dryas octopetala Dryas octopetala-Vaccinium uliginosum-Festuca altaica

Dwarf shrubs characterize this ecotype (Table 12), while trees and shrubs taller than 20 cm are only present in trace amounts. Mosses and lichens are always present. Sedges, grasses and forbs are well represented but typically have low total cover. This ecotype has variable species assemblages, resulting in 3 co-dominant plant associations. Some sites contain predominantly dwarfed (<20 cm tall) *Betula nana* with ericaceous or *Dryas* dwarf shrubs, while others are dominated by a mix of *Dryas* and ericaceous dwarf shrubs. Additional common species include *Anemone narcissiflora*, *Carex podocarpa*, *Hylocomium splendens* and *Masonhalea richardsonii*.

This ecotype is most similar to Alpine Acidic Dryas Dwarf Shrub and Alpine Cassiope Dwarf Shrub, except for differences in site chemistry and plant associations.

## Soils:

Soils are blocky or rubbly and are overlain by thin organic horizons (Table 13). Thaw depths often could not be determined in the rocky soils, but permafrost is presumed to be present below 1 m due to the cold temperatures at the high elevations. Frost boils are uncommon, however when present they tend

Table 12. Vegetation cover and frequency for Alpine Ericaceous–Dryas Dwarf Shrub (n=61).

| Mean         SD         9           Total Live Cover         149.5         65.2         1           Total Vascular Cover         88.5         33.3         1           Total Evergreen Tree         0.1         0.4           Cover         0.1         0.4           Total Evergreen Shrub         36.2         16.5         1           Cassiope tetragona         7.2         8.2         0.8         Diapensia lapponica         0.2         0.8         0.8         2.2         0.8         Diapensia lapponica         0.2         0.8         0.8         4.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cover       | Freq              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|
| Total Live Cover         149.5         65.2         1           Total Vascular Cover         88.5         33.3         1           Total Evergreen Tree         Cover         0.1         0.4           Picea glauca         0.1         0.4           Total Evergreen Shrub         Cover         36.2         16.5         1           Cassiope tetragona         7.2         8.2         2           Diapensia lapponica         0.2         0.8         2           Dryas octopetala         14.0         14.6         2           Empetrum nigrum         2.1         4.0         14.6         2           Empetrum nigrum         2.1         4.0         4.4         2         1         4.0         4.4         4.9         1         4.4         4.9         1         4.4         4.9         1         4.4         4.9         1         4.4         4.9         1         4.4         4.9         1         4.4         4.9         1         4.4         4.9         1         4.4         4.9         1         4.4         4.9         1         4.4         4.9         1         4.4         4.9         1         4.4         4.9         1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                   |
| Total Vascular Cover         88.5         33.3         1           Total Evergreen Tree         Cover         0.1         0.4           Picea glauca         0.1         0.4           Total Evergreen Shrub         Cover         36.2         16.5         1           Cassiope tetragona         7.2         8.2         1           Dryas octopetala         14.0         14.6         14.6         1           Empetrum nigrum         2.1         4.0         1         1         1         1         1         1         1         4         4         4         1         1         6         2         1         4.0         1         6         2         1         1         6         2         1         4         0         1         4         4         4         0         1         4         4         4         9         1         3         3         8         2         3         1         3         3         8         2         3         1         4         4         9         1         4         4         9         1         4         4         9         1         3         3         8 <th< th=""><th></th><th><u>%</u><br/>2 100</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | <u>%</u><br>2 100 |
| Total Evergreen Tree Cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del></del> |                   |
| Cover         0.1         0.4           Picea glauca         0.1         0.4           Total Evergreen Shrub         36.2         16.5         1           Cover         36.2         16.5         1           Cassiope tetragona         7.2         8.2           Diapensia lapponica         0.2         0.8           Dryas octopetala         14.0         14.6           Empetrum nigrum         2.1         4.0           Ledum decumbens         3.1         5.9           Linnaea borealis         0.3         0.8           Loiseleuria procumbens         3.4         6.4           Vaccinium vitis-idaea         1.3         2.9           Betula panulosa         8.5         19.0         0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4010.       | 100               |
| Picea glauca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | 11                |
| Total Evergreen Shrub         36.2         16.5         1           Cassiope tetragona         7.2         8.2           Diapensia lapponica         0.2         0.8           Dryas octopetala         14.0         14.6           Empetrum nigrum         2.1         4.0           Ledum decumbens         3.1         5.9           Linnaea borealis         0.3         0.8           Loiseleuria procumbens         3.4         6.4           Vaccinium vitis-idaea         4.4         4.9           Total Deciduous Tree         0.0         0.0           Cover         36.8         23.1         1           Total Deciduous Shrub         0.6         2.1           Cover         36.8         23.1         1           Arctostaphylos alpina         1.3         3.5           Arctostaphylos rubra         0.6         2.1           Betula glandulosa         8.5         19.0           Betula planifoliosa         8.5         19.0           Betula planifoliosa         2.6         6.3           Salix planifolia ssp. pulchra         1.6         Salix planifolia ssp. pulchra           Salix planifolia ssp. pulchra         1.4         4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1         | 11                |
| Cover         36.2         16.5         1           Cassiope tetragona         7.2         8.2           Diapensia lapponica         0.2         0.8           Dryas octopetala         14.0         14.6           Empetrum nigrum         2.1         4.0           Ledum decumbens         3.1         5.9           Linnaea borealis         0.3         0.8           Loiseleuria procumbens         3.4         6.4           Vaccinium vitis-idaea         4.4         4.9           Total Deciduous Tree         Cover         0.0         0.0           Total Deciduous Shrub         Cover         36.8         23.1         1           Arctostaphylos alpina         1.3         3.5         Arctostaphylos rubra         0.6         2.1           Betula glandulosa         8.5         19.0         Betula futicosa         8.5         19.0           Betula planidoliasa         8.5         19.0         8         10.4         Potentilla fruticosa         0.7         2.5         Salix plauca         3.16         6.3         Salix plauca         3.16         6.3         Salix plauca         3.16         5.3         1.6         Salix plauca         3.16         5.2         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | en Shrub    |                   |
| Diapensia lapponica         0.2         0.8           Dryas octopetala         14.0         14.6           Empetrum nigrum         2.1         4.0           Ledum decumbens         3.1         5.9           Linnaea borealis         0.3         0.8           Loiseleuria procumbens         3.4         6.4           Vaccinium vitis-idaea         4.4         4.9           Total Deciduous Tree         0.0         0.0           Cover         36.8         23.1         1           Arctostaphylos alpina         1.3         3.5           Arctostaphylos rubra         0.6         2.1           Betula glandulosa         8.5         19.0           Betula plandulosa         8.5         19.0           Betula nana         5.8         10.4           Potentilla fruticosa         3.1         1.6           Salix brachycarpa ssp.         10.7         2.5           Salix brachycarpa ssp.         10.1         2.4           Salix planifolia ssp. pulchra         1.4         4.3           Salix planifolia ssp. pulchra         1.4         4.3           Salix planifolia ssp.         1.0         2.4           Salix planifolia ssp. <t< td=""><td></td><td>100</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 100               |
| Dryas octopetala         14.0         14.6           Empetrum nigrum         2.1         4.0           Ledum decumbens         3.1         5.9           Linnaea borealis         0.3         0.8           Loiseleuria procumbens         3.4         6.4           Vaccinium vitis-idaea         4.4         4.9           Total Deciduous Tree         0.0         0.0           Cover         36.8         23.1         1           Arctostaphylos alpina         1.3         3.5           Arctostaphylos rubra         0.6         2.1           Betula glandulosa         8.5         19.0           Betula glandulosa         8.5         19.0           Betula nana         5.8         10.4           Potentilla fruticosa         0.7         2.5           Salix brachycarpa ssp. niphoclada         2.6         6.3           Salix glauca         0.5         1.6           Salix planifolia ssp. pulchra         1.4         4.3           Salix planifolia ssp. pulchra         1.4         4.3           Salix polaris         0.6         2.9           Salix reticulata         1.3         2.9           Salix reticulata         1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ona 7.2     | ? 76              |
| Ledum decumbens   Sample   S | onica 0.2   | 3 19              |
| Ledum decumbens         3.1         5.9           Linnaea borealis         0.3         0.8           Loiseleuria procumbens         3.4         6.4           Vaccinium vitis-idaea         4.4         4.9           Total Deciduous Tree         0.0         0.0           Cover         36.8         23.1         1           Arctostaphylos alpina         1.3         3.5           Arctostaphylos rubra         0.6         2.1           Betula glandulosa         8.5         19.0           Betula glandulosa         8.5         19.0           Betula nana         5.8         10.4           Potentilla fruticosa         0.7         2.5           Salix brachycarpa ssp.         0.7         2.5           Salix planifolia         2.6         6.3           Salix plauca         0.5         1.6           Salix planifolia ssp. pulchra         1.4         4.3           Salix planifolia ssp. pulchra         1.4         4.3           Salix planifolia ssp. pulchra         1.4         4.3           Spiraea beauverdiana         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | la 14.0     | 76                |
| Linnaea borealis         0.3         0.8           Loiseleuria procumbens         3.4         6.4           Vaccinium vitis-idaea         4.4         4.9           Total Deciduous Tree         0.0         0.0           Cover         36.8         23.1         1           Arctostaphylos alpina         1.3         3.5           Arctostaphylos rubra         0.6         2.1           Betula glandulosa         8.5         19.0           Betula plandulosa         8.5         19.0           Betula nana         5.8         10.4           Potentilla fruticosa         0.7         2.5           Salix brachycarpa ssp.         0.7         2.5           niphoclada         2.6         6.3           Salix plauca         0.5         1.6           Salix planifolia ssp. pulchra         1.4         4.3           Salix planifolia ssp. pulchra         1.4         4.3           Salix polaris         0.6         2.9           Salix polaris         0.6         2.9           Salix reticulata         1.3         2.9           Spiraea beauverdiana         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | um 2.1      | 45                |
| Loiseleuria procumbens   3.4   4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ens 3.1     | 55                |
| Vaccinium vitis-idaea         4.4         4.9           Total Deciduous Tree         0.0         0.0           Cover         0.0         0.0           Total Deciduous Shrub         36.8         23.1         1           Cover         36.8         23.1         1           Arctostaphylos alpina         1.3         3.5           Arctostaphylos rubra         0.6         2.1           Betula glandulosa         8.5         19.0           Salix plantifilia futicosa         0.7         2.5           Salix plantifilia sp.nelidia         2.6         6.3           Salix plantifilia sp.nelidia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | is 0.3      | 18                |
| Total Deciduous Tree         0.0         0.0           Cover         36.8         23.1         1           Arctostaphylos alpina         1.3         3.5           Arctostaphylos rubra         0.6         2.1           Betula glandulosa         8.5         19.0           Betula nana         5.8         10.4           Potentilla fruticosa         0.7         2.5           Salix brachycarpa ssp.         0.7         2.5           salix brachycarpa ssp.         0.5         1.6           Salix plauca         0.5         1.6           Salix plaeifolia ssp. pulchra         1.4         4.3           Salix polaris         0.6         2.9           Salix polaris         0.6         2.9           Salix reticulata         1.3         2.9           Spiraea beauverdiana         <0.1         0.1           Vaccinium uliginosum         11.9         13.0           Total Forb Cover         5.4         4.1           Anemone narcissiflora         0.7         1.2           Anemone parviflora         0.3         0.6           Antennaria friesiana         0.1         0.3           Artemisia arctica ssp.         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cumbens 3.4 | 39                |
| Cover         0.0         0.0           Total Deciduous Shrub         36.8         23.1         1           Arctostaphylos alpina         1.3         3.5           Arctostaphylos rubra         0.6         2.1           Betula glandulosa         8.5         19.0           Betula nana         5.8         10.4           Potentilla fruticosa         0.7         2.5           Salix brachycarpa ssp.         0.7         2.5           Salix brachycarpa ssp.         0.5         1.6           Salix plauca         0.5         1.6           Salix plauca         0.5         1.6           Salix planifolia ssp. pulchra         1.4         4.3           Salix polaris         0.6         2.9           Salix polari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | idaea 4.4   | 84                |
| Total Deciduous Shrub         36.8         23.1         1           Arctostaphylos alpina         1.3         3.5           Arctostaphylos rubra         0.6         2.1           Betula glandulosa         8.5         19.0           Betula nana         5.8         10.4           Potentilla fruticosa         0.7         2.5           Salix brachycarpa ssp.         0.7         2.5           niphoclada         2.6         6.3           Salix plauca         0.5         1.6           Salix pleophylla         1.0         2.4           Salix planifolia ssp. pulchra         1.4         4.3           Salix polaris         0.6         2.9           Salix pleophylla         1.0         2.4           Salix planifolia ssp. pulchra         1.4         4.3           Salix planifolia         0.5         1.6           Salix planifolia         0.6         2.9           Salix planifolia         0.6         2.9      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | _                 |
| Cover         36.8         23.1         1           Arctostaphylos alpina         1.3         3.5           Arctostaphylos rubra         0.6         2.1           Betula glandulosa         8.5         19.0           Betula nana         5.8         10.4           Potentilla fruticosa         0.7         2.5           Salix brachycarpa ssp.         0.7         2.5           niphoclada         2.6         6.3           Salix placa         0.5         1.6           Salix plebophylla         1.0         2.4           Salix planifolia ssp. pulchra         1.4         4.3           Salix polaris         0.6         2.9           Salix polaris         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ) 3               |
| Arctostaphylos alpina       1.3       3.5         Arctostaphylos rubra       0.6       2.1         Betula glandulosa       8.5       19.0         Betula nana       5.8       10.4         Potentilla fruticosa       0.7       2.5         Salix brachycarpa ssp.       0.7       2.5         Salix brachycarpa ssp.       0.6       6.3         Salix glauca       0.5       1.6         Salix phlebophylla       1.0       2.4         Salix phlebophylla       1.0       2.4         Salix planifolia ssp. pulchra       1.4       4.3         Salix polaris       0.6       2.9         Salix reticulata       1.3       2.9         Spiraea beauverdiana       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 100               |
| Arctostaphylos rubra       0.6       2.1         Betula glandulosa       8.5       19.0         Betula nana       5.8       10.4         Potentilla fruticosa       0.7       2.5         Salix brachycarpa ssp.       0.7       2.5         niphoclada       2.6       6.3         Salix glauca       0.5       1.6         Salix phlebophylla       1.0       2.4         Salix planifolia ssp. pulchra       1.4       4.3         Salix polaris       0.6       2.9         Salix reticulata       1.3       2.9         Spiraea beauverdiana       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                   |
| Betula glandulosa         8.5         19.0           Betula nana         5.8         10.4           Potentilla fruticosa         0.7         2.5           Salix brachycarpa ssp.         0.5         1.6           Salix glauca         0.5         1.6           Salix phlebophylla         1.0         2.4           Salix planifolia ssp. pulchra         1.4         4.3           Salix polaris         0.6         2.9           Salix reticulata         1.3         2.9           Spiraea beauverdiana         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | агрита      |                   |
| Betula nana 5.8 10.4 Potentilla fruticosa 0.7 2.5 Salix brachycarpa ssp. niphoclada 2.6 6.3 Salix glauca 0.5 1.6 Salix phlebophylla 1.0 2.4 Salix planifolia ssp. pulchra 1.4 4.3 Salix polaris 0.6 2.9 Salix reticulata 1.3 2.9 Spiraea beauverdiana <0.1 0.1 Vaccinium uliginosum 11.9 13.0 Total Forb Cover 5.4 4.1 Anemone narcissiflora 0.7 1.2 Anemone parviflora 0.3 0.6 Antennaria friesiana 0.1 0.3 Arnica lessingii 0.2 0.5 Artemisia arctica ssp. arctica 0.5 1.5 Astragalus umbellatus 0.1 0.3 Boykinia richardsonii 0.1 0.4 Campanula lasiocarpa 0.1 0.2 Dodecatheon frigidum 0.2 0.6 Minuartia arctica 0.1 0.3 Pedicularis capitata 0.1 0.3 Pedicularis kanei 0.1 0.2 Pedicularis labradorica <0.1 0.1 Polygonum bistorta 0.2 0.4 Polygonum viviparum 0.1 0.4 Saussurea angustifolia <0.1 0.2 Saxifraga bronchialis <0.1 0.2 Selaginella sibirica 0.2 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                   |
| Potentilla fruticosa         0.7         2.5           Salix brachycarpa ssp.         0.5         1.6           Salix glauca         0.5         1.6           Salix phlebophylla         1.0         2.4           Salix planifolia ssp. pulchra         1.4         4.3           Salix polaris         0.6         2.9           Salix reticulata         1.3         2.9           Spiraea beauverdiana         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                   |
| Salix brachycarpa ssp.       2.6       6.3         Salix glauca       0.5       1.6         Salix phlebophylla       1.0       2.4         Salix planifolia ssp. pulchra       1.4       4.3         Salix polaris       0.6       2.9         Salix reticulata       1.3       2.9         Spiraea beauverdiana       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 1         |                   |
| niphoclada       2.6       6.3         Salix glauca       0.5       1.6         Salix phlebophylla       1.0       2.4         Salix planifolia ssp. pulchra       1.4       4.3         Salix polaris       0.6       2.9         Salix reticulata       1.3       2.9         Spiraea beauverdiana       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .030        | , 13              |
| Salix glauca         0.5         1.6           Salix phlebophylla         1.0         2.4           Salix planifolia ssp. pulchra         1.4         4.3           Salix polaris         0.6         2.9           Salix reticulata         1.3         2.9           Spiraea beauverdiana         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | 18                |
| Salix phlebophylla         1.0         2.4           Salix planifolia ssp. pulchra         1.4         4.3           Salix polaris         0.6         2.9           Salix reticulata         1.3         2.9           Spiraea beauverdiana         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5         | 18                |
| Salix planifolia ssp. pulchra       1.4       4.3         Salix polaris       0.6       2.9         Salix reticulata       1.3       2.9         Spiraea beauverdiana       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /lla 1.0    | 23                |
| Salix polaris         0.6         2.9           Salix reticulata         1.3         2.9           Spiraea beauverdiana         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 35                |
| Salix reticulata         1.3         2.9           Spiraea beauverdiana         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 10                |
| Spiraea beauverdiana         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.3         | 39                |
| Vaccinium uliginosum         11.9         13.0           Total Forb Cover         5.4         4.1           Anemone narcissiflora         0.7         1.2           Anemone parviflora         0.3         0.6           Antennaria friesiana         0.1         0.3           Arnica lessingii         0.2         0.5           Artemisia arctica ssp.         0.5         1.5           Astragalus umbellatus         0.1         0.3           Boykinia richardsonii         0.1         0.4           Campanula lasiocarpa         0.1         0.2           Dodecatheon frigidum         0.2         0.6           Minuartia arctica         0.1         0.4           Pedicularis capitata         0.1         0.3           Pedicularis kanei         0.1         0.2           Pedicularis labradorica         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rdiana <0.1 | 15                |
| Total Forb Cover         5.4         4.1           Anemone narcissiflora         0.7         1.2           Anemone parviflora         0.3         0.6           Antennaria friesiana         0.1         0.3           Arnica lessingii         0.2         0.5           Artemisia arctica ssp.         0.5         1.5           Astragalus umbellatus         0.1         0.3           Boykinia richardsonii         0.1         0.4           Campanula lasiocarpa         0.1         0.2           Dodecatheon frigidum         0.2         0.6           Minuartia arctica         0.1         0.4           Pedicularis capitata         0.1         0.3           Pedicularis kanei         0.1         0.2           Pedicularis labradorica         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 92                |
| Anemone narcissiflora       0.7       1.2         Anemone parviflora       0.3       0.6         Antennaria friesiana       0.1       0.3         Arnica lessingii       0.2       0.5         Artemisia arctica ssp.       0.5       1.5         Astragalus umbellatus       0.1       0.3         Boykinia richardsonii       0.1       0.4         Campanula lasiocarpa       0.1       0.2         Dodecatheon frigidum       0.2       0.6         Minuartia arctica       0.1       0.4         Pedicularis capitata       0.1       0.3         Pedicularis capitata       0.1       0.2         Pedicularis labradorica       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 97                |
| Anemone parviflora       0.3       0.6         Antennaria friesiana       0.1       0.3         Arnica lessingii       0.2       0.5         Artemisia arctica ssp.       0.5       1.5         Astragalus umbellatus       0.1       0.3         Boykinia richardsonii       0.1       0.4         Campanula lasiocarpa       0.1       0.2         Dodecatheon frigidum       0.2       0.6         Minuartia arctica       0.1       0.4         Pedicularis capitata       0.1       0.3         Pedicularis kanei       0.1       0.2         Pedicularis labradorica       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 2 56              |
| Antennaria friesiana       0.1       0.3         Arnica lessingii       0.2       0.5         Artemisia arctica ssp.       0.5       1.5         Astragalus umbellatus       0.1       0.3         Boykinia richardsonii       0.1       0.4         Campanula lasiocarpa       0.1       0.2         Dodecatheon frigidum       0.2       0.6         Minuartia arctica       0.1       0.4         Pedicularis capitata       0.1       0.3         Pedicularis kanei       0.1       0.2         Pedicularis labradorica       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 5 24              |
| Arnica lessingii       0.2       0.5         Artemisia arctica ssp.       0.5       1.5         Astragalus umbellatus       0.1       0.3         Boykinia richardsonii       0.1       0.4         Campanula lasiocarpa       0.1       0.2         Dodecatheon frigidum       0.2       0.6         Minuartia arctica       0.1       0.4         Pedicularis capitata       0.1       0.3         Pedicularis kanei       0.1       0.2         Pedicularis labradorica       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 16                |
| Artemisia arctica ssp.       arctica       0.5       1.5         Astragalus umbellatus       0.1       0.3         Boykinia richardsonii       0.1       0.4         Campanula lasiocarpa       0.1       0.2         Dodecatheon frigidum       0.2       0.6         Minuartia arctica       0.1       0.4         Pedicularis capitata       0.1       0.3         Pedicularis kanei       0.1       0.2         Pedicularis labradorica       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 16                |
| Astragalus umbellatus Boykinia richardsonii Campanula lasiocarpa Dodecatheon frigidum Minuartia arctica Pedicularis capitata Pedicularis kanei Pedicularis labradorica Polygonum bistorta Polygonum viviparum Saussurea angustifolia Saisiraga bronchialis Selaginella sibirica  0.1 0.2 0.3 0.4 0.1 0.2 0.1 0.1 0.2 0.4 0.2 0.4 0.2 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a ssp.      |                   |
| Boykinia richardsonii0.10.4Campanula lasiocarpa0.10.2Dodecatheon frigidum0.20.6Minuartia arctica0.10.4Pedicularis capitata0.10.3Pedicularis kanei0.10.2Pedicularis labradorica<0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5         | 29                |
| Campanula lasiocarpa Dodecatheon frigidum 0.2 0.6 Minuartia arctica 0.1 0.4 Pedicularis capitata Pedicularis kanei 0.1 0.2 Pedicularis labradorica Polygonum bistorta Polygonum viviparum 0.1 0.4 Saussurea angustifolia Saxifraga bronchialis Selaginella sibirica 0.1 0.2 0.3 0.4 0.4 0.4 0.5 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                   |
| Dodecatheon frigidum         0.2         0.6           Minuartia arctica         0.1         0.4           Pedicularis capitata         0.1         0.3           Pedicularis kanei         0.1         0.2           Pedicularis labradorica         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                   |
| Minuartia arctica 0.1 0.4 Pedicularis capitata 0.1 0.3 Pedicularis kanei 0.1 0.2 Pedicularis labradorica <0.1 0.1 Polygonum bistorta 0.2 0.4 Polygonum viviparum 0.1 0.4 Saussurea angustifolia <0.1 0.2 Saxifraga bronchialis <0.1 0.2 Selaginella sibirica 0.2 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o ca. pa    |                   |
| Pedicularis capitata0.10.3Pedicularis kanei0.10.2Pedicularis labradorica<0.10.1Polygonum bistorta0.20.4Polygonum viviparum0.10.4Saussurea angustifolia<0.10.2Saxifraga bronchialis<0.10.2Selaginella sibirica0.20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _           |                   |
| Pedicularis kanei 0.1 0.2 Pedicularis labradorica <0.1 0.1 Polygonum bistorta 0.2 0.4 Polygonum viviparum 0.1 0.4 Saussurea angustifolia <0.1 0.2 Saxifraga bronchialis <0.1 0.2 Selaginella sibirica 0.2 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del> |                   |
| Pedicularis labradorica <0.1 0.1 Polygonum bistorta 0.2 0.4 Polygonum viviparum 0.1 0.4 Saussurea angustifolia <0.1 0.2 Saxifraga bronchialis <0.1 0.2 Selaginella sibirica 0.2 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tu tu       |                   |
| Polygonum bistorta 0.2 0.4 Polygonum viviparum 0.1 0.4 Saussurea angustifolia <0.1 0.2 Saxifraga bronchialis <0.1 0.2 Selaginella sibirica 0.2 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                   |
| Polygonum viviparum 0.1 0.4 Saussurea angustifolia <0.1 0.2 Saxifraga bronchialis <0.1 0.2 Selaginella sibirica 0.2 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                   |
| Saussurea angustifolia <0.1 0.2 Saxifraga bronchialis <0.1 0.2 Selaginella sibirica 0.2 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                   |
| Saxifraga bronchialis <0.1 0.2 Selaginella sibirica 0.2 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | p a         |                   |
| Selaginella sibirica 0.2 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51          |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                   |
| Silene acaulis 0.3 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                   |
| zonauge marmanata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                   |
| Totala coccinea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                   |
| Arctagrostis latifolia 0.2 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ifolia 0.2  | 18                |

Table 12. Continued.

| <del>-</del>                                     |            | Cover       |           |
|--------------------------------------------------|------------|-------------|-----------|
|                                                  | Mean       | SD          | Freq<br>% |
| Festuca altaica                                  | 4.5        | 6.7         | 60        |
| Hierochloe alpina                                | 1.0        | 1.8         | 56        |
| Poa arctica                                      | 0.1        | 0.3         | 23        |
| Trisetum spicatum ssp.                           |            |             |           |
| spicatum                                         | <0.1       | 0.2         | 13        |
| Total Sedge & Rush                               | 4.2        | 4.9         | 92        |
| <b>Cover</b><br>Carex bigelowii                  | 0.5        | 1.2         | 24        |
| Carex microchaeta                                | 0.8        | 2.0         | 37        |
| Carex podocarpa                                  | 1.1        | 1.8         | 52        |
| Carex scirpoidea                                 | 1.5        | 4.3         | 29        |
| Luzula confusa                                   | <0.1       | 0.3         | 18        |
| Luzula comusa<br>Luzula multiflora               | 0.1        | 0.2         | 13        |
| Total Nonvascular Cover                          | 61.0       | 42.5        | 100       |
| Total Moss Cover                                 | 17.0       | 18.9        | 97        |
| Aulacomnium turgidum                             | 0.3        | 1.3         | 18        |
| Dicranum sp.                                     | 2.3        | 2.8         | 56        |
| Hylocomium splendens                             | 4.3        | 6.8         | 58        |
| Hypnum sp.                                       | 0.1        | 0.7         | 13        |
| Pleurozium schreberi                             | 0.7        | 2.4         | 13        |
| Polytrichum piliferum                            | 1.3        | 6.5         | 16        |
| Polytrichum sp.                                  | 1.0        | 2.6         | 32        |
| Polytrichum strictum                             | 0.3        | 0.8         | 16        |
| Racomitrium lanuginosum                          | 0.5        | 1.6         | 21        |
| Racomitrium sp.                                  | 0.9        | 4.6         | 11        |
| Rhytidium rugosum                                | 0.9        | 1.9         | 27        |
| Tomentypnum nitens                               | 0.5        | 1.8         | 10        |
| Total Lichen Cover                               | 44.1       | 42.0        | 98        |
| Asahinea chrysantha                              | 0.2        | 0.8         | 16        |
| Asahinea sp.                                     | 0.1        | 0.4         | 13        |
| Bryoria sp.                                      | 0.5        | 2.3         | 13        |
| Cetraria cf. islandica                           | 0.4        | 1.0         | 23        |
| Cetraria sp.                                     | 1.3        | 2.3         | 35        |
| Cladina arbuscula                                | 5.4        | 9.1         | 47        |
| Cladina mitis                                    | 0.8        | 1.9         | 26        |
| Cladina rangiferina                              | 5.2        | 9.0         | 55        |
| Cladina sp.                                      | 0.4        | 2.0         | 11        |
| Cladina stellaris                                | 13.0       | 23.3<br>2.2 | 35        |
| Cladina stygia                                   | 0.7        |             | 18        |
| Cladonia sp.                                     | 2.6<br>0.1 | 3.0<br>0.3  | 76<br>24  |
| Dactylina arctica                                | 0.1        | 1.0         | 23        |
| Dactylina sp.                                    | 2.4        | 2.9         | 73        |
| Flavocetraria cucullata<br>Flavocetraria nivalis | 1.4        | 3.3         | 55        |
| Lobaria sp.                                      | 0.1        | 0.4         | 21        |
| Masonhalea richardsonii                          | 1.2        | 1.8         | 65        |
| Nephroma arcticum                                | 0.1        | 0.5         | 16        |
| Parmelia sp.                                     | 0.2        | 0.8         | 15        |
| Peltigera aphthosa                               | 0.3        | 0.9         | 29        |
| Peltigera sp.                                    | 0.1        | 0.3         | 19        |
| Sphaerophorus sp.                                | 0.1        | 0.4         | 16        |
| Stereocaulon sp.                                 | 1.2        | 2.8         | 52        |
| Thamnolia sp.                                    | 0.5        | 1.2         | 24        |
| Thamnolia vermicularis                           | 0.3        | 0.6         | 27        |
| Unknown crustose lichen                          | 1.7        | 5.2         | 18        |
| Total Bare Ground                                | 10.8       | 11.7        | 61        |
| Bare Soil                                        | 6.7        | 9.3         | 60        |
| Litter alone                                     | 4.2        | 5.4         | 61        |



to occur at high abundance. Loess caps are generally absent, and surface fragments are common and abundant. Soil pH is acidic to circumneutral, and EC is low. The soils are typically somewhat excessively to well drained. Depth to water table often could not be measured but it is assumed to be at substantial depths given the well drained soils.

Table 13. Soil characteristics for Alpine Ericaceous–Dryas Dwarf Shrub.

| Property                                   | Mean   | SD    | n  |
|--------------------------------------------|--------|-------|----|
| Elevation (m)                              | 641.5  | 206.6 | 37 |
| Slope (degrees)                            | 14.0   | 7.9   | 33 |
| Surface Organics Depth(cm)                 | 3.4    | 2.7   | 38 |
| Cumulative Org. in 40 cm (cm)              | 3.4    | 2.7   | 38 |
| Loess Cap Thickness (cm)                   | 2.0    | NA    | 1  |
| Depth to Rocks (cm)                        | 4.7    | 3.5   | 29 |
| Surface Fragment Cover (%)                 | 18.0   | 16.5  | 29 |
| Frost Boil Cover (%)                       | 12.0   | 14.5  | 16 |
| Thaw Depth (cm)                            | 72.2   | 31.5  | 2  |
| Site pH at 10-cm depth                     | 5.4    | 0.7   | 37 |
| Site EC at 10-cm depth (μS/cm)             | 43.8   | 30.9  | 37 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -190.0 | 35.1  | 32 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soils in this ecotype are Typic Dystrogelepts (acidic, well drained, moderately thin organic horizon, permafrost below 1 m), Typic Haploturbels (mineral soil over permafrost with cryoturbation), and Typic Gelorthents (poorly developed soils, permafrost below 1 m). Less common subgroups include Typic Haplorthels (mineral soil over permafrost lacking cryoturbation) and Humic Dystrogelepts (acidic, well drained, a moderately thick organic-rich A horizon, permafrost below 1 m). This ecotype and associated soils are part of the Alpine Rocky Acidic Barrens and Shrub soil landscape. Also included in this soil landscape are Alpine Acidic Barrens and Alpine Acidic Dryas Dwarf Shrub.

# **Alpine Lake**



## Geomorphology:

Alpine Lake occurs in mountain cirques, and in depressions in bedrock or glacial moraine. This ecotype is found in mountainous regions throughout our study area and includes shallow (<1.5 m) to deep ( $\ge1.5 \text{ m}$ ) lakes, usually above 400 m elevation.

Floristic classes were not developed for lake ecotypes since vegetation is lacking or sparse. Vegetation only occurs in shallow lakes or margins in this ecotype. The only vascular species we encountered was *Ranunculus hyperboreus* (Table 14), but additional species such as pondweeds (*Potamogeton* spp.) probably occur in Alpine Lake.

This ecotype is most similar to Lowland Lake but is less productive, has fewer plant species, and is much less prevalent across the landscape.

Table 14. Vegetation cover and frequency for Alpine Lake (n=2).

|                                | Carr  |      | Fuee |
|--------------------------------|-------|------|------|
|                                | Cov   | er   | Freq |
|                                | Mean  | SD   | %    |
| Total Live Cover               | 1.1   | 1.5  | 50   |
| <b>Total Vascular Cover</b>    | 0.1   | 0.1  | 50   |
| <b>Total Forb Cover</b>        | 0.1   | 0.1  | 50   |
| Ranunculus hyperboreus         | 0.1   | 0.1  | 50   |
| <b>Total Nonvascular Cover</b> | 1.0   | 1.4  | 50   |
| Total Moss Cover               | 1.0   | 1.4  | 50   |
| Warnstorfia exannulata         | 0.5   | 0.7  | 50   |
| Warnstorfia sarmentosa         | 0.5   | 0.7  | 50   |
| <b>Total Bare Ground</b>       | 100.0 | 0.1  | 100  |
| Water                          | 100.0 | <0.1 | 100  |
| Litter alone                   | 0.1   | 0.1  | 50   |

### Soils:

Flooded soils were not described. Water characteristics are listed in Table 15.

Table 15. Water characteristics for Alpine Lake.

| Property                                   | Mean  | SD    | n |
|--------------------------------------------|-------|-------|---|
|                                            |       |       |   |
| Site pH at 10-cm depth                     | 6.2   |       | 1 |
| Site EC at 10-cm depth (µS/cm)             | 30.0  |       | 1 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | 115.0 | 120.2 | 2 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

# **Alpine Mafic Barrens**



## Geomorphology:

Alpine Mafic Barrens occurs on hillside colluvium or talus comprising intermediate, mafic and ultramafic plutonic rocks that have dark colored mineral assemblages with abundant iron and magnesium. Phosphorus is highly depleted, resulting in sparse vegetative cover. It occurs on upper slopes, shoulders and crests at elevations above 400 m, particularly in the north and western parts of NOAT.

#### Plant Association:

Salix arctica–Minuartia arctica Dryas octopetala–Hierochloe alpina

Vegetation is sparse and most species are present in trace amounts (Table 16). Trees and shrubs taller than 20 cm are absent. This ecotype is moderately diverse. Rare species documented in this ecotype include *Thlaspi arcticum*, *Papaver gorodkovii*, and *Arenaria chamissonis* (syn: *Stellaria dicranoides*). Common species include *Carex podocarpa*, *Racomitrium lanuginosum*, and *Vulpicida tilesii*.

Similarly to Alpine Alkaline Barrens and Alpine Acidic Barrens, Alpine Mafic Barrens has low species cover and similar climate effects. The strong influence of different bedrock type results in different species assemblages.

### Soils:

Soils are blocky or rubbly and lack surface organic horizons (Table 17). Thaw depths often could not be determined in the rocky soils, but permafrost is presumed to be present below 1 m due to the cold temperatures at the high elevations. Frost boils are rare, however when present they tend to occur at high abundance. Loess caps are absent, and surface fragments are common and abundant. Soil pH is alkaline to circumneutral, and EC is low. The soils are typically excessively to somewhat excessively drained. Depth to water table often could not be measured but it is assumed to be at substantial depths given the well drained soils.

Table 16. Vegetation cover and frequency for Alpine Mafic Barrens (n=18).

|                                     | Cover |      |       |
|-------------------------------------|-------|------|-------|
|                                     | Cov   |      | Freq  |
|                                     | Mean  | SD   | %     |
| Total Live Cover                    | 14.7  | 8.9  | 100   |
| Total Vascular Cover                | 8.8   | 6.3  | 100   |
| Total Evergreen Tree Cover          | 0.0   | 0.0  | 6     |
| Total Evergreen Shrub               | 2.0   | 3.0  | 72    |
| Cover                               | 2.0   |      | 72    |
| Cassiope tetragona                  | 0.1   | 0.3  | 28    |
| Dryas integrifolia                  | 1.3   | 3.1  | 22    |
| Dryas octopetala                    | 0.4   | 8.0  | 33    |
| Dryas octopetala ssp.<br>alaskensis | 0.1   | 0.2  | 6     |
| Empetrum nigrum                     | 0.1   | 0.2  | 11    |
| Total Deciduous Shrub               | 0.1   | 0.2  | • • • |
| Cover                               | 1.2   | 1.2  | 89    |
| Salix arctica                       | 1.0   | 1.2  | 78    |
| Salix phlebophylla                  | 0.1   | 0.3  | 11    |
| Salix rotundifolia                  | 0.1   | 0.5  | 11    |
| Total Forb Cover                    | 4.3   | 3.5  | 100   |
| Androsace chamaejasme               | <0.1  | <0.1 | 22    |
| Anemone narcissiflora               | <0.1  | <0.1 | 22    |
| Arabis sp.                          | 0.1   | 0.2  | 11    |
| Arenaria chamissonis                | 0.1   | 0.3  | 50    |
| Armeria maritima                    | 0.1   | 0.5  | 17    |
| Artemisia arctica ssp. arctica      | <0.1  | <0.1 | 17    |
| Artemisia globularia                | 0.2   | 0.5  | 11    |
| Artemisia glomerata                 | <0.1  | <0.1 | 17    |
| Cardamine purpurea                  | <0.1  | <0.1 | 22    |
| Cerastium beeringianum              | <0.1  | <0.1 | 28    |
| Cerastium beeringianum var.         | 10    | 10   |       |
| beeringianum                        | 0.1   | 0.2  | 11    |
| Cerastium beeringianum var.         |       |      |       |
| grandiflorum                        | 0.1   | 0.2  | 11    |
| Claytonia sarmentosa                | <0.1  | <0.1 | 17    |
| Draba nivalis                       | <0.1  | 0.1  | 39    |
| Draba sp.                           | <0.1  | <0.1 | 22    |
| Geum glaciale                       | 0.1   | 0.2  | 17    |
| Lagotis glauca ssp. glauca          | 0.1   | 0.2  | 6     |
| Lupinus arcticus                    | 0.1   | 0.5  | 6     |
| Minuartia arctica                   | 0.7   | 0.9  | 89    |
| Minuartia elegans                   | 0.1   | 0.5  | 6     |
| Minuartia sp.                       | 0.1   | 0.2  | 6     |
| Papaver macounii                    | 0.4   | 1.0  | 39    |
| Pedicularis kanei                   | <0.1  | <0.1 | 22    |
| Pedicularis sp.                     | <0.1  | <0.1 | 17    |
| Phlox sibirica ssp. sibirica        | <0.1  | <0.1 | 17    |
| Polygonum bistorta                  | 0.1   | 0.2  | 6     |
| Polygonum viviparum                 | <0.1  | <0.1 | 28    |
| Potentilla uniflora                 | 0.2   | 0.5  | 33    |
| Rumex acetosa ssp. acetosa          | <0.1  | <0.1 | 17    |
| Sagina intermedia                   | <0.1  | <0.1 | 22    |
| Saxifraga bronchialis               | 0.4   | 0.6  | 83    |
| Saxifraga eschscholtzii             | 0.1   | 0.3  | 17    |
| Saxifraga flagellaris               | <0.1  | 0.1  | 39    |
| Saxifraga oppositifolia             | <0.1  | <0.1 | 28    |
| Selaginella sibirica                | <0.1  | <0.1 | 22    |
| Senecio resedifolius                | 0.1   | 0.2  | 33    |
| Silene acaulis                      | 0.2   | 0.5  | 50    |
| Smelowskia borealis                 | 0.1   | 0.2  | 6     |
| Smelowskia calycina                 | 0.2   | 0.5  | 28    |
| Smelowskia calycina var.            |       |      |       |
| porsildii                           | 0.1   | 0.2  | 6     |
|                                     |       |      |       |

Table 16. Continued.

|                                                 | Cove       | er         | Freq     |
|-------------------------------------------------|------------|------------|----------|
|                                                 | Mean       | SD         | %        |
| Woodsia glabella                                | 0.1        | 0.2        | 17       |
| Total Grass Cover                               | 0.2        | 0.2        | 61       |
| Deschampsia caespitosa                          | 0.1        | 0.2        | 6        |
| Poa arctica                                     | <0.1       | <0.1       | 22       |
| Poa glauca                                      | <0.1       | <0.1       | 17       |
| Total Sedge & Rush Cover                        | 1.1        | 1.5        | 83       |
| Carex glareosa                                  | 0.1        | 0.5        | 6        |
| Carex microchaeta                               | 0.2        | 0.5        | 33       |
| Carex misandra                                  | <0.1       | 0.1        | 11       |
| Carex podocarpa                                 | 0.5        | 0.9        | 44       |
| Carex scirpoidea                                | 0.1        | 0.5        | 33       |
| Carex sp.                                       | 0.1        | 0.2        | 11       |
| Total Nonvascular Cover                         | 6.0        | 6.8        | 94       |
| Total Moss Cover                                | 1.8        | 2.7        | 83       |
| Andreaea rupestris                              | 0.1        | 0.2        | 11       |
| Aulacomnium turgidum                            | 0.1        | 0.2        | 6        |
| Bryum sp.                                       | 0.3        | 1.2        | 6        |
| Distichium capillaceum                          | 0.1        | 0.5        | 11       |
| Oncophorus wahlenbergii                         | 0.1        | 0.2        | 6        |
| Racomitrium lanuginosum                         | 0.9        | 1.5        | 61       |
| Racomitrium sp.                                 | <0.1       | <0.1       | 17       |
| Rhytidium rugosum                               | 0.2        | 0.9        | 17       |
| Total Lichen Cover                              | 4.2<br>0.4 | 6.3        | 94<br>11 |
| Alectoria nigricans                             | 0.4        | 1.6<br>0.7 | 28       |
| Alectoria ochroleuca                            | 0.2        | 0.7        | 28<br>22 |
| Alectoria sp.                                   | 0.1        | 0.2        | 11       |
| Arctoparmelia sp.                               | 0.1        | 0.5        | 11       |
| Bryocaulon divergens<br>Cetraria cf. islandica  | <0.1       | <0.1       | 17       |
| Cetraria Ci. Islandica<br>Cetrariella delisei   | 0.1        | 0.2        | 6        |
| Cladonia sp.                                    | 0.1        | 0.2        | 22       |
| Dactylina arctica                               | <0.1       | <0.1       | 28       |
| Dactylina arctica<br>Dactylina ramulosa         | 0.1        | 0.2        | 11       |
| Flavocetraria cucullata                         | 0.1        | 0.3        | 17       |
| Flavocetraria cucunata<br>Flavocetraria nivalis | <0.1       | <0.1       | 33       |
| Melanelia stygia                                | 0.3        | 1.2        | 6        |
| Parmelia omphalodes                             | 0.1        | 0.2        | 6        |
| Rhizocarpon sp.                                 | 0.8        | 2.6        | 17       |
| Sphaerophorus sp.                               | 0.1        | 0.2        | 17       |
| Stereocaulon apocalypticum                      | 0.1        | 0.2        | 17       |
| Stereocaulon sp.                                | 0.1        | 0.5        | 11       |
| Thamnolia sp.                                   | 0.2        | 0.5        | 28       |
| Thamnolia subuliformis                          | 0.1        | 0.2        | 6        |
| Thamnolia vermicularis                          | 0.2        | 0.5        | 44       |
| Umbilicaria proboscidea                         | 0.1        | 0.2        | 11       |
| Umbilicaria sp.                                 | 0.3        | 0.7        | 17       |
| Unknown crustose lichen                         | 0.3        | 1.2        | 22       |
| Unknown foliose/fruticose                       |            |            |          |
| lichen                                          | 0.1        | 0.2        | 6        |
| Vulpicida sp.                                   | 0.1        | 0.2        | 6        |
| Vulpicida tilesii                               | 0.2        | 0.5        | 56       |
| Total Bare Ground                               | 89.7       | 7.1        | 100      |
| Bare Soil                                       | 89.1       | 7.5        | 100      |
| Water                                           | 0.1        | 0.5        | 6        |
| Litter alone                                    | 0.5        | 0.7        | 67       |



Table 17. Soil characteristics for Alpine Mafic Barrens.

| Property                                   | Mean   | SD    | n  |
|--------------------------------------------|--------|-------|----|
| Elevation (m)                              | 695.9  | 245.9 | 18 |
| Slope (degrees)                            | 20.7   | 12.3  | 18 |
| Surface Organics Depth(cm)                 |        |       | 0  |
| Cumulative Org. in 40 cm (cm)              |        |       | 0  |
| Loess Cap Thickness (cm)                   |        |       | 0  |
| Depth to Rocks (cm)                        |        |       | 0  |
| Surface Fragment Cover (%)                 | 94.9   | 8.5   | 18 |
| Frost Boil Cover (%)                       | 11.0   | 12.7  | 2  |
| Thaw Depth (cm)                            |        |       | 0  |
| Site pH at 10-cm depth                     | 6.9    | 0.5   | 18 |
| Site EC at 10-cm depth (µS/cm)             | 101.1  | 74.2  | 18 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -200.0 | 0.0   | 18 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soils in this ecotype are Typic Gelorthents (poorly developed soils, permafrost below 1 m). A less common subgroup is Lithic Eutrogelepts (non-acidic, <50 cm to bedrock, partially developed, permafrost below 1 m). This ecotype and associated soils are part of the Alpine Rocky Alkaline Barrens and Shrub soil landscape. Also included in this soil landscape are Alpine Alkaline Barrens, Alpine Alkaline Dryas Dwarf Shrub, and Alpine Cassiope Dwarf Shrub.

# **Alpine Wet Sedge Meadow**



## Geomorphology:

Alpine Wet Sedge Meadow generally occurs on gradual slopes of hillside colluvium at elevations between 500 and 900 m. It is found on concave surfaces and toe slopes where water tends to collect and is often associated with non-incised water tracks or seeps.

## Plant Association:

Eriophorum angustifolium-Pedicularis sudetica
Sedges dominate this type, specifically
Eriophorum angustifolium, Carex bigelowii, and C.
aquatilis (Table 18). Forb and deciduous shrub cover is also high. Mosses are common but due to wet surfaces, lichens are not. Common species include a variety of dwarf willows, and the forbs Pedicularis sudetica and Polygonum bistorta (syn: Bistorta plumosa). Alpine Wet Sedge Meadow is relatively species-rich, but total diversity is not as high as other alpine ecotypes. We documented two rare species in this ecotype, Aphragmus eschscholtzianus and Colpodium vahlianum.

Lacustrine Wet Sedge Meadow and Riverine Wet Sedge Meadow are similar in soil moisture, site chemistry and vegetation structure except deciduous shrub cover is lower. Due to physiographic and geomorphic differences, Alpine Wet Sedge Meadow has rockier soils and a thinner organic horizon.

Table 18. Vegetation cover and frequency for Alpine Wet Sedge Meadow (n=8).

| Alpine Wet Sed                |       |      |      |
|-------------------------------|-------|------|------|
|                               | Cover |      | Freq |
|                               | Mean  | SD   | %    |
| otal Live Cover               | 162.5 | 86.9 | 100  |
| otal Vascular Cover           | 97.2  | 35.6 | 100  |
| otal Evergreen Shrub          | 2.2   | 4.0  |      |
| Cover                         | 3.2   | 4.9  | 55   |
| Cassiope tetragona            | 0.3   | 0.9  | 9    |
| Oryas integrifolia            | 0.5   | 1.5  | 9    |
| Oryas octopetala              | 1.3   | 2.3  | 36   |
| Oryas octopetala ssp.         |       |      | _    |
| laskensis                     | 0.7   | 2.4  | 9    |
| mpetrum nigrum                | 0.1   | 0.3  | 9    |
| accinium vitis-idaea          | 0.4   | 1.2  | 9    |
| otal Deciduous Shrub          |       |      |      |
| Cover                         | 11.0  | 14.1 | 73   |
| alix arctica                  | 2.5   | 3.3  | 45   |
| alix fuscescens               | 2.7   | 7.5  | 18   |
| alix lanata ssp. richardsonii | 0.7   | 2.4  | 18   |
| alix planifolia ssp. pulchra  | 1.4   | 4.5  | 27   |
| alix reticulata               | 2.4   | 7.5  | 18   |
| alix rotundifolia             | 0.6   | 1.8  | 18   |
| accinium uliginosum           | 0.5   | 1.5  | 18   |
| otal Forb Cover               | 19.6  | 14.8 | 100  |
| Aconitum delphinifolium       | 0.4   | 0.9  | 27   |
| Anemone parviflora            | 0.4   | 1.2  | 9    |
|                               | 0.4   | 0.6  | 27   |
| Arnica lessingii              |       |      |      |
| Caltha palustris              | 0.5   | 1.0  | 27   |
| Gerastium beeringianum        | 0.1   | 0.3  | 18   |
| Claytonia acutifolia ssp.     | 0.5   | 1 2  | 18   |
| raminifolia                   | 0.5   | 1.3  |      |
| laytonia sarmentosa           | 0.3   | 0.5  | 36   |
| laytonia scammaniana          | 0.3   | 0.9  | 9    |
| odecatheon frigidum           | 0.1   | 0.3  | 9    |
| quisetum arvense              | 8.3   | 14.7 | 36   |
| Gentiana propinqua            | 0.1   | 0.3  | 9    |
| agotis glauca ssp. glauca     | 0.2   | 0.4  | 36   |
| Melandrium apetalum           | <0.1  | 0.1  | 36   |
| Minuartia arctica             | <0.1  | 0.1  | 36   |
| apaver macounii               | 0.1   | 0.3  | 27   |
| Pedicularis kanei             | 0.2   | 0.6  | 9    |
| Pedicularis parviflora ssp.   |       |      |      |
| parviflora                    | 0.5   | 1.5  | 9    |
| Pedicularis sudetica          | 0.9   | 1.2  | 55   |
| etasites frigidus             | 1.1   | 2.5  | 36   |
| olemonium acutiflorum         | 0.5   | 1.2  | 27   |
| olygonum bistorta             | 0.4   | 0.8  | 45   |
| olygonum viviparum            | 1.0   | 1.8  | 36   |
| anunculus eschscholtzii       | 0.1   | 0.3  | 9    |
|                               | 0.1   |      | 55   |
| lumex arcticus                |       | 0.6  |      |
| axifraga cernua               | 0.1   | 0.3  | 27   |
| axifraga hirculus             | 0.5   | 0.7  | 55   |
| axifraga punctata ssp.        | 0.5   | 0.7  | 64   |
| elsoniana                     |       | 0.7  |      |
| tellaria laeta                | 0.3   | 0.6  | 27   |
| halictrum alpinum             | 0.2   | 0.4  | 27   |
| 'aleriana capitata            | 1.1   | 2.4  | 45   |
| otal Grass Cover              | 28.0  | 33.4 | 91   |
| Nopecurus alpinus             | 1.4   | 4.5  | 9    |
| Arctagrostis latifolia        | 2.7   | 3.7  | 64   |
| Colpodium vahlianum           | 0.2   | 0.4  | 18   |
| estuca altaica                | 20.0  | 33.5 | 36   |
| estaca artarca                |       |      |      |

Table 18. Continued.

|                                                  | Cov        | er         | Freq     |
|--------------------------------------------------|------------|------------|----------|
|                                                  | Mean       | SD         | %        |
| Poa arctica                                      | 1.1        | 1.7        | 45       |
| Trisetum spicatum ssp.                           |            |            |          |
| spicatum                                         | 1.9        | 4.6        | 36       |
| Total Sedge & Rush Cover                         | 35.5       | 24.0       | 100      |
| Carex aquatilis ssp. aquatilis                   | 2.3        | 7.5        | 9        |
| Carex atrofusca                                  | 0.8        | 1.7        | 27       |
| Carex bigelowii                                  | 9.2        | 9.6        | 73       |
| Carex canescens                                  | 0.5        | 1.5        | 9        |
| Carex capillaris                                 | 0.5<br>0.3 | 0.9<br>0.9 | 36<br>9  |
| Carex kelloggii                                  | 0.5        | 1.8        | 9        |
| Carex membranacea                                | 1.1        | 2.2        | 9<br>27  |
| Carex misandra                                   | 6.2        | 10.9       | 45       |
| Carex podocarpa                                  | 0.2        | 1.0        | 18       |
| Carex saxatilis                                  | 0.5        | 1.0        | 36       |
| Carex scirpoidea                                 | 10.9       | 17.5       | 73       |
| Eriophorum angustifolium                         | 0.6        | 17.5       | 75<br>36 |
| Eriophorum callitrix                             | 0.6        | 0.8        | 45       |
| Juncus biglumis                                  | 0.5        | 0.3        | 9        |
| Kobresia myosuroides                             | 0.1        | 1.5        | 9        |
| Kobresia simpliciuscula  Total Nonvascular Cover | 65.2       | 56.7       | 100      |
| Total Moss Cover                                 | 57.7       | 48.8       | 100      |
| Anastrophyllum sp.                               | 0.2        | 0.6        | 9        |
| Aulacomnium palustre                             | 9.5        | 12.5       | 55       |
| Brachythecium sp.                                | 0.4        | 0.9        | 18       |
| Bryum cryophilum                                 | 1.1        | 2.6        | 18       |
| Calliergon sp.                                   | 0.9        | 3.0        | 9        |
| Campylium sp.                                    | 0.7        | 1.7        | 18       |
| Cinclidium sp.                                   | 0.5        | 1.5        | 9        |
| Dicranum sp.                                     | 1.1        | 1.8        | 45       |
| Ditrichum sp.                                    | 0.3        | 0.9        | 9        |
| Drepanocladus sp.                                | 0.7        | 1.7        | 18       |
| Hylocomium splendens                             | 14.8       | 23.0       | 55       |
| Hypnum sp.                                       | 0.7        | 2.4        | 9        |
| Mnium sp.                                        | 0.3        | 0.6        | 18       |
| Pleurozium schreberi                             | 2.7        | 4.7        | 27       |
| Pohlia sp.                                       | 0.2        | 0.6        | 9        |
| Racomitrium sp.                                  | 0.4        | 0.8        | 18       |
| Rhytidium rugosum                                | 0.5        | 1.0        | 18       |
| Sanionia sp.                                     | 3.2        | 5.6        | 27       |
| Tomentypnum nitens                               | 3.6        | 8.9        | 36       |
| Unknown moss                                     | 15.6       | 26.8       | 45       |
| Total Lichen Cover                               | 7.8        | 16.4       | 73       |
| Cetraria sp.                                     | 0.9        | 2.1        | 27       |
| Cladina arbuscula                                | 2.9        | 5.1        | 27       |
| Cladina rangiferina                              | 0.6        | 1.5        | 27       |
| Cladonia sp.                                     | 1.5        | 4.5        | 18       |
| Dactylina sp.                                    | 0.7        | 2.1        | 27       |
| Lobaria sp.                                      | 0.5        | 1.5        | 18       |
| Peltigera aphthosa                               | 0.3        | 0.6        | 18       |
| Peltigera sp.                                    | 0.3        | 0.6        | 18       |
| Total Bare Ground                                | 29.1       | 23.2       | 73       |
| Bare Soil                                        | 5.2        | 5.2        | 73       |
| Water                                            | 10.5       | 9.7        | 73       |
| Litter alone                                     | 13.4       | 14.7       | 73       |



Soils are gravelly, rubbly, blocky, or bouldery and are overlain by thin organic horizons (Table 19). Permafrost typically occurred within 2 m of the soil surface. Frost boils are rare, and surface fragments are common and abundant. Loess caps are absent. Soil pH is alkaline to circumneutral, and EC is generally low. The soils are typically poorly drained, and featured a shallow water table.


Table 19. Soil characteristics for Alpine Wet Sedge Meadow.

| Property                                             | Mean  | SD    | n |  |
|------------------------------------------------------|-------|-------|---|--|
| Elevation (m)                                        | 604.1 | 83.3  | 8 |  |
| Slope (degrees)                                      | 6.8   | 6.0   | 8 |  |
| Surface Organics Depth(cm)                           | 6.9   | 4.9   | 8 |  |
| Cumulative Org. in 40 cm (cm)                        | 6.9   | 4.9   | 8 |  |
| Loess Cap Thickness (cm)                             |       |       | 0 |  |
| Depth to Rocks (cm)                                  | 8.3   | 6.2   | 6 |  |
| Surface Fragment Cover (%)                           | 14.0  | 15.7  | 8 |  |
| Frost Boil Cover (%)                                 | 15.0  |       | 1 |  |
| Thaw Depth (cm)                                      | 78.0  | 38.0  | 4 |  |
| Site pH at 10-cm depth                               | 7.1   | 0.3   | 8 |  |
| Site EC at 10-cm depth (µS/cm)                       | 138.8 | 107.9 | 8 |  |
| Water Depth (cm,+ above grnd) <sup>a</sup>           | -9.0  | 5.6   | 8 |  |
| allogeuroments > 1 m indicate minimum denth not true |       |       |   |  |

<sup>&</sup>lt;sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soils in this ecotype are Typic Aquorthels (wet, mineral soil over permafrost lacking cryoturbation) and Typic Aquiturbels (wet, mineral soil over permafrost with cryoturbation). A less common subgroup is Typic Gelaquepts (wet, partially developed, permafrost below 1 m). This ecotype is the sole ecotype composing the Alpine Rocky Wet Meadow soil landscape.

# **Coastal Brackish Dunegrass Meadow**



# Geomorphology:

These dry meadows are located along the coastal sections of BELA and CAKR. This ecotype occurs on eolian active coastal sand deposits and active marine beaches. Surfaces are flat or are wave cut benches. Elevations are near sea level.

## Plant Association:

Elymus arenarius ssp. mollis-Lathyrus maritimus

Vegetation is restricted to salt-tolerant species that can tolerate frequent root disturbance in unstable sands; as a result, plant diversity is low (Table 20). Dominant plants include Elymus arenarius spp. mollis (syn: Leymus mollis), Lathyrus maritimus, Cnidium cnidiifolium and Honckenya peploides. Trees, shrubs, sedges and lichens are absent. Total live cover is usually low.

This ecotype is most similar to Coastal Dry Barrens except vegetation cover is higher, and salinity values are lower.

Table 20. Vegetation cover and frequency for Coastal Brackish Dunegrass Meadow (n=6)

|                                     | Cover |      | Freq |
|-------------------------------------|-------|------|------|
|                                     | Mean  | SD   | %    |
| Total Live Cover                    | 55.5  | 28.7 | 100  |
| Total Vascular Cover                | 55.2  | 28.7 | 100  |
| Total Forb Cover                    | 26.2  | 18.2 | 100  |
| Artemisia tilesii                   | 1.3   | 1.4  | 100  |
| Astragalus eucosmus ssp. sealei     | 0.2   | 0.5  | 25   |
| Bupleurum triradiatum ssp. arcticum | 0.3   | 0.5  | 50   |
| Chrysanthemum arcticum              | <0.1  | 0.1  | 25   |
| Chrysanthemum bipinnatum            | <0.1  | 0.1  | 25   |
| Cnidium cnidiifolium                | 1.5   | 1.3  | 75   |
| Conioselinum chinense               | 8.0   | 1.5  | 25   |
| Honckenya peploides                 | 1.0   | 0.8  | 75   |
| Lathyrus maritimus ssp. maritimus   | 17.5  | 15.0 | 75   |
| Mertensia maritima                  | 0.5   | 1.0  | 25   |
| Papaver lapponicum                  | <0.1  | 0.1  | 25   |
| Saussurea nuda                      | <0.1  | 0.1  | 25   |
| Saxifraga bronchialis               | <0.1  | 0.1  | 25   |
| Senecio pseudoarnica                | 2.8   | 4.9  | 50   |
| Stellaria sp.                       | 0.2   | 0.5  | 25   |
| Triglochin maritimum                | <0.1  | 0.1  | 25   |
| Total Grass Cover                   | 29.0  | 11.8 | 100  |
| Bromus sp.                          | 0.8   | 1.5  | 25   |
| Deschampsia caespitosa              | <0.1  | 0.1  | 25   |
| Elymus arenarius ssp. mollis        | 25.0  | 7.1  | 100  |
| Festuca rubra                       | 0.8   | 1.5  | 25   |
| Festuca sp.                         | 1.2   | 2.5  | 25   |
| Poa arctica                         | 1.2   | 2.5  | 25   |
| Total Nonvascular Cover             | 0.3   | 0.5  | 50   |
| Total Moss Cover                    | 0.3   | 0.5  | 50   |
| Bryum sp.                           | 0.3   | 0.5  | 50   |
| Total Bare Ground                   | 45.8  | 33.1 | 100  |
| Bare Soil                           | 6.3   | 7.4  | 100  |
| Litter alone                        | 39.5  | 30.5 | 100  |



Soils are sandy and often lack a surface organic horizon (Table 21). Permafrost occurs in the upper two meter of the soil profile. Frost boils, loess caps, and surface fragments are absent. Coarse fragments are occasionally present in the active layer. Soil pH is circumneutral to alkaline, and site chemistry is brackish. The soils are excessively drained, and the water table is moderately deep to deep.

Table 21. Soil characteristics for Coastal Brackish Dunegrass Meadow.

| Property                       | Mean   | SD    | n |
|--------------------------------|--------|-------|---|
| Elevation (m)                  | 3.0    | 1.4   | 2 |
| Slope (degrees)                | 3.0    | 0.0   | 2 |
| Surface Organics Depth(cm)     | 3.0    |       | 1 |
| Cumulative Org. in 40 cm (cm)  | 3.0    |       | 1 |
| Loess Cap Thickness (cm)       |        |       | 0 |
| Depth to Rocks (cm)            | 105.5  | 109.4 | 4 |
| Surface Fragment Cover (%)     |        |       | 0 |
| Frost Boil Cover (%)           |        |       | 0 |
| Thaw Depth (cm)                | 106.2  | 37.5  | 4 |
| Site pH at 10-cm depth         | 7.5    | 0.7   | 4 |
| Site EC at 10-cm depth (µS/cm) | 95.0   | 66.1  | 4 |
| Water Depth (cm,+ above grnd)a | -100.0 | 40.8  | 4 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroup in this ecotype is Typic Cryopsamments (sandy, low coarse fragment content, well drained, lacking permafrost). A less common soil is Typic Psammorthels (sandy, permafrost within 1 m, lacking cryoturbation). This ecotype and associated soils are part of the Coastal Sandy Barrens, Meadow, and Shrub soil landscape. Also included in this soil landscape are Coastal Dry Barrens and Coastal Crowberry Dwarf Shrub.

# **Coastal Brackish Sedge-Grass Meadow**



## Geomorphology:

This ecotype occurs on flat areas on active and inactive tidal flats, particularly around deltas, in limited distribution along the coast. Elevations are at sea level or slightly raised. Soil electrical conductivity values are above  $800\mu\text{S.cm}^{-1}$ .

### Plant Association:

Carex ramenskii- Dupontia fischeri

Grasses and sedges characterize this ecotype, while forbs and low deciduous shrubs contribute a minor amount to the overall assemblage (Table 22). Trees, tall shrubs, mosses and lichens are absent. Vegetation on lower, wetter sites is dominated by Carex ramenskii, Dupontia fischeri, and Calamagrostis deschampsioides. Salix ovalifolia and Deschampsia caespitosa occur on micro-sites with better drainage.

This ecotype is most similar to Coastal Saline Wet Sedge–Grass Meadow, but contains *Dupontia* fischeri and Salix ovalifolia instead of Puccinellia phryganodes, is more sheltered from ocean water and as a result, has lower salinity values. The two ecotypes are spectrally similar and therefore were mapped together.

Table 22. Vegetation cover and frequency for Coastal Brackish Sedge–Grass Meadow (n=7).

|                                    | Cove | er   | Freq |
|------------------------------------|------|------|------|
|                                    | Mean | SD   | %    |
| Total Live Cover                   | 46.2 | 11.0 | 100  |
| Total Vascular Cover               | 46.2 | 11.0 | 100  |
| <b>Total Deciduous Shrub Cover</b> | 2.6  | 4.2  | 60   |
| Salix fuscescens                   | 0.2  | 0.4  | 20   |
| Salix ovalifolia                   | 2.4  | 4.3  | 40   |
| <b>Total Forb Cover</b>            | 8.6  | 6.0  | 100  |
| Chenopodium sp.                    | 0.2  | 0.4  | 40   |
| Chrysanthemum bipinnatum           | <0.1 | <0.1 | 20   |
| Cochlearia officinalis             | 1.8  | 2.2  | 60   |
| Polygonum sp.                      | <0.1 | <0.1 | 20   |
| Potentilla egedii                  | 2.2  | 4.4  | 60   |
| Potentilla sp.                     | <0.1 | <0.1 | 20   |
| Rumex arcticus                     | 0.3  | 0.4  | 80   |
| Stellaria humifusa                 | 4.0  | 3.7  | 100  |
| Total Grass Cover                  | 8.8  | 5.2  | 100  |
| Calamagrostis deschampsioides      | 3.0  | 4.5  | 40   |
| Calamagrostis holmii               | 2.4  | 4.3  | 40   |
| Deschampsia caespitosa             | 1.0  | 2.2  | 20   |
| Dupontia fischeri                  | 2.0  | 1.9  | 80   |
| Poa arctica                        | 0.4  | 0.9  | 20   |
| Total Sedge & Rush Cover           | 26.2 | 4.4  | 100  |
| Carex aquatilis ssp. aquatilis     | 0.2  | 0.4  | 20   |
| Carex ramenskii                    | 26.0 | 4.2  | 100  |
| Total Bare Ground                  | 47.4 | 27.9 | 100  |
| Bare Soil                          | 11.2 | 21.7 | 100  |
| Water                              | 0.2  | 0.4  | 60   |
| Litter alone                       | 36.0 | 23.8 | 100  |



Soils are loamy and typically feature a moderately thick surface organic horizon (Table 23). Permafrost occurs in the upper meter of the soil profile. Frost boils, loess caps, and surface fragments are absent. Coarse fragments are absent in the active

layer. Organic horizons, buried by ocean sands and silts during tidal floods, are sometimes found in these soils. Soil pH is circumneutral, site chemistry is brackish, and EC is high. The soils are very poorly drained, and the water table is very shallow to above ground.

Table 23. Soil characteristics for Coastal Brackish Sedge–Grass Meadow.

| Property                                   | Mean   | SD     | n |
|--------------------------------------------|--------|--------|---|
| Elevation (m)                              | 3.0    | 1.0    | 3 |
| Slope (degrees)                            |        |        | 0 |
| Surface Organics Depth(cm)                 | 15.2   | 11.1   | 5 |
| Cumulative Org. in 40 cm (cm)              | 16.4   | 9.9    | 5 |
| Loess Cap Thickness (cm)                   |        |        | 0 |
| Depth to Rocks (cm)                        | 200.0  | 0.0    | 5 |
| Surface Fragment Cover (%)                 |        |        | 0 |
| Frost Boil Cover (%)                       |        |        | 0 |
| Thaw Depth (cm)                            | 76.6   | 30.9   | 5 |
| Site pH at 10-cm depth                     | 6.3    | 0.4    | 5 |
| Site EC at 10-cm depth (µS/cm)             | 8750.0 | 5415.8 | 5 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -8.0   | 6.5    | 4 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Typic Historthels (wet, organic rich soil over permafrost and lacking cryoturbation) and Fluvaquentic Aquorthels (wet, saturated within 50 cm, mineral soil with thin buried horizons, permafrost within 1 m). A less common soil is Aquic Gelifluvents (wet, mineral soil with buried organic horizons, permafrost below 1 m). This ecotype and associated soils are part of the Coastal Loamy Barrens, Meadow, and Shrub soil landscape. Also included in this soil landscape are Coastal Wet Barrens, Coastal Brackish Willow Shrub, and Coastal Saline Sedge–Grass Meadow.

### **Coastal Brackish Water**



## Geomorphology:

Coastal Brackish Water comprises estuarine waters and lakes on the coast that are influenced by both fresh and nearshore water. In ARCN, this ecotype is restricted to coastal areas in BELA and CAKR. These waters are flooded periodically with saltwater during high tides or storm surges, subsequently resulting in fluctuations in salinity levels. Some lakes have distinct outlets or have been tapped and partially drained through erosional processes. Shallow lakes (<1.5m) freeze to the bottom during winter.

This ecotype is predominantly non-vegetated and we did not develop a plant association. Shallow coastal ponds are occasionally occupied by *Hippurus tetraphylla*.

Coastal Brackish Water is most similar to Nearshore Water and to Coastal Tidal River.

### Soils:

Flooded soils were not described. Water characteristics are listed in Table 24.

Table 24. Water characteristics for Coastal Brackish Water.

| Property                                   | Mean   | SD     | n |
|--------------------------------------------|--------|--------|---|
| Site pH at 10-cm depth                     | 8.1    | 1.0    | 4 |
| Site EC at 10-cm depth (µS/cm)             | 5010.0 | 5170.3 | 4 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | 93.3   | 92.9   | 3 |

 $^{\rm a}\mbox{Measurements} > 1$  m indicate minimum depth, not true depth

## **Coastal Brackish Willow Shrub**



# Geomorphology:

Coastal Brackish Willow Shrub occurs uncommonly on stabilized sections of inactive tidal flats in BELA. Surfaces are flat, and elevations are close to sea level. Disturbance is primarily wind-borne salt water from storm surges, resulting in brackish soils. We could not map this ecotype because it occurs in fragmented patches that were too small to be differentiated by satellite.

### Plant Association:

Salix ovalifolia–Deschampsia caespitosa

Salix ovalifolia, a halophytic, water-tolerant dwarf willow, is the dominant species in Coastal Brackish Willow Shrub (Table 25). This stable ecotype is the second most species-rich coastal ecotype. Trees, shrubs >20 cm tall, and lichens are absent. Sedges are common due to the wet soils. Common species include *Pedicularis sudetica*, *Rumex arcticus* and *Eriophorum angustifolium*.

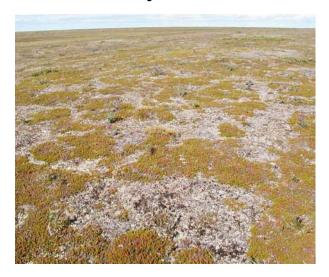
This ecotype is most similar to Coastal Brackish Wet Sedge–Grass Meadow, except it has a higher shrub component and is more diverse.

Table 25. Vegetation cover and frequency for Coastal Brackish Willow Shrub (n=3).

|                                        | Cov          | er         | Freq       |
|----------------------------------------|--------------|------------|------------|
|                                        | Mean         | SD         | %          |
| Total Live Cover                       | 68.2         | 2.6        | 100        |
| Total Vascular Cover                   | 52.5         | 10.3       | 100        |
| Total Evergreen Shrub                  |              |            |            |
| Cover                                  | 0.4          | 0.6        | 67         |
| Empetrum nigrum                        | 0.4          | 0.6        | 67         |
| Total Deciduous Shrub                  | 12.2         | 0.2        | 100        |
| Cover                                  | 12.3<br>12.3 | 9.3<br>9.3 | 100<br>100 |
| Salix ovalifolia                       | 6.1          | 9.5<br>4.5 | 100        |
| Total Forb Cover                       |              | 4.5<br>0.1 |            |
| Androsace chamaejasme                  | <0.1         |            | 33         |
| Castilleja elegans                     | 0.3          | 0.6        | 33         |
| Chrysanthemum arcticum                 | 0.7          | 0.6        | 67         |
| Cochlearia officinalis ssp.<br>arctica | 0.7          | 0.6        | 67         |
| Lathyrus maritimus ssp.                | 0.7          | 0.0        | 07         |
| maritimus                              | 0.3          | 0.6        | 33         |
| Melandrium apetalum                    | 0.1          | 0.1        | 67         |
| Pedicularis langsdorffii ssp.          |              |            |            |
| arctica                                | 0.3          | 0.6        | 33         |
| Pedicularis sudetica                   | 1.7          | 0.6        | 100        |
| Potentilla sp.                         | 0.1          | 0.1        | 67         |
| Primula borealis                       | <0.1         | 0.1        | 33         |
| Rumex arcticus                         | 0.1          | <0.1       | 100        |
| Saxifraga exilis                       | 1.7          | 2.9        | 67         |
| Sedum rosea ssp. integrifolium         | 0.1          | 0.1        | 67         |
| Stellaria sp.                          | <0.1         | 0.1        | 33         |
| Total Grass Cover                      | 16.7         | 5.7        | 100        |
| Arctagrostis latifolia                 | 1.7          | 2.9        | 33         |
| Calamagrostis                          |              |            |            |
| deschampsioides                        | 5.0          | 5.0        | 67         |
| Deschampsia caespitosa                 | 5.7          | 4.0        | 100        |
| Dupontia fischeri                      | 3.3          | 2.9        | 67         |
| Elymus arenarius ssp. mollis           | 0.4          | 0.6        | 67         |
| Puccinellia borealis                   | 0.7          | 1.2        | 33         |
| Total Sedge & Rush Cover               | 17.0         | 4.3        | 100        |
| Carex amblyorhynca                     | 1.7          | 2.9        | 33         |
| Carex aquatilis ssp. aquatilis         | 0.7          | 1.2        | 33         |
| Carex bigelowii                        | 5.0          | 8.7        | 33         |
| Carex canescens                        | 1.3          | 1.2        | 67         |
| Carex ramenskii                        | 5.0          | 5.0        | 67         |
| Eriophorum angustifolium               | 2.4          | 2.5        | 100        |
| Juncus triglumis ssp. albescens        | 1.0          | 1.7        | 33         |
| Total Nonvascular Cover                | 15.7         | 11.0       | 100        |
| Total Moss Cover                       | 15.7         | 11.0       | 100        |
| Aulacomnium palustre                   | 0.7          | 1.2        | 33         |
| Bryum pallescens                       | 1.7          | 2.9        | 33         |
| Bryum sp.                              | 2.5          | 2.5        | 67         |
| Campylium polygamum                    | 6.7          | 7.6        | 67         |
| Campylium sp.                          | 2.5          | 2.5        | 67         |
| Leptobryum pyriforme                   | 1.7          | 2.9        | 33         |
| Total Bare Ground                      | 6.7          | 5.9        | 67         |
| Bare Soil                              | 1.3          | 1.5        | 67         |
| Water                                  | 2.0          | 2.6        | 67         |
| vvacci                                 |              |            |            |



Soils are sandy and typically feature a thin to moderately thick surface organic horizon (Table 26). Permafrost occurs in the upper meter of the soil profile. Frost boils, loess caps, and surface fragments are absent. Coarse fragments are absent in the active layer. Organic horizons, buried by ocean sands and silts during tidal floods, are commonly found in these soils. Soil pH is circumneutral, site chemistry is brackish, and EC is moderately high to high. The soils are very poorly drained, and the water table is very shallow to above ground.


Table 26. Soil characteristics for Coastal Brackish Willow Shrub.

| Property                                   | Mean   | SD     | n |
|--------------------------------------------|--------|--------|---|
| Elevation (m)                              | 6.0    |        | 1 |
| Slope (degrees)                            |        |        | 0 |
| Surface Organics Depth(cm)                 | 6.7    | 9.8    | 3 |
| Cumulative Org. in 40 cm (cm)              | 11.7   | 5.7    | 3 |
| Loess Cap Thickness (cm)                   |        |        | 0 |
| Depth to Rocks (cm)                        | 200.0  | 0.0    | 2 |
| Surface Fragment Cover (%)                 |        |        | 0 |
| Frost Boil Cover (%)                       |        |        | 0 |
| Thaw Depth (cm)                            | 52.3   | 15.0   | 3 |
| Site pH at 10-cm depth                     | 6.5    | 0.1    | 3 |
| Site EC at 10-cm depth (µS/cm)             | 2750.0 | 2941.4 | 3 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -5.5   | 6.4    | 2 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroup in this ecotype is Fluvaquentic Aquorthels (wet, saturated within 50 cm, mineral soil with thin buried horizons, permafrost within 1 m). This ecotype and associated soils are part of the Coastal Loamy Barrens, Meadow, and Shrub soil landscape. Also included in this soil landscape are Coastal Wet Barrens, Coastal Brackish Sedge–Grass Meadow, and Coastal Saline Sedge–Grass Meadow.

# **Coastal Crowberry Dwarf Shrub**



## Geomorphology:

This ecotype occurs on elevated sections of inactive eolian coastal sand deposits and inactive marine beaches in BELA and CAKR. It occurs on parabolic dunes, crests and on eolian patterned ground. Although geomorphology is marine derived, this ecotype is sheltered from active ocean effects, leading to low salinity values and higher species diversity.

## Plant Association:

Empetrum nigrum–Elymus arenarius ssp. mollis
The dominant species in this ecotype is
crowberry, Empetrum nigrum (Table 27). This is the
most diverse coastal ecotype due to surface age and
stability. Trees and tall shrubs are absent. Low shrubs
and sedges occur in trace quantities. Mosses and
lichens are common but grasses, forbs and dwarf
shrubs are the most prevalent. Common species
include Betula nana, Armeria maritima, Rhytidium
rugosum, and Flavocetraria cucullata.

## Soils:

Soils are sandy on inactive coastal dunes and gravelly on inactive marine beaches. The soils feature a thin, often discontinuous, surface organic horizon (Table 28). Permafrost occurs at or near a depth of 1 m below the soil surface. Frost boils and surface fragments are absent, and loess caps are rare. Coarse fragments are present in the active layer on active marine beaches. Soil pH is circumneutral, and EC is low. The soils are excessively to well drained, and the water table is moderately deep to deep.

Table 27. Vegetation cover and frequency for Coastal Crowberry Dwarf Shrub (n=6).

| Coastal Crowberry Dwart Shrub (n=6).           |            |              |          |
|------------------------------------------------|------------|--------------|----------|
|                                                | Cov        | Cover        |          |
|                                                | Mean       | SD           | %        |
| Total Live Cover                               | 100.8      | 29.1         | 100      |
| Total Vascular Cover                           | 61.4       | 18.3         | 100      |
| Total Evergreen Shrub Cover                    | 38.4       | 11.3         | 100      |
| Cassiope tetragona                             | 0.3        | 0.8          | 33       |
| Empetrum nigrum                                | 34.2       | 12.8         | 100      |
| Ledum decumbens                                | 1.2        | 1.5          | 50       |
| Loiseleuria procumbens                         | 0.2        | 0.4          | 17       |
| Vaccinium vitis-idaea                          | 2.5        | 3.8          | 67       |
| Total Deciduous Shrub Cover                    | 11.3       | 8.7          | 83       |
| Arctostaphylos alpina                          | 1.2        | 2.0          | 50       |
| Arctostaphylos rubra                           | 2.5        | 6.1          | 17       |
| Betula nana                                    | 2.7        | 3.8          | 67       |
| Salix alaxensis                                | 0.3        | 0.8          | 17       |
| Salix glauca                                   | 0.5        | 1.2          | 33       |
| Salix lanata ssp. richardsonii                 | 0.2        | 0.4          | 17       |
| Salix ovalifolia                               | 0.5        | 1.2          | 17       |
| Salix phlebophylla                             | 0.2        | 0.4          | 17       |
| Salix planifolia ssp. pulchra                  | 0.5        | 0.8          | 67       |
| Salix reticulata                               | 0.5        | 0.8          | 50       |
| Salix rotundifolia                             | <0.1       | <0.1         | 17       |
| Vaccinium uliginosum                           | 2.2        | 2.3          | 67       |
| Total Forb Cover                               | 7.5        | 5.6          | 100      |
| Arenaria longipedunculata                      | <0.1       | <0.1         | 17       |
| Armeria maritima                               | 0.2        | 0.4          | 83       |
| Artemisia arctica ssp. arctica                 | 0.5        | 0.8          | 33       |
| Artemisia tilesii                              | 0.2        | 0.4          | 17       |
| Aster sibiricus                                | <0.1       | <0.1         | 17       |
| Astragalus eucosmus ssp. sealei                | <0.1       | <0.1         | 17       |
| Astragalus umbellatus                          | <0.1       | <0.1         | 17       |
| Bupleurum triradiatum ssp. arcticum            | 0.2        | 0.4          | 33       |
| Castilleja caudata                             | <0.1       | <0.1         | 17       |
| Castilleja elegans                             | 0.2        | 0.4          | 17       |
| Chrysanthemum bipinnatum                       | 0.2        | 0.4          | 17       |
| Epilobium latifolium                           | 1.8        | 3.3          | 33       |
| Geum rossii                                    | <0.1       | <0.1         | 17       |
| Lathyrus maritimus ssp. maritimus              | 1.0        | 1.1          | 50       |
| Lomatogonium rotatum                           | <0.1       | 0.1          | 33       |
| Minuartia sp.                                  | <0.1       | <0.1         | 17       |
| Oxytropis maydelliana                          | 0.3        | 0.5          | 50       |
| Potentilla sp.                                 |            | <0.1<br>2.0  | 17       |
| Potentilla uniflora<br>Potentilla villosa      | 0.8<br>0.5 | 0.8          | 17<br>33 |
| Saxifraga bronchialis                          | 0.3        | 0.8          | 33<br>17 |
| Saxifraga tricuspidata                         | 0.8        | 2.0          | 17       |
| Saxirraga tricuspidata<br>Selaginella sibirica | 0.8        | 0.4          |          |
| Taraxacum sp.                                  | <0.1       |              | 33<br>17 |
| Taraxacum sp.<br>Tofieldia coccinea            | <0.1       | <0.1<br><0.1 | 17       |
| Total Grass Cover                              | 3.7        | 2.3          | 100      |
| Elymus arenarius ssp. mollis                   | 3.7<br>1.7 | 1.5          | 83       |
| Festuca rubra                                  | 0.5        | 1.2          | 33       |
| Hierochloe alpina                              | 0.5        | 1.2          | 50       |
| Poa arctica                                    | 0.3        | 0.4          | 33       |
| Poa glauca                                     | 0.2        | 0.4          |          |
| Puccinellia sp.                                | 0.2        | 0.4          |          |
| Trisetum spicatum ssp. spicatum                | 0.2        | 0.4          | 67       |
| Total Sedge & Rush Cover                       | 0.4        | 0.3          | 83       |
| Carex atrofusca                                | <0.1       | <0.1         | 17       |
| Juncus triglumis ssp. albescens                | <0.1       | <0.1         | 17       |
| Luzula arctica                                 | <0.1       | <0.1         | 17       |
|                                                | -0.1       |              | .,       |

Table 27. Continued.

|                           | Cov  | Cover |     |
|---------------------------|------|-------|-----|
|                           | Mean | SD    | %   |
| Luzula confusa            | <0.1 | <0.1  | 17  |
| Luzula multiflora         | 0.2  | 0.4   | 33  |
| Luzula sp.                | 0.3  | 0.8   | 17  |
| Total Nonvascular Cover   | 39.5 | 18.9  | 100 |
| <b>Total Moss Cover</b>   | 10.1 | 7.3   | 100 |
| Aulacomnium turgidum      | 0.5  | 1.2   | 17  |
| Bryum sp.                 | 1.5  | 2.0   | 50  |
| Dicranum acutifolium      | 1.7  | 4.1   | 17  |
| Dicranum sp.              | 2.5  | 4.2   | 33  |
| Hylocomium splendens      | 0.3  | 0.8   | 17  |
| Pleurozium schreberi      | 0.2  | 0.4   | 33  |
| Polytrichum juniperinum   | 0.8  | 2.0   | 17  |
| Polytrichum sp.           | <0.1 | 0.1   | 33  |
| Ptilidium ciliare         | 0.3  | 0.8   | 33  |
| Rhytidium rugosum         | 2.0  | 2.4   | 67  |
| Sanionia uncinata         | 0.2  | 0.4   | 17  |
| <b>Total Lichen Cover</b> | 29.4 | 14.0  | 100 |
| Alectoria nigricans       | 1.3  | 2.2   | 33  |
| Arctoparmelia sp.         | <0.1 | <0.1  | 17  |
| Asahinea chrysantha       | 0.2  | 0.4   | 17  |
| Bryocaulon divergens      | 2.7  | 4.1   | 50  |
| Bryoria nitidula          | 0.9  | 2.0   | 33  |
| Cetraria cf. islandica    | 0.5  | 0.8   |     |
| Cetraria laevigata        | 0.7  | 1.2   | 33  |
| Cladina arbuscula         | 2.5  | 3.9   | 50  |
| Cladina rangiferina       | 1.8  | 4.0   | 33  |
| Cladonia alaskana         | <0.1 | 0.1   | 17  |
| Cladonia furcata          | <0.1 | 0.1   | 17  |
| Cladonia pyxidata         | 0.2  | 0.4   | 17  |
| Cladonia sp.              | 1.3  | 2.2   | 33  |
| Dactylina arctica         | <0.1 | 0.1   | 33  |
| Flavocetraria cucullata   | 6.2  | 5.5   | 83  |
| Flavocetraria nivalis     | 2.7  | 3.7   | 67  |
| Hypogymnia physodes       | <0.1 | 0.1   | 17  |
| Lobaria linita            | 0.1  | 0.1   | 50  |
| Nephroma arcticum         | 0.2  | 0.4   | 17  |
| Ochrolechia frigida       | 0.3  | 0.8   | 33  |
| Peltigera aphthosa        | <0.1 | 0.1   | 33  |
| Pertusaria sp.            | 2.5  | 6.1   | 17  |
| Ramalina almquistii       | <0.1 | <0.1  | 17  |
| Sphaerophorus fragilis    | 0.3  | 0.8   | 17  |
| Sphaerophorus globosus    | 1.0  | 1.2   | 67  |
| Stereocaulon alpinum      | 0.1  | 0.1   | 33  |
| Stereocaulon sp.          | 1.7  | 4.1   | 33  |
| Thamnolia vermicularis    | 1.3  | 1.9   | 67  |
| Unknown crustose lichen   | 0.8  | 2.0   | 33  |
| Total Bare Ground         | 16.2 | 12.8  | 100 |
| Bare Soil                 | 4.5  | 3.1   | 100 |
| Litter alone              | 11.7 | 13.6  | 100 |



Table 28. Soil characteristics for Coastal Crowberry Dwarf Shrub.

| Property                                   | Mean  | SD    | n |
|--------------------------------------------|-------|-------|---|
| Elevation (m)                              | 3.5   | 1.3   | 4 |
| Slope (degrees)                            | 2.3   | 2.3   | 3 |
| Surface Organics Depth(cm)                 | 1.0   | 0.0   | 5 |
| Cumulative Org. in 40 cm (cm)              | 1.5   | 0.8   | 6 |
| Loess Cap Thickness (cm)                   | 3.0   |       | 1 |
| Depth to Rocks (cm)                        | 134.7 | 101.2 | 6 |
| Surface Fragment Cover (%)                 |       |       | 0 |
| Frost Boil Cover (%)                       |       |       | 0 |
| Thaw Depth (cm)                            | 83.8  | 5.3   | 5 |
| Site pH at 10-cm depth                     | 6.1   | 0.8   | 6 |
| Site EC at 10-cm depth (µS/cm)             | 123.3 | 94.8  | 6 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -74.0 | 24.1  | 6 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroup in this ecotype is Typic Psammorthels (sandy, permafrost within 1 m, lacking cryoturbation). This ecotype and associated soils are part of the Coastal Sandy Barrens, Meadow, and Shrub soil landscape. Also included in this soil landscape are Coastal Brackish Dunegrass Meadow and Coastal Dry Barrens.

# **Coastal Dry Barrens**



# Geomorphology:

Coastal Dry Barrens comprises salt-affected active marine beaches and active eolian coastal sand deposits along ocean waters in CAKR and BELA. The surface is frequently scoured by wave action and storm surges.

### Plant Association:

Elymus arenarius ssp. mollis-Lathyrus maritimus

High disturbance maintains the barren nature of this ecotype, and vegetation is sparse to non-existent (Table 29). Plant species occur in trace quantities. Trees, evergreen shrubs and lichens are absent. The species present in this ecotype are early colonizers tolerant of inundation by seawater and frequent scouring by wind and sand. Common species include *Honckenya peploides*, *Lathyrus maritimus* and *Elymus arenarius* ssp. *mollis*.

This ecotype is most similar to Coastal Brackish Dunegrass Meadow except it has lower species cover and a greater disturbance rate. It is also similar to Coastal Wet Barrens except surfaces are more elevated, are drier and have different associated species. Due to spectral similarities, we developed a single map class for Coastal Dry Barrens and Coastal Wet Barrens, which is Coastal Barrens.

Table 29. Vegetation cover and frequency for Coastal Dry Barrens (n=7).

|                                    | Cov  | Cover |     |
|------------------------------------|------|-------|-----|
|                                    | Mean | SD    | %   |
| <b>Total Live Cover</b>            | 6.5  | 9.1   | 57  |
| Total Vascular Cover               | 4.1  | 6.1   | 43  |
| <b>Total Deciduous Shrub Cover</b> | 0.0  | 0.1   | 14  |
| Salix ovalifolia                   | <0.1 | <0.1  | 14  |
| Salix planifolia ssp. pulchra      | <0.1 | <0.1  | 14  |
| Total Forb Cover                   | 1.5  | 2.4   | 43  |
| Artemisia tilesii                  | <0.1 | <0.1  | 29  |
| Aster sibiricus                    | <0.1 | <0.1  | 14  |
| Castilleja sp.                     | <0.1 | <0.1  | 14  |
| Cochlearia officinalis             | <0.1 | <0.1  | 14  |
| Honckenya peploides                | 0.9  | 1.5   | 29  |
| Lathyrus maritimus ssp. maritimus  | 0.2  | 0.4   | 29  |
| Ligusticum scoticum                | <0.1 | <0.1  | 14  |
| Mertensia maritima                 | 0.3  | 8.0   | 14  |
| Pedicularis sudetica               | <0.1 | <0.1  | 14  |
| Potentilla egedii                  | <0.1 | <0.1  | 14  |
| Senecio pseudoarnica               | <0.1 | <0.1  | 14  |
| Stellaria longipes                 | <0.1 | <0.1  | 14  |
| Stellaria sp.                      | <0.1 | <0.1  | 14  |
| Total Grass Cover                  | 1.9  | 3.8   | 43  |
| Elymus arenarius ssp. mollis       | 1.9  | 3.8   | 43  |
| Festuca rubra                      | <0.1 | <0.1  | 14  |
| Poa eminens                        | <0.1 | <0.1  | 14  |
| Total Sedge & Rush Cover           | 0.7  | 1.9   | 14  |
| Juncus arcticus                    | 0.7  | 1.9   | 14  |
| Total Nonvascular Cover            | 2.4  | 6.0   | 43  |
| Total Moss Cover                   | 2.4  | 6.0   | 43  |
| Aulacomnium palustre               | 0.7  | 1.9   | 14  |
| Bryum pseudotriquetrum             | <0.1 | 0.1   | 14  |
| Ceratodon purpureus                | 0.2  | 0.4   | 29  |
| Dicranum spadiceum                 | <0.1 | 0.1   | 14  |
| Leptobryum pyriforme               | <0.1 | 0.1   | 14  |
| Unknown moss                       | 1.4  | 3.8   | 14  |
| Total Bare Ground                  | 97.6 | 4.6   | 100 |
| Bare Soil                          | 92.0 | 11.4  | 100 |
| Water                              | 1.4  | 3.8   | 14  |
| Litter alone                       | 4.1  | 6.0   | 57  |



Soils are sandy and lack a surface organic horizon (Table 30). Permafrost occurs at or near a depth of 1 m below the soil surface. Frost boils, loess caps, and surface fragments are absent. Coarse fragments are absent in the active layer. Soil pH is circumneutral to alkaline, site chemistry is brackish or saline, and EC is high. The soils are excessively drained, and the water table is moderately deep to deep.

Table 30. Soil characteristics for Coastal Dry Barrens.

| Property                                   | Mean   | SD     | n |
|--------------------------------------------|--------|--------|---|
| Elevation (m)                              | 2.8    | 1.8    | 6 |
| Slope (degrees)                            | 4.4    | 3.4    | 5 |
| Surface Organics Depth(cm)                 |        |        | 0 |
| Cumulative Org. in 40 cm (cm)              |        |        | 0 |
| Loess Cap Thickness (cm)                   |        |        | 0 |
| Depth to Rocks (cm)                        | 200.0  | 0.0    | 6 |
| Surface Fragment Cover (%)                 |        |        | 0 |
| Frost Boil Cover (%)                       |        |        | 0 |
| Thaw Depth (cm)                            | 109.6  | 24.5   | 5 |
| Site pH at 10-cm depth                     | 7.2    | 0.9    | 6 |
| Site EC at 10-cm depth (µS/cm)             | 2018.4 | 2497.0 | 5 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -64.1  | 36.8   | 7 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Oxyaquic Cryopsamments (wet, saturated early in growing season, sandy, low coarse fragment content, lacking permafrost) and Typic Cryopsamments (sandy, low coarse fragment content, well drained, lacking permafrost). A less common soil is Aquic Cryopsamments (wet, saturated within 50 cm, sandy, low coarse fragment content, lacking permafrost). This ecotype and associated soils are part of the Coastal Sandy Barrens, Meadow, and Shrub soil landscape. Also included in this soil landscape are Coastal Brackish Dunegrass Meadow and Coastal Crowberry Dwarf Shrub.

## **Coastal Nearshore Water**



## Geomorphology:

Coastal Nearshore Water includes the ocean waters of Bering Strait, Kotzebue Sound and Chukchi Sea.

This ecotype is unvegetated and no plant association was developed. The most similar ecotype is Coastal Brackish Water, which comprises coastal lakes and estuarine waters.

### Soils:

Flooded soils were not described. Water characteristics are listed in Table 31.

Table 31. Water characteristics for Coastal Nearshore Water.

| Property                                   | Mean    | SD    | n |
|--------------------------------------------|---------|-------|---|
| Site pH at 10-cm depth                     | 7.2     | 0.2   | 2 |
| Site EC at 10-cm depth (µS/cm)             | 45850.0 | 777.8 | 2 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | 50.0    |       | 1 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

# **Coastal Saline Sedge-Grass Meadow**



## Geomorphology:

This ecotype occurs on low-lying, salt-affected areas on tidal flats and deltas that experience flooding by seawater. The vegetated surface is non-patterned, but small tidal ponds frequently are interspersed within the meadows.

### Plant Association:

Carex ramenskii–Puccinellia phryganodes

Halophytic graminoids dominate this ecotype (Table 32), particularly the two species that make up the plant association. Additional common species include *Chrysanthemum arcticum* and *Carex subspathacea*. Trees, shrubs and non-vascular species are absent.

This ecotype is very similar to Coastal Brackish Sedge-Grass Meadow, except for differences in salinity and characteristic species. Spectrally, the two are indistinguishable, and were mapped as one type.

Table 32. Vegetation cover and frequency for Coastal Saline Sedge–Grass Meadow (n=6).

|                                                           | Cov  | Cover |     |
|-----------------------------------------------------------|------|-------|-----|
|                                                           | Mean | SD    | %   |
| Total Live Cover                                          | 55.6 | 9.3   | 100 |
| Total Vascular Cover                                      | 55.6 | 9.3   | 100 |
| Total Forb Cover                                          | 16.3 | 10.3  | 100 |
| Chrysanthemum arcticum                                    | 7.3  | 6.6   | 100 |
| Potentilla egedii                                         | 8.5  | 9.7   | 83  |
| Saussurea nuda                                            | 0.3  | 8.0   | 33  |
| Stellaria humifusa                                        | 0.1  | <0.1  | 100 |
| Total Grass Cover                                         | 14.2 | 7.8   | 83  |
| Calamagrostis<br>deschampsioides<br>Elymus arenarius ssp. | 2.5  | 4.2   | 33  |
| mollis                                                    | 4.0  | 4.3   | 83  |
| Puccinellia phryganodes Total Sedge & Rush                | 7.7  | 6.1   | 83  |
| Cover                                                     | 25.2 | 15.6  | 100 |
| Carex ramenskii                                           | 19.3 | 10.3  | 100 |
| Carex subspathacea                                        | 5.8  | 10.2  | 33  |
| Total Bare Ground                                         | 41.7 | 12.5  | 100 |
| Bare Soil                                                 | 4.2  | 5.6   | 83  |
| Water                                                     | 8.0  | 2.0   | 17  |
| Litter alone                                              | 36.7 | 16.9  | 100 |

### Soils:



Soils are loamy or sandy and typically feature a moderately thick surface organic horizon (Table 33). Permafrost occurs in the upper meter of the soil profile. Frost boils, loess caps, and surface fragments are absent. Coarse fragments are absent in the active layer. Organic horizons, buried by ocean sands and silts during tidal floods, are sometimes found in these soils. Soil pH is circumneutral, site chemistry is saline, and EC is very high. The soils are very poorly to somewhat poorly drained, and the water table is shallow.

Table 33. Soil characteristics for Coastal Saline Sedge–Grass Meadow.

| Property                                   | Mean    | SD     | n |
|--------------------------------------------|---------|--------|---|
| Elevation (m)                              | 1.0     | 0.0    | 6 |
| Slope (degrees)                            |         |        | 0 |
| Surface Organics Depth(cm)                 | 20.8    | 13.1   | 5 |
| Cumulative Org. in 40 cm (cm)              | 27.0    | 12.1   | 6 |
| Loess Cap Thickness (cm)                   |         |        | 0 |
| Depth to Rocks (cm)                        | 200.0   | 0.0    | 6 |
| Surface Fragment Cover (%)                 |         |        | 0 |
| Frost Boil Cover (%)                       |         |        | 0 |
| Thaw Depth (cm)                            | 71.4    | 20.8   | 5 |
| Site pH at 10-cm depth                     | 6.7     | 0.3    | 6 |
| Site EC at 10-cm depth (µS/cm)             | 22430.0 | 7537.3 | 6 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -32.7   | 16.6   | 6 |

<sup>&</sup>lt;sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroup in this ecotype is Fluvaquentic Aquorthels (wet, saturated within 50 cm, mineral soil with thin buried horizons, permafrost within 1 m). Less common soils include Fluvaquentic Fibristels (wet, poorly decomposed organic horizon thicker than 40 cm interbedded with buried mineral horizons, permafrost within 1 m) and Fluvaquentic Historthels (wet, organic rich mineral soil with buried organic horizons over permafrost lacking cryoturbation). This ecotype and associated soils are part of the Coastal Loamy Barrens, Meadow, and Shrub soil landscape. Also included in this soil landscape are Coastal Wet Barrens, Coastal Brackish Willow Shrub, and Coastal Brackish Sedge–Grass Meadow.

## **Coastal Tidal River**



# Geomorphology:

Coastal Tidal River occurs infrequently at the outlets of rivers to the ocean in BELA and CAKR. These rivers and tidal guts are a mixing zone between saline and fresh waters. Waters are brackish but the actual salinity fluctuates with the tide. Coastal Tidal River is unvegetated and we did not develop a plant association. This ecotype was mapped with Coastal Brackish Water.

# Soils:

Flooded soils were not described. Water characteristics are listed in Table 34.

Table 34. Water characteristics for Coastal Tidal

| Property                                   | Mean    | SD    | n |
|--------------------------------------------|---------|-------|---|
| Site pH at 10-cm depth                     | 8.3     | 0.4   | 2 |
| Site EC at 10-cm depth (µS/cm)             | 11150.0 | 495.0 | 2 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | 200.0   | 0.0   | 2 |

<sup>&</sup>lt;sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

### **Coastal Wet Barrens**



## Geomorphology:

Coastal Wet Barrens occurs on active tidal flats in BELA and CAKR. These flats are actively scoured and vegetation is barely present. Loamy soils and proximity to sea level impede drainage, resulting in wet soils with poor drainage.

## Plant Association:

Carex ramenskii-Puccinellia phryganodes

Vegetation is sparse and halophytic (Table 35). All life forms are absent except for graminoids, forbs and infrequent occurrences of mosses. We did not collect enough data to be able to fully describe variation in species assemblages that might exist, and our species list is incomplete.

Table 35. Vegetation cover and frequency for Coastal Wet Barrens (n=1).

|                                | Cove | Cover |     |
|--------------------------------|------|-------|-----|
|                                | Mean | SD    | %   |
| Total Live Cover               | 1.6  | NA    | 100 |
| Total Vascular Cover           | 1.4  | NA    | 100 |
| Total Forb Cover               | 0.3  | NA    | 100 |
| Chrysanthemum arcticum         | 0.1  | NA    | 100 |
| Potentilla egedii              | 0.1  | NA    | 100 |
| Stellaria humifusa             | 0.1  | NA    | 100 |
| Total Grass Cover              | 0.1  | NA    | 100 |
| Elymus arenarius ssp. mollis   | 0.1  | NA    | 100 |
| Total Sedge & Rush Cover       | 1.0  | NA    | 100 |
| Carex subspathacea             | 1.0  | NA    | 100 |
| <b>Total Nonvascular Cover</b> | 0.2  | NA    | 100 |
| Total Moss Cover               | 0.2  | NA    | 100 |
| Sphagnum obtusum               | 0.2  | NA    | 100 |
| Total Bare Ground              | 99.1 | NA    | 100 |
| Bare Soil                      | 98.0 | NA    | 100 |
| Water                          | 1.0  | NA    | 100 |
| Litter alone                   | 0.1  | NA    | 100 |

This ecotype is spectrally distinct, but floristically is very similar to Coastal Loamy Wet Saline Sedge–Grass Meadow, with which is shares a floristic association. It is similar to Coastal Dry Barrens except

for drainage and associated plant species. It and Coastal Dry Barrens were mapped as a single ecotype, Coastal Barrens.

#### Soils:



Soils are loamy and lack a surface organic horizon (Table 36). Permafrost typically occurs in the upper meter of the soil profile. Frost boils, loess caps, and surface fragments are absent. Coarse fragments are absent in the active layer. Organic horizons, buried by ocean sands and silts during tidal floods, are commonly found in these soils. Soil pH is circumneutral, site chemistry is saline, and EC is very high (>ca.  $18000~\mu S/cm^{-1}$ ). The soils are very poorly drained, and the water table is shallow to above ground.

Table 36. Soil characteristics for Coastal Wet

| Property                                   | Mean    | SD | n |
|--------------------------------------------|---------|----|---|
| Elevation (m)                              | 1.0     |    | 1 |
| Slope (degrees)                            |         |    | 0 |
| Surface Organics Depth(cm)                 |         |    | 0 |
| Cumulative Org. in 40 cm (cm)              |         |    | 0 |
| Loess Cap Thickness (cm)                   |         |    | 0 |
| Depth to Rocks (cm)                        | 200.0   |    | 1 |
| Surface Fragment Cover (%)                 |         |    | 0 |
| Frost Boil Cover (%)                       |         |    | 0 |
| Thaw Depth (cm)                            | 62.0    |    | 1 |
| Site pH at 10-cm depth                     | 7.2     |    | 1 |
| Site EC at 10-cm depth (µS/cm)             | 18790.0 |    | 1 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -10.0   |    | 1 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroup in this ecotype is Fluvaquentic Aquorthels (wet, saturated within 50 cm, mineral soil with thin buried horizons, permafrost within 1 m). This ecotype and associated soils are part of the Coastal Loamy Barrens, Meadow, and Shrub soil landscape. Also included in this soil landscape are Coastal Brackish Willow Shrub, Coastal Brackish Sedge–Grass Meadow, and Coastal Saline Sedge–Grass Meadow.

## **Lacustrine Barrens**



# Geomorphology:

Lacustrine Barrens is a transitional ecotype that occurs either when a lake basin becomes tapped and drained, or when lakes lose water or completely dry up due to other effects. It occurs in both ice-rich and ice-poor thaw basin centers, along lake beaches, in draining organic fens, and on older moraine kettle lakes where thawing of subsurface permafrost affects the water table. Lacustrine Barrens generally occur at low elevations in lowland areas throughout ARCN, particularly west of GAAR. Lacustrine Barrens occurred in small, spectrally indistinct patches and was not mappable.

## Plant Association:

Eriophorum angustifolium-Epilobium palustre

Early colonizing forbs and sedges are the characteristic life forms in Lacustrine Barrens (Table 37). Total live cover is variable depending on length of time post-lake drainage, but is typically <30%. Most species occur in trace amounts. A mix of aquatic and terrestrial species is common. Trees, shrubs and lichens occur infrequently, whereas mosses occur in trace amounts. Common species include the mastodon flower, *Senecio congestus* and the grass *Arctagrostis latifolia*.

This ecotype is most similar to Lacustrine Bluejoint Meadow, to which it sometimes transitions to in the successional sequence. The main difference is that Lacustrine Barrens has lower total cover, more ruderal species, and fewer species that are slower to establish.

Table 37. Vegetation cover and frequency for Lacustrine Barrens (n=6).

|                                            | - · · · · · |              | F        |
|--------------------------------------------|-------------|--------------|----------|
| -                                          | Cove        |              | Freq     |
|                                            | Mean        | SD           | %        |
| Total Live Cover                           | 48.9        | 49.1         | 100      |
| Total Vascular Cover                       | 40.0        | 46.7         | 100      |
| Total Evergreen Shrub Cover                | 0.0<br><0.1 | 0.0<br><0.1  | 17<br>17 |
| Dryas octopetala                           | 0.2         | 0.5          | 50       |
| Total Deciduous Shrub Cover                | <0.1        | <0.1         | 50<br>17 |
| Betula nana                                | 0.2         | 0.4          | 17       |
| Salix alaxensis                            | <0.1        | <0.1         | 17       |
| Salix fuscescens                           | <0.1        | 0.1          | 33       |
| Salix planifolia ssp. pulchra              | <0.1        | <0.1         | 33<br>17 |
| Salix sp.                                  | 23.6        | 33.9         | 83       |
| Total Forb Cover                           | <0.1        | <0.1         | 63<br>17 |
| Callitriche verna                          | <0.1        | 0.1          | 33       |
| Carda mina an                              | <0.1        | <0.1         | 33<br>17 |
| Cardamine sp.                              | <0.1        | <0.1         | 17       |
| Douglasia ochotensis                       | <0.1        | <0.1         | 17       |
| Draba juvenilis<br>Epilobium latifolium    | 0.3         | 0.1          | 33       |
| Epilobium palustre                         | 0.5         | 0.0          | 50       |
| Equisetum arvense                          | 0.1         | 0.4          | 17       |
| Equisetum fluviatile                       | <0.1        | <0.1         | 17       |
| •                                          | 0.2         | 0.4          | 17       |
| Equisetum palustre<br>Equisetum variegatum | 0.5         | 1.2          | 17       |
| Minuartia arctica                          | <0.1        | <0.1         | 17       |
| Polemonium acutiflorum                     | <0.1        | <0.1         | 17       |
| Potentilla hyparctica                      | <0.1        | <0.1         | 17       |
| Ranunculus gmelini                         | 5.8         | 14.3         | 17       |
| Ranunculus reptans                         | 11.7        | 28.6         | 17       |
| Rorippa islandica ssp.                     | ,           | 20.0         | .,       |
| fernaldiana                                | 2.5         | 6.1          | 17       |
| Saxifraga bronchialis                      | 0.3         | 8.0          | 17       |
| Saxifraga cernua                           | <0.1        | <0.1         | 17       |
| Senecio congestus                          | 1.8         | 4.0          | 33       |
| Senecio fuscatus                           | <0.1        | <0.1         | 17       |
| Smelowskia calycina var. porsildii         | <0.1        | <0.1         | 17       |
| Total Grass Cover                          | 8.6         | 17.6         | 67       |
| Alopecurus aequalis                        | 0.7         | 1.6          | 17       |
| Arctagrostis latifolia                     | 1.4         | 2.1          | 50       |
| Arctophila fulva                           | <0.1        | <0.1         | 17       |
| Calamagrostis lapponica                    | 1.5         | 3.7          | 17       |
| Hierochloe odorata                         | 5.0         | 12.2         | 17       |
| Poa glauca                                 | <0.1        | <0.1         | 17       |
| Total Sedge & Rush Cover                   | 7.6         | 14.7         | 67       |
| Carex aquatilis ssp. aquatilis             | <0.1        | <0.1         | 17       |
| Carex canescens                            | <0.1        | <0.1         | 17       |
| Carex livida                               | <0.1        | <0.1         | 17       |
| Carex saxatilis                            | 0.3         | 0.8          | 33       |
| Eleocharis palustris                       | 0.8         | 1.6          | 33       |
| Eriophorum angustifolium                   | 4.2         | 10.2         | 33<br>17 |
| Eriophorum scheuchzeri                     | 1.7         | 4.1          | 17<br>17 |
| Eriophorum sp.                             | 0.2         | 0.4          | 17<br>17 |
| Juncus filiformis                          | 0.3         | 0.8          | 17<br>17 |
| Luzula arctica                             | <0.1<br>8.9 | <0.1         | 17<br>83 |
| Total Mass Cover                           |             | 15.5<br>15.6 | 83<br>83 |
| Total Moss Cover                           | 8.6         | 15.6         | 83       |

Table 37. Continued.

|                         | Cover |      | Freq |
|-------------------------|-------|------|------|
|                         | Mean  | SD   | %    |
| Aulacomnium palustre    | <0.1  | <0.1 | 17   |
| Calliergon giganteum    | 0.2   | 0.4  | 17   |
| Drepanocladus revolvens | 0.7   | 1.6  | 17   |
| Leptobryum pyriforme    | 3.3   | 8.2  | 17   |
| Polytrichum formosum    | <0.1  | <0.1 | 17   |
| Polytrichum juniperinum | <0.1  | <0.1 | 17   |
| Psilopilum laevigatum   | 3.3   | 8.2  | 17   |
| Racomitrium lanuginosum | 0.2   | 0.4  | 17   |
| Rhytidium rugosum       | 0.3   | 0.8  | 17   |
| Unknown moss            | 0.5   | 1.2  | 33   |
| Total Lichen Cover      | 0.3   | 0.5  | 33   |
| Asahinea chrysantha     | <0.1  | <0.1 | 17   |
| Cetraria sp.            | <0.1  | <0.1 | 17   |
| Cetraria tilesii        | <0.1  | <0.1 | 17   |
| Cladonia sp.            | <0.1  | <0.1 | 17   |
| Dactylina arctica       | <0.1  | <0.1 | 17   |
| Flavocetraria cucullata | <0.1  | <0.1 | 17   |
| Parmelia sp.            | <0.1  | <0.1 | 17   |
| Pseudephebe pubescens   | <0.1  | <0.1 | 17   |
| Thamnolia sp.           | <0.1  | <0.1 | 17   |
| Unknown crustose lichen | 0.2   | 0.4  | 17   |
| Unknown lichen          | <0.1  | <0.1 | 17   |
| Total Bare Ground       | 55.7  | 48.5 | 100  |
| Bare Soil               | 52.5  | 49.6 | 83   |
| Water                   | <0.1  | <0.1 | 17   |
| Litter alone            | 3.2   | 3.5  | 83   |



Soils are typically loamy and lack a surface organic horizon (Table 38). Permafrost seldom occurs within the upper meter of the soil profile. Frost boils and loess caps are absent. Surface fragments are common and abundant on rocky lake shores, and absent in drained-lake basins. Soil pH is circumneutral to alkaline, and EC is low. The soils are somewhat poorly to well drained, and the water table is moderately deep to deep.

Table 38. Soil characteristics for Lacustrine Barrens.

| Property                                   | Mean  | SD    | n |
|--------------------------------------------|-------|-------|---|
| Elevation (m)                              | 252.3 | 346.5 | 6 |
| Slope (degrees)                            | 3.0   | 2.8   | 2 |
| Surface Organics Depth(cm)                 | 3.0   |       | 1 |
| Cumulative Org. in 40 cm (cm)              | 3.0   |       | 1 |
| Loess Cap Thickness (cm)                   |       |       | 0 |
| Depth to Rocks (cm)                        | 200.0 | 0.0   | 2 |
| Surface Fragment Cover (%)                 | 99.0  | 1.4   | 2 |
| Frost Boil Cover (%)                       |       |       | 0 |
| Thaw Depth (cm)                            | 105.0 | 63.6  | 2 |
| Site pH at 10-cm depth                     | 6.8   | 1.8   | 4 |
| Site EC at 10-cm depth (µS/cm)             | 47.5  | 25.0  | 4 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -90.8 | 66.0  | 5 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Oxyaquic Gelorthents (wet, saturated early in growing season, poorly developed with permafrost below 1 m) and Typic Gelorthents (poorly developed with permafrost below 1 m). A less common subgroup is Typic Umbrorthels (moist, organic rich mineral soil over permafrost lacking cryoturbation). This ecotype and associated soils are part of the Lacustrine Loamy Barrens Meadows and Shrublands. Also included in this soil landscape are Lacustrine Bluejoint Meadow and Lacustrine Willow Shrub.

# **Lacustrine Bluejoint Meadow**



## Geomorphology:

These lush meadows occur in drained basins, including both ice-rich and ice-poor thaw basin centers and margins. Surfaces are flat and non-patterned. These meadows occur at low elevations in lowland areas, particularly in NOAT, KOVA and CAKR, and to a lesser extent in GAAR. Lacustrine Bluejoint Meadow was not mappable because it occurs in small patches.

### Plant Association:

Calamagrostis canadensis-Potentilla palustris

Bluejoint grass (*C. canadensis*) grows profusely in this ecotype (Table 39). Forbs and sedges create a quasi-understory in the tall grass. Mosses are typically present. Trees are absent, while shrubs and lichens occur infrequently, always with low total cover. Common species include *Polemonium acutiflorum*, *Eriophorum angustifolium* and *Aulacomnium palustre*.

This ecotype is similar to Lacustrine Barrens as described in the previous section. Riverine Bluejoint Meadow is very similar and shares a floristic association, but occurs on a different terrain type. Upland Bluejoint Meadow is only similar in the characteristic species, *C. canadensis*.

Table 39. Vegetation cover and frequency for Lacustrine Bluejoint Meadow (n=9).

|                                        | Cov  | er   | Freq |
|----------------------------------------|------|------|------|
| -                                      | Mean | SD   | %    |
| Total Live Cover                       | 90.6 | 34.2 | 100  |
| Total Vascular Cover                   | 57.3 | 24.4 | 100  |
| Total Deciduous Shrub Cover            | 2.5  | 6.3  | 50   |
| Betula nana                            | <0.1 | <0.1 | 25   |
| Salix fuscescens                       | 2.0  | 5.3  | 25   |
| Salix lanata ssp. richardsonii         | 0.4  | 1.1  | 12   |
| Salix planifolia ssp. pulchra          | 0.1  | 0.4  | 25   |
| Spiraea beauverdiana                   | <0.1 | <0.1 | 12   |
| Total Forb Cover                       | 13.6 | 9.4  | 100  |
| Arnica alpina ssp.                     | 0.4  |      | 42   |
| angustifolia                           | 0.1  | 0.4  | 12   |
| Artemisia tilesii                      | 0.1  | 0.4  | 12   |
| Barbarea orthoceras                    | 0.1  | 0.4  | 25   |
| Epilobium angustifolium                | 0.1  | 0.4  | 12   |
| Epilobium palustre                     | <0.1 | <0.1 | 25   |
| Equisetum arvense                      | 2.0  | 3.7  | 38   |
| Equisetum fluviatile                   | 2.6  | 7.0  | 38   |
| Galium boreale<br>Galium trifidum ssp. | <0.1 | <0.1 | 12   |
| trifidum                               | <0.1 | <0.1 | 12   |
| Ligusticum scoticum                    | <0.1 | <0.1 | 12   |
| Moehringia lateriflora                 | 0.1  | 0.4  | 12   |
| Petasites frigidus                     | 2.9  | 5.5  | 38   |
| Polemonium acutiflorum                 | 2.0  | 2.7  | 75   |
| Potentilla palustris                   | 2.0  | 3.6  | 62   |
| Ranunculus sp.                         | <0.1 | <0.1 | 12   |
| Rumex arcticus                         | 0.3  | 0.5  | 38   |
| Stellaria longipes                     | 0.5  | 0.8  | 38   |
| Stellaria sp.                          | <0.1 | <0.1 | 12   |
| Valeriana capitata                     | 0.5  | 1.1  | 25   |
| Viola sp.                              | <0.1 | <0.1 | 12   |
| <b>Total Grass Cover</b>               | 33.0 | 22.3 | 88   |
| Agrostis sp.                           | 0.2  | 0.5  | 25   |
| Calamagrostis canadensis               | 31.2 | 22.3 | 88   |
| Poa arctica                            | 1.5  | 3.5  | 38   |
| Total Sedge & Rush Cover               | 8.2  | 12.2 | 88   |
| Carex aquatilis ssp. aquatilis         | 2.1  | 5.2  | 50   |
| Carex arcta                            | <0.1 | <0.1 | 12   |
| Carex utriculata                       | 0.1  | 0.4  | 12   |
| Eriophorum angustifolium               | 5.9  | 9.3  | 50   |
| Luzula multiflora                      | <0.1 | <0.1 | 12   |
| Total Nonvascular Cover                | 33.3 | 31.0 | 88   |
| Total Moss Cover                       | 33.2 | 30.8 | 88   |
| Aulacomnium palustre                   | 20.6 | 24.7 | 62   |
| Aulacomnium turgidum                   | 0.6  | 1.8  | 25   |
| Brachythecium mildeanum                | 0.6  | 1.8  | 12   |
| Brachythecium sp.                      | 1.2  | 3.5  | 12   |
| Calliergon giganteum                   | 0.6  | 1.8  | 12   |
| Calliergon stramineum                  | 0.6  | 1.8  | 12   |
| Drepanocladus sp.                      | 2.2  | 3.7  | 38   |
| Plagiomnium ellipticum                 | 0.6  | 1.8  | 12   |
| Pohlia nutans                          | 0.1  | 0.4  | 12   |
| Polytrichum jensenii                   | 0.6  | 1.8  | 12   |

Table 39. Continued.

|                         | Cov  | Cover |     |
|-------------------------|------|-------|-----|
|                         | Mean | SD    | %   |
| Polytrichum juniperinum | 0.1  | 0.4   | 12  |
| Polytrichum sp.         | 0.5  | 1.1   | 38  |
| Polytrichum strictum    | 1.2  | 3.5   | 12  |
| Sanionia uncinata       | 0.6  | 1.8   | 12  |
| Sphagnum squarrosum     | 0.4  | 1.1   | 12  |
| Unknown liverwort       | 1.5  | 3.5   | 25  |
| Unknown moss            | 0.1  | 0.4   | 25  |
| Warnstorfia exannulata  | 0.6  | 1.8   | 12  |
| Total Lichen Cover      | 0.1  | 0.4   | 25  |
| Cladonia sp.            | 0.1  | 0.4   | 12  |
| Nephroma sp.            | <0.1 | <0.1  | 12  |
| Peltigera aphthosa      | <0.1 | <0.1  | 12  |
| Total Bare Ground       | 37.6 | 28.1  | 100 |
| Bare Soil               | 0.1  | 0.1   | 50  |
| Water                   | 7.5  | 21.2  | 38  |
| Litter alone            | 30.0 | 18.5  | 100 |



Soils are typically loamy with a moderately thick surface organic horizon (Table 40). Permafrost often occurs within the upper meter of the soil profile. Frost boils, surface fragments, and loess caps are absent. Soil pH is circumneutral to acidic, and EC is low. The soils are typically poorly to moderately well drained, and the water table occurs at shallow depths.

Table 40. Soil characteristics for Lacustrine Bluejoint Meadow.

| Property                                   | Mean  | SD    | n |
|--------------------------------------------|-------|-------|---|
| Elevation (m)                              | 39.2  | 32.0  | 8 |
| Slope (degrees)                            | 2.0   |       | 1 |
| Surface Organics Depth(cm)                 | 6.4   | 3.4   | 8 |
| Cumulative Org. in 40 cm (cm)              | 7.1   | 4.4   | 8 |
| Loess Cap Thickness (cm)                   |       |       | 0 |
| Depth to Rocks (cm)                        | 200.0 | 0.0   | 5 |
| Surface Fragment Cover (%)                 |       |       | 0 |
| Frost Boil Cover (%)                       |       |       | 0 |
| Thaw Depth (cm)                            | 39.8  | 12.3  | 6 |
| Site pH at 10-cm depth                     | 5.3   | 0.6   | 8 |
| Site EC at 10-cm depth (µS/cm)             | 130.0 | 191.2 | 8 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -25.0 | 26.8  | 6 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Typic Aquorthels (wet, mineral soil over permafrost lacking cryoturbation) and Aquic Umbrorthels (wet, organic rich mineral soil over permafrost lacking cryoturbation). Less common subgroups include Oxyaquic Cryorthents (moist, saturated early in growing season, lacking permafrost) and Typic Umbrorthels (moist, organic rich mineral soil over permafrost lacking cryoturbation). This ecotype and associated soils are part of the Lacustrine Loamy Barrens Meadows and Shrublands. Also included in this soil landscape are Lacustrine Barrens and Lacustrine Willow Shrub.

## **Lacustrine Buckbean Fen**



## Geomorphology:

This productive ecotype occurs in fens (thick peat with groundwater input), margins of drained basins, shore fens, and in shallow thaw lakes. It is not abundant but is evenly distributed throughout lowland areas at low elevations in ARCN. Water actively moves through these hydrologically connected fen ecosystems. This ecotype could not be mapped separately due to the high reflectance of water.

## Plant Association:

Menyanthes trifoliata-Potentilla palustris

Buckbean (*M. trifoliata*) is the dominant species in this ecotype (Table 41). It grows in dense mats, often floating over open water, which creates substrate for other species. Water-tolerant or aquatic species occur on these mats or in shallow water at the margins, while more terrestrial species occur along the shoreline. Flowing water supplies minerals and nutrients that promote productivity and species diversity. Trees and lichens are absent. Common species include *Potentilla palustris* (syn: *Comarum palustris*), *Carex limosa*, *Equisetum fluviatile*, and *Sphagnum obtusum*.

Similar ecotypes to Lacustrine Buckbean Fen include Lacustrine Horsetail Marsh and Lacustrine Marestail Marsh. The main differences are in characteristic species and Lacustrine Buckbean Fen occurs at shallower water depths.

Table 41. Vegetation cover and frequency for Lacustrine Buckbean Fen (n=7).

|                                              | Cover        |              | Freq     |
|----------------------------------------------|--------------|--------------|----------|
|                                              | Mean         | SD           | %        |
| Total Live Cover                             | 102.7        | 35.7         | 100      |
| Total Vascular Cover Total Evergreen Shrub   | 56.0         | 25.4         | 100      |
| Cover                                        | 0.2          | 0.4          | 43       |
| Andromeda polifolia                          | <0.1         | <0.1         | 29       |
| Chamaedaphne calyculata                      | <0.1         | <0.1         | 14       |
| Oxycoccus microcarpus  Total Deciduous Shrub | 0.2          | 0.4          | 29       |
| Cover                                        | 0.3          | 0.8          | 29       |
| Betula nana                                  | <0.1         | <0.1         | 14       |
| Salix fuscescens                             | <0.1         | <0.1         | 14       |
| Salix lanata ssp. richardsonii               | 0.1          | 0.4          | 14       |
| Salix planifolia ssp. pulchra                | 0.1          | 0.4          | 14       |
| Total Forb Cover                             | 39.7         | 29.5         | 100      |
| Cicuta mackenzieana                          | 0.4          | 1.1          | 29       |
| Epilobium palustre                           | <0.1         | <0.1         | 14       |
| Equisetum fluviatile                         | 1.7          | 3.7          | 43       |
| Hippuris vulgaris                            | <0.1         | <0.1         | 14       |
| Menyanthes trifoliata                        | 34.3         | 25.9         | 100      |
| Myriophyllum spicatum                        | 0.7          | 1.9          | 14       |
| Potentilla palustris                         | 2.1          | 2.0          | 86       |
| Ranunculus pallasii                          | <0.1         | <0.1         | 14       |
| Triglochin maritimum                         | <0.1         | <0.1         | 14       |
| Utricularia minor                            | 0.3          | 0.7          | 43       |
| Total Grass Cover                            | 0.0          | 0.0          | 14       |
| Arctophila fulva                             | <0.1         | <0.1         | 14       |
| Total Sedge & Rush Cover                     | 15.8         | 14.2         | 100      |
| Carex aquatilis ssp. aquatilis               | 3.3          | 7.5          | 29       |
| Carex chordorrhiza                           | 1.1          | 2.0          | 29       |
| Carex diandra                                | <0.1<br><0.1 | <0.1<br><0.1 | 14<br>14 |
| Carex leptalea                               |              |              |          |
| Carex limosa                                 | 3.2          | 4.7          | 57       |
| Carex Ioliacea                               | 0.1<br>1.3   | 0.4<br>2.2   | 14<br>29 |
| Carex rostrata                               |              | 1.5          | 14       |
| Carex saxatilis                              | 0.6<br><0.1  | <0.1         | 14       |
| Carex sp.                                    | 5.0          | 13.2         | 14       |
| Carex utriculata                             | <0.1         | <0.1         | 14       |
| Eriophorum angustifolium                     | 1.1          | 2.0          | 29       |
| Eriophorum russeolum                         | 46.7         | 38.8         | 71       |
| Total Mass Cover                             | 46.7         | 38.8         | 71       |
| Total Moss Cover                             | 46.7<br>1.4  | 38.8         | 14       |
| Bryum pseudotriquetrum                       | 2.9          | 3.6<br>7.6   | 14       |
| Calliergon giganteum                         | 2.9          | 7.6<br>7.6   | 14       |
| Calliergon sp.                               | 0.3          | 0.8          | 14       |
| Calliergon stramineum                        | 1.4          | 3.8          | 14       |
| Campylium arcticum                           | 1.4<br>3.1   | 3.8<br>4.2   |          |
| Drepanocladus revolvens                      |              |              | 43<br>14 |
| Meesia triquetra                             | 1.4          | 3.8          | 14       |
| Sphagnum obtusum                             | 25.7         | 44.0         | 29       |

Table 41. Continued.

|                        | Cover |      | Freq |
|------------------------|-------|------|------|
|                        | Mean  | SD   | %    |
| Sphagnum riparium      | 4.3   | 11.3 | 14   |
| Warnstorfia exannulata | 3.3   | 8.7  | 14   |
| Total Bare Ground      | 42.2  | 36.0 | 100  |
| Bare Soil              | <0.1  | 0.1  | 43   |
| Water                  | 34.0  | 39.8 | 86   |
| Litter alone           | 8.2   | 11.6 | 86   |



Soils are poorly drained with thick accumulations of peat (Table 42). Permafrost is presumed to be absent because thaw depths are greater than 1.3 m. Coarse fragments are absent in the active layer. Frost boils, loess caps, and surface fragments are absent. Soil pH is circumneutral to acidic, and EC is low. The soils are typically very poorly drained to flooded, and the water table occurs at shallow depths or above ground.

Table 42. Soil characteristics for Lacustrine Buckbean Fen.

| Property                                   | Mean  | SD    | n |
|--------------------------------------------|-------|-------|---|
| Elevation (m)                              | 124.9 | 117.8 | 7 |
| Slope (degrees)                            |       |       | 0 |
| Surface Organics Depth(cm)                 | 50.3  | 19.8  | 6 |
| Cumulative Org. in 40 cm (cm)              | 37.2  | 6.9   | 6 |
| Loess Cap Thickness (cm)                   |       |       | 0 |
| Depth to Rocks (cm)                        | 200.0 | 0.0   | 3 |
| Surface Fragment Cover (%)                 |       |       | 0 |
| Frost Boil Cover (%)                       |       |       | 0 |
| Thaw Depth (cm)                            | 65.0  |       | 1 |
| Site pH at 10-cm depth                     | 5.4   | 1.2   | 6 |
| Site EC at 10-cm depth (µS/cm)             | 120.0 | 141.8 | 6 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | 14.5  | 24.3  | 4 |

<sup>&</sup>lt;sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroup in this ecotype is Typic Cryofibrists (wet, poorly decomposed peat, lacking permafrost). Less common subgroups include Hydric Cryofibrists (wet, poorly decomposed peat with a water layer below 60 cm, lacking permafrost) and Hydric Sphagnofibrists (wet, Sphagnum-rich, poorly decomposed peat with a water layer below 60 cm, lacking permafrost). This ecotype and associated soils are part of the Lacustrine Organic-rich Wet Meadows soil landscape. Also included in this soil landscape is Lacustrine Wet Sedge Meadow.

## **Lacustrine Horsetail Marsh**



## Geomorphology:

This ecotype occurs in water along the margins of shallow isolated thaw lakes and creates a highly visible swath of deep green color when viewed from a distance. It occurs in small dense patches throughout ARCN. This ecotype could not be mapped separately due to the high reflectance of water. Lacustrine Horsetail Marsh occurs at low elevations where water depths are less than 1 m.

## Plant Association:

Equisetum fluviatile-Potentilla palustris

The horsetail *E. fluviatile* is the predominant species in this ecotype, often appearing to grow in a near monoculture. Only forbs, sedges, and the infrequent grass typically occur in Lacustrine Horsetail Marsh (Table 43). A common species is the aquatic bladderwort plant, *Utricularia vulgaris* ssp. *macrorhiza*.

This ecotype is similar to Lacustrine Marestail Marsh and Lacustrine Pendent Grass Marsh except for differences in plant associations.

Table 43. Vegetation cover and frequency for Lacustrine Horsetail Marsh (n=2).

|                                | Cover |      | Freq |
|--------------------------------|-------|------|------|
|                                | Mean  | SD   | %    |
| Total Live Cover               | 47.6  | 31.7 | 100  |
| Total Vascular Cover           | 47.6  | 31.7 | 100  |
| Total Forb Cover               | 42.5  | 38.8 | 100  |
| Equisetum fluviatile           | 26.0  | 19.8 | 100  |
| Potentilla palustris           | 0.5   | 0.7  | 50   |
| Ranunculus sp.                 | 0.1   | 0.1  | 50   |
| Utricularia vulgaris ssp.      |       |      |      |
| macrorhiza                     | 16.0  | 19.8 | 100  |
| Total Grass Cover              | 0.1   | 0.1  | 50   |
| Arctophila fulva               | 0.1   | 0.1  | 50   |
| Total Sedge & Rush Cover       | 5.0   | 7.0  | 100  |
| Carex aquatilis ssp. aquatilis | 2.5   | 3.5  | 50   |
| Carex chordorrhiza             | 1.0   | 1.4  | 50   |
| Carex saxatilis                | 0.5   | 0.7  | 50   |
| Carex sp.                      | 0.1   | 0.1  | 50   |
| Carex utriculata               | 0.5   | 0.7  | 50   |
| Eriophorum angustifolium       | 0.5   | 0.7  | 50   |
| Total Bare Ground              | 72.5  | 10.6 | 100  |
| Water                          | 72.5  | 10.6 | 100  |

## Soils:

Flooded soils were not described. Water characteristics are listed in Table 44.

Table 44. Water characteristics for Lacustrine Horsetail Marsh.

| Property                                   | Mean  | SD   | n |
|--------------------------------------------|-------|------|---|
| Site pH at 10-cm depth                     | 6.5   | 0.3  | 2 |
| Site EC at 10-cm depth (µS/cm)             | 150.0 | 99.0 | 2 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | 47.5  | 17.7 | 2 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

## **Lacustrine Marestail Marsh**



## Geomorphology:

Lacustrine Marestail Marsh commonly occurs in small areas on the margins of deep and shallow isolated thaw lakes and in organic fens. It occurs at low elevations throughout ARCN. It occurs in water of < 1 m depth. This ecotype could not be mapped separately due to the high reflectance of water.

### Plant Association:

Hippuris vulgaris-Utricularia vulgaris ssp. macrorhiza
The common marestail, H. vulgaris, is the most characteristic species of this ecotype, and grows

partially submerged in the water (Table 45). Emergent species are common in this ecotype, including several species of pondweeds (*Potamogeton* spp.) and burreeds (*Sparganium* spp.). Additional common species include *Myriophyllum spicatum* and the aquatic moss, *Calliergon giganteum*.

Many of the species that occur in this ecotype also occur in Lacustrine Pendent Grass Marsh, Lacustrine Horestail Marsh and Lacustrine Buckbean Fen. Its primary distinguishing factor is in the dominant species.

Table 45. Vegetation cover and frequency for Lacustrine Marestail Marsh (n=9).

|                                             | Cov          | er    | Freq     |
|---------------------------------------------|--------------|-------|----------|
|                                             | Mean         | SD    | %        |
| Total Live Cover                            | 23.5         | 19.5  | 100      |
| Total Vascular Cover                        | 21.7         | 18.1  | 100      |
| <b>Total Forb Cover</b>                     | 21.2         | 18.4  | 100      |
| Caltha natans                               | <0.1         | < 0.1 | 11       |
| Caltha palustris                            | 0.1          | 0.3   | 11       |
| Hippuris vulgaris                           | 10.7         | 10.3  | 78       |
| Menyanthes trifoliata                       | 0.6          | 1.7   | 22       |
| Myriophyllum spicatum                       | 1.1          | 2.2   | 33       |
| Potamogeton alpinus ssp.                    |              |       |          |
| tenuifolius                                 | 0.2          | 0.7   | 11       |
| Potamogeton berchtoldii                     | <0.1         | <0.1  | 11       |
| Potamogeton sp.                             | 0.1          | 0.3   | 22       |
| Potamogeton subsibiricus                    | 1.7          | 5.0   | 11       |
| Potentilla palustris                        | 0.3          | 0.7   | 33       |
| Ranunculus gmelini                          | <0.1         | <0.1  | 22       |
| Rumex arcticus                              | <0.1         | <0.1  | 11       |
| Sparganium hyperboreum                      | 2.2          | 5.1   | 22       |
| Sparganium sp.                              | 2.2          | 5.1   | 22       |
| Utricularia minor                           | <0.1         | <0.1  | 11       |
| Utricularia vulgaris ssp.                   | 1.9          | 3.8   | 33       |
| macrorhiza                                  | 0.1          | 0.3   | 33<br>44 |
| Total Grass Cover                           | 0.1          | 0.3   | 33       |
| Arctophila fulva                            | <0.1<br><0.1 | <0.1  | 33<br>11 |
| Calamagrostis nutkaensis Total Sedge & Rush | <0.1         | <0.1  | - 11     |
| Cover                                       | 0.3          | 0.7   | 33       |
| Carex aquatilis ssp.                        |              |       |          |
| aquatilis                                   | 0.2          | 0.4   | 22       |
| Eriophorum angustifolium                    | 0.1          | 0.3   | 22       |
| Total Nonvascular                           |              |       |          |
| Cover                                       | 1.8          | 3.5   | 44       |
| Total Moss Cover                            | 1.8          | 3.5   | 44       |
| Calliergon giganteum                        | 0.7          | 1.7   | 22       |
| Calliergon sp.                              | 0.6          | 1.7   | 11       |
| Unknown moss                                | <0.1         | <0.1  | 11       |
| Warnstorfia exannulata                      | 0.6          | 1.7   | 11       |
| Total Bare Ground                           | 97.5         | 4.9   | 100      |
| Water                                       | 97.4         | 5.0   | 100      |
| Litter alone                                | <0.1         | <0.1  | 22       |

### Soils:

Flooded soils were not described. Water characteristics are listed in Table 46.

Table 46. Water characteristics for Lacustrine Marestail Marsh.

| Property                                   | Mean  | SD   | n |
|--------------------------------------------|-------|------|---|
| Site pH at 10-cm depth                     | 6.6   | 0.6  | 9 |
| Site EC at 10-cm depth (µS/cm)             | 106.7 | 88.9 | 9 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | 54.2  | 22.7 | 9 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

## **Lacustrine Pendent Grass Marsh**



# Geomorphology:

This ecotype is common in the shallow margins of small to large lakes throughout ARCN. It occurs at low elevations, primarily around lowland lakes. This includes shallow isolated thaw lakes, deep and shallow connected moraine or kettle lakes, ice-poor margins of drained-lake basins, and on glaciolacustrine deposits. Water depths are typically around 0.5 m but can be deeper. Water is always present in this ecotype, making it spectrally indistinct and therefore not mappable.

### Plant Association:

Arctophila fulva-Hippuris vulgaris

Emergent species such as pendent grass (*A. fulva*) and common marestail (*H. vulgaris*) predominate (Table 47). Forbs and grasses are the dominant life forms. Trees, shrubs and lichens are absent. Sedges and hydrophilic mosses are sometimes present with low cover. Common species include *Ranunculus pallasii*, *Caltha palustris*, and *Scorpidium scorpioides*.

This ecotype is easy to distinguish from other lacustrine ecotypes by the presence of *A. fulva*.

### Soils:

Flooded soils were not described. Water characteristics are listed in Table 48.

Table 47. Vegetation cover and frequency for Lacustrine Pendent Grass Marsh (n=8).

|                            | Cover      |            | Freq      |
|----------------------------|------------|------------|-----------|
|                            | Mean       | SD         | %         |
| Total Live Cover           | 50.4       | 34.4       | 100       |
| Total Vascular Cover       | 38.0       | 20.2       | 100       |
| Total Forb Cover           | 19.7       | 18.5       | 100       |
| Caltha natans              | 1.9        | 5.3        | 12        |
| Caltha palustris           | 2.9        | 7.0        | 25        |
| Chrysosplenium             |            |            |           |
| tetrandrum                 | <0.1       | <0.1       | 12        |
| Epilobium palustre         | 0.6        | 1.8        | 12        |
| Galium trifidum ssp.       |            |            |           |
| trifidum                   | 0.2        | 0.7        | 12        |
| Hippuris vulgaris          | 4.3        | 6.7        | 88        |
| Menyanthes trifoliata      | 0.4        | 0.7        | 25        |
| Myriophyllum sp.           | 0.1        | 0.4        | 12        |
| Myriophyllum spicatum      | 0.4        | 1.1        | 25        |
| Petasites frigidus         | 0.1        | 0.4        | 12        |
| Potamogeton berchtoldii    | 0.2        | 0.7        | 12        |
| Potamogeton sp.            | 0.2        | 0.5        | 25        |
| Potamogeton zosterifolius  | 1.2        | 3.5        | 12        |
| Potentilla palustris       | 2.9        | 7.0        | 25        |
| Ranunculus gmelini         | 0.3        | 0.7        | 25        |
| Ranunculus hyperboreus     | 0.4        | 1.1        | 25        |
| Ranunculus pallasii        | 8.0        | 1.2        | 38        |
| Sparganium hyperboreum     | 1.9        | 5.3        | 12        |
| Stellaria sp.              | 0.4        | 1.1        | 12        |
| Utricularia vulgaris ssp.  |            |            |           |
| macrorhiza .               | 0.5        | 1.4        | 12        |
| <b>Total Grass Cover</b>   | 17.1       | 10.9       | 100       |
| Arctophila fulva           | 17.1       | 10.9       | 100       |
| Total Sedge & Rush         |            |            |           |
| Cover                      | 1.1        | 2.1        | 50        |
| Carex aquatilis ssp.       | 0.3        | 0.5        | 38        |
| aquatilis                  |            |            |           |
| Eriophorum angustifolium   | 0.9        | 1.8        | 38        |
| Total Nonvascular<br>Cover | 12.4       | 20.1       | 38        |
| Total Moss Cover           | 12.4       | 20.1       | 38        |
| Calliergon giganteum       | 3.8        | 10.6       | 12        |
|                            | 0.1        | 0.4        | 12        |
| Calliergon sp.             | 0.1        | 0.7        | 12        |
| Drepanocladus aduncus      | 2.5        | 7.1        | 12        |
| Drepanocladus sp.          |            |            |           |
| Hamatocaulis vernicosus    | 0.4<br>1.2 | 1.1<br>3.5 | 12<br>12  |
| Limprichtia revolvens      | 3.8        | 3.5<br>8.8 | 25        |
| Scorpidium scorpioides     |            |            |           |
| Sphagnum jensnii           | 0.1        | 0.4        | 12        |
| Warnstorfia fluitans       | 0.2        | 0.7        | 12        |
| Total Bare Ground          | 82.7       | 26.2       | 100       |
| Bare Soil                  | 2.1        | 5.2        | 50<br>100 |
| Water                      | 67.4       | 38.1       | 100       |
| Litter alone               | 13.1       | 21.5       | 50        |

Table 48. Water characteristics for Lacustrine Pendent Grass Marsh.

| Property                                   | Mean | SD   | n |
|--------------------------------------------|------|------|---|
| Site pH at 10-cm depth                     | 6.4  | 0.4  | 8 |
| Site EC at 10-cm depth (µS/cm)             | 70.0 | 57.6 | 8 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | 29.9 | 29.6 | 7 |

<sup>&</sup>lt;sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

# **Lacustrine Pondlily Lake**



# Geomorphology:

Lacustrine Pondlily Lake occurs in deep isolated kettle lakes and shallow isolated thaw lakes in lowland areas of ARCN. Water depths are typically 0.5 to 1.5 m. Plants typically grow along the shallow edges in deeper lakes, but in shallow lakes, vegetation may be evident across the entire surface. This ecotype could not be mapped separately due to the high reflectance of water.

# Plant Association:

Nuphar polysepalum-Sparganium sp.

Lacustrine Pondlily Lake is dominated by aquatic forbs (Table 49). Sedges can occur in shallow water near the shoreline, but other major life forms are typically absent. Common species include *N. polysepalum*, *Sparganium* spp., *Potamogeton berchtoldii* (syn. *P. pusillus* ssp. *tenuissimus*), and *Utricularia vulgaris* ssp. *macrorhiza*.

This ecotype is most similar to Lowland Lake although it has a greater abundance of vegetation. It shares some common aquatic species with other lacustrine ecotypes but is distinguished by the predominance of pondlilies.

### Soils:

Flooded soils were not described. Water characteristics are listed in Table 50.

Table 49. Vegetation cover and frequency for Lacustrine Pondlilly Lake (n=5).

|                           | Cover |      | Freq |
|---------------------------|-------|------|------|
|                           | Mean  | SD   | %    |
| Total Live Cover          | 12.0  | 6.8  | 100  |
| Total Vascular Cover      | 12.0  | 6.8  | 100  |
| <b>Total Forb Cover</b>   | 12.0  | 6.7  | 100  |
| Equisetum variegatum      | <0.1  | <0.1 | 20   |
| Hippuris vulgaris         | 1.0   | 1.2  | 60   |
| Menyanthes trifoliata     | 0.2   | 0.4  | 20   |
| Nuphar polysepalum        | 5.4   | 3.2  | 100  |
| Potamogeton alpinus ssp.  | 0.4   | 0.5  | 40   |
| Potamogeton berchtoldii   | 0.2   | 0.4  | 40   |
| Potamogeton epihydrus     | 1.0   | 2.2  | 20   |
| Potamogeton gramineus     | 0.4   | 0.9  | 20   |
| Sparganium sp.            | 0.8   | 8.0  | 80   |
| Utricularia intermedia    | <0.1  | <0.1 | 20   |
| Utricularia minor         | 0.2   | 0.4  | 60   |
| Utricularia vulgaris ssp. |       |      |      |
| macrorhiza                | 2.2   | 2.9  | 80   |
| Total Sedge & Rush Cover  | 0.0   | 0.0  | 20   |
| Carex rostrata            | <0.1  | <0.1 | 20   |
| Total Bare Ground         | 96.8  | 3.9  | 100  |
| Water                     | 96.4  | 4.0  | 100  |
| Litter alone              | 0.4   | 0.9  | 60   |

Table 50. Water characteristics for Lacustrine Pondlilly Lake.

| Property                                   | Mean | SD   | n |
|--------------------------------------------|------|------|---|
| Site pH at 10-cm depth                     | 5.8  | 0.7  | 5 |
| Site EC at 10-cm depth (µS/cm)             | 44.0 | 39.1 | 5 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | 83.3 | 25.2 | 3 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

# **Lacustrine Wet Sedge Meadow**



# Geomorphology:

This ecotype occurs in ice-poor centers and margins of drained-lake basins and in organic fens. It also occurs on lacustrine deposits on lake shore margins. Surfaces are flat, and water is commonly visible. It occurs at low elevations throughout ARCN. This ecotype occurred in small patches and was mapped as Lowland Sedge Fen.

### Plant Association:

Carex aquatilis-Potentilla palustris

Lacustrine Wet Sedge Meadow is the most species rich of the lacustrine ecotypes. It is characterized by sedges and forbs, while shrubs, grasses and mosses are present in lower quantities (Table 51). Trees are absent, and lichens are only infrequently present. Common species include Salix planifolia ssp. pulchra (syn: S. pulchra), Eriophorum angustifolium, Carex chordorrhiza and Calliergon giganteum. We documented a rare sedge, Carex lapponica, in this ecotype.

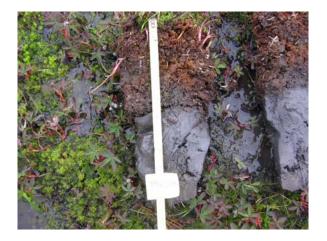

This ecotype is most similar to Lowland Sedge Fen except it is more strongly associated with lake processes and the characteristic species are more rapid colonizers.

Table 51. Vegetation cover and frequency for Lacustrine Wet Sedge Meadow (n=12).

| Lucusti iiie vvet 3                      | Lacustille Wet Jeuge Meadow (II=12). |              |          |  |
|------------------------------------------|--------------------------------------|--------------|----------|--|
|                                          | Cover                                |              | Freq     |  |
|                                          | Mean                                 | SD           | %        |  |
| Total Live Cover                         | 87.4                                 | 45.0         | 100      |  |
| Total Vascular Cover                     | 60.1                                 | 29.9         | 100      |  |
| Total Evergreen Shrub Cover              | 0.6                                  | 2.0          | 8        |  |
| Andromeda polifolia                      | 0.1                                  | 0.3          | 8        |  |
| Chamaedaphne calyculata                  | 0.4                                  | 1.4          | 8        |  |
| Oxycoccus microcarpus                    | 0.1                                  | 0.3          | 8        |  |
| Total Deciduous Shrub                    |                                      |              |          |  |
| Cover                                    | 6.2                                  | 12.5         | 50       |  |
| Betula nana                              | 0.4                                  | 1.4          | 8        |  |
| Salix fuscescens                         | 3.0                                  | 10.1         | 17       |  |
| Salix planifolia ssp. pulchra            | 2.6                                  | 8.3          | 42       |  |
| Vaccinium uliginosum                     | 0.2                                  | 0.6          | 8        |  |
| Total Forb Cover                         | 21.9                                 | 25.1         | 100      |  |
| Caltha palustris                         | 0.5                                  | 1.4          | 25       |  |
| Cerastium sp.                            | <0.1                                 | <0.1         | 8        |  |
| Chrysosplenium tetrandrum                | <0.1<br><0.1                         | <0.1         | 8        |  |
| Cicuta sp.                               | <0.1<br><0.1                         | <0.1<br><0.1 | 8<br>25  |  |
| Epilobium palustre                       | <0.1<br>1.4                          | <0.1<br>3.1  | 25<br>25 |  |
| Equisetum fluviatile                     | 0.4                                  | 1.4          | 25<br>8  |  |
| Equisetum variegatum                     | 0.4                                  | 1.4          | o<br>25  |  |
| Galium trifidum ssp. trifidum            | 0.4                                  | 0.3          | 23<br>8  |  |
| Hippuris tetraphylla                     | 0.1                                  | 0.3          | 8        |  |
| Hippuris vulgaris                        | 0.1                                  | 0.5          | 25       |  |
| Menyanthes trifoliata Petasites frigidus | 0.3                                  | 1.4          | 23<br>17 |  |
| Polemonium acutiflorum                   | <0.1                                 | <0.1         | 8        |  |
| Potentilla palustris                     | 17.0                                 | 21.4         | 92       |  |
| Ranunculus pallasii                      | 0.9                                  | 1.9          | 25       |  |
| Stellaria sp.                            | 0.1                                  | 0.3          | 17       |  |
| Utricularia sp.                          | 0.2                                  | 0.6          | 8        |  |
| Utricularia vulgaris ssp.                | 0.2                                  | 0.0          | •        |  |
| macrorhiza                               | 0.1                                  | 0.3          | 8        |  |
| Total Grass Cover                        | 2.8                                  | 5.9          | 67       |  |
| Arctagrostis latifolia                   | 0.2                                  | 0.4          | 17       |  |
| Arctophila fulva                         | 0.2                                  | 0.6          | 8        |  |
| Calamagrostis canadensis                 | 0.8                                  | 1.4          | 33       |  |
| Calamagrostis neglecta                   | <0.1                                 | <0.1         | 17       |  |
| Calamagrostis sp.                        | 1.2                                  | 4.3          | 8        |  |
| Poa sp.                                  | 0.4                                  | 1.4          | 8        |  |
| Total Sedge & Rush Cover                 | 28.6                                 | 16.0         | 100      |  |
| Carex aquatilis ssp. aquatilis           | 14.3                                 | 15.3         | 83       |  |
| Carex canescens                          | 0.4                                  | 1.4          | 8        |  |
| Carex chordorrhiza                       | 1.8                                  | 3.0          | 42       |  |
| Carex lapponica                          | 0.1                                  | 0.3          | 8        |  |
| Carex rostrata                           | 0.4                                  | 1.4          | 8        |  |
| Carex rotundata                          | <0.1                                 | <0.1         | 8        |  |
| Carex saxatilis                          | 2.3                                  | 5.9          | 17       |  |
| Carex tenuiflora                         | <0.1                                 | <0.1         | 8        |  |
| Carex utriculata                         | <0.1                                 | <0.1         | 8        |  |
| Eriophorum angustifolium                 | 7.8                                  | 7.2          | 83       |  |
| Eriophorum russeolum                     | 0.6                                  | 1.5          | 33       |  |
| Eriophorum scheuchzeri                   | 0.4<br>0.4                           | 1.4<br>1.4   | 8<br>8   |  |
| Luzula sp.                               | 0.4<br>27.3                          | 1.4<br>27.9  | 8<br>100 |  |
| Total Nonvascular Cover                  | 27.3<br>27.3                         | 27.9         | 100      |  |
| Total Moss Cover                         | 1.2                                  | 3.1          | 17       |  |
| Aulacomnium palustre                     | 1.2                                  | 3.1          | 17       |  |

Table 51. Continued.

|                             | Cover |      | Freq |
|-----------------------------|-------|------|------|
|                             | Mean  | SD   | %    |
| Aulacomnium turgidum        | 0.4   | 1.4  | 8    |
| Calliergon giganteum        | 3.4   | 7.5  | 33   |
| Calliergon sp.              | 1.5   | 3.1  | 33   |
| Drepanocladus revolvens     | 8.0   | 2.9  | 8    |
| Pohlia sp.                  | 0.5   | 1.4  | 17   |
| Polytrichum jensenii        | 0.2   | 0.6  | 8    |
| Polytrichum sp.             | 0.2   | 0.6  | 8    |
| Scorpidium scorpioides      | 0.4   | 1.4  | 8    |
| Sphagnum lindbergii         | 5.4   | 18.8 | 8    |
| Sphagnum riparium           | 1.2   | 4.3  | 8    |
| Sphagnum sp.                | 6.8   | 20.1 | 33   |
| Sphagnum squarrosum         | 2.4   | 5.7  | 25   |
| Unknown fungus              | <0.1  | <0.1 | 8    |
| Unknown liverwort           | 1.2   | 4.3  | 8    |
| Unknown moss                | 0.2   | 0.6  | 17   |
| Warnstorfia pseudostraminea | 1.2   | 4.3  | 8    |
| <b>Total Lichen Cover</b>   | 0.0   | 0.0  | 8    |
| Peltigera sp.               | <0.1  | <0.1 | 8    |
| Total Bare Ground           | 40.5  | 25.3 | 100  |
| Bare Soil                   | 0.2   | 0.4  | 42   |
| Water                       | 10.1  | 22.4 | 67   |
| Litter alone                | 30.2  | 23.5 | 100  |



Soils are organic-rich loams and silt-loams with a moderately thick to thick surface organic horizon (Table 52). Permafrost occurs within the upper meter of the soil profile. Frost boils, surface fragments, and loess caps are absent. Soil pH is circumneutral to acidic, and EC is low. The soils are typically very poorly to somewhat poorly drained, and the water table is typically slightly above or below the ground surface.

Table 52. Soil characteristics for Lacustrine Wet Sedge Meadow.

| Property                                   | Mean  | SD    | n  |
|--------------------------------------------|-------|-------|----|
| Elevation (m)                              | 127.9 | 120.3 | 12 |
| Slope (degrees)                            |       |       | 0  |
| Surface Organics Depth(cm)                 | 31.4  | 34.4  | 12 |
| Cumulative Org. in 40 cm (cm)              | 22.7  | 11.8  | 12 |
| Loess Cap Thickness (cm)                   |       |       | 0  |
| Depth to Rocks (cm)                        | 200.0 | 0.0   | 3  |
| Surface Fragment Cover (%)                 |       |       | 0  |
| Frost Boil Cover (%)                       |       |       | 0  |
| Thaw Depth (cm)                            | 49.4  | 14.7  | 9  |
| Site pH at 10-cm depth                     | 5.6   | 1.0   | 11 |
| Site EC at 10-cm depth (µS/cm)             | 113.6 | 88.0  | 11 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -7.3  | 13.6  | 12 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Typic Aquorthels (wet, mineral soil over permafrost lacking cryoturbation). A less common subgroup is Typic Historthels (wet, organic rich soil over permafrost lacking cryoturbation). This ecotype and associated soils are part of the Lacustrine Organic-rich Wet Meadows soil landscape. Also included in this soil landscape is Lacustrine Buckbean Fen.

## **Lacustrine Willow Shrub**



# Geomorphology:

This ecotype occurs on lacustrine deposits, older moraine near kettle basins, and on ice-poor centers of drained-lake basins. Common surface forms include depressions, wave cut benches, and concave lower slopes. It is common in small patches around lakes throughout ARCN. Due to small patch size, we could not map this ecotype. Larger patches were included with Lowland Willow Low Shrub.

### Plant Association:

Salix planifolia ssp. pulchra-Potentilla palustris
Diamondleaf willow (S. planifolia ssp. pulchra;
syn: S. pulchra) is the characteristic species. Low
shrubs are the most common life form, followed by
mosses and sedges (Table 53). Forbs are abundant in
the understory, and trees and lichens are usually
absent. Common species include Betula nana,
Arctagrostis latifolia, Carex aquatilis, and
Aulacomnium palustre.

This ecotype is most similar to Lowland Willow Low Shrub except for differences in geomorphology and reduced accumulation of organic soils. It is somewhat comparable to Riverine Willow Low Shrub but *S. planifolia* ssp. *pulchra* is the dominant species instead of *S. lanata* ssp. *richardsonii*.

Table 53. Vegetation cover and frequency for Lacustrine Willow Shrub (n=6).

|                                            |                   |                | Fu    |
|--------------------------------------------|-------------------|----------------|-------|
|                                            | Cov               | _              | Freq  |
| Total Live Cover                           | <b>Mean</b> 143.3 | <b>SD</b> 29.0 | 100   |
|                                            |                   |                |       |
| Total Vascular Cover Total Evergreen Shrub | 97.5              | 31.0           | 100   |
| Cover                                      | 6.0               | 12.0           | 50    |
| Andromeda polifolia                        | <0.1              | <0.1           | 17    |
| Cassiope tetragona                         | 0.3               | 0.8            | 17    |
| Dryas integrifolia                         | 0.5               | 1.2            | 33    |
| Dryas octopetala                           | <0.1              | <0.1           | 17    |
| Empetrum nigrum                            | 0.3               | 0.8            | 17    |
| Ledum decumbens                            | 1.5               | 3.2            | 33    |
| Vaccinium vitis-idaea                      | 3.3               | 8.2            | 17    |
| Total Deciduous Shrub                      | 3.5               | 0.2            | • • • |
| Cover                                      | 56.3              | 18.7           | 100   |
| Arctostaphylos alpina                      | <0.1              | <0.1           | 17    |
| Arctostaphylos rubra                       | 0.5               | 1.2            | 17    |
| Betula nana                                | 2.7               | 4.1            | 83    |
| Salix alaxensis                            | 1.7               | 4.1            | 50    |
| Salix arbusculoides                        | <0.1              | <0.1           | 17    |
| Salix fuscescens                           | 4.8               | 9.9            | 50    |
| Salix glauca                               | 0.5               | 0.8            | 33    |
| Salix lanata ssp. richardsonii             | 10.8              | 22.0           | 33    |
| Salix planifolia ssp. pulchra              | 31.8              | 25.3           | 83    |
| Salix reticulata                           | 0.8               | 2.0            | 33    |
| Spiraea beauverdiana                       | 0.3               | 8.0            | 17    |
| Vaccinium uliginosum                       | 2.2               | 4.0            | 50    |
| Total Forb Cover                           | 8.5               | 7.2            | 100   |
| Astragalus umbellatus                      | <0.1              | <0.1           | 17    |
| Caltha palustris                           | 0.5               | 1.2            | 17    |
| Epilobium angustifolium                    | 0.3               | 0.5            | 33    |
| Epilobium latifolium                       | <0.1              | <0.1           | 17    |
| Epilobium palustre                         | <0.1              | <0.1           | 17    |
| Equisetum arvense                          | 0.8               | 2.0            | 33    |
| Equisetum palustre                         | 0.7               | 1.6            | 17    |
| Eutrema edwardsii                          | <0.1              | <0.1           | 17    |
| Parrya nudicaulis                          | <0.1              | <0.1           | 17    |
| Pedicularis labradorica                    | <0.1              | 0.1            | 33    |
| Pedicularis sudetica                       | <0.1              | <0.1           | 17    |
| Petasites frigidus                         | 0.8               | 2.0            | 17    |
| Polemonium acutiflorum                     | 1.4               | 2.8            | 50    |
| Polygonum bistorta                         | 0.2               | 0.4            | 17    |
| Potentilla palustris                       | 0.2               | 0.4            | 50    |
| Pyrola asarifolia                          | <0.1              | <0.1           | 17    |
| Pyrola grandiflora                         | 0.8               | 2.0            | 17    |
| Pyrola secunda                             | <0.1              | 0.1            | 33    |
| Ranunculus pallasii                        | <0.1              | <0.1           | 17    |
| Rubus chamaemorus                          | 2.5               | 6.1            | 17    |
| Saussurea angustifolia                     | <0.1              | <0.1           | 17    |
| Stellaria edwardsii                        | <0.1              | <0.1           | 17    |
| Tofieldia pusilla                          | <0.1              | <0.1           | 17    |
| Total Grass Cover                          | 4.3               | 5.1            | 100   |
| Arctagrostis latifolia                     | 0.7               | 0.5            | 67    |
| Calamagrostis canadensis                   | 2.3               | 5.7            | 17    |
| Calamagrostis lapponica                    | 1.0               | 2.4            | 17    |
| Poa arctica                                | 0.3               | 0.5            | 50    |
| Total Sedge & Rush Cover                   | 22.4              | 17.7           | 100   |

Table 53. Continued.

|                                 | Cover |      | Freq |
|---------------------------------|-------|------|------|
|                                 | Mean  | SD   | %    |
| Carex aquatilis ssp. aquatilis  | 5.2   | 7.6  | 67   |
| Carex bigelowii                 | 9.5   | 17.8 | 50   |
| Carex saxatilis                 | 8.0   | 2.0  | 17   |
| Carex vaginata                  | 0.2   | 0.4  | 17   |
| Eriophorum angustifolium        | 6.7   | 8.8  | 50   |
| Juncus castaneus ssp. castaneus | <0.1  | <0.1 | 17   |
| Luzula multiflora               | <0.1  | <0.1 | 17   |
| Total Nonvascular Cover         | 45.8  | 11.4 | 100  |
| Total Moss Cover                | 44.9  | 11.6 | 100  |
| Aulacomnium acuminatum          | 0.5   | 1.2  | 17   |
| Aulacomnium palustre            | 12.0  | 12.6 | 67   |
| Aulacomnium turgidum            | 1.7   | 4.1  | 17   |
| Brachythecium sp.               | 2.5   | 6.1  | 17   |
| Calliergon stramineum           | 0.2   | 0.4  | 17   |
| Drepanocladus sp.               | 2.5   | 6.1  | 17   |
| Hylocomium splendens            | 5.0   | 6.3  | 50   |
| Paludella squarrosa             | <0.1  | <0.1 | 17   |
| Pleurozium schreberi            | 4.2   | 5.8  | 50   |
| Polytrichum sp.                 | 3.3   | 5.2  | 33   |
| Rhytidium rugosum               | 2.7   | 4.1  | 50   |
| Sphagnum balticum               | 4.2   | 10.2 | 17   |
| Sphagnum girgensohnii           | 3.3   | 8.2  | 17   |
| Sphagnum squarrosum             | 0.8   | 2.0  | 17   |
| Thuidium recognitum             | 0.8   | 2.0  | 17   |
| Tomentypnum nitens              | 0.8   | 2.0  | 17   |
| Warnstorfia exannulata          | 0.2   | 0.4  | 17   |
| Warnstorfia sarmentosa          | 0.2   | 0.4  | 17   |
| Total Lichen Cover              | 0.9   | 2.1  | 33   |
| Cladina mitis                   | <0.1  | <0.1 | 17   |
| Cladonia sp.                    | <0.1  | <0.1 | 17   |
| Flavocetraria cucullata         | 0.2   | 0.4  | 17   |
| Flavocetraria nivalis           | <0.1  | <0.1 | 17   |
| Masonhalea richardsonii         | 0.5   | 1.2  | 17   |
| Peltigera aphthosa              | <0.1  | 0.1  | 33   |
| Stereocaulon sp.                | <0.1  | <0.1 | 17   |
| Thamnolia vermicularis          | 0.2   | 0.4  | 17   |
| Total Bare Ground               | 13.5  | 7.3  | 100  |
| Bare Soil                       | 0.8   | 2.0  | 33   |
| Water                           | 0.7   | 1.6  | 33   |
| Litter alone                    | 12.0  | 7.3  | 100  |



Soils are typically loamy with a thin to moderately thick surface organic horizon (Table 54). Permafrost occurs within the upper meter of the soil profile. Frost boils, surface fragments, and loess caps are absent. Soil pH is circumneutral to acidic, and EC is low. The soils are very poorly to somewhat poorly drained, and the water table is shallow.

Table 54. Soil characteristics for Lacustrine Willow Shrub.

| Property                                   | Mean  | SD    | n |
|--------------------------------------------|-------|-------|---|
| Elevation (m)                              | 378.0 | 328.9 | 6 |
| Slope (degrees)                            | 5.0   | 5.2   | 3 |
| Surface Organics Depth(cm)                 | 8.5   | 3.4   | 6 |
| Cumulative Org. in 40 cm (cm)              | 8.8   | 3.5   | 6 |
| Loess Cap Thickness (cm)                   |       |       | 0 |
| Depth to Rocks (cm)                        | 24.0  | 7.6   | 4 |
| Surface Fragment Cover (%)                 | 0.1   |       | 1 |
| Frost Boil Cover (%)                       |       |       | 0 |
| Thaw Depth (cm)                            | 56.6  | 20.5  | 5 |
| Site pH at 10-cm depth                     | 6.0   | 8.0   | 5 |
| Site EC at 10-cm depth (µS/cm)             | 72.0  | 47.1  | 5 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -30.8 | 30.7  | 5 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroup in this ecotype is Typic Aquorthels (wet, mineral soil over permafrost lacking cryoturbation). A less common subgroup is Typic Umbrorthels (moist, organic rich mineral soil over permafrost lacking cryoturbation). This ecotype and associated soils are part of the Lacustrine Loamy Barrens Meadows and Shrublands. Also included in this soil landscape are Lacustrine Bluejoint Meadow and Lacustrine Barrens.

## **Lowland Alder Tall Shrub**



## Geomorphology:

Lowland Alder Tall Shrub occurs on hillside colluvium, abandoned meander overbank deposits, older moraine and organic fens throughout ARCN. Surfaces are flat or sloped. Site elevation is usually <300 m. This ecotype represents a community in transition from dwarf shrub or graminoid-dominated vegetation, and may be expanding in response to a warming climate.

#### Plant Association:

Alnus crispa–Salix planifolia ssp. pulchra– Hylocomium splendens

All life forms are represented in this stable ecotype, although it is not particularly species rich (Table 55). Alder, *A. crispa* (syn: *Alnus viridus* ssp. *fruticosa*) grows in mostly open patches. Additional common species include *Vaccinium uliginosum*, *Equisetum arvense*, *Calamagrostis canadensis*, and *Tomentypnum nitens*.

This ecotype is most similar to Lowland Willow Tall Shrub in environmental factors but has different characteristic species. It differs from Upland Alder–Willow Tall Shrub floristically, in physiography and dominant soil type.

Table 55. Vegetation cover and frequency for Lowland Alder Tall Shrub (n=6).

| LOWIANU AIU                               |                |              |            |
|-------------------------------------------|----------------|--------------|------------|
| -                                         | Cov            |              | Freq       |
|                                           | Mean           | SD           | %          |
| Total Live Cover                          | 176.3<br>134.7 | 69.6<br>44.1 | 100<br>100 |
| Total Vascular Cover Total Evergreen Tree | 134.7          | 44.1         | 100        |
| Cover                                     | 2.5            | 4.0          | 50         |
| Picea glauca                              | 1.4            | 2.4          | 50         |
| Picea mariana                             | 1.2            | 2.9          | 17         |
| Total Evergreen Shrub                     | 11.0           | 40.7         | 67         |
| Cover                                     | 11.0           | 10.7         | 67         |
| Andromeda polifolia                       | 2.7            | 6.1          | 33         |
| Cassiope tetragona                        | 0.2            | 0.4          | 17<br>22   |
| Chamaedaphne calyculata                   | 1.7<br>1.9     | 4.1<br>4.0   | 33<br>50   |
| Empetrum nigrum                           | 2.5            | 4.0          | 33         |
| Ledum decumbens                           | 0.7            | 1.6          | 33<br>17   |
| Ledum groenlandicum<br>Linnaea borealis   | 0.7            | 0.8          | 17         |
| Vaccinium vitis-idaea                     | 1.2            | 1.8          | 33         |
| Total Deciduous Tree                      | 1.2            | 1.0          | 33         |
| Cover                                     | 0.4            | 0.9          | 17         |
| Betula hybrids                            | <0.1           | <0.1         | 17         |
| Betula papyrifera                         | 0.3            | 0.8          | 17         |
| <b>Total Deciduous Shrub</b>              |                |              |            |
| Cover                                     | 96.7           | 22.4         | 100        |
| Alnus crispa                              | 41.7           | 19.4         | 100        |
| Arctostaphylos rubra                      | 3.5            | 6.0          | 50         |
| Betula glandulosa                         | 10.8           | 22.0         | 33         |
| Betula nana                               | 4.7<br>1.7     | 10.0         | 33<br>17   |
| Myrica gale                               | 0.3            | 4.1<br>0.8   | 33         |
| Potentilla fruticosa                      | 0.3            | 0.8          | 33<br>17   |
| Salix arbusculoides                       | 0.3            | 2.0          | 33         |
| Salix glauca<br>Salix lanata ssp.         | 0.0            | 2.0          | 33         |
| richardsonii                              | 3.0            | 6.0          | 33         |
| Salix planifolia ssp.                     | 8.7            | 13.2         | 67         |
| pulchra                                   | 0.7<br>0.8     | 2.0          | 17         |
| Salix reticulata                          | 0.8            | 0.4          | 17         |
| Salix sp.<br>Spiraea beauverdiana         | 0.2            | 0.4          | 17         |
| Vaccinium uliginosum                      | 20.0           | 16.4         | 67         |
| Total Forb Cover                          | 17.4           | 13.8         | 100        |
| Aconitum delphinifolium                   | 0.1            | 0.1          | 50         |
| Anemone parviflora                        | 0.2            | 0.4          | 17         |
| Angelica lucida                           | 0.2            | 0.4          | 17         |
| Artemisia tilesii                         | 0.8            | 2.0          | 17         |
| Cypripedium passerinum                    | <0.1           | <0.1         | 17         |
| Equisetum arvense                         | 4.7            | 6.4          | 67         |
| Equisetum fluviatile                      | 0.2            | 0.4          | 17         |
| Equisetum pratense                        | 1.3            | 3.3          | 17         |
| Equisetum variegatum                      | <0.1           | <0.1         | 17         |
| Erigeron elatus                           | <0.1           | <0.1         | 17         |
| Galium boreale                            | <0.1           | <0.1         | 17         |
| Galium trifidum ssp.                      |                | 0.4          | 47         |
| trifidum                                  | <0.1           | <0.1         | 17         |
| Iris setosa                               | 0.5            | 0.8          | 33         |
| Lupinus arcticus                          | <0.1           | <0.1         | 17<br>17   |
| Lycopodium annotinum                      | <0.1           | <0.1         | 17<br>17   |
| Mentensia paniculata                      | <0.1<br><0.1   | <0.1<br><0.1 | 17<br>17   |
| Moneses uniflora                          | <0.1<br><0.1   | <0.1<br><0.1 | 17         |
| Parnassia palustris                       | <0.1<br><0.1   | <0.1<br><0.1 | 17         |
| Pedicularis capitata                      | <b>\U.</b> 1   | <b>\0.1</b>  | 17         |

|                                              | Cover      |       | Freq     |
|----------------------------------------------|------------|-------|----------|
|                                              | Mean       | SD    | %        |
| Pyrola secunda                               | <0.1       | <0.1  | 17       |
| Ranunculus lapponicus                        | <0.1       | <0.1  | 17       |
| Rubus arcticus                               | 0.3        | 0.8   | 33       |
| Rubus arcticus ssp. arcticus                 | 1.0        | 2.0   | 33       |
| Rubus arcticus ssp. stellatus                | 0.2        | 0.4   | 17       |
| Rubus chamaemorus                            | 6.2        | 14.1  | 33       |
| Saussurea angustifolia                       | 0.2        | 0.4   | 33       |
| Saxifraga punctata                           | <0.1       | < 0.1 | 17       |
| Senecio atropurpureus                        | <0.1       | <0.1  | 17       |
| Solidago multiradiata var.<br>multiradiata   | <0.1       | <0.1  | 17       |
| Trientalis europaea ssp.                     | <0.1       | <0.1  | 17       |
| arctica                                      | 0.1        | 1.6   | 33       |
| Valeriana capitata                           | <0.1       | <0.1  | 33<br>17 |
| Viola sp.                                    |            |       |          |
| Total Grass Cover                            | 2.2        | 1.6   | 100      |
| Arctagrostis latifolia                       | 0.7<br>1.5 | 1.2   | 33<br>67 |
| Calamagrostis canadensis  Total Sedge & Rush | 1.5        | 1.9   | 67       |
| Cover                                        | 4.4        | 9.2   | 67       |
| Carex bigelowii                              | 0.5        | 1.2   | 17       |
| Carex capillaris                             | <0.1       | < 0.1 | 17       |
| Carex sp.                                    | <0.1       | <0.1  | 17       |
| Carex vaginata                               | 0.5        | 1.2   | 33       |
| Eriophorum vaginatum                         | 3.3        | 8.2   | 17       |
| Total Nonvascular Cover                      | 41.6       | 34.2  | 100      |
| Total Moss Cover                             | 38.5       | 32.3  | 100      |
| Abietinella abietina                         | 1.2        | 2.9   | 17       |
| Aulacomnium palustre<br>Brachythecium        | 1.3        | 2.0   | 50       |
| erythrorrhizon                               | 0.2        | 0.4   | 17       |
| Brachythecium sp.                            | 0.8        | 2.0   | 17       |
| Bryum sp.                                    | <0.1       | <0.1  | 17       |
| Campylium polygamum                          | 0.1        | 0.2   | 17       |
| Dicranum sp.                                 | 0.2        | 0.4   | 17       |
| Hylocomium splendens                         | 20.8       | 28.2  | 67       |
| Isopterygiopsis pulchella                    | 0.1        | 0.2   | 17       |
| Pleurozium schreberi                         | 2.5        | 4.2   | 33       |
| Pohlia cruda                                 | 0.2        | 0.4   | 17       |
| Rhytidiadelphus triquetrus                   | <0.1       | <0.1  | 17       |
| Rhytidium rugosum                            | 2.5        | 6.1   | 17       |
| Sanionia uncinata                            | <0.1       | <0.1  | 17       |
| Sphagnum sp.                                 | 1.0        | 2.0   | 33       |
| Tomentypnum nitens                           | 7.2        | 9.5   | 67       |
| Unknown moss                                 | 0.5        | 1.2   | 17       |
| Total Lichen Cover                           | 3.1        | 4.6   | 83       |
| Cladina arbuscula                            | 0.3        | 0.8   | 17       |
| Cladina rangiferina                          | 0.3        | 0.8   | 17       |
| Cladina sp.                                  | 0.8        | 2.0   | 17       |
| Cladina stygia                               | 0.3        | 0.8   | 17       |
| Cladonia sp.                                 | <0.1       | <0.1  | 17       |
| Flavocetraria cucullata                      | 1.2        | 2.0   | 33       |
| Unknown lichen                               | <0.1       | <0.1  | 17       |
|                                              | <0.1       | <0.1  | 17       |
| Vulpicida sp.                                | 5.3        | 3.1   | 100      |
| Total Bare Ground                            | 2.5        | 4.2   | 50       |
| Bare Soil                                    |            |       |          |
| Litter alone                                 | 2.8        | 1.8   | 100      |

## Soils



The dominant soil subgroups in the ecotype are Typic Aquorthels (wet, mineral soil over permafrost lacking cryoturbation) and Typic Histoturbels (wet, organic rich soil over permafrost with cryoturbation). A less common subgroup that occurs on sites with better drainage is Typic Dystrogelepts (acidic, well drained, moderately thin organic horizon, permafrost below 1 m).

Table 56. Soil characteristics for Lowland Alder Tall Shrub.

| Property                                   | Mean  | SD    | n |
|--------------------------------------------|-------|-------|---|
| Elevation (m)                              | 151.8 | 106.9 | 6 |
| Slope (degrees)                            | 7.7   | 3.8   | 3 |
| Surface Organics Depth(cm)                 | 14.7  | 14.7  | 6 |
| Cumulative Org. in 40 cm (cm)              | 18.2  | 13.7  | 6 |
| Loess Cap Thickness (cm)                   |       |       | 0 |
| Depth to Rocks (cm)                        | 71.5  | 86.1  | 4 |
| Surface Fragment Cover (%)                 |       |       | 0 |
| Frost Boil Cover (%)                       |       |       | 0 |
| Thaw Depth (cm)                            | 62.8  | 25.7  | 4 |
| Site pH at 10-cm depth                     | 6.2   | 0.4   | 5 |
| Site EC at 10-cm depth (μS/cm)             | 94.0  | 53.2  | 5 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -36.8 | 24.7  | 4 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

This ecotype and associated soils are part of the Lowland Organic-rich Shrub and Forests soil landscape. Also included in this soil landscape are Lowland Willow Low Shrub, Lowland Birch–Willow Low Shrub, Lowland Birch–Ericaceous Low Shrub, and Lowland Black Spruce Forest. Soils are typically loamy with a thin to moderately thick surface organic horizon (Table 56). Permafrost and evidence of cryoturbation often occurs within the upper meter of the soil profile. Frost boils and surface fragments are absent, and loess caps are rare. However, when loess occurs it tends to be thick. Soil pH is circumneutral, and EC is low. The soils are poorly to moderately well drained, and the water table is typically shallow.

## **Lowland Birch-Ericaceous Low Shrub**



## Geomorphology:

This ecotype is common throughout ARCN, usually at elevations less than 200 m. It occurs on thaw basin ice-rich centers and ice-rich margins, drained basin ice-rich centers, lowland loess, old alluvial terraces, solifluction deposits and abandoned meander overbank deposits. Surfaces are flat, terraced, or on planar slopes. Low- centered polygons, ice-cored mounds, or peat mounds create micro-topographic variability.

#### Plant Association:

Ledum decumbens-Vaccinium vitis-idaea-Foliose lichens

Low shrubs and mosses are the dominant life forms (Table 57). Sedges and lichens are always present in small quantities, while trees and grasses occur only infrequently. This ecotype is not particularly diverse with a below average total number of species documented. Common species include *Ledum decumbens*, *Betula nana*, *Hylocomium splendens*, *Flavocetraria cucullata*, and *Cladina arbuscula*.

This ecotype is most similar to Lowland Birch–Willow Low Shrub except for the prevalence of ericaceous shrubs instead of willow species. It is floristically similar to Upland Birch–Ericaceous Low Shrub although cover of dwarf birch is higher in the uplands, and site and soil factors are dissimilar.

Table 57. Vegetation cover and frequency for Lowland Birch–Ericaceous Low Shrub (n=12).

| (n=12).                                       |                   |                |                 |
|-----------------------------------------------|-------------------|----------------|-----------------|
| -                                             | Cov               |                | Freq            |
| Total Live Cover                              | <b>Mean</b> 170.2 | <b>SD</b> 52.7 | <b>%</b><br>100 |
| Total Vascular Cover                          | 88.5              | 35.1           | 100             |
| Total Evergreen Tree                          | 50.5              | JJ. 1          | 100             |
| Cover                                         | 0.9               | 2.9            | 17              |
| Picea glauca                                  | 0.1               | 0.3            | 8               |
| Picea mariana                                 | 8.0               | 2.9            | 8               |
| Total Evergreen Shrub                         | 26.0              | 20.2           | 400             |
| Cover                                         | 36.9              | 20.3<br><0.1   | 100<br>8        |
| Chamaedaphne calyculata                       | <0.1<br><0.1      | <0.1<br><0.1   | 8               |
| Dryas integrifolia<br>Empetrum nigrum         | 7.7               | 6.2            | 100             |
| Ledum decumbens                               | 18.5              | 10.6           | 100             |
| Loiseleuria procumbens                        | 0.2               | 0.9            | 8               |
| Oxycoccus microcarpus                         | 0.2               | 0.4            | 25              |
| Rhododendron lapponicum                       | 0.1               | 0.3            | 8               |
| Vaccinium vitis-idaea                         | 10.2              | 10.0           | 92              |
| <b>Total Deciduous Tree</b>                   | _                 | _              |                 |
| Cover                                         | 0.0               | 0.0            | 8               |
| Populus tremuloides                           | <0.1              | <0.1           | 8               |
| Total Deciduous Shrub<br>Cover                | 38.1              | 25.8           | 100             |
| Arctostaphylos alpina                         | 0.1               | 0.3            | 8               |
| Arctostaphylos rubra                          | 0.1               | 0.3            | 8               |
| Betula glandulosa                             | 6.1               | 17.4           | 17              |
| Betula nana                                   | 20.6              | 19.4           | 100             |
| Potentilla fruticosa                          | 0.1               | 0.3            | 8               |
| Salix fuscescens                              | 0.1               | 0.3            | 25              |
| Salix glauca                                  | 0.2               | 0.9            | 8               |
| Salix lanata ssp. richardsonii                | 0.1               | 0.3            | 8               |
| Salix planifolia ssp. pulchra                 | 1.3               | 2.9            | 42              |
| Salix reticulata                              | 0.2               | 0.6            | 8               |
| Vaccinium uliginosum                          | 9.3               | 8.4            | 92              |
| Total Forb Cover                              | 1.6               | 1.9            | 58              |
| Equisetum arvense                             | 0.1<br><0.1       | 0.3            | 8               |
| Pedicularis labradorica<br>Pedicularis oederi | <0.1<br><0.1      | <0.1<br><0.1   | 8<br>8          |
| Petasites frigidus                            | 0.2               | 0.6            | 17              |
| Pinguicula villosa                            | <0.1              | <0.1           | 17              |
| Pyrola secunda                                | <0.1              | <0.1           | 8               |
| Rubus chamaemorus                             | 1.2               | 1.8            | 42              |
| Stellaria edwardsii                           | <0.1              | <0.1           | 8               |
| <b>Total Grass Cover</b>                      | 0.2               | 0.6            | 17              |
| Arctagrostis latifolia                        | 0.2               | 0.6            | 17              |
| <b>Total Sedge &amp; Rush Cover</b>           | 10.8              | 14.3           | 100             |
| Carex aquatilis ssp. aquatilis                | 6.0               | 14.2           | 50              |
| Carex bigelowii                               | 3.3               | 5.0            | 67              |
| Carex rariflora                               | 0.9               | 2.9            | 17              |
| Carex scirpoidea                              | <0.1              | <0.1           | 8               |
| Carex vaginata                                | <0.1              | <0.1           | 8               |
| Eriophorum angustifolium<br>Eriophorum        | 0.1               | 0.3            | 8               |
| brachyantherum                                | 0.1               | 0.3            | 17              |
| Eriophorum russeolum                          | 0.1               | 0.3            | 17              |
| Eriophorum sp.                                | <0.1              | <0.1           | 8               |
| Eriophorum vaginatum                          | 0.3               | 0.6            | 33              |
| Total Nonvascular Cover                       | 81.7              | 37.7           | 100             |
| <b>Total Moss Cover</b>                       | 71.9              | 40.3           | 100             |
| Aulacomnium palustre                          | 6.8               | 14.2           | 50              |

Table 57. Continued.

|                             | Cover        |              | Freq     |
|-----------------------------|--------------|--------------|----------|
|                             | Mean         | SD           | %        |
| Aulacomnium turgidum        | 2.7          | 4.9          | 50       |
| Brachythecium sp.           | <0.1         | <0.1         | 8        |
| Bryum sp.                   | 0.8          | 2.9          | 8        |
| Dicranum elongatum          | 0.4          | 1.0          | 17       |
| Dicranum groenlandicum      | 0.2          | 0.9          | 8        |
| Dicranum majus              | 0.2          | 0.6          | 8        |
| Dicranum sp.                | 2.8          | 3.7          | 67       |
| Ditrichum flexicaule        | 0.1          | 0.3          | 8        |
| Hylocomium splendens        | 11.3         | 21.8         | 58       |
| Pleurozium schreberi        | 3.3          | 9.5          | 33       |
| Pohlia nutans               | <0.1         | 0.1          | 8        |
| Polytrichum juniperinum     | 1.3          | 3.1          | 33       |
| Polytrichum sp.             | 0.6          | 1.4          | 25       |
| Ptilidium ciliare           | 2.4          | 5.8          | 42       |
| Ptilium crista-castrensis   | <0.1         | <0.1         | 8        |
| Rhytidium rugosum           | 2.5          | 7.2          | 17       |
| Sanionia uncinata           | 0.2          | 0.9          | 8        |
| Sphagnum angustifolium      | 8.0          | 2.9          | 8        |
| Sphagnum balticum           | 7.1          | 24.5         | 8        |
| Sphagnum capillifolium      | 3.3          | 11.5         | 8        |
| Sphagnum fuscum             | 8.8          | 17.9         | 33       |
| Sphagnum rubellum           | 0.8          | 2.9          | 8        |
| Sphagnum sp.                | 4.6          | 8.1          | 33       |
| Sphagnum squarrosum         | 2.5          | 8.7          | 17       |
| Sphagnum warnstorfii        | 0.2          | 0.9          | 8        |
| Sphenolobus minutus         | <0.1         | <0.1         | 8        |
| Thuidium recognitum         | 0.4          | 1.4          | 8        |
| Tomentypnum nitens          | 0.1          | 0.3          | 8        |
| Unknown moss                | 7.5          | 26.0         | 8        |
| Total Lichen Cover          | 9.9          | 12.0         | 100      |
| Cetraria cf. islandica      | 0.3          | 0.6          | 33       |
| Cetraria laevigata          | 0.2          | 0.6          | 8        |
| Cladina arbuscula           | 2.1          | 4.2          | 50       |
| Cladina rangiferina         | 1.3          | 2.5          | 50       |
| Cladina sp.                 | 1.3          | 4.3          | 25       |
| Cladina stellaris           | 0.1          | 0.3          | 8        |
| Cladina stygia              | 1.2          | 2.9          | 25       |
| Cladonia amaurocraea        | 0.5          | 1.4          | 17       |
| Cladonia furcata            | 0.4          | 1.4          | 8        |
| Cladonia macilenta          | <0.1         | 0.1          | 8        |
| Cladonia sp.                | 0.5          | 0.8          | 42       |
| Flavocetraria cucullata     | 1.5          | 2.5          | 67       |
| Flavocetraria nivalis       | <0.1         | <0.1<br><0.1 | 8        |
| Hypogymnia sp.              | <0.1<br><0.1 |              | 8        |
| Icmadophila ericetorum      | <0.1         | <0.1<br><0.1 | 8<br>8   |
| Masonhalea richardsonii     | <0.1         | <0.1         | o<br>17  |
| Nephroma arcticum           | <0.1<br>0.1  | 0.3          | 17       |
| Peltigera aphthosa          | <0.1         | <0.1         | 17       |
| Peltigera sp.               | <0.1         | <0.1         |          |
| Pertusaria dactylina        | <0.1<br>0.3  | <0.1<br>0.6  | 8<br>33  |
| Thamnolia vermicularis      | 6.5          | 7.2          | 33<br>83 |
| Total Bare Ground Bare Soil | 0.5<br>0.1   | 0.3          | 83<br>33 |
| Litter alone                | 6.4          | 7.2          | 33<br>83 |
| LILLEI AIOITE               | 0.4          | 1.2          | 03       |

#### Soils:



Soils are typically loamy with moderately thick to thick surface organic horizons (Table 58). Depth to permafrost is typically less than 1 m. Frost boils and surface fragments are absent. Loess is rare, which the exception of one site where a thick (>120 cm) accumulation of loess occurred. Soil pH is circumneutral to acidic, and EC is low. The soils are typically very poorly to somewhat poorly drained. Water table is typically shallow to moderately deep.

Table 58. Soil characteristics for Lowland Birch–Ericaceous Low Shrub.

| Property                                   | Mean  | SD    | n  |
|--------------------------------------------|-------|-------|----|
| Elevation (m)                              | 71.6  | 80.4  | 12 |
| Slope (degrees)                            | 8.5   | 9.2   | 2  |
| Surface Organics Depth(cm)                 | 17.0  | 8.1   | 12 |
| Cumulative Org. in 40 cm (cm)              | 17.8  | 7.6   | 12 |
| Loess Cap Thickness (cm)                   | 122.0 |       | 1  |
| Depth to Rocks (cm)                        | 200.0 | 0.0   | 6  |
| Surface Fragment Cover (%)                 |       |       | 0  |
| Frost Boil Cover (%)                       |       |       | 0  |
| Thaw Depth (cm)                            | 27.7  | 17.9  | 11 |
| Site pH at 10-cm depth                     | 4.7   | 0.6   | 11 |
| Site EC at 10-cm depth (μS/cm)             | 89.1  | 103.7 | 11 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -20.0 | 11.2  | 8  |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

Dominant soil subgroups in this ecotype are Typic Aquorthels (wet, mineral soil over permafrost lacking cryoturbation), Typic Hemistels (wet, moderately decomposed organic horizon ≥40 cm, permafrost present), and Typic Historthels (wet, organic rich soil over permafrost lacking cryoturbation). Less common subgroups include Typic Fibristels (wet, poorly decomposed thick peat, permafrost in upper meter), Typic Aquiturbels (wet, mineral soil over permafrost with cryoturbation), and Terric Hemistels (wet, thick, moderately decomposed organic horizon, with mineral soil within 1 m). This ecotype and associated soils are part of the Lowland Organic-rich Shrub and Forests soil landscape, which also includes Lowland Willow Low Shrub, Lowland Birch-Willow Low Shrub, and Lowland Black Spruce Forest ecotypes.

## **Lowland Birch-Willow Low Shrub**



## Geomorphology:

This common ecotype is found on hillside colluvium, lowland loess, lowland retransported deposits, solifluction deposits, abandoned braided overbank deposits, older moraine, ice-poor and ice-rich centers and ice-rich margins of thaw basins, and in bogs. Surfaces are flat or either concave or planar gradual slopes. Ice-cored, peat-cored or undifferentiated mounds are common microtopographic features. This ecotype is stable and not prone to disturbance except for changes associated with thawing permafrost.

## Plant Association:

Betula nana–Salix planifolia ssp. pulchra– Eriophorum angustifolium

Low deciduous shrubs characterize this ecotype (Table 59). Mosses and lichens are always present in small quantities. Forbs make up a minor component. This ecotype is the most diverse lowland ecotype, with the 14th highest overall species count. Common species include *Vaccinium uliginosum*, *Petasites frigidus*, *Carex bigelowii*, *Aulacomnium palustre*, and *Flavocetraria cucullata*.

This ecotype is most similar to Lowland Birch–Ericaceous Low Shrub as previously discussed, and to Lowland Willow Low Shrub, except for the prevalence of dwarf birch. It is comparable to Upland Birch–Willow Low Shrub, but site and soil factors are dissimilar and it is much less diverse floristically. It is similar to Riverine Birch–Willow Low Shrub except it has greater accumulation of organic soils.

## Soils:

Soils are typically loamy with moderately thick to thick surface organic horizons (Table 60). Depth to permafrost is typically less than 1 m. Frost boils and surface fragments are rare. Loess is rare, however when loess did occur it was generally thick (>20 cm). Soil pH is circumneutral to acidic, and EC is low. The soils are typically very poorly to somewhat poorly drained. Water table was typically shallow to moderately deep.

Table 59. Vegetation cover and frequency for Lowland Birch–Willow Low Shrub (n=20).

| Total Live Cover         144.3         53.2         100           Total Vascular Cover         94.0         35.3         100           Total Evergreen Tree Cover         0.2         0.5         15           Picea glauca         0.2         0.5         15           Total Evergreen Shrub Cover         8.6         8.5         95           Andromeda polifolia         0.5         1.2         20           Cassiope tetragona         0.5         1.3         25           Chamaedaphne calyculata         0.1         0.2         5           Dryas integrifolia         0.8         3.3         10           Dryas octopetala         0.1         0.7         5           Empetrum nigrum         1.2         1.9         50           Ledum decumbens         3.0         3.8         75           Vaccinium vitis-idaea         2.5         3.9         55           Total Deciduous Shrub Cover         59.1         24.2         100           Alnus crispa         0.4         1.2         15           Arctostaphylos rubra         0.1         0.3         11           Betula nana         24.2         10           Potentilla fruticosa <t< th=""><th>· · · · · · · · · · · · · · · · · · ·</th><th colspan="2">Cover Fi</th><th>Freq</th></t<> | · · · · · · · · · · · · · · · · · · · | Cover Fi |      | Freq |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|------|------|
| Total Live Cover         144.3         53.2         100           Total Vascular Cover         94.0         35.3         100           Total Evergreen Tree Cover         0.2         0.5         15           Picea glauca         0.2         0.5         15           Total Evergreen Shrub Cover         8.6         8.5         95           Andromeda polifolia         0.5         1.2         20           Cassiope tetragona         0.5         1.3         25           Chamaedaphne calyculata         0.1         0.2         5           Dryas integrifolia         0.8         3.3         10           Dryas cotopetala         0.1         0.2         5           Empetrum nigrum         1.2         1.9         50           Ledum decumbens         3.0         3.8         75           Vaccinium vitis-idaea         2.5         3.9         55           Total Deciduous Shrub Cover         59.1         24.2         100           Alnus crispa         0.4         1.2         15           Arctostaphylos rubra         0.1         0.3         10           Betula nana         24.2         17.0         95           Potentilla fru                                                                                                  |                                       | -        |      | •    |
| Total Vascular Cover         94.0         35.3         100           Total Evergreen Tree Cover         0.2         0.5         15           Picea glauca         0.2         0.5         15           Total Evergreen Shrub Cover         8.6         8.5         95           Andromeda polifolia         0.5         1.3         25           Cassiope tetragona         0.5         1.3         25           Chamaedaphne calyculata         0.1         0.2         5           Dryas integrifolia         0.8         3.3         10           Dryas octopetala         0.1         0.7         5           Empetrum nigrum         1.2         1.9         50           Ledum decumbens         3.0         3.8         75           Vaccinium vitis-idaea         2.5         3.9         55           Total Deciduous Shrub Cover         59.1         24.2         100           Alnus crispa         0.4         1.2         15           Actostaphylos rubra         59.1         24.2         100           Alnus crispa         0.4         1.2         15           Potentilla fruticosa         0.3         1.2         10           Salix barclay                                                                                                  | Total Live Cover                      |          |      |      |
| Total Evergreen Tree Cover         0.2         0.5         15           Picea glauca         0.2         0.5         15           Total Evergreen Shrub Cover         8.6         8.5         95           Andromeda polifolia         0.5         1.2         20           Cassiope tetragona         0.5         1.2         20           Chamaedaphne calyculata         0.1         0.2         5           Dryas integrifolia         0.8         3.3         10           Dryas octopetala         0.1         0.7         5           Empetrum nigrum         1.2         1.9         50           Ledum decumbens         3.0         3.8         75           Vaccinium vitis-idaea         2.5         3.9         55           Total Deciduous Shrub Cover         59.1         24.2         100           Alnus crispa         0.4         1.2         15           Arctostaphylos rubra         0.1         0.3         10           Betula nana         24.2         17.0         95           Potentilla fruticosa         0.3         1.2         10           Salix barclayi         0.2         1.1         5           Salix planifolia frutico                                                                                                  |                                       |          |      |      |
| Picea glauca         0.2         0.5         15           Total Evergreen Shrub Cover         8.6         8.5         95           Andromeda polifolia         0.5         1.2         20           Cassiope tetragona         0.5         1.3         25           Chamaedaphne calyculata         0.1         0.7         5           Dryas integrifolia         0.8         3.3         10           Dryas cotopetala         0.1         0.7         5           Empetrum nigrum         1.2         1.9         50           Ledum decumbens         3.0         3.8         75           Vaccinium vitis-idaea         2.5         3.9         55           Total Deciduous Shrub Cover         59.1         24.2         100           Alnus crispa         0.4         1.2         15           Arctostaphylos rubra         0.1         0.3         1.2         10           Betula nana         24.2         17.0         95           Potentilla fruticosa         0.3         1.2         10           Salix barclayi         0.2         1.1         5           Salix planifolia ssp. pulchra         21.9         18.2         10 <t< td=""><td></td><td></td><td></td><td>15</td></t<>                                                              |                                       |          |      | 15   |
| Total Evergreen Shrub Cover         8.6         8.5         95           Andromeda polifolia         0.5         1.2         20           Cassiope tetragona         0.5         1.3         25           Chamaedaphne calyculata         0.1         0.2         5           Dryas integrifolia         0.8         3.3         10           Dryas cotopetala         0.1         0.7         5           Empetrum nigrum         1.2         1.9         50           Ledum decumbens         3.0         3.8         75           Vaccinium vitis-idaea         2.5         3.9         55           Total Deciduous Shrub Cover         59.1         24.2         100           Almus crispa         0.4         1.2         15           Arctostaphylos rubra         0.1         0.3         10           Betula nana         24.2         17.0         95           Potentilla fruticosa         0.3         1.2         10           Salix barclayi         0.2         1.1         5           Salix glauca         0.8         3.4         5           Salix planifolia ssp. pulchra         21.9         18.2         10           Salix planifolia ssp                                                                                                  | _                                     | 0.2      | 0.5  | 15   |
| Andromeda polifolia       0.5       1.2       20         Cassiope tetragona       0.5       1.3       25         Chamaedaphne calyculata       0.1       0.2       5         Dryas integrifolia       0.8       3.3       10         Dryas octopetala       0.1       0.7       5         Empetrum nigrum       1.2       1.9       50         Ledum decumbens       3.0       3.8       75         Vaccinium vitis-idaea       2.5       3.9       55         Total Deciduous Shrub Cover       59.1       24.2       100         Alnus crispa       0.4       1.2       15         Arctostaphylos rubra       0.1       0.3       10         Betula nana       24.2       17.0       95         Potentilla fruticosa       0.3       1.2       10         Salix barclayi       0.2       2.1       1.5         Salix lanata ssp. richardsonii       0.6       2.2       10         Salix planifolia ssp. pulchra       21.9       18.2       100         Salix planifolia ssp. pulchra       21.9       18.2       100         Salix reticulata       0.8       2.4       20         Spiraea beauve                                                                                                                                                               | 3                                     | 8.6      | 8.5  | 95   |
| Cassiope tetragona         0.5         1.3         25           Chamaedaphne calyculata         0.1         0.2         5           Dryas integrifolia         0.8         3.3         10           Dryas octopetala         0.1         0.7         5           Empetrum nigrum         1.2         1.9         50           Ledum decumbens         3.0         3.8         75           Vaccinium vitis-idaea         2.5         3.9         55           Total Deciduous Shrub Cover         59.1         24.2         100           Alnus crispa         0.4         1.2         15           Arctostaphylos rubra         0.1         0.3         10           Betula nana         24.2         17.0         95           Potentilla fruticosa         0.3         1.2         10           Salix barclayi         0.2         1.1         5           Salix planifolia ssp. pulchra         0.8         3.4         5           Salix planifolia ssp. pulchra         21.9         18.2         100           Salix planifolia ssp. pulchra         21.9         18.2         10           Salix planifolia ssp. pulchra         21.9         10.2         20 <tr< td=""><td>=</td><td>0.5</td><td>1.2</td><td>20</td></tr<>                                | =                                     | 0.5      | 1.2  | 20   |
| Chamaedaphne calyculata         0.1         0.2         5           Dryas integrifolia         0.8         3.3         10           Dryas octopetala         0.1         0.7         5           Empetrum nigrum         1.2         1.9         50           Ledum decumbens         3.0         3.8         75           Vaccinium vitis-idaea         2.5         3.9         55           Total Deciduous Shrub Cover         59.1         24.2         100           Alnus crispa         0.4         1.2         15           Arctostaphylos rubra         0.1         0.3         10           Betula nana         24.2         17.0         95           Potentilla fruticosa         0.3         1.2         10           Salix barclayi         0.2         1.1         5           Salix plauca         0.8         3.4         5           Salix reticulata         0.8         2.4         20           Salix reticulata         0.8         2.4                                                                                                                            | •                                     | 0.5      | 1.3  | 25   |
| Dryas integrifolia         0.8         3.3         10           Dryas octopetala         0.1         0.7         5           Empetrum nigrum         1.2         1.9         50           Ledum decumbens         3.0         3.8         75           Vaccinium vitis-idaea         2.5         3.9         55           Total Deciduous Shrub Cover         59.1         24.2         100           Alnus crispa         0.4         1.2         15           Arctostaphylos rubra         0.1         0.3         10           Betula nana         24.2         17.0         95           Potentilla fruticosa         0.3         1.2         10           Salix barclayi         0.2         1.1         5           Salix glauca         0.8         3.4         5           Salix planifolia ssp. richardsonii         0.6         2.2         10           Salix planifolia ssp. pulchra         21.9         18.2         100           Salix planifolia ssp. pulchra         21.9         18.2         100           Salix reticulata         0.8         2.4         20           Spiraea beauverdiana         0.1         0.4         15           Vac                                                                                                  |                                       | 0.1      | 0.2  | 5    |
| Dryas octopetala         0.1         0.7         5           Empetrum nigrum         1.2         1.9         50           Ledum decumbens         3.0         3.8         75           Vaccinium vitis-idaea         2.5         3.9         55           Total Deciduous Shrub Cover         59.1         24.2         100           Alnus crispa         0.4         1.2         15           Arctostaphylos rubra         0.1         0.3         10           Betula nana         24.2         17.0         95           Potentilla fruticosa         0.3         1.2         10           Salix balanata         0.8         3.4         5           Salix planifolia ssp. richardsonii         0.6         2.2         10           Salix planifolia ssp. pulchra         21.9         18.2         100           Salix reticulata         0.8         2.4         20           Spiraea beauverdiana         0.1         0.4         15           Vaccinium uliginosum         9.4         10.2         95           Total Forb Cover         10.8         18.8         85           Aconitum delphinifolium         0.1         0.2         5           Equ                                                                                                  | , ,                                   | 0.8      | 3.3  | 10   |
| Empetrum nigrum       1.2       1.9       50         Ledum decumbens       3.0       3.8       75         Vaccinium vitis-idaea       2.5       3.9       55         Total Deciduous Shrub Cover       59.1       24.2       100         Alnus crispa       0.4       1.2       15         Arctostaphylos rubra       0.1       0.3       10         Betula nana       24.2       17.0       95         Potentilla fruticosa       0.3       1.2       10         Salix barclayi       0.2       1.1       5         Salix glauca       0.8       3.4       5         Salix planifolia ssp. richardsonii       0.6       2.2       10         Salix planifolia ssp. pulchra       21.9       18.2       100         Salix reticulata       0.8       2.4       20         Spiraea beauverdiana       0.1       0.4       15         Vaccinium uliginosum       9.4       10.2       95         Total Forb Cover       10.8       18.8       85         Aconitum delphinifolium       0.1       0.2       5         Equisetum arvense       4.8       16.8       25         Pedicularis sudetica                                                                                                                                                                     | , ,                                   | 0.1      | 0.7  | 5    |
| Ledum decumbens       3.0       3.8       75         Vaccinium vitis-idaea       2.5       3.9       55         Total Deciduous Shrub Cover       59.1       24.2       100         Alnus crispa       0.4       1.2       15         Arctostaphylos rubra       0.1       0.3       10         Betula nana       24.2       17.0       95         Potentilla fruticosa       0.3       1.2       10         Salix barclayi       0.2       1.1       5         Salix glauca       0.8       3.4       5         Salix planifolia ssp. richardsonii       0.6       2.2       10         Salix planifolia ssp. pulchra       21.9       18.2       100         Salix peticulata       0.8       2.4       20         Spiraea beauverdiana       0.1       0.4       15         Vaccinium uliginosum       9.4       10.2       95         Total Forb Cover       10.8       18.8       85         Aconitum delphinifolium       0.1       0.2       5         Equisetum arvense       4.8       16.8       25         Pediscitera frigidus       2.4       2.9       60         Polygonum bistorta <td>•</td> <td>1.2</td> <td>1.9</td> <td>50</td>                                                                                                                 | •                                     | 1.2      | 1.9  | 50   |
| Total Deciduous Shrub Cover         59.1         24.2         100           Alnus crispa         0.4         1.2         15           Arctostaphylos rubra         0.1         0.3         10           Betula nana         24.2         17.0         95           Potentilla fruticosa         0.3         1.2         10           Salix barclayi         0.2         1.1         5           Salix glauca         0.8         3.4         5           Salix lanata ssp. richardsonii         0.6         2.2         10           Salix planifolia ssp. pulchra         21.9         18.2         100           Salix reticulata         0.8         2.4         20           Spiraea beauverdiana         0.1         0.4         15           Vaccinium uliginosum         9.4         10.2         95           Total Forb Cover         10.8         18.8         85           Aconitum delphinifolium         0.1         0.2         5           Equisetum arvense         4.8         16.8         25           Pedicularis sudetica         0.1         0.2         15           Pedisetum arvense         4.8         16.8         25           Pedicu                                                                                                  | -                                     | 3.0      | 3.8  | 75   |
| Alnus crispa       0.4       1.2       15         Arctostaphylos rubra       0.1       0.3       10         Betula nana       24.2       17.0       95         Potentilla fruticosa       0.3       1.2       10         Salix barclayi       0.2       1.1       5         Salix glauca       0.8       3.4       5         Salix lanata ssp. richardsonii       0.6       2.2       10         Salix planifolia ssp. pulchra       21.9       18.2       100         Salix reticulata       0.8       2.4       20         Spiraea beauverdiana       0.1       0.4       15         Vaccinium uliginosum       9.4       10.2       95         Total Forb Cover       10.8       18.8       85         Aconitum delphinifolium       0.1       0.2       5         Equisetum arvense       4.8       16.8       25         Pedicularis sudetica       0.1       0.3       15         Petasites frigidus       2.4       2.9       60         Polemonium acutiflorum       0.1       0.2       15         Polygonum bistorta       0.1       0.7       5         Pyrola grandiflora                                                                                                                                                                               | Vaccinium vitis-idaea                 | 2.5      | 3.9  | 55   |
| Arctostaphylos rubra       0.1       0.3       10         Betula nana       24.2       17.0       95         Potentilla fruticosa       0.3       1.2       10         Salix barclayi       0.2       1.1       5         Salix glauca       0.8       3.4       5         Salix lanata ssp. richardsonii       0.6       2.2       10         Salix planifolia ssp. pulchra       21.9       18.2       100         Salix reticulata       0.8       2.4       20         Spiraea beauverdiana       0.1       0.4       15         Vaccinium uliginosum       9.4       10.2       95         Total Forb Cover       10.8       18.8       85         Aconitum delphinifolium       0.1       0.2       5         Equisetum arvense       4.8       16.8       25         Pedicularis sudetica       0.1       0.3       15         Petasites frigidus       2.4       2.9       60         Polemonium acutiflorum       0.1       0.2       15         Polygonum bistorta       0.1       0.4       10         Polygonum viviparum       0.1       0.7       5         Pyrola grandiflora                                                                                                                                                                        | <b>Total Deciduous Shrub Cover</b>    | 59.1     | 24.2 | 100  |
| Betula nana       24.2       17.0       95         Potentilla fruticosa       0.3       1.2       10         Salix barclayi       0.2       1.1       5         Salix glauca       0.8       3.4       5         Salix lanata ssp. richardsonii       0.6       2.2       10         Salix reticulata       0.8       2.4       20         Spiraea beauverdiana       0.1       0.4       15         Vaccinium uliginosum       9.4       10.2       95         Total Forb Cover       10.8       18.8       85         Aconitum delphinifolium       0.1       0.2       5         Equisetum arvense       4.8       16.8       25         Pedicularis sudetica       0.1       0.3       15         Petasites frigidus       2.4       2.9       60         Polemonium acutiflorum       0.1       0.2       15         Polygonum bistorta       0.1       0.4       10         Polygonum viviparum       0.1       0.2       20         Potentilla palustris       0.1       0.7       5         Pyrola grandiflora       0.4       0.9       25         Rubus arcticus ssp. arcticus       <                                                                                                                                                                    | Alnus crispa                          | 0.4      | 1.2  | 15   |
| Betula nana       24.2       17.0       95         Potentilla fruticosa       0.3       1.2       10         Salix barclayi       0.2       1.1       5         Salix glauca       0.8       3.4       5         Salix lanata ssp. richardsonii       0.6       2.2       10         Salix reticulata       0.8       2.4       20         Spiraea beauverdiana       0.1       0.4       15         Vaccinium uliginosum       9.4       10.2       95         Total Forb Cover       10.8       18.8       85         Aconitum delphinifolium       0.1       0.2       5         Equisetum arvense       4.8       16.8       25         Pedicularis sudetica       0.1       0.3       15         Petasites frigidus       2.4       2.9       60         Polemonium acutiflorum       0.1       0.2       15         Polygonum bistorta       0.1       0.4       10         Polygonum viviparum       0.1       0.2       20         Potentilla palustris       0.1       0.7       5         Pyrola grandiflora       0.4       0.9       25         Rubus arcticus ssp. arcticus       <                                                                                                                                                                    | •                                     | 0.1      | 0.3  | 10   |
| Salix barclayi       0.2       1.1       5         Salix glauca       0.8       3.4       5         Salix lanata ssp. richardsonii       0.6       2.2       10         Salix reticulata       21.9       18.2       100         Salix reticulata       0.8       2.4       20         Spiraea beauverdiana       0.1       0.4       15         Vaccinium uliginosum       9.4       10.2       95         Total Forb Cover       10.8       18.8       85         Aconitum delphinifolium       0.1       0.2       5         Equisetum arvense       4.8       16.8       25         Pedicularis sudetica       0.1       0.3       15         Petasites frigidus       2.4       2.9       60         Polemonium acutiflorum       0.1       0.2       15         Polygonum bistorta       0.1       0.4       10         Polygonum bistorta       0.1       0.7       5         Pyrola grandiflora       0.4       0.9       25         Rubus arcticus       0.3       1.2       10         Rubus arcticus ssp. arcticus       0.1       0.2       10         Rubus chamaemorus       1                                                                                                                                                                        | · ·                                   | 24.2     | 17.0 | 95   |
| Salix barclayi       0.2       1.1       5         Salix glauca       0.8       3.4       5         Salix lanata ssp. richardsonii       0.6       2.2       10         Salix planifolia ssp. pulchra       21.9       18.2       100         Salix reticulata       0.8       2.4       20         Spiraea beauverdiana       0.1       0.4       15         Vaccinium uliginosum       9.4       10.2       95         Total Forb Cover       10.8       18.8       85         Aconitum delphinifolium       0.1       0.2       5         Equisetum arvense       4.8       16.8       25         Pedicularis sudetica       0.1       0.3       15         Pedisularis sudetica       0.1       0.3       15         Petasites frigidus       2.4       2.9       60         Polemonium acutiflorum       0.1       0.2       15         Polygonum bistorta       0.1       0.2       15         Polygonum viviparum       0.1       0.2       20         Potentilla palustris       0.1       0.7       5         Pyrola grandiflora       0.4       0.9       25         Rubus arcticus ssp. ar                                                                                                                                                               |                                       | 0.3      | 1.2  | 10   |
| Salix glauca       0.8       3.4       5         Salix lanata ssp. richardsonii       0.6       2.2       10         Salix planifolia ssp. pulchra       21.9       18.2       100         Salix reticulata       0.8       2.4       20         Spiraea beauverdiana       0.1       0.4       15         Vaccinium uliginosum       9.4       10.2       95         Total Forb Cover       10.8       18.8       85         Aconitum delphinifolium       0.1       0.2       5         Equisetum arvense       4.8       16.8       25         Pedicularis sudetica       0.1       0.3       15         Petasites frigidus       2.4       2.9       60         Polemonium acutiflorum       0.1       0.2       15         Polygonum bistorta       0.1       0.2       15         Polygonum viviparum       0.1       0.2       20         Potentilla palustris       0.1       0.7       5         Pyrola grandiflora       0.4       0.9       25         Rubus arcticus ssp. arcticus       0.1       0.2       10         Rubus arcticus ssp. arcticus       0.1       0.2       10 <td< td=""><td></td><td>0.2</td><td>1.1</td><td>5</td></td<>                                                                                                          |                                       | 0.2      | 1.1  | 5    |
| Salix anata ssp. richardsonii       0.6       2.2       10         Salix planifolia ssp. pulchra       21.9       18.2       100         Salix reticulata       0.8       2.4       20         Spiraea beauverdiana       0.1       0.4       15         Vaccinium uliginosum       9.4       10.2       95         Total Forb Cover       10.8       18.8       85         Aconitum delphinifolium       0.1       0.2       5         Equisetum arvense       4.8       16.8       25         Pedicularis sudetica       0.1       0.3       15         Petasites frigidus       2.4       2.9       60         Polemonium acutiflorum       0.1       0.2       15         Polygonum bistorta       0.1       0.2       15         Polygonum viviparum       0.1       0.2       20         Potentilla palustris       0.1       0.7       5         Pyrola grandiflora       0.4       0.9       25         Rubus arcticus ssp. arcticus       0.1       0.2       10         Rubus chamaemorus       1.5       4.5       35         Saussurea angustifolia       0.1       0.2       10                                                                                                                                                                        | ,                                     | 0.8      | 3.4  | 5    |
| Salix planifolia ssp. pulchra       21.9       18.2       100         Salix reticulata       0.8       2.4       20         Spiraea beauverdiana       0.1       0.4       15         Vaccinium uliginosum       9.4       10.2       95         Total Forb Cover       10.8       18.8       85         Aconitum delphinifolium       0.1       0.2       5         Equisetum arvense       4.8       16.8       25         Pedicularis sudetica       0.1       0.3       15         Petasites frigidus       2.4       2.9       60         Polemonium acutiflorum       0.1       0.2       15         Polygonum bistorta       0.1       0.4       10         Polygonum viviparum       0.1       0.2       20         Potentilla palustris       0.1       0.7       5         Pyrola grandiflora       0.4       0.9       25         Rubus arcticus ssp. arcticus       0.1       0.2       10         Rubus arcticus ssp. arcticus       0.1       0.2       10         Rubus chamaemorus       1.5       4.5       35         Saussurea angustifolia       0.1       0.2       10         S                                                                                                                                                               | •                                     | 0.6      | 2.2  | 10   |
| Salix reticulata       0.8       2.4       20         Spiraea beauverdiana       0.1       0.4       15         Vaccinium uliginosum       9.4       10.2       95         Total Forb Cover       10.8       18.8       85         Aconitum delphinifolium       0.1       0.2       5         Equisetum arvense       4.8       16.8       25         Pedicularis sudetica       0.1       0.3       15         Petasites frigidus       2.4       2.9       60         Polemonium acutiflorum       0.1       0.2       15         Polygonum bistorta       0.1       0.4       10         Polygonum viviparum       0.1       0.2       20         Potentilla palustris       0.1       0.7       5         Pyrola grandiflora       0.4       0.9       25         Rubus arcticus       0.3       1.2       10         Rubus arcticus ssp. arcticus       0.1       0.2       10         Rubus chamaemorus       1.5       4.5       35         Saussurea angustifolia       0.1       0.2       10         Saxifraga punctata       0.1       0.2       20         Valeriana capitata                                                                                                                                                                          | •                                     | 21.9     | 18.2 | 100  |
| Vaccinium uliginosum         9.4         10.2         95           Total Forb Cover         10.8         18.8         85           Aconitum delphinifolium         0.1         0.2         5           Equisetum arvense         4.8         16.8         25           Pedicularis sudetica         0.1         0.3         15           Petasites frigidus         2.4         2.9         60           Polemonium acutiflorum         0.1         0.2         15           Polygonum bistorta         0.1         0.4         10           Polygonum viviparum         0.1         0.2         20           Potentilla palustris         0.1         0.7         5           Pyrola grandiflora         0.4         0.9         25           Rubus arcticus         0.3         1.2         10           Rubus arcticus ssp. arcticus         0.1         0.2         10           Rubus chamaemorus         1.5         4.5         35           Saussurea angustifolia         0.1         0.2         10           Saxifraga punctata         0.1         0.2         20           Valeriana capitata         0.1         0.2         20           Total Gras                                                                                                  |                                       | 0.8      | 2.4  | 20   |
| Total Forb Cover         10.8         18.8         85           Aconitum delphinifolium         0.1         0.2         5           Equisetum arvense         4.8         16.8         25           Pedicularis sudetica         0.1         0.3         15           Petasites frigidus         2.4         2.9         60           Polemonium acutiflorum         0.1         0.2         15           Polygonum bistorta         0.1         0.4         10           Polygonum viviparum         0.1         0.2         20           Potentilla palustris         0.1         0.7         5           Pyrola grandiflora         0.4         0.9         25           Rubus arcticus         0.3         1.2         10           Rubus arcticus ssp. arcticus         0.1         0.2         10           Rubus chamaemorus         1.5         4.5         35           Saussurea angustifolia         0.1         0.2         10           Saxifraga punctata         0.1         0.2         20           Valeriana capitata         0.1         0.2         20           Total Grass Cover         2.2         3.3         85           Arctagrostis l                                                                                                  | Spiraea beauverdiana                  | 0.1      | 0.4  | 15   |
| Total Forb Cover         10.8         18.8         85           Aconitum delphinifolium         0.1         0.2         5           Equisetum arvense         4.8         16.8         25           Pedicularis sudetica         0.1         0.3         15           Petasites frigidus         2.4         2.9         60           Polemonium acutiflorum         0.1         0.2         15           Polygonum bistorta         0.1         0.4         10           Polygonum viviparum         0.1         0.2         20           Potentilla palustris         0.1         0.7         5           Pyrola grandiflora         0.4         0.9         25           Rubus arcticus         0.3         1.2         10           Rubus arcticus ssp. arcticus         0.1         0.2         10           Rubus arcticus ssp. arcticus         0.1         0.2         10           Rubus chamaemorus         1.5         4.5         35           Saussurea angustifolia         0.1         0.2         10           Saxifraga punctata         0.1         0.2         20           Valeriana capitata         0.1         0.2         20           Tot                                                                                                  | Vaccinium uliginosum                  | 9.4      | 10.2 | 95   |
| Equisetum arvense       4.8       16.8       25         Pedicularis sudetica       0.1       0.3       15         Petasites frigidus       2.4       2.9       60         Polemonium acutiflorum       0.1       0.2       15         Polygonum bistorta       0.1       0.4       10         Polygonum viviparum       0.1       0.2       20         Potentilla palustris       0.1       0.7       5         Pyrola grandiflora       0.4       0.9       25         Rubus arcticus       0.3       1.2       10         Rubus arcticus ssp. arcticus       0.1       0.2       10         Rubus chamaemorus       1.5       4.5       35         Saussurea angustifolia       0.1       0.2       10         Saxifraga punctata       0.1       0.2       20         Valeriana capitata       0.1       0.2       20         Total Grass Cover       2.2       3.3       85         Arctagrostis latifolia       0.7       1.3       45         Calamagrostis canadensis       1.1       3.4       20         Poa arctica       0.1       0.3       50         Total Sedge & Rush Cover                                                                                                                                                                         | _                                     | 10.8     | 18.8 | 85   |
| Equisetum arvense       4.8       16.8       25         Pedicularis sudetica       0.1       0.3       15         Petasites frigidus       2.4       2.9       60         Polemonium acutiflorum       0.1       0.2       15         Polygonum bistorta       0.1       0.4       10         Polygonum viviparum       0.1       0.2       20         Potentilla palustris       0.1       0.7       5         Pyrola grandiflora       0.4       0.9       25         Rubus arcticus       0.3       1.2       10         Rubus arcticus ssp. arcticus       0.1       0.2       10         Rubus chamaemorus       1.5       4.5       35         Saussurea angustifolia       0.1       0.2       10         Saxifraga punctata       0.1       0.2       20         Valeriana capitata       0.1       0.2       20         Valeriana capitata       0.1       0.2       20         Total Grass Cover       2.2       3.3       85         Arctagrostis latifolia       0.7       1.3       45         Calamagrostis canadensis       1.1       3.4       20         Poa arctica                                                                                                                                                                               | Aconitum delphinifolium               | 0.1      | 0.2  | 5    |
| Petasites frigidus       2.4       2.9       60         Polemonium acutiflorum       0.1       0.2       15         Polygonum bistorta       0.1       0.4       10         Polygonum viviparum       0.1       0.2       20         Potentilla palustris       0.1       0.7       5         Pyrola grandiflora       0.4       0.9       25         Rubus arcticus       0.3       1.2       10         Rubus arcticus ssp. arcticus       0.1       0.2       10         Rubus chamaemorus       1.5       4.5       35         Saussurea angustifolia       0.1       0.2       10         Saxifraga punctata       0.1       0.2       20         Valeriana capitata       0.1       0.2       20         Valeriana capitata       0.1       0.2       20         Total Grass Cover       2.2       3.3       85         Arctagrostis latifolia       0.7       1.3       45         Calamagrostis canadensis       1.1       3.4       20         Poa arctica       0.1       0.3       50         Total Sedge & Rush Cover       13.2       15.6       95         Carex aquatilis ssp. aquatil                                                                                                                                                               |                                       | 4.8      | 16.8 | 25   |
| Polemonium acutiflorum         0.1         0.2         15           Polygonum bistorta         0.1         0.4         10           Polygonum viviparum         0.1         0.2         20           Potentilla palustris         0.1         0.7         5           Pyrola grandiflora         0.4         0.9         25           Rubus arcticus         0.3         1.2         10           Rubus arcticus ssp. arcticus         0.1         0.2         10           Rubus chamaemorus         1.5         4.5         35           Saussurea angustifolia         0.1         0.2         10           Saxifraga punctata         0.1         0.2         20           Valeriana capitata         0.1         0.2         20           Valeriana capitata         0.1         0.2         20           Total Grass Cover         2.2         3.3         85           Arctagrostis latifolia         0.7         1.3         45           Calamagrostis canadensis         1.1         3.4         20           Poa arctica         0.1         0.3         50           Total Sedge & Rush Cover         13.2         15.6         95           Carex aqu                                                                                                  | Pedicularis sudetica                  | 0.1      | 0.3  | 15   |
| Polygonum bistorta         0.1         0.4         10           Polygonum viviparum         0.1         0.2         20           Potentilla palustris         0.1         0.7         5           Pyrola grandiflora         0.4         0.9         25           Rubus arcticus         0.3         1.2         10           Rubus arcticus ssp. arcticus         0.1         0.2         10           Rubus chamaemorus         1.5         4.5         35           Saussurea angustifolia         0.1         0.2         10           Saxifraga punctata         0.1         0.2         20           Valeriana capitata         0.1         0.2         20           Valeriana capitata         0.1         0.2         20           Total Grass Cover         2.2         3.3         85           Arctagrostis latifolia         0.7         1.3         45           Calamagrostis canadensis         1.1         3.4         20           Poa arctica         0.1         0.3         50           Total Sedge & Rush Cover         13.2         15.6         95           Carex aquatilis ssp. aquatilis         2.9         8.9         35           C                                                                                                  | Petasites frigidus                    | 2.4      | 2.9  | 60   |
| Polygonum viviparum         0.1         0.2         20           Potentilla palustris         0.1         0.7         5           Pyrola grandiflora         0.4         0.9         25           Rubus arcticus         0.3         1.2         10           Rubus arcticus ssp. arcticus         0.1         0.2         10           Rubus chamaemorus         1.5         4.5         35           Saussurea angustifolia         0.1         0.2         10           Saxifraga punctata         0.1         0.2         20           Valeriana capitata         0.1         0.2         20           Valeriana capitata         0.1         0.2         20           Total Grass Cover         2.2         3.3         85           Arctagrostis latifolia         0.7         1.3         45           Calamagrostis canadensis         1.1         3.4         20           Poa arctica         0.1         0.3         50           Total Sedge & Rush Cover         13.2         15.6         95           Carex aquatilis ssp. aquatilis         2.9         8.9         35           Carex bigelowii         3.9         5.7         70           Care                                                                                                  | Polemonium acutiflorum                | 0.1      | 0.2  | 15   |
| Potentilla palustris         0.1         0.7         5           Pyrola grandiflora         0.4         0.9         25           Rubus arcticus         0.3         1.2         10           Rubus arcticus ssp. arcticus         0.1         0.2         10           Rubus chamaemorus         1.5         4.5         35           Saussurea angustifolia         0.1         0.2         10           Saxifraga punctata         0.1         0.2         20           Valeriana capitata         0.1         0.2         20           Valeriana capitata         0.1         0.2         20           Total Grass Cover         2.2         3.3         85           Arctagrostis latifolia         0.7         1.3         45           Calamagrostis canadensis         1.1         3.4         20           Poa arctica         0.1         0.3         50           Total Sedge & Rush Cover         13.2         15.6         95           Carex aquatilis ssp. aquatilis         2.9         8.9         35           Carex bigelowii         3.9         5.7         70           Carex chordorrhiza         0.1         0.4         5           Carex                                                                                                   | Polygonum bistorta                    | 0.1      | 0.4  | 10   |
| Pyrola grandiflora       0.4       0.9       25         Rubus arcticus       0.3       1.2       10         Rubus arcticus ssp. arcticus       0.1       0.2       10         Rubus chamaemorus       1.5       4.5       35         Saussurea angustifolia       0.1       0.2       10         Saxifraga punctata       0.1       0.2       20         Valeriana capitata       0.1       0.2       20         Total Grass Cover       2.2       3.3       85         Arctagrostis latifolia       0.7       1.3       45         Calamagrostis canadensis       1.1       3.4       20         Poa arctica       0.1       0.3       50         Total Sedge & Rush Cover       13.2       15.6       95         Carex aquatilis ssp. aquatilis       2.9       8.9       35         Carex bigelowii       3.9       5.7       70         Carex chordorrhiza       0.1       0.4       5         Carex limosa       0.1       0.5       10         Carex membranacea       0.1       0.5       10         Carex vaginata       0.1       0.2       1.1       5                                                                                                                                                                                                    | Polygonum viviparum                   | 0.1      | 0.2  | 20   |
| Rubus arcticus       0.3       1.2       10         Rubus arcticus ssp. arcticus       0.1       0.2       10         Rubus chamaemorus       1.5       4.5       35         Saussurea angustifolia       0.1       0.2       10         Saxifraga punctata       0.1       0.2       20         Valeriana capitata       0.1       0.2       20         Total Grass Cover       2.2       3.3       85         Arctagrostis latifolia       0.7       1.3       45         Calamagrostis canadensis       1.1       3.4       20         Poa arctica       0.1       0.3       50         Total Sedge & Rush Cover       13.2       15.6       95         Carex aquatilis ssp. aquatilis       2.9       8.9       35         Carex bigelowii       3.9       5.7       70         Carex chordorrhiza       0.1       0.4       5         Carex limosa       0.1       0.5       10         Carex membranacea       0.1       0.5       10         Carex vaginata       0.1       0.2       1.1       5                                                                                                                                                                                                                                                            | Potentilla palustris                  | 0.1      | 0.7  | 5    |
| Rubus arcticus ssp. arcticus       0.1       0.2       10         Rubus chamaemorus       1.5       4.5       35         Saussurea angustifolia       0.1       0.2       10         Saxifraga punctata       0.1       0.2       20         Valeriana capitata       0.1       0.2       20         Total Grass Cover       2.2       3.3       85         Arctagrostis latifolia       0.7       1.3       45         Calamagrostis canadensis       1.1       3.4       20         Poa arctica       0.1       0.3       50         Total Sedge & Rush Cover       13.2       15.6       95         Carex aquatilis ssp. aquatilis       2.9       8.9       35         Carex bigelowii       3.9       5.7       70         Carex chordorrhiza       0.1       0.4       5         Carex limosa       0.1       0.3       10         Carex membranacea       0.1       0.5       10         Carex vaginata       0.1       0.2       1.1       5                                                                                                                                                                                                                                                                                                                | Pyrola grandiflora                    | 0.4      | 0.9  | 25   |
| Rubus chamaemorus       1.5       4.5       35         Saussurea angustifolia       0.1       0.2       10         Saxifraga punctata       0.1       0.2       20         Valeriana capitata       0.1       0.2       20         Total Grass Cover       2.2       3.3       85         Arctagrostis latifolia       0.7       1.3       45         Calamagrostis canadensis       1.1       3.4       20         Poa arctica       0.1       0.3       50         Total Sedge & Rush Cover       13.2       15.6       95         Carex aquatilis ssp. aquatilis       2.9       8.9       35         Carex bigelowii       3.9       5.7       70         Carex chordorrhiza       0.1       0.4       5         Carex limosa       0.1       0.3       10         Carex membranacea       0.1       0.5       10         Carex vaginata       0.1       0.2       1.1       5                                                                                                                                                                                                                                                                                                                                                                                  | Rubus arcticus                        | 0.3      | 1.2  | 10   |
| Saussurea angustifolia       0.1       0.2       10         Saxifraga punctata       0.1       0.2       20         Valeriana capitata       0.1       0.2       20         Total Grass Cover       2.2       3.3       85         Arctagrostis latifolia       0.7       1.3       45         Calamagrostis canadensis       1.1       3.4       20         Poa arctica       0.1       0.3       50         Total Sedge & Rush Cover       13.2       15.6       95         Carex aquatilis ssp. aquatilis       2.9       8.9       35         Carex bigelowii       3.9       5.7       70         Carex chordorrhiza       0.1       0.4       5         Carex limosa       0.1       0.3       10         Carex membranacea       0.1       0.5       10         Carex saxatilis       0.2       1.1       5         Carex vaginata       0.1       0.2       10                                                                                                                                                                                                                                                                                                                                                                                              | Rubus arcticus ssp. arcticus          | 0.1      | 0.2  | 10   |
| Saxifraga punctata       0.1       0.2       20         Valeriana capitata       0.1       0.2       20         Total Grass Cover       2.2       3.3       85         Arctagrostis latifolia       0.7       1.3       45         Calamagrostis canadensis       1.1       3.4       20         Poa arctica       0.1       0.3       50         Total Sedge & Rush Cover       13.2       15.6       95         Carex aquatilis ssp. aquatilis       2.9       8.9       35         Carex bigelowii       3.9       5.7       70         Carex chordorrhiza       0.1       0.4       5         Carex limosa       0.1       0.3       10         Carex membranacea       0.1       0.5       10         Carex saxatilis       0.2       1.1       5         Carex vaginata       0.1       0.2       10                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rubus chamaemorus                     | 1.5      | 4.5  | 35   |
| Valeriana capitata       0.1       0.2       20         Total Grass Cover       2.2       3.3       85         Arctagrostis latifolia       0.7       1.3       45         Calamagrostis canadensis       1.1       3.4       20         Poa arctica       0.1       0.3       50         Total Sedge & Rush Cover       13.2       15.6       95         Carex aquatilis ssp. aquatilis       2.9       8.9       35         Carex bigelowii       3.9       5.7       70         Carex chordorrhiza       0.1       0.4       5         Carex limosa       0.1       0.3       10         Carex membranacea       0.1       0.5       10         Carex saxatilis       0.2       1.1       5         Carex vaginata       0.1       0.2       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Saussurea angustifolia                | 0.1      | 0.2  | 10   |
| Total Grass Cover         2.2         3.3         85           Arctagrostis latifolia         0.7         1.3         45           Calamagrostis canadensis         1.1         3.4         20           Poa arctica         0.1         0.3         50           Total Sedge & Rush Cover         13.2         15.6         95           Carex aquatilis ssp. aquatilis         2.9         8.9         35           Carex bigelowii         3.9         5.7         70           Carex chordorrhiza         0.1         0.4         5           Carex limosa         0.1         0.3         10           Carex membranacea         0.1         0.5         10           Carex saxatilis         0.2         1.1         5           Carex vaginata         0.1         0.2         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Saxifraga punctata                    | 0.1      | 0.2  | 20   |
| Arctagrostis latifolia       0.7       1.3       45         Calamagrostis canadensis       1.1       3.4       20         Poa arctica       0.1       0.3       50         Total Sedge & Rush Cover       13.2       15.6       95         Carex aquatilis ssp. aquatilis       2.9       8.9       35         Carex bigelowii       3.9       5.7       70         Carex chordorrhiza       0.1       0.4       5         Carex limosa       0.1       0.3       10         Carex membranacea       0.1       0.5       10         Carex saxatilis       0.2       1.1       5         Carex vaginata       0.1       0.2       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Valeriana capitata                    | 0.1      |      |      |
| Calamagrostis canadensis       1.1       3.4       20         Poa arctica       0.1       0.3       50         Total Sedge & Rush Cover       13.2       15.6       95         Carex aquatilis ssp. aquatilis       2.9       8.9       35         Carex bigelowii       3.9       5.7       70         Carex chordorrhiza       0.1       0.4       5         Carex limosa       0.1       0.3       10         Carex membranacea       0.1       0.5       10         Carex saxatilis       0.2       1.1       5         Carex vaginata       0.1       0.2       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Grass Cover                     | 2.2      | 3.3  | 85   |
| Poa arctica       0.1       0.3       50         Total Sedge & Rush Cover       13.2       15.6       95         Carex aquatilis ssp. aquatilis       2.9       8.9       35         Carex bigelowii       3.9       5.7       70         Carex chordorrhiza       0.1       0.4       5         Carex limosa       0.1       0.3       10         Carex membranacea       0.1       0.5       10         Carex saxatilis       0.2       1.1       5         Carex vaginata       0.1       0.2       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arctagrostis latifolia                |          | 1.3  | 45   |
| Total Sedge & Rush Cover         13.2         15.6         95           Carex aquatilis ssp. aquatilis         2.9         8.9         35           Carex bigelowii         3.9         5.7         70           Carex chordorrhiza         0.1         0.4         5           Carex limosa         0.1         0.3         10           Carex membranacea         0.1         0.5         10           Carex saxatilis         0.2         1.1         5           Carex vaginata         0.1         0.2         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Calamagrostis canadensis              |          |      |      |
| Carex aquatilis ssp. aquatilis       2.9       8.9       35         Carex bigelowii       3.9       5.7       70         Carex chordorrhiza       0.1       0.4       5         Carex limosa       0.1       0.3       10         Carex membranacea       0.1       0.5       10         Carex saxatilis       0.2       1.1       5         Carex vaginata       0.1       0.2       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Poa arctica                           |          |      |      |
| Carex bigelowii       3.9       5.7       70         Carex chordorrhiza       0.1       0.4       5         Carex limosa       0.1       0.3       10         Carex membranacea       0.1       0.5       10         Carex saxatilis       0.2       1.1       5         Carex vaginata       0.1       0.2       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Sedge & Rush Cover              | 13.2     | 15.6 | 95   |
| Carex chordorrhiza       0.1       0.4       5         Carex limosa       0.1       0.3       10         Carex membranacea       0.1       0.5       10         Carex saxatilis       0.2       1.1       5         Carex vaginata       0.1       0.2       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |          |      |      |
| Carex limosa       0.1       0.3       10         Carex membranacea       0.1       0.5       10         Carex saxatilis       0.2       1.1       5         Carex vaginata       0.1       0.2       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Carex bigelowii                       |          |      |      |
| Carex membranacea       0.1       0.5       10         Carex saxatilis       0.2       1.1       5         Carex vaginata       0.1       0.2       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Carex chordorrhiza                    |          |      |      |
| Carex saxatilis         0.2         1.1         5           Carex vaginata         0.1         0.2         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Carex limosa                          |          |      |      |
| Carex vaginata 0.1 0.2 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Carex membranacea                     |          |      |      |
| car ex raginata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |          |      |      |
| Carex williamsii 0.1 0.7 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                     |          |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Carex williamsii                      | 0.1      | 0.7  | 5    |

Table 59. Continued.

|                          | Cov  | er   | Freq |
|--------------------------|------|------|------|
|                          | Mean | SD   | %    |
| Eriophorum angustifolium | 3.1  | 5.2  | 50   |
| Eriophorum scheuchzeri   | 0.1  | 0.7  | 5    |
| Eriophorum vaginatum     | 2.3  | 4.3  | 50   |
| Luzula parviflora        | 0.1  | 0.2  | 10   |
| Total Nonvascular Cover  | 50.2 | 25.8 | 100  |
| Total Moss Cover         | 46.5 | 26.7 | 100  |
| Aulacomnium palustre     | 9.3  | 12.1 | 75   |
| Aulacomnium turgidum     | 2.0  | 3.4  | 35   |
| Bryum sp.                | 0.2  | 1.1  | 5    |
| Campylium stellatum      | 0.1  | 0.4  | 10   |
| Dicranum groenlandicum   | 0.2  | 1.1  | 5    |
| Dicranum sp.             | 1.9  | 3.7  | 30   |
| Drepanocladus revolvens  | 0.3  | 1.1  | 15   |
| Drepanocladus sp.        | 0.6  | 2.2  | 15   |
| Hylocomium splendens     | 12.5 | 18.7 | 65   |
| Mnium sp.                | 0.1  | 0.2  | 10   |
| Paludella squarrosa      | 0.9  | 3.4  | 10   |
| Pleurozium schreberi     | 0.6  | 1.5  | 35   |
| Polytrichum juniperinum  | 0.9  | 2.4  | 20   |
| Polytrichum sp.          | 0.4  | 0.7  | 30   |
| Polytrichum strictum     | 0.6  | 2.3  | 10   |
| Ptilidium ciliare        | 0.2  | 0.7  | 10   |
| Rhytidium rugosum        | 0.4  | 0.9  | 25   |
| Sanionia uncinata        | 0.3  | 0.8  | 15   |
| Sphagnum capillifolium   | 1.1  | 4.9  | 5    |
| Sphagnum fuscum          | 1.0  | 3.5  | 10   |
| Sphagnum lenense         | 0.5  | 2.2  | 5    |
| Sphagnum sp.             | 2.3  | 4.9  | 40   |
| Sphagnum squarrosum      | 2.8  | 9.1  | 15   |
| Sphagnum warnstorfii     | 1.2  | 5.6  | 5    |
| Sphenolobus minutus      | 0.3  | 1.1  | 10   |
| Tomentypnum nitens       | 4.8  | 8.1  | 50   |
| Unknown moss             | 0.3  | 0.7  | 20   |
| Total Lichen Cover       | 3.8  | 5.2  | 100  |
| Cetraria cf. islandica   | 0.1  | 0.2  | 30   |
| Cladina arbuscula        | 0.4  | 1.1  | 40   |
| Cladina rangiferina      | 0.1  | 0.3  | 25   |
| Cladina sp.              | 0.1  | 0.3  | 20   |
| Cladina stygia           | 0.3  | 1.1  | 20   |
| Cladonia sp.             | 0.2  | 0.5  | 45   |
| Cladonia subfurcata      | 0.2  | 0.7  | 10   |
| Dactylina arctica        | 0.2  | 0.5  | 30   |
| Flavocetraria cucullata  | 0.5  | 0.9  | 40   |
| Flavocetraria nivalis    | 0.1  | 0.2  | 10   |
| Masonhalea richardsonii  | 0.1  | 0.3  | 15   |
| Nephroma arcticum        | 0.3  | 1.1  | 10   |
| Nephroma expallidum      | 0.2  | 0.9  | 5    |
| Peltigera aphthosa       | 0.3  | 0.4  | 40   |
| Thamnolia vermicularis   | 0.1  | 0.2  | 25   |
| Unknown crustose lichen  | 0.2  | 0.8  | 10   |
| Total Bare Ground        | 9.3  | 7.0  | 100  |
| Bare Soil                | 1.2  | 2.4  | 50   |
| Water                    | 0.4  | 1.2  | 35   |
| Litter alone             | 7.7  | 6.3  | 100  |



Table 60. Soil characteristics for Lowland Birch–Willow Low Shrub.

| Property                                   | Mean  | SD    | n  |
|--------------------------------------------|-------|-------|----|
| Elevation (m)                              | 401.8 | 381.6 | 20 |
| Slope (degrees)                            | 4.0   | 2.5   | 10 |
| Surface Organics Depth(cm)                 | 16.3  | 8.5   | 20 |
| Cumulative Org. in 40 cm (cm)              | 17.5  | 9.9   | 20 |
| Loess Cap Thickness (cm)                   | 32.2  | 55.2  | 4  |
| Depth to Rocks (cm)                        | 122.8 | 83.7  | 8  |
| Surface Fragment Cover (%)                 | 1.0   | NA    | 1  |
| Frost Boil Cover (%)                       | 3.4   | 2.8   | 3  |
| Thaw Depth (cm)                            | 40.6  | 29.0  | 18 |
| Site pH at 10-cm depth                     | 5.8   | 0.6   | 20 |
| Site EC at 10-cm depth (µS/cm)             | 67.3  | 42.5  | 20 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -23.5 | 22.8  | 17 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Typic Aquorthels (wet, mineral soil over permafrost lacking cryoturbation), Typic Hemistels (wet, moderately decomposed organic horizon thicker than 40 cm, permafrost present), and Typic Aquiturbels (wet, mineral soil over permafrost with cryoturbation). Less common subgroups include Typic Fibristels (wet, poorly decomposed thick peat, permafrost in upper meter) and Typic Histoturbels (wet, organic rich soil over permafrost with cryoturbation). This ecotype and associated soils are part of the Lowland Organic-rich Shrub and Forests soil landscape. Also included in this soil landscape are Lowland Willow Low Shrub, Lowland Birch- Ericaceous Low Shrub, and Lowland Black Spruce Forest.

# **Lowland Black Spruce Forest**



# Geomorphology:

This ecotype is common at elevations < 250 m throughout GAAR and KOVA but does not occur in NOAT, CAKR or BELA. These organic-rich black spruce forests occur on hillside colluvium, upland and lowland loess, older moraine, older till, retransported deposits and abandoned meander overbank deposits. Surfaces are gradually sloped or flat. Common micro-topographic features include ice-cored, mineral-cored, and undifferentiated hummocks.

### Plant Association:

Picea mariana-Ledum decumbens

This fire-prone, late-successional ecotype is dominated by black spruce (Table 61). The forest canopy is open and the understory shrub canopy includes tall, low and dwarf shrubs growing out of a thick carpet of mosses and lichens. Forbs are always present in low quantities. Common species include *Vaccinium uliginosum*, *Carex bigelowii*, *Sphagnum* spp., *Cladina rangiferina*, and *Nephroma arcticum*.

This is the only ecotype characterized by black spruce trees, whose range doesn't extend as far westward through the Brooks Range as white spruce. Upland White Spruce–Ericaceous Forest has some similar species but soils are rockier with less organic accumulation and higher pH.

Table 61. Vegetation cover and frequency for Lowland Black Spruce Forest (n=14).

| Lowiand Black Spruce Polest (II=14).          |       |      |      |
|-----------------------------------------------|-------|------|------|
| -                                             | Cov   |      | Freq |
|                                               | Mean  | SD   | %    |
| Total Live Cover                              | 183.4 | 36.3 | 100  |
| Total Vascular Cover                          | 126.9 | 18.9 | 100  |
| Total Evergreen Tree<br>Cover                 | 29.2  | 11.5 | 100  |
| Picea glauca                                  | 2.3   | 6.0  | 14   |
| Picea mariana                                 | 26.9  | 11.7 | 100  |
| Total Evergreen Shrub                         | 20.5  |      | 100  |
| Cover                                         | 28.7  | 14.2 | 100  |
| Andromeda polifolia                           | <0.1  | <0.1 | 7    |
| Chamaedaphne calyculata                       | 0.7   | 1.8  | 14   |
| Empetrum nigrum                               | 6.6   | 5.4  | 93   |
| Ledum decumbens                               | 15.2  | 11.4 | 100  |
| Ledum groenlandicum                           | 0.4   | 1.3  | 7    |
| Linnaea borealis                              | 0.1   | 0.3  | 14   |
| Oxycoccus microcarpus                         | 0.2   | 0.4  | 29   |
| Vaccinium vitis-idaea                         | 5.6   | 4.7  | 86   |
| Total Deciduous Shrub                         |       |      |      |
| Cover                                         | 50.0  | 16.3 | 100  |
| Alnus crispa                                  | 1.6   | 5.3  | 29   |
| Arctostaphylos rubra                          | <0.1  | <0.1 | 7    |
| Betula glandulosa                             | 2.9   | 7.0  | 21   |
| Betula nana                                   | 16.2  | 11.9 | 79   |
| Salix planifolia ssp. pulchra                 | 1.4   | 2.2  | 50   |
| Spiraea beauverdiana                          | 3.6   | 6.2  | 64   |
| Vaccinium uliginosum                          | 24.3  | 11.2 | 100  |
| Total Forb Cover                              | 8.0   | 8.0  | 100  |
| Epilobium angustifolium                       | 0.2   | 8.0  | 7    |
| Equisetum arvense                             | 1.9   | 5.4  | 21   |
| Equisetum scirpoides                          | <0.1  | <0.1 | 7    |
| Equisetum sylvaticum                          | 0.1   | 0.5  | 7    |
| Lycopodium alpinum                            | <0.1  | <0.1 | 7    |
| Lycopodium annotinum                          | 0.1   | 0.5  | 7    |
| Lycopodium clavatum                           | 0.4   | 1.3  | 7    |
| Pedicularis labradorica                       | <0.1  | <0.1 | 7    |
| Petasites frigidus                            | 0.7   | 1.4  | 36   |
| Rubus chamaemorus<br>Trientalis europaea ssp. | 4.6   | 5.2  | 79   |
| arctica                                       | <0.1  | <0.1 | 7    |
| Total Grass Cover                             | 0.7   | 1.0  | 57   |
| Arctagrostis latifolia                        | 0.2   | 0.5  | 21   |
| Calamagrostis canadensis                      | 0.5   | 0.9  | 29   |
| Calamagrostis lapponica                       | <0.1  | <0.1 | 7    |
| Total Sedge & Rush Cover                      | 10.4  | 12.0 | 93   |
| Carex bigelowii                               | 8.8   | 10.6 | 93   |
| Eriophorum angustifolium<br>Eriophorum        | 0.2   | 0.6  | 14   |
| brachyantherum                                | 0.6   | 2.1  | 7    |
| Eriophorum russeolum                          | 0.2   | 8.0  | 7    |
| Eriophorum vaginatum                          | 0.6   | 1.4  | 21   |
| Total Nonvascular Cover                       | 56.5  | 21.3 | 100  |
| Total Moss Cover                              | 49.0  | 21.0 | 100  |
| Aulacomnium palustre                          | 1.2   | 4.0  | 21   |
| Brachythecium sp.                             | 0.1   | 0.3  | 7    |
| Campylium stellatum                           | 0.6   | 1.5  | 14   |
| Dicranella subulata                           | 0.1   | 0.3  | 7    |
| Dicranum sp.                                  | 1.8   | 4.2  | 29   |
| Drepanocladus sp.                             | 0.4   | 1.3  | 7    |

Table 61. Continued.

|                           | Cov  | Cover |     |
|---------------------------|------|-------|-----|
|                           | Mean | SD    | %   |
| Hylocomium splendens      | 10.9 | 18.6  | 43  |
| Hypnum sp.                | 0.1  | 0.3   | 21  |
| Pleurozium schreberi      | 10.9 | 13.7  | 64  |
| Polytrichum juniperinum   | 1.5  | 3.0   | 29  |
| Polytrichum sp.           | 1.9  | 3.0   | 43  |
| Polytrichum strictum      | 1.6  | 5.3   | 21  |
| Ptilidium ciliare         | 0.1  | 0.4   | 14  |
| Ptilium crista-castrensis | 2.4  | 8.0   | 14  |
| Sphagnum angustifolium    | 1.4  | 5.3   | 7   |
| Sphagnum fuscum           | 4.3  | 16.0  | 7   |
| Sphagnum girgensohnii     | 3.1  | 9.0   | 14  |
| Sphagnum sp.              | 5.9  | 8.8   | 71  |
| Tomentypnum nitens        | 0.5  | 1.9   | 7   |
| Unknown moss              | 0.5  | 1.3   | 21  |
| <b>Total Lichen Cover</b> | 7.4  | 6.4   | 100 |
| Cetraria cf. islandica    | 0.1  | 0.4   | 14  |
| Cetraria islandica ssp.   |      |       |     |
| islandica                 | 0.1  | 0.3   | 7   |
| Cetraria sp.              | <0.1 | <0.1  | 7   |
| Cladina arbuscula         | 0.4  | 0.9   | 14  |
| Cladina rangiferina       | 2.2  | 2.9   | 64  |
| Cladina sp.               | 1.4  | 2.1   | 43  |
| Cladina stellaris         | 1.1  | 2.9   | 21  |
| Cladina stygia            | 0.2  | 0.6   | 14  |
| Cladonia sp.              | 0.5  | 0.5   | 79  |
| Flavocetraria cucullata   | 0.1  | 0.3   | 14  |
| Flavocetraria nivalis     | <0.1 | <0.1  | 7   |
| Nephroma arcticum         | 0.6  | 1.1   | 71  |
| Ochrolechia frigida       | 0.1  | 0.3   | 21  |
| Peltigera aphthosa        | 0.2  | 0.4   | 50  |
| Peltigera canina          | 0.1  | 0.3   | 7   |
| Peltigera leucophlebia    | 0.1  | 0.5   | 7   |
| Peltigera malacea         | <0.1 | <0.1  | 7   |
| Peltigera scabrosa        | <0.1 | <0.1  | 7   |
| Peltigera sp.             | <0.1 | <0.1  | 14  |
| Stereocaulon sp.          | <0.1 | <0.1  | 7   |
| Thamnolia vermicularis    | 0.1  | 0.4   | 14  |
| Unknown lichen            | 0.1  | 0.3   | 7   |
| <b>Total Bare Ground</b>  | 7.7  | 5.0   | 100 |
| Bare Soil                 | 0.8  | 1.4   | 71  |
| Water                     | <0.1 | <0.1  | 14  |
| Litter alone              | 6.9  | 5.0   | 100 |

#### Soils:

Soils are typically loamy with moderately thick to thick surface organic horizons (Table 62). Depth to permafrost is typically less than 1 m at poorly drained sites. At sites with better drainage, permafrost is either absent or occurred in the upper 2 m along with evidence of cryoturbation in the upper meter. Frost boils and surface fragments are absent. Loess is uncommon. Soil pH is acidic, and EC is low. The soils are typically very poorly to somewhat poorly drained, or well to moderately well drained. Water table was typically moderately deep to deep.



Table 62. Soil characteristics for Lowland Black Spruce Forest.

| Property                                   | Mean  | SD    | n  |
|--------------------------------------------|-------|-------|----|
| Elevation (m)                              | 125.4 | 95.6  | 14 |
| Slope (degrees)                            | 7.0   | 4.3   | 10 |
| Surface Organics Depth(cm)                 | 15.5  | 5.5   | 14 |
| Cumulative Org. in 40 cm (cm)              | 15.8  | 5.5   | 14 |
| Loess Cap Thickness (cm)                   | 22.0  | 8.5   | 2  |
| Depth to Rocks (cm)                        | 119.5 | 113.8 | 2  |
| Surface Fragment Cover (%)                 |       |       | 0  |
| Frost Boil Cover (%)                       | 1.0   |       | 1  |
| Thaw Depth (cm)                            | 66.8  | 28.3  | 6  |
| Site pH at 10-cm depth                     | 4.3   | 0.5   | 13 |
| Site EC at 10-cm depth (µS/cm)             | 70.0  | 42.6  | 13 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -85.9 | 81.8  | 10 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Typic Historthels (wet, organic rich soil over permafrost lacking cryoturbation) and Typic Haploturbels (mineral soil over permafrost with cryoturbation). Less common subgroups include Typic Aquiturbels (wet, mineral soil over permafrost with cryoturbation) and Typic Dystrogelepts (acidic, well drained, moderately thin organic horizon, permafrost below 1 m). This ecotype and associated soils are part of the Lowland Organic-rich Shrub and Forests soil landscape. Also included in this soil landscape are Lowland Willow Low Shrub, Lowland Birch—Willow Low Shrub, and Lowland Birch—Ericaceous Low Shrub.

# **Lowland Ericaceous Shrub Bog**



## Geomorphology:

This ecotype occurs in bogs, including collapse scar and undifferentiated bogs, and in the ice-rich centers of drained-lake basins, ice-poor thaw basin margins, and on abandoned meander overbank deposits. Flats, drained basins and thermokarst basins are the common types of macrotopography in this ecotype. Ground patterns where present include strang, low and high-centered polygons, peat, ice and mineral-cored mounds.

### Plant Association:

Andromeda polifolia-Sphagnum sp.

These wet ombrotrophic bog communities are characterized by dwarfed and low shrubs, and mosses (Table 63). Sedges are always present. Lichens are infrequently present on raised micro-sites. Common species include *Betula nana*, *Carex aquatilis*, *C. rotundata*, and a mix of *Sphagnum* species, including *S. balticum* and *S. magellanicum*.

This ecotype is similar to Lowland Sedge—Willow Fen, which lacks *Sphagnum* mosses, has more abundant willow, and occurs in long, hydrologically conected landforms.

## Soils:

Soils are poorly drained with moderately thick to thick accumulations of peat (Table 64). Permafrost is often present within 1 m depth. Coarse fragments are rarely encountered in the active layer. Frost boils and surface fragments are absent. Loess caps are uncommon, however when they occur they tend to be thick (>20 cm). Soil pH is acidic, and EC is low. The soils are typically very poorly to somewhat poorly drained, and the water table occurs at shallow depths or above ground.

Table 63. Vegetation cover and frequency for Lowland Ericaceous Shrub Bog (n=30).

| Lowland Ericaceous Shrub Bog (n=30).                 |             |             |         |
|------------------------------------------------------|-------------|-------------|---------|
|                                                      | Cov         | er          | Freq    |
| -                                                    | Mean        | SD          | %       |
| Total Live Cover                                     | 122.0       | 49.7        | 100     |
| Total Vascular Cover                                 | 55.7        | 29.0        | 100     |
| Total Evergreen Tree                                 |             |             |         |
| Cover                                                | 0.1         | 0.2         | 20      |
| Picea glauca                                         | <0.1        | 0.2         | 7       |
| Total Evergreen Shrub Cover                          | 12.4        | 12.1        | 97      |
| Andromeda polifolia                                  | 6.4         | 7.8         | 97      |
| Chamaedaphne calyculata                              | 2.5         | 4.8         | 40      |
| Empetrum nigrum                                      | 0.7         | 2.1         | 27      |
| Ledum decumbens                                      | 1.6         | 2.6         | 57      |
| Ledum groenlandicum                                  | <0.1        | 0.2         | 3       |
| Oxycoccus microcarpus                                | 0.4         | 0.8         | 40      |
| Vaccinium vitis-idaea                                | 0.8         | 1.8         | 37      |
| Total Deciduous Shrub                                |             |             |         |
| Cover                                                | 10.3        | 15.9        | 87      |
| Alnus crispa                                         | <0.1        | 0.2         | 7       |
| Betula nana                                          | 4.1         | 6.7         | 80      |
| Myrica gale                                          | 0.2         | 1.3         | 3       |
| Salix fuscescens                                     | 8.0         | 2.1         | 33      |
| Salix planifolia ssp. pulchra                        | 0.6         | 2.7         | 20      |
| Vaccinium uliginosum                                 | 4.5         | 8.5         | 50      |
| Total Forb Cover                                     | 1.6         | 3.2         | 67      |
| Drosera rotundifolia                                 | 0.1         | 0.4         | 10      |
| Equisetum fluviatile                                 | 0.2         | 0.9         | 3       |
| Iris setosa                                          | <0.1        | 0.2<br>2.7  | 3       |
| Menyanthes trifoliata<br>Pedicularis parviflora ssp. | 0.5         | 2.7         | 7       |
| parviflora                                           | 0.1         | 0.4         | 7       |
| Pedicularis sudetica                                 | <0.1        | 0.2         | 13      |
| Potentilla palustris                                 | <0.1        | 0.2         | 7       |
| Rubus chamaemorus                                    | 0.5         | 1.5         | 17      |
| Tofieldia coccinea                                   | <0.1        | 0.2         | 3       |
| Tofieldia pusilla                                    | <0.1        | 0.2         | 10      |
| Total Grass Cover                                    | 0.0         | 0.0         | 10      |
| Total Sedge & Rush Cover                             | 31.3        | 18.6        | 100     |
| Carex aquatilis ssp. aquatilis                       | 5.9         | 10.3        | 63      |
| Carex bigelowii                                      | 0.3         | 1.5         | 7       |
| Carex chordorrhiza                                   | 1.1         | 2.9         | 20      |
| Carex limosa                                         | 2.4         | 5.8         | 23      |
| Carex livida                                         | 0.1         | 0.5         | 3       |
| Carex membranacea                                    | 0.3         | 1.8         | 3       |
| Carex microglochin                                   | 0.1         | 0.4         | 3       |
| Carex rariflora                                      | 0.4         | 1.3         | 20      |
| Carex rotundata Carex saxatilis                      | 9.3<br><0.1 | 14.5<br>0.2 | 63<br>3 |
| Carex saxatilis<br>Carex utriculata                  | 0.1         | 0.2         | 3       |
| Carex utriculata<br>Carex williamsii                 | 0.1         | 1.8         | 3       |
|                                                      | 1.7         | 4.0         | 37      |
| Eriophorum angustifolium<br>Eriophorum callitrix     | <0.1        | 0.2         | 3       |
| Eriophorum russeolum                                 | 6.7         | 14.4        | 53      |
| Eriophorum scheuchzeri                               | 0.3         | 1.0         | 13      |
| Eriophorum vaginatum                                 | 1.2         | 3.0         | 37      |
| Trichophorum alpinum                                 | 0.1         | 0.4         | 3       |
| Trichophorum caespitosum                             | 0.8         | 4.6         | 7       |
| Total Nonvascular Cover                              | 66.3        | 32.4        | 100     |
| <b>Total Moss Cover</b>                              | 66.6        | 32.9        | 100     |

Table 63. Continued.

|                                             | Cover       |             | Freq     |
|---------------------------------------------|-------------|-------------|----------|
|                                             | Mean        | SD          | %        |
| Aulacomnium acuminatum                      | 0.2         | 0.9         | 3        |
| Aulacomnium palustre                        | 1.9         | 5.1         | 20       |
| Aulacomnium turgidum                        | 2.5         | 5.1         | 40       |
| Calliergon stramineum                       | 0.4         | 1.4         | 7        |
| Campylium stellatum                         | 0.2         | 1.0         | 7        |
| Dicranum laevidens                          | 0.7         | 2.2         | 13       |
| Dicranum sp.                                | 0.1         | 0.5         | 3        |
| Drepanocladus revolvens                     | 0.7         | 2.2         | 10       |
| Drepanocladus sp.                           | 0.1         | 0.5         | 3        |
| Hylocomium splendens                        | 0.4         | 1.5         | 13       |
| Limprichtia revolvens                       | 0.1         | 0.4         | 10       |
| Mnium sp.                                   | <0.1        | 0.2         | 3        |
| Mylia anomala                               | 0.3<br>0.3  | 1.8         | 3<br>3   |
| Pleurozium schreberi                        | 0.3<br><0.1 | 1.8<br>0.2  | 3        |
| Polytrichum jensenii                        | <0.1<br>0.1 | 0.2         | 3        |
| Polytrichum juniperinum                     | 0.1         | 1.0         | 3<br>13  |
| Polytrichum sp.                             | 0.5         | 0.4         | 10       |
| Polytrichum strictum                        | 0.1         | 0.4         | 3        |
| Scorpidium scorpioides                      | 0.2         | 3.7         | 3        |
| Sphagnum angustifolium<br>Sphagnum balticum | 11.6        | 21.1        | 43       |
| Sphagnum compactum                          | 2.1         | 6.7         | 10       |
| Sphagnum fuscum                             | 0.7         | 3.6         | 10       |
| Sphagnum imbricatum                         | 0.7         | 2.9         | 7        |
| Sphagnum jensnii                            | 4.3         | 13.8        | 10       |
| Sphagnum lenense                            | 4.7         | 17.0        | 10       |
| Sphagnum lindbergii                         | 3.2         | 10.3        | 13       |
| Sphagnum magellanicum                       | 1.5         | 5.6         | 17       |
| Sphagnum obtusum                            | 2.1         | 7.1         | 10       |
| Sphagnum orientale                          | 0.3         | 1.8         | 7        |
| Sphagnum riparium                           | 9.2         | 24.3        | 17       |
| Sphagnum rubellum                           | 0.5         | 1.9         | 7        |
| Sphagnum russowii                           | 1.2         | 5.5         | 7        |
| Sphagnum sp.                                | 7.2         | 16.8        | 40       |
| Sphagnum squarrosum                         | 1.7         | 9.1         | 3        |
| Sphagnum steerei                            | 1.5         | 8.2         | 3        |
| Sphagnum subsecundum                        | 0.5         | 2.7         | 3        |
| Sphagnum warnstorfii                        | 1.8         | 5.4         | 13       |
| Tomentypnum nitens                          | 0.5         | 2.7         | 7        |
| Unknown moss                                | 1.1         | 4.6         | 27       |
| Warnstorfia exannulata                      | 0.8         | 3.2         | 7        |
| Warnstorfia sarmentosa                      | <0.1        | 0.2         | 7        |
| Total Lichen Cover                          | 1.3         | 3.8         | 37       |
| Cetraria sp.                                | <0.1        | 0.2         | 3        |
| Cladina rangiferina                         | <0.1        | 0.2         | 3        |
| Cladina sp.                                 | 0.1         | 0.4         | 10       |
| Cladonia sp.                                | 0.5         | 1.5         | 23       |
| Flavocetraria cucullata                     | 0.3         | 1.0         | 23       |
| Thamnolia vermicularis                      | 0.1         | 0.5         | 3        |
| Unknown crustose lichen                     | <0.1        | 0.2         | 3        |
| Unknown lichen                              | 0.1<br>10.5 | 0.5         | 3        |
| Total Bare Ground                           | 19.5        | 12.7        | 97<br>22 |
| Bare Soil                                   | 0.5<br>4.0  | 1.3<br>a n  | 33<br>70 |
| Water                                       | 4.0<br>15.0 | 9.0<br>12.3 | 70<br>90 |
| Litter alone                                | 15.0        | 12.5        | 30       |



Table 64. Soil characteristics for Lowland Ericaceous Shrub Bog.

| Property                                   | Mean  | SD    | n  |
|--------------------------------------------|-------|-------|----|
| Elevation (m)                              | 112.4 | 153.2 | 30 |
| Slope (degrees)                            | 1.5   | 0.7   | 2  |
| Surface Organics Depth(cm)                 | 50.8  | 31.6  | 30 |
| Cumulative Org. in 40 cm (cm)              | 36.6  | 4.6   | 30 |
| Loess Cap Thickness (cm)                   | 20.0  | 21.8  | 3  |
| Depth to Rocks (cm)                        | 186.2 | 47.9  | 12 |
| Surface Fragment Cover (%)                 |       |       | 0  |
| Frost Boil Cover (%)                       |       |       | 0  |
| Thaw Depth (cm)                            | 41.5  | 16.0  | 21 |
| Site pH at 10-cm depth                     | 4.8   | 0.5   | 30 |
| Site EC at 10-cm depth (µS/cm)             | 50.0  | 28.0  | 30 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -12.1 | 12.3  | 29 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Sphagnic Cryofibrists (wet, Sphagnum-rich, poorly decomposed peat, lacking permafrost), Sphagnic Fibristels (wet, Sphagnum-rich, poorly decomposed thick peat, permafrost in upper meter), Typic Fibristels (wet, poorly decomposed thick peat, permafrost in upper meter), and Typic Historthels (wet, organic rich soil over permafrost lacking cryoturbation). Less common soil subgroups include Terric Fibristels (wet, thick poorly decomposed organic horizon, with ≥ 30cm mineral horizon within 1 m), Typic Hemistels (wet, moderately decomposed organic horizon thicker than 40 cm, permafrost present), and Typic Histoturbels (wet, organic rich soil over permafrost with cryoturbation). This ecotype and associated soils are part of the Lowland Bogs and Fens soil landscape. Also included in this soil landscape are Lowland Sedge-Willow Fen and Lowland Sedge Fen.

## **Lowland Lake**



### Geomorphology:

Lowland Lake comprises the vast majority of lakes in ARCN. This ecotype includes shallow and deep isolated moraine or kettle lakes; deep connected moraine or kettle lakes; shallow and deep isolated thaw lakes; and shallow isolated dune lakes.

### Plant Association:

Water-Potamogeton spp.

Submerged aquatic species characterize Lowland Lake (Table 65). Water usually covers at least 96% of the total lake surface. Sedges, grasses, and evergreen and deciduous shrubs can occur at the shoreline. Multiple pondweed species including *Potamogeton alpinus*, *Potamogeton berchtoldii* (syn: *Potamogeton pusillus* ssp. *tenuissimus*), and *Potamogeton gramineus* are common.

Lowland Lake is similar to Lacustrine Pondlily Lake except it has deeper water and few emergent aquatic species. It is also similar to Alpine Lake except it occurs at lower elevations, lake development is not driven by bedrock characteristics, and has higher biological productivity.

### Soils:

Flooded soils were not described. Water characteristics are listed in Table 66.

Table 65. Vegetation cover and frequency for Lowland Lake (n=22).

|                                      | Cove        | Cover      |         |
|--------------------------------------|-------------|------------|---------|
|                                      | Mean        | SD         | %       |
| Total Live Cover                     | 6.7         | 14.2       | 48      |
| Total Vascular Cover                 | 6.7         | 14.2       | 48      |
| Total Evergreen Shrub                |             |            |         |
| Cover                                | 0.0         | 0.0        | 5       |
| Andromeda polifolia                  | <0.1        | <0.1       | 5       |
| Total Deciduous Shrub                | 0.4         | 0.7        | -       |
| Cover                                | 0.1         | 0.7        | 5       |
| Salix planifolia ssp. pulchra        | 0.1         | 0.7        | 5       |
| Total Forb Cover                     | 4.0<br><0.1 | 7.7        | 43<br>5 |
| Callitriche anceps                   |             | <0.1       | _       |
| Equisetum fluviatile                 | 0.1         | 0.2        | 10      |
| Hippuris vulgaris                    | 0.2         | 0.5        | 29<br>5 |
| Lemna trisulca                       | 0.2<br>0.5  | 0.9<br>2.2 | 5<br>14 |
| Menyanthes trifoliata                |             |            |         |
| Myriophyllum spicatum                | <0.1        | <0.1       | 5       |
| Myriophyllum spicatum<br>exalbescens | <0.1        | 0.2        | 5       |
| Nuphar polysepalum                   | <0.1        | <0.1       | 5       |
| Potamogeton alpinus                  | ν           | νο. ι      | ,       |
| tenuifolius                          | 0.2         | 0.7        | 14      |
| Potamogeton berchtoldii              | <0.1        | <0.1       | 5       |
| Potamogeton filiformis               | 0.1         | 0.7        | 5       |
| Potamogeton friesii                  | <0.1        | 0.2        | 5       |
| Potamogeton gramineus                | 0.1         | 0.3        | 10      |
| Potamogeton perfoliatus              |             |            |         |
| richardsonii                         | 0.7         | 3.3        | 5       |
| Potamogeton sp.                      | 0.7         | 3.3        | 14      |
| Potentilla palustris                 | 0.1         | 0.5        | 14      |
| Ranunculus hyperboreus               | <0.1        | <0.1       | 5       |
| Sparganium angustifolium             | <0.1        | <0.1       | 5       |
| Sparganium sp.                       | 0.6         | 1.8        | 10      |
| Utricularia minor                    | 0.1         | 0.2        | 10      |
| Utricularia vulgaris ssp.            | 0.3         | 4.4        | 4.4     |
| macrorhiza                           | 0.3         | 1.1        | 14      |
| Total Grass Cover                    | 0.3         | 1.1        | 19      |
| Arctophila fulva                     | 0.3         | 1.1        | 19      |
| Total Sedge & Rush Cover             | 2.2         | 6.8        | 29      |
| Carex aquatilis ssp. aquatilis       | 0.5         | 2.2        | 19      |
| Carex canescens                      | <0.1        | <0.1       | 5       |
| Carex diandra                        | <0.1        | <0.1       | 5       |
| Carex utriculata                     | <0.1        | <0.1       | 5       |
| Eleocharis acicularis                | 1.4         | 6.5        | 5       |
| Eriophorum angustifolium             | 0.2         | 1.1        | 10      |
| Total Bare Ground                    | 99.6        | 1.0        | 100     |
| Water                                | 99.5        | 1.2        | 100     |
| Litter alone                         | 0.2         | 0.4        | 29      |

Table 66. Water characteristics for Lowland Lake.

| Property                                   | Mean  | SD   | n  |
|--------------------------------------------|-------|------|----|
| Site pH at 10-cm depth                     | 7.2   | 0.8  | 21 |
| Site EC at 10-cm depth (µS/cm)             | 112.4 | 89.6 | 21 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | 145.8 | 84.9 | 19 |
|                                            |       |      |    |

<sup>&</sup>lt;sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

## **Lowland Sedge Fen**



## Geomorphology:

Lowland Sedge Fen occurs throughout ARCN on flat terrain. Geomorphology includes ice-rich centers of both thaw basins and drained-lake basins, ice-poor centers and margins of drained-lake basins, abandoned meander overbank deposits and organic fens. Surfaces are non-patterned on ice-poor soils, and include low-centered polygons, disjunct rims, and strang on ice-rich soils.

## Plant Association:

Carex chordorrhiza-Carex aquatilis

Lowland Sedge Fen is characterized nearly exclusively by sedges; all other life forms have more variable presence and cover (Table 67). Trees and lichens are absent. This ecotype has median diversity relative to other ecotypes. Common species include *Carex chordorrhiza*, *Carex aquatilis*, *Eriophorum angustifolium*, *Potentilla palustris*, and *Scorpidium scorpioides*. We documented two rare plant species in this ecotype, *Eriophorum viridi-carinatum* and *Glyceria pulchella*.

This ecotype is very similar to Lowland Sedge–Willow Fen, except water levels are higher, and it has fewer shrubs. It is also comparable to Lacustrine Wet Sedge Meadow except for physiographic and species differences.

## Soils:

Soils are poorly drained with moderately thick to thick accumulations of peat (Table 68). Permafrost is often present within 1 m depth. Coarse fragments are rarely encountered in the active layer. Frost boils, loess caps, and surface fragments are absent. Soil pH is circumneutral to acidic, and EC is low. The soils are typically very poorly to poorly drained, and the water table occurs at shallow depths or above ground.

Table 67. Vegetation cover and frequency for Lowland Sedge Fen (n=32).

|                                                | _                   |                | _               |
|------------------------------------------------|---------------------|----------------|-----------------|
|                                                | Cove                |                | Freq            |
| Total Live Cover                               | <b>Mean</b><br>84.9 | <b>SD</b> 46.3 | <u>%</u><br>100 |
| Total Live Cover Total Vascular Cover          | 64.9<br>53.1        | 46.3<br>28.6   | 100             |
| Total Evergreen Tree Cover                     | 0.0                 | 0.0            | 100             |
| Total Evergreen Tree Cover                     | 0.0                 | 0.0            | .0              |
| Cover                                          | 0.7                 | 1.3            | 41              |
| Andromeda polifolia                            | 0.5                 | 0.9            | 38              |
| Chamaedaphne calyculata                        | 0.1                 | 0.4            | 14              |
| Dryas integrifolia                             | <0.1                | 0.2            | 3               |
| Ledum decumbens                                | <0.1                | 0.2            | 7               |
| Total Deciduous Shrub                          | 3.6                 | 6.8            | 90              |
| Cover                                          | 0.7                 | 2.0            | 52              |
| Betula nana<br>Myrica galo                     | 0.7                 | 0.9            | 10              |
| Myrica gale<br>Salix fuscescens                | 2.1                 | 4.9            | 62              |
| Salix phlebophylla                             | <0.1                | 0.2            | 3               |
| Salix planifolia ssp. pulchra                  | 0.4                 | 1.3            | 24              |
| Vaccinium uliginosum                           | <0.1                | 0.2            | 17              |
| Total Forb Cover                               | 5.1                 | 10.4           | 93              |
| Drosera rotundifolia                           | <0.1                | 0.2            | 7               |
| Equisetum fluviatile                           | 1.2                 | 6.5            | 10              |
| Equisetum variegatum                           | 0.1                 | 0.6            | 3               |
| Menyanthes trifoliata                          | 0.9                 | 3.1            | 17              |
| Pedicularis langsdorffii                       | 0.1                 | 0.4            | 3               |
| Pedicularis langsdorffii ssp.                  | 0.1                 | 0.4            | 7               |
| arctica<br>Pedicularis parviflora ssp.         | 0.1                 | 0.4            | ,               |
| parviflora                                     | 0.5                 | 1.9            | 14              |
| Pedicularis parviflora ssp.                    |                     |                |                 |
| pennellii                                      | <0.1                | 0.2            | 10              |
| Pedicularis sudetica                           | 0.2                 | 0.5            | 41              |
| Potentilla palustris                           | 1.0                 | 1.7            | 48              |
| Ranunculus pallasii                            | <0.1                | 0.2            | 7               |
| Saxifraga hirculus                             | <0.1                | 0.2            | 10              |
| Utricularia intermedia                         | 0.2<br><0.1         | 0.8<br>0.2     | 10<br>10        |
| Utricularia minor<br>Utricularia vulgaris ssp. | <0.1                | 0.2            | 10              |
| macrorhiza                                     | 0.5                 | 1.1            | 24              |
| Total Grass Cover                              | 0.2                 | 0.5            | 21              |
| Calamagrostis canadensis                       | <0.1                | 0.2            | 10              |
| Calamagrostis sp.                              | <0.1                | 0.2            | 3               |
| Dupontia fischeri                              | 0.1                 | 0.4            | 3               |
| Hierochloe pauciflora                          | <0.1                | 0.2            | 3               |
| Total Sedge & Rush Cover                       | 43.5                | 25.4           | 100             |
| Carex amblyorhynca                             | 0.2                 | 0.9            | 3               |
| Carex aquatilis ssp. aquatilis                 | 11.3                | 11.9           | 86              |
| Carex capillaris                               | 0.1                 | 0.4            | 3               |
| Carex chordorrhiza                             | 15.9                | 15.8           | 100             |
| Carex diandra                                  | 0.2<br><0.1         | 0.9<br>0.2     | 3<br>3          |
| Carex limosa                                   | <0.1<br>0.8         | 2.1            | 3<br>28         |
| Carex limosa<br>Carex livida                   | 1.0                 | 3.5            | 10              |
| Carex IIVIda<br>Carex magellanica              | 0.1                 | 0.6            | 3               |
| Carex magenanica Carex membranacea             | 0.8                 | 1.4            | 31              |
| Carex pluriflora                               | 1.0                 | 5.6            | 3               |
| Carex rariflora                                | 0.3                 | 1.1            | 14              |
| Carex rostrata                                 | 0.1                 | 0.3            | 10              |
| Carex rotundata                                | 2.7                 | 4.7            | 48              |
| Carex saxatilis                                | 0.8                 | 2.9            | 14              |
|                                                |                     |                |                 |

Table 67. Continued.

| Carex sp.         0.1         0.4         3           Carex tenuiflora         0.9         4.6         7           Carex williamsii         0.1         0.4         3           Eriophorum angustifolium         4.8         6.9         76           Eriophorum russeolum         1.4         1.8         55           Eriophorum scheuchzeri         0.4         1.3         10           Eriophorum vaginatum         <0.1         0.2         7           Eriophorum vaginatum         <0.1         0.2         3           Friophorum vaginatum         <0.1         0.2         3           Eriophorum vaginatum         <0.1         0.2         3           Eriophorum vaginatum         <0.1         0.2         3           Trichophorum caespitosum         0.4         1.3         14           Total Nonvascular Cover         31.8         28.9         97           Total Moss Cover         31.8         28.9         97           Aulacomnium acuminatum         <0.1         0.2         3           Aulacomnium turgidum         0.7         1.5         24           Brachythecium sp.         0.1         0.4         3           Bryum seudo                                       |                          | Cover   |      | Freq |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|------|------|
| Carex tenuiflora         0.9         4.6         7           Carex williamsii         0.1         0.4         3           Eriophorum angustifolium         4.8         6.9         76           Eriophorum russeolum         1.4         1.8         55           Eriophorum scheuchzeri         0.4         1.3         10           Eriophorum scheuchzeri         0.4         1.3         10           Eriophorum viridi-carinatum         <0.1         0.2         7           Eriophorum viridi-carinatum         <0.1         0.2         3           Trichophorum caespitosum         0.4         1.3         14           Total Monyascular Cover         31.8         28.9         97           Total Moss Cover         31.8         28.9         97           Aulacomnium acuminatum         <0.1         0.2         3           Aulacomnium burgidum         0.7         1.5         24           Brachythecium sp.         0.1         0.4         3           Bryum subneodamense         0.1         0.4         3           Calliergon sp.         0.2         0.8         14           Campylium arcticum         0.1         0.4         3                                            |                          | Mean    | SD   | %    |
| Carex williamsii         0.1         0.4         3           Eriophorum angustifolium         4.8         6.9         76           Eriophorum russeolum         1.4         1.8         55           Eriophorum scheuchzeri         0.4         1.3         10           Eriophorum sp.         0.1         0.4         3           Eriophorum vaginatum         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Carex sp.                | 0.1     | 0.4  | 3    |
| Eriophorum angustifolium         4.8         6.9         76           Eriophorum russeolum         1.4         1.8         55           Eriophorum scheuchzeri         0.4         1.3         10           Eriophorum sp.         0.1         0.4         3           Eriophorum vaginatum         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Carex tenuiflora         | 0.9     | 4.6  | 7    |
| Eriophorum russeolum         1.4         1.8         55           Eriophorum scheuchzeri         0.4         1.3         10           Eriophorum sp.         0.1         0.4         3           Eriophorum vaginatum         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Carex williamsii         | 0.1     | 0.4  | 3    |
| Eriophorum scheuchzeri         0.4         1.3         10           Eriophorum sp.         0.1         0.4         3           Eriophorum vaginatum         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Eriophorum angustifolium | 4.8     | 6.9  |      |
| Eriophorum sp.         0.1         0.4         3           Eriophorum vaginatum         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                        |         |      |      |
| Eriophorum vaginatum         <0.1         0.2         7           Eriophorum viridi-carinatum         <0.1         0.2         3           Trichophorum caespitosum         0.4         1.3         14           Total Nonvascular Cover         31.8         28.9         97           Total Moss Cover         35.9         31.8         97           Aulacomnium acuminatum         <0.1         0.2         3           Aulacomnium palustre         0.2         0.9         7           Aulacomnium turgidum         0.7         1.5         24           Brachythecium sp.         0.1         0.4         3           Bryum pseudotriquetrum         0.2         0.8         14           Bryum subneodamense         0.1         0.4         3           Calliergon sp.         0.2         0.8         14           Campylium arcticum         0.1         0.4         3           Campylium stellatum         0.3         1.3         10           Cincilidium latifolium         0.2         0.9         3           Dicranum sp.         <0.1         0.2         0.9         3           Drepanocladus revolvens         3.2         10.0         21                                        | Eriophorum scheuchzeri   |         | 1.3  |      |
| Eriophorum viridi-carinatum         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Eriophorum sp.           |         |      |      |
| Trichophorum caespitosum         0.4         1.3         14           Total Nonvascular Cover         31.8         28.9         97           Total Moss Cover         35.9         31.8         97           Aulacomnium acuminatum         <0.1         0.2         3           Aulacomnium palustre         0.2         0.9         7           Aulacomnium turgidum         0.7         1.5         24           Brachythecium sp.         0.1         0.4         3           Bryum pseudotriquetrum         0.2         1.0         7           Bryum pseudotriquetrum         0.2         1.0         7           Bryum pseudotriquetrum         0.2         1.0         3           Bryum subneodamense         0.1         0.6         3           Calliergon sp.         0.2         0.8         14           Campylium acticum         0.1         0.4         3           D                                       |                          |         |      | -    |
| Total Nonvascular Cover         31.8         28.9         97           Total Moss Cover         35.9         31.8         97           Aulacomnium acuminatum         <0.1         0.2         3           Aulacomnium turgidum         0.7         1.5         24           Brachythecium sp.         0.1         0.4         3           Bryum pseudotriquetrum         0.2         1.0         7           Bryum pseudotriquetrum         0.2         1.0         3           Calliergon sp.         0.1         0.4         3           Calliergon sp.         0.2         0.8         14           Campylium arcticum         0.1         0.4         3           Calliergon sp.         0.2         0.8         14           Campylium arcticum         0.1         0.4         3           Campylium stellatum         0.2         0.9         3           Drepanocladus sp.         0.2         0.9         10           Limprichtia revolvens <td>•</td> <td></td> <td></td> <td></td> | •                        |         |      |      |
| Total Moss Cover         35.9         31.8         97           Aulacomnium acuminatum         <0.1         0.2         3           Aulacomnium palustre         0.2         0.9         7           Aulacomnium turgidum         0.7         1.5         24           Brachythecium sp.         0.1         0.4         3           Bryum pseudotriquetrum         0.2         1.0         7           Bryum subneodamense         0.1         0.6         3           Calliergon sp.         0.2         0.8         14           Campylium subneodamense         0.1         0.6         3           Calliergon sp.         0.2         0.8         14           Campylium subneodamense         0.1         0.4         3           Calliergon sp.         0.2         0.8         14           Campylium subneodamense         0.1         0.4         3           Calliergon sp.         0.2         0.9         3           Callium stellatum         0.3         1.3         10           Cincilidium stellatum         0.2         0.9         3           Drepanocladus revolvens         6.3         17.9         28           Meesia triquetra                                               | Trichophorum caespitosum |         |      |      |
| Aulacomnium acuminatum       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |         |      |      |
| Aulacomnium palustre       0.2       0.9       7         Aulacomnium turgidum       0.7       1.5       24         Brachythecium sp.       0.1       0.4       3         Bryum pseudotriquetrum       0.2       1.0       7         Bryum subneodamense       0.1       0.6       3         Calliergon sp.       0.2       0.8       14         Campylium arcticum       0.1       0.4       3         Campylium stellatum       0.3       1.3       10         Cinclidium latifolium       0.2       0.9       3         Dicranum sp.       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |         |      |      |
| Aulacomnium turgidum       0.7       1.5       24         Brachythecium sp.       0.1       0.4       3         Bryum pseudotriquetrum       0.2       1.0       7         Bryum subneodamense       0.1       0.6       3         Calliergon sp.       0.2       0.8       14         Campylium arcticum       0.1       0.4       3         Campylium stellatum       0.3       1.3       10         Cinclidium latifolium       0.2       0.9       3         Dicranum sp.       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |         |      |      |
| Brachythecium sp.         0.1         0.4         3           Bryum pseudotriquetrum         0.2         1.0         7           Bryum subneodamense         0.1         0.6         3           Calliergon sp.         0.2         0.8         14           Campylium arcticum         0.1         0.4         3           Campylium stellatum         0.3         1.3         10           Cinclidium latifolium         0.2         0.9         3           Dicranum sp.         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                        |         |      | -    |
| Bryum pseudotriquetrum         0.2         1.0         7           Bryum subneodamense         0.1         0.6         3           Calliergon sp.         0.2         0.8         14           Campylium arcticum         0.1         0.4         3           Campylium stellatum         0.3         1.3         10           Cinclidium latifolium         0.2         0.9         3           Dicranum sp.         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                        |         |      |      |
| Bryum subneodamense         0.1         0.6         3           Calliergon sp.         0.2         0.8         14           Campylium arcticum         0.1         0.4         3           Campylium stellatum         0.3         1.3         10           Cinclidium latifolium         0.2         0.9         3           Dicranum sp.         <0.1         0.2         3           Drepanocladus brevifolius         0.2         0.9         3           Drepanocladus revolvens         3.2         10.0         21           Drepanocladus sp.         0.2         0.9         10           Limprichtia revolvens         6.3         17.9         28           Meesia triquetra         0.1         0.6         3           Mesia triquetra         0.1         0.6         3           Molium sp.         0.1         0.6         3           Polytrichum jensenii         0.1         0.6         3           Polytrichum strictum         0.1         0.4         3           Polytrichum strictum         0.1         0.4         7           Ptilidium ciliare         <0.1         0.2         3           Sphagnum socorpioides         9.                                                |                          |         |      | _    |
| Calliergon sp.       0.2       0.8       14         Campylium arcticum       0.1       0.4       3         Campylium stellatum       0.3       1.3       10         Cinclidium latifolium       0.2       0.9       3         Dicranum sp.       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |         |      | -    |
| Campylium arcticum       0.1       0.4       3         Campylium stellatum       0.3       1.3       10         Cinclidium latifolium       0.2       0.9       3         Dicranum sp.       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                        |         |      |      |
| Campylium stellatum       0.3       1.3       10         Cinclidium latifolium       0.2       0.9       3         Dicranum sp.       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>5</b> .               |         |      |      |
| Cinclidium latifolium         0.2         0.9         3           Dicranum sp.         <0.1         0.2         3           Drepanocladus brevifolius         0.2         0.9         3           Drepanocladus revolvens         3.2         10.0         21           Drepanocladus sp.         0.2         0.9         10           Limprichtia revolvens         6.3         17.9         28           Meesia triquetra         0.1         0.6         3           Meesia triquetra         0.1         0.6         3           Mnium sp.         0.1         0.6         3           Polytrichum sp.         0.1         0.6         3           Polytrichum jensenii         0.1         0.4         3           Polytrichum sp.         0.2         0.5         10           Polytrichum strictum         0.1         0.4         7           Ptilidium ciliare         <0.1         0.4         7           Ptilidium sp.         <0.1         0.2         3           Scorpidium scorpioides         9.3         22.0         34           Sphagnum aongstroemii         0.7         3.7         3           Sphagnum capillifolium         0.2                                                |                          |         |      | _    |
| Dicranum sp.         <0.1         0.2         3           Drepanocladus brevifolius         0.2         0.9         3           Drepanocladus revolvens         3.2         10.0         21           Drepanocladus sp.         0.2         0.9         10           Limprichtia revolvens         6.3         17.9         28           Meesia triquetra         0.1         0.6         3           Mnium sp.         0.1         0.6         3           Pohlia sp.         0.1         0.6         3           Polytrichum jensenii         0.1         0.4         3           Polytrichum sp.         0.2         0.5         10           Polytrichum strictum         0.1         0.4         7           Ptilidium ciliare         <0.1         0.4         7           Ptilidium sp.         <0.1         0.2         3           Scorpidium scorpioides         9.3         22.0         34           Sphagnum aongstroemii         0.7         3.7         3           Sphagnum balticum         0.2         0.9         3           Sphagnum capillifolium         0.2         0.9         3           Sphagnum fimbriatum         0.2                                                      | , ,                      |         |      |      |
| Drepanocladus brevifolius         0.2         0.9         3           Drepanocladus revolvens         3.2         10.0         21           Drepanocladus sp.         0.2         0.9         10           Limprichtia revolvens         6.3         17.9         28           Meesia triquetra         0.1         0.6         3           Mnium sp.         0.1         0.5         10           Pohlia sp.         0.1         0.6         3           Polytrichum jensenii         0.1         0.4         3           Polytrichum sp.         0.2         0.5         10           Polytrichum strictum         0.1         0.4         7           Ptilidium ciliare         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |         |      |      |
| Drepanocladus revolvens         3.2         10.0         21           Drepanocladus sp.         0.2         0.9         10           Limprichtia revolvens         6.3         17.9         28           Meesia triquetra         0.1         0.6         3           Mnium sp.         0.1         0.5         10           Pohlia sp.         0.1         0.6         3           Polytrichum jensenii         0.1         0.4         3           Polytrichum sp.         0.2         0.5         10           Polytrichum strictum         0.1         0.4         7           Ptilidium ciliare         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                        |         |      |      |
| Drepanocladus sp.         0.2         0.9         10           Limprichtia revolvens         6.3         17.9         28           Meesia triquetra         0.1         0.6         3           Mnium sp.         0.1         0.5         10           Pohlia sp.         0.1         0.6         3           Polytrichum jensenii         0.1         0.4         3           Polytrichum sp.         0.2         0.5         10           Polytrichum strictum         0.1         0.4         7           Ptilidium ciliare         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                        |         |      |      |
| Limprichtia revolvens         6.3         17.9         28           Meesia triquetra         0.1         0.6         3           Mnium sp.         0.1         0.5         10           Pohlia sp.         0.1         0.6         3           Polytrichum jensenii         0.1         0.4         3           Polytrichum sp.         0.2         0.5         10           Polytrichum strictum         0.1         0.4         7           Ptilidium ciliare         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                        |         |      |      |
| Meesia triquetra         0.1         0.6         3           Mnium sp.         0.1         0.5         10           Pohlia sp.         0.1         0.6         3           Polytrichum jensenii         0.1         0.4         3           Polytrichum sp.         0.2         0.5         10           Polytrichum strictum         0.1         0.4         7           Ptilidium ciliare         <0.1         0.2         3           Rhizomnium sp.         <0.1         0.2         3           Scorpidium scorpioides         9.3         22.0         34           Sphagnum aongstroemii         0.7         3.7         3           Sphagnum balticum         0.2         0.9         3           Sphagnum capillifolium         0.2         0.9         3           Sphagnum fimbriatum         0.2         1.3         3           Sphagnum fiscum         0.9         3.3         7           Sphagnum lenense         0.2         0.9         3           Sphagnum spuarrosum         1.6         5.8         10           Sphagnum steerei         0.7         3.7         3           Tomentypnum nitens         0.1         0.6 </td <td>•</td> <td></td> <td></td> <td></td>             | •                        |         |      |      |
| Mnium sp.       0.1       0.5       10         Pohlia sp.       0.1       0.6       3         Polytrichum jensenii       0.1       0.4       3         Polytrichum sp.       0.2       0.5       10         Polytrichum strictum       0.1       0.4       7         Ptilidium ciliare       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                        |         |      |      |
| Pohlia sp.         0.1         0.6         3           Polytrichum jensenii         0.1         0.4         3           Polytrichum sp.         0.2         0.5         10           Polytrichum strictum         0.1         0.4         7           Ptilidium ciliare         <0.1         0.2         3           Rhizomnium sp.         <0.1         0.2         3           Scorpidium scorpioides         9.3         22.0         34           Sphagnum aongstroemii         0.7         3.7         3           Sphagnum balticum         0.2         0.9         3           Sphagnum capillifolium         0.2         0.9         3           Sphagnum compactum         0.2         1.3         3           Sphagnum fimbriatum         0.2         1.3         3           Sphagnum fiscum         0.9         3.3         7           Sphagnum lenense         0.2         0.9         3           Sphagnum syn         3.2         7.1         41           Sphagnum squarrosum         1.6         5.8         10           Sphagnum steerei         0.7         3.7         3           Tomentypnum nitens         0.1                                                                  | ·                        |         |      | _    |
| Polytrichum jensenii         0.1         0.4         3           Polytrichum sp.         0.2         0.5         10           Polytrichum strictum         0.1         0.4         7           Ptilidium ciliare         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                        | • • • • |      |      |
| Polytrichum sp.         0.2         0.5         10           Polytrichum strictum         0.1         0.4         7           Ptilidium ciliare         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                        |         |      |      |
| Polytrichum strictum         0.1         0.4         7           Ptilidium ciliare         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                        |         |      | _    |
| Ptilidium ciliare         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |         |      |      |
| Rhizomnium sp.         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |         |      | -    |
| Scorpidium scorpioides         9.3         22.0         34           Sphagnum aongstroemii         0.7         3.7         3           Sphagnum balticum         0.2         0.9         3           Sphagnum capillifolium         0.2         0.9         3           Sphagnum compactum         0.2         1.3         3           Sphagnum fimbriatum         0.2         1.3         3           Sphagnum fuscum         0.9         3.3         7           Sphagnum lenense         0.2         0.9         3           Sphagnum orientale         4.1         14.3         14           Sphagnum sp.         3.2         7.1         41           Sphagnum squarrosum         1.6         5.8         10           Sphagnum steerei         0.7         3.7         3           Thuidium sp.         <0.1                                                                                                                                                                                                                                                                                                                                                                                       |                          |         |      |      |
| Sphagnum aongstroemii         0.7         3.7         3           Sphagnum balticum         0.2         0.9         3           Sphagnum capillifolium         0.2         0.9         3           Sphagnum compactum         0.2         1.3         3           Sphagnum fimbriatum         0.2         1.3         3           Sphagnum fuscum         0.9         3.3         7           Sphagnum lenense         0.2         0.9         3           Sphagnum orientale         4.1         14.3         14           Sphagnum sp.         3.2         7.1         41           Sphagnum squarrosum         1.6         5.8         10           Sphagnum steerei         0.7         3.7         3           Thuidium sp.         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |         |      |      |
| Sphagnum balticum         0.2         0.9         3           Sphagnum capillifolium         0.2         0.9         3           Sphagnum compactum         0.2         1.3         3           Sphagnum fimbriatum         0.2         1.3         3           Sphagnum fuscum         0.9         3.3         7           Sphagnum lenense         0.2         0.9         3           Sphagnum lenense         0.2         0.9         3           Sphagnum orientale         4.1         14.3         14           Sphagnum sp.         3.2         7.1         41           Sphagnum squarrosum         1.6         5.8         10           Sphagnum steerei         0.7         3.7         3           Thuidium sp.         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                        |         |      |      |
| Sphagnum capillifolium         0.2         0.9         3           Sphagnum compactum         0.2         1.3         3           Sphagnum fimbriatum         0.2         1.3         3           Sphagnum fuscum         0.9         3.3         7           Sphagnum lenense         0.2         0.9         3           Sphagnum lenense         0.2         0.9         3           Sphagnum orientale         4.1         14.3         14           Sphagnum sp.         3.2         7.1         41           Sphagnum squarrosum         1.6         5.8         10           Sphagnum steerei         0.7         3.7         3           Thuidium sp.         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |         |      |      |
| Sphagnum compactum         0.2         1.3         3           Sphagnum fimbriatum         0.2         1.3         3           Sphagnum fuscum         0.9         3.3         7           Sphagnum lenense         0.2         0.9         3           Sphagnum orientale         4.1         14.3         14           Sphagnum sp.         3.2         7.1         41           Sphagnum squarrosum         1.6         5.8         10           Sphagnum steerei         0.7         3.7         3           Thuidium sp.         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |         |      | _    |
| Sphagnum fimbriatum         0.2         1.3         3           Sphagnum fuscum         0.9         3.3         7           Sphagnum lenense         0.2         0.9         3           Sphagnum orientale         4.1         14.3         14           Sphagnum sp.         3.2         7.1         41           Sphagnum squarrosum         1.6         5.8         10           Sphagnum steerei         0.7         3.7         3           Thuidium sp.         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |         |      |      |
| Sphagnum fuscum         0.9         3.3         7           Sphagnum lenense         0.2         0.9         3           Sphagnum orientale         4.1         14.3         14           Sphagnum sp.         3.2         7.1         41           Sphagnum squarrosum         1.6         5.8         10           Sphagnum steerei         0.7         3.7         3           Thuidium sp.         <0.1         0.2         3           Tomentypnum nitens         0.1         0.4         3           Unknown liverwort         0.1         0.6         3           Unknown moss         1.1         4.8         7           Warnstorfia fluitans         0.2         1.3         3           Total Bare Ground         54.5         29.9         97           Bare Soil         3.7         8.7         45           Water         32.0         33.4         90                                                                                                                                                                                                                                                                                                                                    | ·                        |         |      |      |
| Sphagnum lenense         0.2         0.9         3           Sphagnum orientale         4.1         14.3         14           Sphagnum sp.         3.2         7.1         41           Sphagnum squarrosum         1.6         5.8         10           Sphagnum steerei         0.7         3.7         3           Thuidium sp.         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · -                      |         |      |      |
| Sphagnum orientale         4.1         14.3         14           Sphagnum sp.         3.2         7.1         41           Sphagnum squarrosum         1.6         5.8         10           Sphagnum steerei         0.7         3.7         3           Thuidium sp.         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · -                      |         |      | 3    |
| Sphagnum sp.       3.2       7.1       41         Sphagnum squarrosum       1.6       5.8       10         Sphagnum steerei       0.7       3.7       3         Thuidium sp.       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |         |      | 14   |
| Sphagnum squarrosum         1.6         5.8         10           Sphagnum steerei         0.7         3.7         3           Thuidium sp.         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . •                      | 3.2     |      |      |
| Sphagnum steerei         0.7         3.7         3           Thuidium sp.         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | 1.6     | 5.8  | 10   |
| Thuidium sp.         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . •                      | 0.7     | 3.7  | 3    |
| Tomentypnum nitens         0.1         0.4         3           Unknown liverwort         0.1         0.6         3           Unknown moss         1.1         4.8         7           Warnstorfia fluitans         0.2         1.3         3           Total Bare Ground         54.5         29.9         97           Bare Soil         3.7         8.7         45           Water         32.0         33.4         90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 5                      | <0.1    | 0.2  | 3    |
| Unknown liverwort       0.1       0.6       3         Unknown moss       1.1       4.8       7         Warnstorfia fluitans       0.2       1.3       3         Total Bare Ground       54.5       29.9       97         Bare Soil       3.7       8.7       45         Water       32.0       33.4       90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                        | 0.1     | 0.4  | 3    |
| Warnstorfia fluitans       0.2       1.3       3         Total Bare Ground       54.5       29.9       97         Bare Soil       3.7       8.7       45         Water       32.0       33.4       90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | 0.1     | 0.6  | 3    |
| Warnstorfia fluitans         0.2         1.3         3           Total Bare Ground         54.5         29.9         97           Bare Soil         3.7         8.7         45           Water         32.0         33.4         90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unknown moss             | 1.1     | 4.8  | 7    |
| Bare Soil 3.7 8.7 45<br>Water 32.0 33.4 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | 0.2     | 1.3  | 3    |
| Water 32.0 33.4 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total Bare Ground        | 54.5    | 29.9 | 97   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bare Soil                | 3.7     | 8.7  | 45   |
| Litter alone 18.8 14.0 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water                    | 32.0    | 33.4 | 90   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Litter alone             | 18.8    | 14.0 | 97   |



Table 68. Soil characteristics for Lowland Sedge Fen.

| Property                                   | Mean  | SD    | n  |
|--------------------------------------------|-------|-------|----|
| Elevation (m)                              | 144.4 | 157.4 | 27 |
| Slope (degrees)                            | 1.0   |       | 1  |
| Surface Organics Depth(cm)                 | 39.2  | 18.7  | 28 |
| Cumulative Org. in 40 cm (cm)              | 34.2  | 6.1   | 28 |
| Loess Cap Thickness (cm)                   |       |       | 0  |
| Depth to Rocks (cm)                        | 200.0 | 0.0   | 6  |
| Surface Fragment Cover (%)                 |       |       | 0  |
| Frost Boil Cover (%)                       |       |       | 0  |
| Thaw Depth (cm)                            | 48.7  | 20.4  | 25 |
| Site pH at 10-cm depth                     | 5.8   | 0.7   | 29 |
| Site EC at 10-cm depth (µS/cm)             | 85.2  | 67.5  | 29 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | 1.1   | 7.7   | 27 |

 ${}^{\mathtt{s}}\mathsf{Measurements} > \!\! 1$  m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Typic Fibristels (wet, poorly decomposed thick peat, permafrost in upper meter) and Typic Historthels (wet, organic rich soil over permafrost lacking cryoturbation). Less common subgroups include Terric Fibristels (wet, thick poorly decomposed organic horizon, with  $\geq 30$ cm mineral horizon within 1 m) and Terric Hemistels (wet, thick moderately decomposed organic horizon, with  $\geq 30$ cm mineral horizon within 1 m). This ecotype and associated soils are part of the Lowland Bogs and Fens soil landscape. Also included in this soil landscape are Lowland Ericaceous Shrub Bog and Lowland Sedge–Willow Fen.

## **Lowland Sedge-Willow Fen**



## Geomorphology:

Lowland Sedge–Willow Fen occurs on abandoned meander overbank deposits, abandoned braided fine channel deposits, abandoned alluvial fan deposits, older moraine, channel fens, organic fens and shore fens. Surfaces are flat and are frequently non-patterned, although micro- topographic features include strang, mineral-cored hummocks, peat mounds, and low-centered polygons.

### Plant Association:

Carex aquatilis-Salix planifolia ssp. pulchra

This ecotype is sedge-dominated with a subcomponent of deciduous shrubs (Table 69). All life forms may be present, although trees are uncommon. Common species include *Betula nana*, *Potentilla palustris*, *Eriophorum angustifolium*, *Aulacomnium palustre*, and *Paludella squarrosa*.

This ecotype is most similar to Lowland Sedge Fen except it is drier and has higher shrub cover. It is also comparable to Lacustrine Wet Sedge Meadow except for physiographic and species differences. Lowland Sedge–Willow Fen was not spectrally distinct and was mapped as Lowland Sedge Fen.

### Soils:

Soils are poorly drained with moderately thick to thick accumulations of peat (Table 70). Permafrost is often present within 1 m depth. Coarse fragments are rarely encountered in the active layer. Frost boils, loess caps, and surface fragments are absent. Soil pH is circumneutral to acidic, and EC is low. The soils are typically very poorly to poorly drained, and water table occurs at shallow depths or above ground.

Table 69. Vegetation cover and frequency for Lowland Sedge–Willow Fen (n=22).

| _                                            | Cov  |           | Freq |
|----------------------------------------------|------|-----------|------|
| T. ()                                        | Mean | <b>SD</b> | 100  |
| Total Live Cover                             | 92.9 | 40.2      | 100  |
| Total Vascular Cover<br>Total Evergreen Tree | 50.4 | 21.2      | 100  |
| Cover                                        | 0.2  | 1.1       | 10   |
| Picea glauca                                 | 0.2  | 1.1       | 5    |
| Total Evergreen Shrub                        | 0.2  |           | ,    |
| Cover                                        | 1.1  | 2.3       | 48   |
| Andromeda polifolia                          | 0.3  | 0.9       | 29   |
| Empetrum nigrum                              | 0.1  | 0.3       | 19   |
| Ledum decumbens                              | 0.5  | 1.2       | 33   |
| Oxycoccus microcarpus                        | 0.1  | 0.3       | 14   |
| Vaccinium vitis-idaea                        | 0.1  | 0.7       | 5    |
| Total Deciduous Tree                         |      |           |      |
| Cover                                        | 0.0  | 0.0       | 5    |
| Total Deciduous Shrub                        | 11.3 | 13.2      | 90   |
| Cover                                        | <0.1 | 0.2       | 5    |
| Alnus crispa                                 | 0.2  | 1.1       | 5    |
| Betula glandulosa<br>Betula nana             | 2.1  | 2.9       | 52   |
| Myrica gale                                  | 0.2  | 1.1       | 10   |
| Salix fuscescens                             | 1.3  | 3.3       | 48   |
| Salix glauca                                 | 0.2  | 1.1       | 10   |
| Salix planifolia ssp. pulchra                | 4.1  | 5.1       | 62   |
| Salix reticulata                             | 0.4  | 1.2       | 19   |
| Salix scouleriana                            | 1.0  | 4.4       | 10   |
| Vaccinium uliginosum                         | 1.7  | 3.5       | 43   |
| Total Forb Cover                             | 3.3  | 4.0       | 95   |
| Caltha palustris                             | 0.5  | 1.5       | 14   |
| Chrysosplenium wrightii                      | <0.1 | 0.2       | 5    |
| Epilobium palustre                           | <0.1 | <0.1      | 14   |
| Erigeron elatus                              | <0.1 | <0.1      | 10   |
| Menyanthes trifoliata                        | 0.6  | 1.8       | 14   |
| Parnassia palustris                          | <0.1 | <0.1      | 10   |
| Pedicularis sudetica                         | 0.1  | 0.3       | 19   |
| Petasites frigidus                           | 0.2  | 0.7       | 19   |
| Potentilla palustris                         | 1.5  | 2.5       | 52   |
| Ranunculus pallasii                          | <0.1 | 0.2       | 5    |
| Rubus arcticus                               | 0.1  | 0.7       | 5    |
| Rumex arcticus                               | <0.1 | 0.2       | 5    |
| Valeriana capitata                           | <0.1 | <0.1      | 10   |
| Total Grass Cover                            | 0.9  | 1.8       | 48   |
| Arctagrostis latifolia                       | 0.1  | 0.4       | 10   |
| Calamagrostis canadensis                     | 0.7  | 1.6       | 24   |
| Hierochloe pauciflora                        | 0.1  | 0.5       | 10   |
| Total Sedge & Rush                           | 22.4 | 477       | 400  |
| Cover                                        | 33.4 | 17.7      | 100  |
| Carex aquatilis ssp. aquatilis               | 18.8 | 17.6      | 100  |
| Carex bigelowii                              | 0.1  | 0.2       | 10   |
| Carex canescens                              | <0.1 | <0.1      | 14   |
| Carex capillaris                             | <0.1 | <0.1      | 10   |
| Carex limosa                                 | 0.2  | 0.6       | 24   |
| Carex membranacea                            | 0.4  | 0.9       | 24   |
| Carex rariflora                              | 0.1  | 0.7       | 10   |
| Carex rotundata                              | 0.4  | 1.1       | 19   |
| Carex saxatilis                              | 1.0  | 3.0       | 14   |
| Carex vaginata                               | <0.1 | <0.1      | 10   |
| -                                            |      |           |      |

Table 69. Continued.

|                                        | Cov          | er         | Freq    |
|----------------------------------------|--------------|------------|---------|
|                                        | Mean         | SD         | %       |
| Eriophorum angustifolium               | 11.0         | 13.2       | 76      |
| Eriophorum russeolum                   | 0.9          | 1.4        | 38      |
| Eriophorum scheuchzeri                 | 0.2          | 1.1        | 5       |
| Eriophorum sp.                         | <0.1         | 0.2        | 5       |
| Eriophorum vaginatum                   | 0.2          | 0.7        | 19      |
| Luzula arcuata                         | <0.1         | 0.2        | 5       |
| <i>Luzula</i> sp.                      | <0.1         | 0.2        | 5       |
| Total Nonvascular                      | 42.5         | 24.7       | 0.5     |
| Cover                                  | 42.5         | 31.7       | 86      |
| Total Moss Cover                       | 42.2         | 31.4       | 86      |
| Aulacomnium<br>acuminatum              | <0.1         | 0.2        | 5       |
| Aulacomnium palustre                   | 4.6          | 5.6        | 62      |
| Aulacomnium turgidum                   | 0.6          | 1.3        | 33      |
|                                        | 1.0          | 4.4        | 5       |
| Calliergon giganteum<br>Calliergon sp. | 2.2          | 7.6        | 29      |
| Calliergon stramineum                  | 0.5          | 2.2        | 14      |
| •                                      | 0.5          | 1.3        | 24      |
| Campylium stellatum                    | <0.1         | 0.2        | 5       |
| Cinclidium subrotundum                 | 0.1          | 0.2        | 10      |
| Dicranum sp.                           | 0.1          | 1.9        | 19      |
| Drepanocladus revolvens                | 0.9          | 1.4        | 10      |
| Drepanocladus sp.                      | 0.4          | 3.3        | 24      |
| Hylocomium splendens                   | 0.9          | 3.3<br>0.4 | 24<br>5 |
| Limprichtia revolvens                  | 0.1<br><0.1  | 0.4        |         |
| Loeskypnum badium                      | <0.1<br><0.1 | 0.2        | 5<br>5  |
| Meesia triquetra                       | 0.3          | 1.1        | 10      |
| Mnium sp.                              | 2.8          | 7.7        | 19      |
| Paludella squarrosa                    | 2.8<br>0.1   |            |         |
| Plagiomnium sp.                        |              | 0.4        | 5       |
| Pohlia nutans                          | 0.5          | 2.2        | 5       |
| Pohlia sp.                             | 0.2          | 1.1        | 5       |
| Polytrichum jensenii                   | 0.5          | 2.2        | 5       |
| Polytrichum juniperinum                | 0.1          | 0.5        | 10      |
| Rhizomnium sp.                         | 0.2          | 1.1        | 5       |
| Rhytidium rugosum                      | 0.2          | 1.1        | 5       |
| Sanionia uncinata                      | 0.1          | 0.4        | 14      |
| Scorpidium scorpioides                 | 0.2          | 0.7        | 14      |
| Sphagnum balticum                      | 1.0          | 4.4        | 5       |
| Sphagnum capillifolium                 | 0.6          | 2.0        | 10      |
| Sphagnum imbricatum                    | 1.0          | 4.4        | 5       |
| Sphagnum lenense                       | 2.4          | 7.7        | 10      |
| Sphagnum obtusum                       | 1.2          | 3.8        | 10      |
| Sphagnum sp.                           | 3.7          | 11.7       | 29      |
| Sphagnum squarrosum                    | 4.6          | 11.5       | 24      |
| Sphagnum subsecundum                   | 0.1          | 0.7        | 5       |
| Sphagnum teres                         | 0.5          | 2.2        | 5       |
| Sphagnum warnstorfii                   | 2.6          | 6.8        | 19      |
| Tomentypnum nitens                     | 3.2          | 8.4        | 33      |
| Unknown moss                           | 1.4          | 3.1        | 24      |
| Warnstorfia exannulata                 | 1.1          | 3.6        | 10      |
| Warnstorfia fluitans                   | 1.2          | 4.4        | 10      |
| Warnstorfia sarmentosa                 | 0.4          | 1.7        | 5       |
| Total Lichen Cover                     | 0.3          | 1.1        | 24      |
| Cladina arbuscula                      | 0.2          | 0.9        | 14      |
| Cladonia sp.                           | 0.1          | 0.2        | 14      |
| Total Bare Ground                      | 47.0         | 28.0       | 100     |
| Bare Soil                              | 1.0          | 2.5        | 33      |
| Water                                  | 21.0         | 26.5       | 95      |
|                                        | 25.0         | 23.1       | 95      |



Table 70. Soil characteristics for Lowland Sedge–Willow Fen.

| Property                                   | Mean  | SD    | n  |
|--------------------------------------------|-------|-------|----|
| Elevation (m)                              | 393.6 | 350.2 | 21 |
| Slope (degrees)                            | 2.0   | 1.4   | 7  |
| Surface Organics Depth(cm)                 | 38.0  | 26.5  | 20 |
| Cumulative Org. in 40 cm (cm)              | 31.1  | 11.0  | 20 |
| Loess Cap Thickness (cm)                   |       |       | 0  |
| Depth to Rocks (cm)                        | 173.1 | 71.1  | 7  |
| Surface Fragment Cover (%)                 |       |       | 0  |
| Frost Boil Cover (%)                       |       |       | 0  |
| Thaw Depth (cm)                            | 41.7  | 18.0  | 16 |
| Site pH at 10-cm depth                     | 6.0   | 0.6   | 20 |
| Site EC at 10-cm depth (µS/cm)             | 163.5 | 188.9 | 20 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -0.6  | 7.8   | 19 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Typic Fibristels (wet, poorly decomposed thick peat, permafrost in upper meter), Typic Aquorthels (wet, mineral soil over permafrost lacking cryoturbation), and Typic Cryofibrists (wet, poorly decomposed peat, lacking permafrost). A less common soil subgroup is Typic Hemistels (wet, moderately decomposed organic horizon thicker than 40 cm, permafrost present). This ecotype and associated soils are part of the Lowland Bogs and Fens soil landscape. Also included in this soil landscape are the Lowland Ericaceous Shrub Bog and Lowland Sedge Fen ecotypes.

## **Lowland Willow Low Shrub**



## Geomorphology:

This willow-dominated lowland ecotype occurs on hillside colluvium, older moraine, upland loess, ice-rich thaw basins, and abandoned braided overbank deposits. The surface is usually flat or a gentle concave slope. It occurs throughout ARCN at <550 m elevation.

## Plant Association:

Salix planifolia ssp. pulchra-Valeriana capitata
Deciduous shrubs and forbs characterize this
ecotype (Table 71). Mosses often create a carpet in the
understory. All life forms except deciduous trees may
be present to some degree. Common species include
Vaccinium uliginosum, Equisetum arvense, Petasites
frigidus, Calamagrostis canadensis, and Tomentypnum

This ecotype is similar to Lowland Birch–Willow Low Shrub except for the absence of dwarf birch. It is different from Riverine Willow Low Shrub in physiographic characters and species composition.

#### Soils:

nitens.

Soils are typically loamy with moderately thick surface organic horizons (Table 72). Depth to permafrost is typically less than 1 m. Frost boils and surface fragments are absent. Loess is rare, which the exception of one site where a thick (68 cm) accumulation of loess occurred over glacial till. Soil pH is circumneutral to acidic, and EC is low. The soils are typically very poorly to somewhat poorly drained. The water table is typically shallow.

Table 71. Vegetation cover and frequency for Lowland Willow Low Shrub (n=12).

| Lowiand Willow Low Siliub (11–12).                |            |            |          |
|---------------------------------------------------|------------|------------|----------|
| _                                                 | Cov        | er         | Freq     |
|                                                   | Mean       | SD         | %        |
| Total Live Cover                                  | 185.5      | 55.8       | 100      |
| Total Vascular Cover                              | 132.2      | 34.8       | 100      |
| Total Evergreen Tree                              |            |            |          |
| Cover                                             | 0.0        | 0.0        | 8        |
| Total Evergreen Shrub                             | 1.2        | 3.2        | 33       |
| Cover                                             | 0.2        | 3.2<br>0.6 | 33<br>8  |
| Andromeda polifolia                               | 0.4        | 1.4        | 17       |
| Empetrum nigrum<br>Ledum decumbens                | 0.4        | 0.3        | 17       |
| Ledum groenlandicum                               | 0.1        | 0.3        | 8        |
| Vaccinium vitis-idaea                             | 0.4        | 1.4        | 17       |
| Total Deciduous Shrub                             | 0.1        |            | .,       |
| Cover                                             | 73.1       | 14.0       | 100      |
| Alnus crispa                                      | 0.4        | 1.0        | 25       |
| Arctostaphylos rubra                              | 0.4        | 1.4        | 8        |
| Betula nana                                       | 0.8        | 1.3        | 42       |
| Myrica gale                                       | 1.7        | 5.8        | 8        |
| Potentilla fruticosa                              | 0.2        | 0.6        | 8        |
| Salix alaxensis                                   | 0.8        | 2.3        | 17       |
| Salix fuscescens                                  | 3.3        | 10.1       | 17       |
| Salix glauca                                      | 0.6        | 1.5        | 17       |
| Salix lanata ssp. richardsonii                    | 1.7        | 3.3        | 33       |
| Salix planifolia ssp. pulchra                     | 55.9       | 22.7       | 100      |
| Salix reticulata                                  | 2.7        | 4.9        | 33       |
| Vaccinium uliginosum                              | 4.1        | 5.5        | 58       |
| <b>Total Forb Cover</b>                           | 40.2       | 30.0       | 100      |
| Aconitum delphinifolium                           | 0.4        | 0.7        | 42       |
| Anemone richardsonii                              | 8.0        | 1.6        | 25       |
| Artemisia arctica ssp. arctica                    | 1.2        | 3.1        | 17       |
| Cicuta mackenzieana                               | 0.1        | 0.3        | 8        |
| Dodecatheon frigidum                              | 0.2        | 0.6        | 8        |
| Epilobium angustifolium                           | 0.1        | 0.3        | 17       |
| Equisetum arvense                                 | 11.3       | 16.6       | 58       |
| Equisetum fluviatile                              | 2.1        | 7.2        | 8        |
| Equisetum pratense                                | 0.1        | 0.3        | 8        |
| Equisetum scirpoides                              | 0.1        | 0.3        | 8        |
| Equisetum variegatum                              | 0.1        | 0.3        | 8        |
| Petasites frigidus                                | 15.7       | 26.3       | 58       |
| Petasites hyperboreus                             | 2.1        | 7.2        | 8        |
| Polemonium acutiflorum                            | 0.4        | 0.6        | 50<br>17 |
| Polygonum bistorta                                | 0.2<br>0.1 | 0.4<br>0.3 |          |
| Polygonum viviparum                               | 1.0        | 1.9        | 8<br>33  |
| Potentilla palustris                              | 0.1        | 0.3        | 33<br>8  |
| Pyrola minor                                      | 0.1        | 0.3        | 25       |
| Rubus arcticus ssp. arcticus<br>Rubus chamaemorus | 1.4        | 3.1        | 50       |
|                                                   | 0.1        | 0.3        | 8        |
| Saxifraga hirculus<br>Sedum rosea ssp.            | 0.1        | 0.5        | 0        |
| integrifolium                                     | 0.1        | 0.3        | 8        |
| Stellaria longipes                                | 0.2        | 0.4        | 25       |
| Valeriana capitata                                | 1.8        | 2.1        | 58       |
| Total Grass Cover                                 | 9.1        | 7.0        | 100      |
| Arctagrostis latifolia                            | 1.4        | 1.9        | 50       |
| Calamagrostis canadensis                          | 5.1        | 7.8        | 58       |
| Calamagrostis lapponica                           | 1.2        | 4.3        | 8        |
| Festuca altaica                                   | 0.6        | 1.4        | 33       |
| Poa arctica                                       | 0.7        | 1.0        | 58       |
|                                                   |            |            |          |

Table 71. Continued.

|                                | Cov  | Freq |     |
|--------------------------------|------|------|-----|
|                                | Mean | SD   | %   |
| Total Sedge & Rush Cover       | 8.6  | 8.9  | 92  |
| Carex aquatilis ssp. aquatilis | 3.3  | 4.6  | 67  |
| Carex bigelowii                | 3.2  | 6.8  | 42  |
| Carex canescens                | 0.4  | 1.4  | 8   |
| Carex capitata                 | 0.2  | 0.6  | 8   |
| Carex Ioliacea                 | 0.1  | 0.3  | 8   |
| Carex membranacea              | 0.4  | 1.4  | 8   |
| Carex podocarpa                | 0.1  | 0.3  | 8   |
| Carex saxatilis                | 0.4  | 1.4  | 8   |
| Eriophorum angustifolium       | 0.1  | 0.3  | 17  |
| Eriophorum scheuchzeri         | 0.2  | 0.9  | 8   |
| Eriophorum vaginatum           | 0.2  | 0.6  | 8   |
| Total Nonvascular Cover        | 53.3 | 30.8 | 100 |
| Total Moss Cover               | 52.2 | 30.6 | 100 |
| Aulacomnium palustre           | 9.8  | 19.8 | 75  |
| Aulacomnium turgidum           | 1.2  | 2.6  | 25  |
| Brachythecium salebrosum       | 1.2  | 4.3  | 8   |
| Brachythecium sp.              | 0.2  | 0.9  | 8   |
| Bryum pseudotriquetrum         | 0.1  | 0.3  | 8   |
| Calliergon sp.                 | 2.1  | 7.2  | 8   |
| Calliergon stramineum          | 3.8  | 11.4 | 25  |
| Campylium stellatum            | 0.1  | 0.3  | 8   |
| Cinclidium arcticum            | 0.1  | 0.3  | 8   |
| Dicranum fuscescens            | 0.1  | 0.3  | 8   |
| Dicranum laevidens             | 0.2  | 0.6  | 8   |
| Dicranum majus                 | 0.2  | 0.6  | 8   |
| Dicranum sp.                   | 1.9  | 3.9  | 25  |
| Drepanocladus brevifolius      | 0.3  | 1.2  | 8   |
| Drepanocladus sendtneri        | 0.3  | 1.2  | 8   |
| Drepanocladus sp.              | 2.1  | 5.0  | 17  |
| Hylocomium splendens           | 14.6 | 21.3 | 67  |
| Meesia triquetra               | 0.2  | 0.6  | 8   |
| Mnium sp.                      | 1.8  | 5.8  | 17  |
| Paludella squarrosa            | 2.2  | 7.8  | 8   |
| Pleurozium schreberi           | 0.8  | 1.9  | 17  |
| Pohlia sp.                     | 0.4  | 1.4  | 8   |
| Polytrichum commune            | 0.4  | 1.4  | 8   |
| Polytrichum juniperinum        | 0.1  | 0.3  | 8   |
| Polytrichum sp.                | 0.7  | 1.6  | 17  |
| Polytrichum strictum           | 0.8  | 1.9  | 17  |
| Sanionia uncinata              | 0.4  | 1.4  | 17  |
| Sphagnum fuscum                | 0.1  | 0.3  | 8   |
| Sphagnum girgensohnii          | 0.4  | 1.4  | 17  |
| Sphagnum riparium              | 0.2  | 0.6  | 8   |
| Sphagnum warnstorfii           | 1.5  | 3.5  | 17  |
| Tomentypnum nitens             | 3.2  | 4.9  | 50  |
| Unknown moss                   | 0.2  | 0.4  | 17  |
| Warnstorfia exannulata         | 0.2  | 0.6  | 8   |
| Total Lichen Cover             | 1.0  | 1.3  | 75  |
| Flavocetraria cucullata        | 0.2  | 0.4  | 17  |
| Peltigera aphthosa             | 0.3  | 0.6  | 42  |
| Unknown crustose lichen        | 0.2  | 0.6  | 8   |
| Total Bare Ground              | 9.6  | 14.5 | 100 |
| Water                          | 5.3  | 14.4 | 50  |
| Litter alone                   | 4.3  | 5.5  | 92  |
|                                |      |      |     |



Table 72. Soil characteristics for Lowland Willow Low Shrub.

| Property                                   | Mean  | SD    | n  |
|--------------------------------------------|-------|-------|----|
| Elevation (m)                              | 266.2 | 261.2 | 12 |
| Slope (degrees)                            | 4.9   | 3.9   | 9  |
| Surface Organics Depth(cm)                 | 17.3  | 17.8  | 12 |
| Cumulative Org. in 40 cm (cm)              | 16.3  | 14.5  | 12 |
| Loess Cap Thickness (cm)                   | 68.0  |       | 1  |
| Depth to Rocks (cm)                        | 86.9  | 87.1  | 9  |
| Surface Fragment Cover (%)                 |       |       | 0  |
| Frost Boil Cover (%)                       |       |       | 0  |
| Thaw Depth (cm)                            | 56.6  | 23.3  | 7  |
| Site pH at 10-cm depth                     | 5.8   | 0.3   | 12 |
| Site EC at 10-cm depth (µS/cm)             | 69.2  | 50.5  | 12 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -21.9 | 22.9  | 10 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Typic Aquorthels (wet, mineral soil over permafrost lacking cryoturbation) and Typic Historthels (wet, organic rich soil over permafrost lacking cryoturbation). Less common subgroups include Typic Haplorthels (mineral soil over permafrost lacking cryoturbation) and Typic Aquiturbels (wet, mineral soil over permafrost with cryoturbation). This ecotype and associated soils are part of the Lowland Organic-rich Shrub and Forests soil landscape. Other ecotypes in this soil landscape include Lowland Birch—Willow Low Shrub, Lowland Birch—Ericaceous Low Shrub, and Lowland Black Spruce Forest.

## River



## Geomorphology:

Rivers occur throughout ARCN and include both upper and lower perennial non-glacial rivers, mountain headwater streams, and lowland headwater streams. River channels are both braided and meandering. Elevations vary from sea level to >900 m in headwater streams. This ecotype and Riverine Lake were mapped together as Riverine Water.

Rivers are unvegetated in ARCN and we did not develop a plant association for this ecotype.

## Soils:

Flooded soils were not described. Water characteristics are listed in Table 73.

Table 73. Water characteristics for River.

| Property                                   | Mean  | SD    | n  |
|--------------------------------------------|-------|-------|----|
| Site pH at 10-cm depth                     | 7.4   | 0.6   | 28 |
| Site EC at 10-cm depth (µS/cm)             | 273.5 | 172.6 | 26 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | 58.7  | 39.8  | 29 |

<sup>&</sup>lt;sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

## **Riverine Alder Tall Shrub**



## Geomorphology:

This ecotype comprises closed alder stands on younger riverine surfaces. It occurs on braided and meander inactive overbank deposits, alluvial fan inactive channel deposits, and moderately steep headwater floodplains. Surface forms include interfluves, flat banks, point bars and drainage- ways.

## Plant Association:

Alnus crispa-Rubus arcticus

Riverine Alder Tall Shrub consists of open to closed stands of *A. crispa* (syn: *A. viridis* ssp. *fruticosa*) with an understory of forbs and mosses (Table 74). Tall willows occasionally are co-dominant with alder. Trees are absent, and cover of lichens, sedges and grasses is variable. Common species include *Aconitum delphinifolium*, *Equisetum arvense*, *Calamagrostis canadensis*, and *Climacium dendroides*.

This ecotype is similar to Lowland Alder Tall Shrub and Upland Alder–Willow Tall Shrub, although it is strongly affected by riverine processes, and has different species assemblages.

Table 74. Vegetation cover and frequency for Riverine Alder Tall Shrub (n=8).

|                                                                 | Cover |       | Freq |
|-----------------------------------------------------------------|-------|-------|------|
|                                                                 | Mean  | SD    | %    |
| Total Live Cover                                                | 145.7 | 33.3  | 100  |
| Total Vascular Cover                                            | 137.6 | 26.2  | 100  |
| Total Evergreen Tree Cover                                      | 0.0   | 0.0   | 17   |
| Picea mariana                                                   | <0.1  | <0.1  | 17   |
| Total Evergreen Shrub                                           |       |       |      |
| Cover                                                           | 0.9   | 2.1   | 17   |
| Ledum decumbens                                                 | <0.1  | <0.1  | 17   |
| Linnaea borealis                                                | 8.0   | 2.0   | 17   |
| Vaccinium vitis-idaea                                           | <0.1  | <0.1  | 17   |
| Total Deciduous Tree<br>Cover                                   | 0.0   | 0.0   | 17   |
| Betula papyrifera                                               | <0.1  | <0.1  | 17   |
| Total Deciduous Shrub                                           | νο. ι | νο. ι | .,   |
| Cover                                                           | 92.3  | 18.4  | 100  |
| Alnus crispa                                                    | 67.5  | 24.4  | 100  |
| Arctostaphylos rubra                                            | 0.5   | 1.2   | 17   |
| Betula nana                                                     | 0.2   | 0.4   | 17   |
| Potentilla fruticosa                                            | <0.1  | <0.1  | 17   |
| Ribes triste                                                    | 8.0   | 2.0   | 17   |
| Rosa acicularis                                                 | <0.1  | 0.1   | 33   |
| Salix alaxensis                                                 | 7.2   | 16.1  | 50   |
| Salix arbusculoides                                             | 1.4   | 2.1   | 50   |
| Salix arctica                                                   | 2.0   | 4.9   | 17   |
| Salix barclayi                                                  | 0.3   | 8.0   | 17   |
| Salix bebbiana                                                  | <0.1  | <0.1  | 17   |
| Salix brachycarpa ssp.                                          | 0.8   | 2.0   | 17   |
| niphoclada                                                      | 3.8   | 8.0   | 33   |
| Salix lanata ssp. richardsonii<br>Salix planifolia ssp. pulchra | 0.3   | 0.8   | 17   |
| Salix scouleriana                                               | 1.7   | 4.1   | 17   |
| Spiraea beauverdiana                                            | 5.2   | 9.9   | 50   |
| Vaccinium uliginosum                                            | 0.5   | 0.8   | 50   |
| Viburnum edule                                                  | <0.1  | 0.1   | 33   |
| Total Forb Cover                                                | 21.3  | 7.5   | 100  |
| Aconitum delphinifolium                                         | 0.1   | 0.1   | 67   |
| Anemone richardsonii                                            | 0.2   | 0.4   | 17   |
| Artemisia tilesii                                               | 1.0   | 1.5   | 50   |
| Aster sibiricus                                                 | <0.1  | < 0.1 | 17   |
| Cardamine pratensis ssp.                                        |       |       |      |
| angustifolia                                                    | <0.1  | <0.1  | 17   |
| Dryopteris dilatata ssp.                                        | <0.1  | <0.1  | 17   |
| americana<br>Enilohium angustifolium                            | 0.2   | 0.4   | 17   |
| Epilobium angustifolium<br>Equisetum arvense                    | 3.9   | 5.8   | 83   |
| Equisetum pratense                                              | 0.7   | 1.6   | 17   |
| Galium boreale                                                  | <0.1  | 0.1   | 33   |
| Galium trifidum ssp. trifidum                                   | <0.1  | <0.1  | 17   |
| Lycopodium annotinum                                            | 1.7   | 4.1   | 17   |
| Mertensia paniculata                                            | 1.0   | 2.0   | 33   |
| Petasites frigidus                                              | 5.0   | 10.0  | 33   |
| Polemonium acutiflorum                                          | 0.5   | 0.8   | 67   |
| Potentilla palustris                                            | <0.1  | <0.1  | 17   |
| Rubus arcticus                                                  | 0.7   | 1.0   | 33   |
| Rubus arcticus ssp. arcticus                                    | 2.2   | 2.3   | 67   |
| Rubus chamaemorus                                               | 1.3   | 3.3   | 17   |
| Saxifraga punctata                                              | 0.2   | 0.4   | 17   |
| Stellaria longifolia                                            | <0.1  | <0.1  | 17   |
| Stellaria sp.                                                   | <0.1  | <0.1  | 17   |
|                                                                 |       |       |      |

Table 74. Continued.

|                          | Cov  | er   | Freq |  |
|--------------------------|------|------|------|--|
|                          | Mean | SD   | %    |  |
| Thalictrum sparsiflorum  | 1.0  | 2.0  | 33   |  |
| Trientalis europaea      | <0.1 | <0.1 | 17   |  |
| Trientalis europaea ssp. |      |      |      |  |
| arctica                  | 0.8  | 2.0  | 33   |  |
| Valeriana capitata       | 0.8  | 2.0  | 17   |  |
| Viola renifolia          | <0.1 | <0.1 | 17   |  |
| Total Grass Cover        | 23.0 | 18.7 | 83   |  |
| Arctagrostis latifolia   | 13.3 | 21.6 | 33   |  |
| Calamagrostis canadensis | 9.7  | 13.8 | 50   |  |
| Total Sedge & Rush Cover | 0.0  | 0.1  | 33   |  |
| Carex sp.                | <0.1 | <0.1 | 17   |  |
| Luzula sp.               | <0.1 | <0.1 | 17   |  |
| Total Nonvascular Cover  | 8.1  | 12.1 | 100  |  |
| <b>Total Moss Cover</b>  | 7.4  | 11.4 | 100  |  |
| Brachythecium mildeanum  | <0.1 | <0.1 | 17   |  |
| Brachythecium sp.        | <0.1 | 0.1  | 33   |  |
| Climacium dendroides     | 3.8  | 8.0  | 33   |  |
| Dicranum sp.             | 0.3  | 0.8  | 17   |  |
| Plagiomnium ellipticum   | 1.0  | 2.0  | 33   |  |
| Polytrichum juniperinum  | 0.5  | 1.2  | 17   |  |
| Polytrichum strictum     | <0.1 | <0.1 | 17   |  |
| Sanionia uncinata        | 1.2  | 2.0  | 33   |  |
| Scorpidium scorpioides   | 0.3  | 0.8  | 17   |  |
| Unknown moss             | 0.2  | 0.4  | 17   |  |
| Total Lichen Cover       | 0.7  | 1.1  | 33   |  |
| Parmelia sp.             | 0.5  | 0.8  | 33   |  |
| Unknown arborial lichen  | 0.2  | 0.4  | 33   |  |
| Total Bare Ground        | 2.0  | 2.4  | 67   |  |
| Litter alone             | 2.0  | 2.4  | 67   |  |

# Soils:



Soils are loamy with a thin overlying organic horizon (Table 75). Permafrost is often found within the upper 1 m of soil, however permafrost was sometimes difficult to determine due to the rocky soils, and it was assumed in these cases to be present within 2 m. Frost boils, loess caps, and surface fragments are absent. Organic horizons, buried during flooding by riverine silts and sands, often occur in these soils. Soil pH is acidic to circumneutral, and EC is low. The soils are typically moderately well to somewhat poorly drained. Depth to water table often could not be measured, but it is assumed to fluctuate throughout the year within the upper 2 m of soil.

Table 75. Soil characteristics for Riverine Alder Tall Shrub.

| Property                                   | Mean  | SD    | n |
|--------------------------------------------|-------|-------|---|
| Elevation (m)                              | 153.1 | 227.2 | 7 |
| Slope (degrees)                            | 10.5  | 6.4   | 2 |
| Surface Organics Depth(cm)                 | 5.1   | 2.4   | 7 |
| Cumulative Org. in 40 cm (cm)              | 7.4   | 4.4   | 7 |
| Loess Cap Thickness (cm)                   |       |       | 0 |
| Depth to Rocks (cm)                        | 31.3  | 18.0  | 3 |
| Surface Fragment Cover (%)                 |       |       | 0 |
| Frost Boil Cover (%)                       |       |       | 0 |
| Thaw Depth (cm)                            | 40.7  | 26.3  | 3 |
| Site pH at 10-cm depth                     | 5.8   | 1.1   | 6 |
| Site EC at 10-cm depth (µS/cm)             | 95.0  | 65.7  | 6 |
| Water Depth (cm,+ above grnd) <sup>a</sup> |       |       | 0 |

<sup>&</sup>lt;sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

Dominant soil subgroups include Fluvaquentic Haplorthels (wet, minteral soil with buried organic horizons, permafrost within 1 m) and Fluventic Haplorthels (moist, mineral soil with buried organic horizons, permafrost within 1 m). Less common soils are Typic Gelorthents (poorly developed with permafrost below 1 m) and Typic Dystrogelepts (acidic, well drained, moderately thin organic horizon, permafrost below 1 m). This ecotype and associated soils are part of the Riverine Loamy Meadows and Shrublands soil landscape. Other ecotypes found in this soil landscape winclude Riverine Birch–Willow Low Shrub, Riverine Wet Willow Tall Shrub, and Riverine Bluejoint Meadow.

#### **Riverine Barrens**



# Geomorphology:

Riverine Barrens occurs on braided and meandering river bars that are frequently flooded and scoured. Geomorphology is depositional including both channel and overbank deposits. Surface forms include point bars, interfluves, flat bank channels, swales and guts on nearly flat surfaces under 550 m elevation throughout ARCN.

#### Plant Association:

Salix alaxensis-Epilobium latifolium

Vegetation is sparse, with primarily ruderal species and early colonizers present (Table 76). Mature trees and shrubs, mosses and lichens are mostly absent due to frequent disturbance. This ecotype is not particularly species rich, although it is the 2nd most diverse riverine ecotype, particularly in forbs and graminoid species. Common species include Salix alaxensis, Epilobium latifolium, Hedysarum mackenzii, and Deschampsia caespitosa. Two rare species occurred in this ecotype: Aster yukonensis (syn: Symphyotrichum yukonense) and Limosella aquatica.

This ecotype is similar to Riverine Dryas Dwarf Shrub and Riverine Moist Willow Tall Shrub except it occurs primarily on active deposits where there is greater disturbance.

Table 76. Vegetation cover and frequency for Riverine Barrens (n=33).

Table 76. Continued.

|                                 |      |       | Fuer |                                | Cov  | er    | Fred |
|---------------------------------|------|-------|------|--------------------------------|------|-------|------|
|                                 | Cov  |       | Freq |                                | Mean | SD    | %    |
|                                 | Mean | SD    | %    | Pedicularis sudetica           | <0.1 | <0.1  | 6    |
| Total Live Cover                | 17.9 | 25.1  | 91   | Pinguicula vulgaris            | 0.1  | 0.3   | 3    |
| Total Vascular Cover            | 17.0 | 24.4  | 91   | Polygonum viviparum            | <0.1 | 0.2   | 9    |
| Total Evergreen Tree Cover      | 0.0  | 0.0   | 9    | Rorippa islandica ssp.         |      |       |      |
| Picea glauca                    | <0.1 | <0.1  | 9    | fernaldiana                    | <0.1 | <0.1  |      |
| Total Evergreen Shrub           |      |       | 40   | Saxifraga bronchialis          | <0.1 | 0.2   |      |
| Cover                           | 0.2  | 0.5   | 18   | Saxifraga oppositifolia        | 0.9  | 5.2   |      |
| Cassiope tetragona              | <0.1 | 0.2   | 3    | Senecio lugens                 | <0.1 | <0.1  |      |
| Dryas integrifolia              | 0.1  | 0.4   | 12   | Silene acaulis                 | <0.1 | 0.2   |      |
| Empetrum nigrum                 | <0.1 | <0.1  | 6    | Taraxacum sp.                  | <0.1 | 0.2   |      |
| Total Deciduous Tree            | 0.4  | 4.0   | 20   | Tofieldia pusilla              | <0.1 | <0.1  |      |
| Cover                           | 0.4  | 1.0   | 30   | Wilhelmsia physodes            | <0.1 | <0.1  | 2    |
| Populus balsamifera             | 0.4  | 1.0   | 30   | Zygadenus elegans              | <0.1 | <0.1  |      |
| Total Deciduous Shrub           | 5.0  | 8.3   | 85   | Total Grass Cover              | 4.3  | 12.4  | 7    |
| Cover                           | 0.1  | 0.3   | 6    | Agropyron boreale              | <0.1 | <0.1  | 1    |
| Alnus crispa                    |      |       |      | Agropyron macrourum            | 0.1  | 0.3   | 1.   |
| Arctostaphylos rubra            | <0.1 | 0.2   | 6    | Agropyron sp.                  | <0.1 | 0.2   | 1    |
| Betula nana                     | <0.1 | <0.1  | 12   | Arctagrostis latifolia         | <0.1 | 0.2   | 18   |
| Potentilla fruticosa            | <0.1 | 0.2   | 18   | Bromus pumpellianus            | 0.1  | 0.4   | 1    |
| Salix alaxensis                 | 3.6  | 6.7   | 82   | Bromus pumpellianus var.       |      |       |      |
| Salix arctica                   | 0.1  | 0.3   | 3    | arcticus                       | <0.1 | 0.2   |      |
| Salix barclayi                  | 0.3  | 1.7   | 9    | Bromus pumpellianus var.       |      |       |      |
| Salix brachycarpa ssp.          | 0.5  | 1.6   | 21   | pumpellianus                   | 0.2  | 0.9   |      |
| niphoclada<br>                  | 0.5  | 1.6   | 21   | Calamagrostis canadensis       | 0.1  | 0.3   |      |
| Salix glauca                    | 0.1  | 0.4   | 6    | Calamagrostis lapponica        | <0.1 | 0.2   |      |
| Salix hastata                   | <0.1 | 0.2   | 12   | Calamagrostis purpurascens     | 0.9  | 5.2   | 1    |
| Salix planifolia ssp. pulchra   | 0.1  | 0.4   | 12   | Calamagrostis sp.              | <0.1 | <0.1  |      |
| Salix reticulata                | <0.1 | 0.2   | 3    | Deschampsia caespitosa         | <0.1 | 0.2   | 1    |
| Shepherdia canadensis           | 0.1  | 0.2   | 9    | Elymus arenarius ssp. mollis   | 1.5  | 8.7   |      |
| Vaccinium uliginosum            | <0.1 | 0.2   | 9    | Elymus sp.                     | 0.1  | 0.5   |      |
| Total Forb Cover                | 6.7  | 10.4  | 88   | Elymus trachycaulus            | 0.1  | 0.2   | 1.   |
| Arnica alpina ssp. angustifolia | <0.1 | <0.1  | 9    | Festuca brachyphylla           | 0.1  | 0.3   |      |
| Artemisia arctica ssp. arctica  | 0.1  | 0.3   | 9    | Festuca richardsonii           | 0.5  | 2.6   | 1    |
| Artemisia borealis              | 0.3  | 1.4   | 12   | Festuca rubra                  | 0.2  | 0.9   | 1    |
| Artemisia glomerata             | <0.1 | < 0.1 | 9    | Poa alpigena                   | <0.1 | 0.2   |      |
| Artemisia tilesii               | 0.2  | 0.5   | 33   | Poa alpina                     | <0.1 | 0.2   | 2    |
| Aster junciformis               | 0.1  | 0.7   | 3    | Poa glauca                     | <0.1 | < 0.1 | 1.   |
| Aster sibiricus                 | 0.4  | 1.0   | 45   | Trisetum spicatum ssp.         |      |       |      |
| Astragalus alpinus              | <0.1 | <0.1  | 27   | spicatum .                     | 0.1  | 0.4   | 24   |
| Astragalus polaris              | <0.1 | <0.1  | 9    | Total Sedge & Rush Cover       | 0.5  | 1.9   | 2    |
| Castilleja caudata              | 0.1  | 0.2   | 21   | Carex atrofusca                | <0.1 | 0.2   | :    |
| Cerastium beeringianum          | <0.1 | <0.1  | 9    | Carex capillaris               | 0.1  | 0.5   | (    |
| Chrysanthemum integrifolium     | <0.1 | 0.2   | 3    | Carex krausei                  | 0.1  | 0.3   | :    |
|                                 | <0.1 | <0.1  | 18   | Carex podocarpa                | <0.1 | 0.2   |      |
| Crepis nana                     |      |       | 6    | Juncus arcticus                | <0.1 | <0.1  |      |
| Descurainia sophioides          | <0.1 | <0.1  |      | Juncus castaneus ssp.          |      |       |      |
| Epilobium angustifolium         | 0.1  | 0.2   | 9    | castaneus                      | <0.1 | <0.1  |      |
| Epilobium latifolium            | 1.9  | 3.1   | 73   | Kobresia simpliciuscula        | 0.2  | 1.2   |      |
| Equisetum arvense               | 0.6  | 3.1   | 18   | <b>Total Nonvascular Cover</b> | 0.9  | 2.0   | 4    |
| Equisetum variegatum            | <0.1 | <0.1  | 9    | <b>Total Moss Cover</b>        | 0.8  | 2.0   | 4    |
| Gentiana propinqua              | <0.1 | 0.2   | 9    | Brachythecium sp.              | <0.1 | 0.2   |      |
| Hedysarum alpinum               | 0.2  | 0.6   | 27   | Ceratodon purpureus            | 0.6  | 1.8   | 1    |
| Hedysarum mackenzii             | 0.6  | 1.5   | 24   | Unknown moss                   | 0.2  | 0.9   | 1    |
| Linum perenne                   | <0.1 | 0.2   | 3    | Total Lichen Cover             | 0.0  | 0.2   |      |
| Minuartia arctica               | 0.1  | 0.3   | 3    | Cetraria cf. islandica         | <0.1 | 0.2   |      |
| Minuartia rubella               | <0.1 | <0.1  | 6    | Total Bare Ground              | 86.1 | 21.4  | 10   |
| Oxytropis borealis              | 0.2  | 0.9   | 3    | Bare Soil                      | 83.6 | 24.0  | 10   |
| Oxytropis campestris            | 0.1  | 0.2   | 12   | Water                          | <0.1 | 0.2   | 10   |
| Oxytropis viscida               | 0.2  | 0.9   | 9    |                                | 2.4  | 3.6   | 7    |
| Parnassia palustris             | 0.2  | 0.7   | 18   | Litter alone                   | 4.4  | ٥.ر   |      |

## Soils:



Soils are typically gravelly or sandy and lack a surface organic horizon (Table 77). Depth to permafrost is difficult to determine, however if permafrost does occur it is assumed to be greater than 1 m given the well drained soils and proximity to flowing water. Frost boils and loess caps are absent. Surface fragments are common and abundant. Soil pH is circumneutral to alkaline, and EC is low. The soils are excessively to moderately well drained. Depth to water table was difficult to determine in some cases, however in such cases it was assumed that the water table occurs within the upper meter of soil for at least the first few weeks of the growing season.

Table 77. Soil characteristics for Riverine Barrens.

| Property                                   | Mean  | SD    | n  |
|--------------------------------------------|-------|-------|----|
| Elevation (m)                              | 155.9 | 162.0 | 33 |
| Slope (degrees)                            | 1.7   | 1.0   | 17 |
| Surface Organics Depth(cm)                 | 2.0   |       | 1  |
| Cumulative Org. in 40 cm (cm)              | 2.0   |       | 1  |
| Loess Cap Thickness (cm)                   |       |       | 0  |
| Depth to Rocks (cm)                        | 111.1 | 95.2  | 8  |
| Surface Fragment Cover (%)                 | 86.2  | 22.6  | 18 |
| Frost Boil Cover (%)                       |       |       | 0  |
| Thaw Depth (cm)                            | 88.0  | 12.3  | 3  |
| Site pH at 10-cm depth                     | 7.8   | 0.6   | 33 |
| Site EC at 10-cm depth (µS/cm)             | 147.6 | 211.1 | 29 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -74.4 | 49.7  | 25 |

<sup>&</sup>lt;sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Oxyaquic Cryorthents (moist, saturated early in growing season, lacking permafrost) and Oxyaquic Gelorthents (wet, saturated early in growing season, poorly developed with permafrost below 1 m). Less common soil types include Typic Cryopsamments (sandy, low coarse fragment content, well drained, lacking permafrost), Oxyaquic Cryopsamments (wet, saturated early in growing season, sandy, low coarse fragment content, lacking permafrost), and Typic Gelorthents (poorly developed with permafrost below 1 m). This ecotype and associated soils are part of the Riverine Gravelly Barrens and Shrublands soil landscape, which also included Riverine Moist Willow Tall Shrub, Riverine Dryas Dwarf Shrub, and Riverine Willow Low Shrub.

## **Riverine Birch-Willow Low Shrub**



## Geomorphology:

These low shrub communities grow in linear bands that segregate stands of spruce forest along meandering rivers throughout the boreal zone in ARCN. It occurs on meander inactive overbank deposits and meander fine inactive channel deposits. Surface forms include interfluves, bars and flat banks. It usually occurs at <60 m elevation.

#### Plant Association:

Betula nana–Salix planifolia ssp. pulchra–Pyrola grandiflora

The low, deciduous shrub canopy is typically closed (>75%) in this ecotype. Forbs and grasses characterize the understory, while the presence of trees, evergreen shrubs, sedges and nonvascular species is variable (Table 78). Common species include *Vaccinium uliginosum*, *Petasites frigidus*, *Valeriana capitata*, and *Hylocomium splendens*.

This ecotype is similar to Lowland Birch–Willow Low Shrub except soils are predominantly loamy and haven't had time to develop thick organic horizons.

### Soils:

Soils are loamy with a thin organic horizon above the mineral soil surface (Table 79). Permafrost is often found in the upper meter of the soil profile. Frost boils, loess caps, and surface fragments are absent. Organic horizons, buried during flooding by riverine silts and sands, were commonly found in these soils. Soil pH is circumneutral to acidic, and EC is low. The soils are typically moderately well to somewhat poorly drained, and the water table is shallow to moderately deep.

Table 78. Vegetation cover and frequency for Riverine Birch–Willow Low Shrub (n=12).

| (ri=12).                            | Con                  | Eron         |           |
|-------------------------------------|----------------------|--------------|-----------|
|                                     | Cov                  | er<br>SD     | Freq<br>% |
| Total Live Cover                    | <b>Mean</b><br>163.4 | 33.8         | 100       |
| Total Vascular Cover                | 126.4                | 33.8<br>25.3 | 100       |
|                                     | 0.3                  | 23.3<br>0.7  | 22        |
| Total Evergreen Tree Cover          | 0.3                  | 0.7          | 22        |
| Picea glauca  Total Evergreen Shrub | 0.5                  | 0.7          | 22        |
| Cover                               | 1.4                  | 1.6          | 67        |
| Ledum decumbens                     | 0.7                  | 0.9          | 56        |
| Vaccinium vitis-idaea               | 0.7                  | 1.7          | 33        |
| Total Deciduous Shrub               |                      |              |           |
| Cover                               | 98.0                 | 26.7         | 100       |
| Alnus crispa                        | 0.1                  | 0.3          | 11        |
| Arctostaphylos rubra                | 0.6                  | 1.7          | 11        |
| Betula glandulosa                   | 1.1                  | 3.3          | 11        |
| Betula nana                         | 23.3                 | 25.9         | 89        |
| Potentilla fruticosa                | 1.4                  | 1.8          | 56        |
| Rosa acicularis                     | 0.1                  | 0.3          | 11        |
| Salix alaxensis                     | 7.2                  | 19.9         | 22        |
| Salix arbusculoides                 | 4.7                  | 13.3         | 22        |
| Salix barclayi                      | 0.9                  | 1.8          | 22        |
| Salix brachycarpa ssp.              |                      |              |           |
| niphoclada                          | 1.1                  | 3.3          | 11        |
| Salix glauca                        | 3.7                  | 6.9          | 44        |
| Salix hastata                       | 0.3                  | 0.7          | 22        |
| Salix lanata ssp. richardsonii      | 8.9                  | 23.2         | 22        |
| Salix planifolia ssp. pulchra       | 28.6                 | 27.5         | 100       |
| Salix reticulata                    | 0.1                  | 0.3          | 11        |
| Spiraea beauverdiana                | 1.1                  | 3.3          | 11        |
| Vaccinium uliginosum                | 14.8                 | 19.0         | 100       |
| Total Forb Cover                    | 12.5                 | 8.4          | 100       |
| Aconitum delphinifolium             | <0.1                 | <0.1         | 11        |
| Anemone parviflora                  | <0.1                 | <0.1         | 11        |
| Anemone sp.                         | <0.1                 | <0.1         | 11        |
| Artemisia arctica ssp. arctica      | <0.1                 | <0.1         | 11        |
| Artemisia tilesii                   | 0.2                  | 0.7          | 11        |
| Astragalus alpinus                  | <0.1                 | <0.1         | 11        |
| Cardamine pratensis ssp.            |                      |              |           |
| angustifolia                        | <0.1                 | <0.1         | 11        |
| Castilleja caudata                  | <0.1                 | <0.1         | 11        |
| Equisetum arvense                   | 0.9                  | 1.4          | 33        |
| Galium boreale                      | 0.2                  | 0.7          | 22        |
| Galium trifidum ssp. trifidum       | <0.1                 | <0.1         | 11        |
| Iris setosa                         | 0.6                  | 1.7          | 11        |
| Lupinus arcticus                    | <0.1                 | <0.1         | 11        |
| Moehringia lateriflora              | <0.1                 | <0.1         | 11        |
| Myosotis alpestris ssp. asiatica    | <0.1                 | <0.1         | 11        |
| Pedicularis capitata                | <0.1                 | <0.1         | 22        |
| Petasites frigidus                  | 4.4                  | 6.7          | 67        |
| Polemonium acutiflorum              | 0.3                  | 0.4          | 67        |
| Polygonum bistorta                  | 0.3                  | 1.0          | 11        |
| Potentilla palustris                | 1.1                  | 3.3          | 11        |
| Pyrola grandiflora                  | 1.1                  | 1.1          | 67        |
| Rubus arcticus ssp. arcticus        | 0.7                  | 1.7          | 22        |
| Rubus chamaemorus                   | 1.4                  | 3.0          | 22        |
| Saussurea angustifolia              | 0.3                  | 0.7          | 22        |
| Saxifraga punctata                  | <0.1                 | <0.1         | 11        |
| Sedum rosea ssp.                    | •                    |              |           |
| integrifolium                       | <0.1                 | <0.1         | 11        |

Table 78. Continued.

|                                              | Cov         | Cover                                   |          |
|----------------------------------------------|-------------|-----------------------------------------|----------|
|                                              | Mean        | SD                                      | %        |
| Stellaria sp.                                | <0.1        | 0.1                                     | 33       |
| Valeriana capitata                           | 0.7         | 0.7                                     | 78       |
| Wilhelmsia physodes                          | <0.1        | <0.1                                    | 11       |
| Total Grass Cover                            | 10.0        | 5.6                                     | 100      |
| Arctagrostis latifolia                       | 1.8         | 3.3                                     | 44       |
| Calamagrostis canadensis                     | 6.1         | 7.4                                     | 56       |
| Calamagrostis sp.                            | 0.3         | 1.0                                     | 11       |
| Festuca altaica                              | 0.7         | 1.1                                     | 33       |
| Festuca rubra                                | 0.2         | 0.4                                     | 22       |
| Poa arctica                                  | 0.9         | 1.6                                     | 44       |
| Total Sedge & Rush Cover                     | 4.2         | 8.2                                     | 56       |
| Carex aquatilis ssp. aquatilis               | 0.1         | 0.3                                     | 11       |
| Carex bigelowii                              | 1.4         | 3.2                                     | 44       |
| Carex canescens                              | 0.2         | 0.7                                     | 11       |
| Carex saxatilis                              | 0.6         | 1.7                                     | 11       |
| Eriophorum angustifolium                     | 0.8         | 1.7                                     | 22       |
| Eriophorum vaginatum                         | 1.1         | 3.3                                     | 11       |
| Luzula sp.                                   | <0.1        | <0.1                                    | 11       |
| Total Nonvascular Cover                      | 36.9        | 33.5                                    | 89       |
| Total Moss Cover                             | 35.5        | 32.0                                    | 89       |
| Aulacomnium acuminatum                       | 1.7         | 5.0                                     | 11       |
| Aulacomnium palustre                         | 2.8         | 6.5                                     | 56       |
| Aulacomnium turgidum                         | 0.8         | 1.3                                     | 44       |
| Brachythecium sp.                            | 0.4         | 1.0                                     | 22       |
| Calliergon giganteum                         | 0.2         | 0.7                                     | 11       |
| Climacium dendroides                         | 1.2         | 3.3                                     | 22       |
| Dicranum groenlandicum                       | <0.1        | 0.1                                     | 11       |
| Dicranum sp.                                 | 0.7         | 1.1                                     | 33       |
| Hylocomium splendens                         | 13.3        | 21.7                                    | 56       |
| Hypnum sp.                                   | 0.1<br><0.1 | 0.3<br><0.1                             | 11<br>11 |
| Marchantia polymorpha                        | 0.1         | 0.3                                     | 11       |
| Mnium sp.                                    | 2.2         | 6.7                                     | 11       |
| Pleurozium schreberi                         | 0.4         | 1.0                                     | 22       |
| Polytrichum juniperinum                      | <0.1        | <0.1                                    | 11       |
| Racomitrium lanuginosum<br>Rhytidium rugosum | 0.1         | 0.3                                     | 11       |
| Sanionia uncinata                            | 1.3         | 3.3                                     | 44       |
| Sphagnum balticum                            | <0.1        | 0.1                                     | 11       |
| Sphagnum imbricatum                          | <0.1        | 0.1                                     | 11       |
| Sphagnum sp.                                 | 2.8         | 8.3                                     | 11       |
| Sphagnum squarrosum                          | 0.1         | 0.3                                     | 11       |
|                                              | <0.1        | 0.1                                     | 11       |
| Sphagnum subsecundum<br>Sphagnum warnstorfii | <0.1        | 0.1                                     | 11       |
| Tomentypnum nitens                           | 7.0         | 16.3                                    | 44       |
| Total Lichen Cover                           | 1.4         | 1.8                                     | 56       |
| Cetraria cf. islandica                       | 0.1         | 0.3                                     | 11       |
| Cladina rangiferina                          | 0.1         | 0.3                                     | 22       |
| Cladina stygia                               | 0.1         | 0.3                                     | 11       |
| Parmelia sp.                                 | 0.1         | 0.3                                     | 11       |
| Peltigera aphthosa                           | 0.8         | 1.7                                     | 22       |
| Peltigera canina                             | <0.1        | 0.1                                     | 11       |
| Peltigera didactyla var.                     | 10          | • • • • • • • • • • • • • • • • • • • • |          |
| extenuata                                    | <0.1        | 0.1                                     | 11       |
| Peltigera leucophlebia                       | <0.1        | 0.1                                     | 11       |
| Total Bare Ground                            | 3.7         | 3.2                                     | 89       |
| Bare Soil                                    | 0.1         | 0.3                                     | 22       |
| Dui C Jon                                    |             |                                         |          |



Table 79. Soil characteristics for Riverine Birch–Willow Low Shrub.

| Property                                   | Mean        | SD       | n |
|--------------------------------------------|-------------|----------|---|
| Elevation (m)                              | 31.0        | 27.6     | 9 |
| Slope (degrees)                            |             |          | 0 |
| Surface Organics Depth(cm)                 | 4.1         | 1.4      | 9 |
| Cumulative Org. in 40 cm (cm)              | 5.3         | 1.2      | 9 |
| Loess Cap Thickness (cm)                   |             |          | 0 |
| Depth to Rocks (cm)                        | 144.0       | 86.8     | 6 |
| Surface Fragment Cover (%)                 |             |          | 0 |
| Frost Boil Cover (%)                       |             |          | 0 |
| Thaw Depth (cm)                            | 50.2        | 43.5     | 5 |
| Site pH at 10-cm depth                     | 5.8         | 0.3      | 9 |
| Site EC at 10-cm depth (µS/cm)             | 55.6        | 25.5     | 9 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -68.2       | 33.1     | 5 |
| aMassuraments > 1 m indicate minim         | um danth na | 2+ +rii0 |   |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Fluvaquentic Haplorthels (wet, saturated within 75 cm, mineral soil with buried organic horizons, permafrost within 1 m) and Fluvaquentic Aquorthels (wet, saturated within 50 cm, mineral soil with thin buried horizons, permafrost within 1 m). Less common soil types include Typic Dystrogelepts (acidic, well drained, moderately thin organic horizon, permafrost below 1 m) and Typic Gelorthents (poorly developed with permafrost below 1 m). This ecotype and associated soils are part of the Riverine Loamy Meadows and Shrublands soil landscape. Other ecotypes found in this soil landscape are Riverine Alder Tall Shrub, Riverine Wet Willow Tall Shrub, and Riverine Bluejoint Meadow.

## **Riverine Bluejoint Meadow**



## Geomorphology:

This ecotype occurs at low elevations on meandering river inactive channel and overbank deposits. Surface forms include flood basins and point bars. The ground is usually non-patterned.

## Plant Association:

 $Calamagrostis\ canadensis-Potentilla\ palustris$ 

Riverine Bluejoint Meadow is dominated by grasses, sedges and forbs (Table 80). Trees and non-vascular species are absent. This ecotype is not species rich although we did document a rare grass, *Glyceria pulchella*, at two sites. Common species include *Salix planifolia* ssp. *pulchra* (syn: *S. pulchra*), *Galium trifidum*, *Iris setosa*, and *Carex saxatilis*.

Riverine Bluejoint Meadow is most similar to Lacustrine Bluejoint Meadow. It shares a dominant species with Upland Bluejoint Meadow but soils are much wetter and floristic diversity is reduced in Riverine Bluejoint Meadow. Due to its low abundance, Riverine Bluejoint Meadow was not mapped.

## Soils:

Soils are loamy with a thin surface organic horizon (Table 81). Thaw depths could not be determined as the depth to permafrost, if present, was always greater than the maximum depth sampled (1.3 m). Frost boils, loess caps, and surface fragments are absent. Coarse fragments are absent in the upper meter of the active layer. Organic horizons, buried during flooding by riverine silts and sands, were commonly found in these soils. Soil pH is acidic to circumneutral, and EC is low. The soils are moderately well drained, and the water table is deep to very deep.

Table 80. Vegetation cover and frequency for Riverine Bluejoint Meadow (n=3).

|                                                  | Cove        | Cover |           |
|--------------------------------------------------|-------------|-------|-----------|
|                                                  | Mean        | SD    | %         |
| Total Live Cover                                 | 109.1       | 19.2  | 100       |
| Total Vascular Cover                             | 109.1       | 19.2  | 100       |
| Total Evergreen Shrub                            |             |       |           |
| Cover                                            | 0.0         | 0.1   | 33        |
| Andromeda polifolia                              | <0.1        | 0.1   | 33        |
| Total Deciduous Shrub                            | 13.7        | 15.1  | 400       |
| Cover                                            | 2.3         | 2.5   | 100       |
| Betula glandulosa                                | <0.1        | 0.1   | 67        |
| Salix alaxensis                                  | <0.1<br>0.4 | 0.1   | 33        |
| Salix arbusculoides                              | 1.7         | 2.9   | 67        |
| Salix lanata ssp. richardsonii                   | 9.0         | 10.1  | 33<br>67  |
| Salix planifolia ssp. pulchra                    | 0.3         | 0.6   | 67<br>33  |
| Vaccinium uliginosum                             | 21.6        | 27.8  | 33<br>100 |
| <b>Total Forb Cover</b> Cardamine pratensis ssp. | 21.0        | 27.0  | 100       |
| angustifolia                                     | <0.1        | 0.1   | 33        |
| Epilobium palustre                               | < 0.1       | 0.1   | 33        |
| Equisetum arvense                                | 1.7         | 2.9   | 67        |
| Equisetum fluviatile                             | < 0.1       | 0.1   | 33        |
| Galium trifidum ssp. trifidum                    | 0.7         | 1.1   | 67        |
| Iris setosa                                      | 0.7         | 0.6   | 67        |
| Potentilla norvegica                             | < 0.1       | 0.1   | 33        |
| Potentilla palustris                             | 3.4         | 4.1   | 100       |
| Rubus arcticus ssp. arcticus                     | 15.0        | 26.0  | 33        |
| Total Grass Cover                                | 45.4        | 41.7  | 100       |
| Calamagrostis canadensis                         | 44.7        | 41.4  | 100       |
| Glyceria pulchella                               | 0.4         | 0.6   | 67        |
| Poa pratensis                                    | 0.3         | 0.6   | 33        |
| Total Sedge & Rush Cover                         | 28.4        | 44.7  | 100       |
| Carex aquatilis ssp. aquatilis                   | 0.3         | 0.6   | 33        |
| Carex arcta                                      | 1.7         | 2.9   | 33        |
| Carex bigelowii                                  | 0.3         | 0.6   | 33        |
| Carex membranacea                                | <0.1        | 0.1   | 33        |
| Carex saxatilis                                  | 25.3        | 43.0  | 67        |
| Carex utriculata                                 | 0.3         | 0.6   | 33        |
| Eriophorum angustifolium                         | 0.3         | 0.6   | 33        |
| Total Bare Ground                                | 10.3        | 4.5   | 100       |
| Bare Soil                                        | 0.3         | 0.6   | 33        |
| Litter alone                                     | 10.0        | 5.0   | 100       |



Table 81. Soil characteristics for Riverine Bluejoint Meadow.

| Property                       | Mean  | SD   | n |
|--------------------------------|-------|------|---|
| Elevation (m)                  | 23.7  | 5.5  | 3 |
| Slope (degrees)                | 1.0   |      | 1 |
| Surface Organics Depth(cm)     | 2.0   | 0.0  | 2 |
| Cumulative Org. in 40 cm (cm)  | 3.3   | 1.2  | 3 |
| Loess Cap Thickness (cm)       |       |      | 0 |
| Depth to Rocks (cm)            | 200.0 |      | 1 |
| Surface Fragment Cover (%)     |       |      | 0 |
| Frost Boil Cover (%)           |       |      | 0 |
| Thaw Depth (cm)                |       |      | 0 |
| Site pH at 10-cm depth         | 5.3   | 0.6  | 3 |
| Site EC at 10-cm depth (µS/cm) | 73.3  | 15.3 | 3 |
| Water Depth (cm.+ above grnd)a |       |      | 0 |

 $<sup>^{\</sup>mathrm{a}}\mathrm{Measurements}>\!1$  m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Typic Gelifluvents (poorly developed with buried organic horizons, permafrost below 1 m). A less common soil type is Oxyaquic Cryorthents (moist, saturated early in growing season, lacking permafrost). This ecotype and associated soils are part of the Riverine Loamy Meadows and Shrublands soil landscape. Other ecotypes found in this soil landscape are Riverine Alder Tall Shrub, Riverine Birch–Willow Low Shrub, and Riverine Wet Willow Tall Shrub.

## **Riverine Dryas Dwarf Shrub**



## Geomorphology:

Riverine Dryas Dwarf Shrub occurs on stabilized braided and meander abandoned and inactive deposits of both coarse and fine materials, and to a lesser extent on active braided overbank and channel deposits. Surfaces are primarily flat banks, terraces and interfluves at lower elevations along major rivers in ARCN.

#### Plant Associations:

Dryas integrifolia–Salix brachycarpa ssp. niphoclada Dryas drummondii–Oxytropis campestris

Evergreen shrubs characterize this ecotype (Table 82) while deciduous low shrubs and forbs contribute to the secondary component. Trees species are present as seedlings in this early-successional ecotype, as are a few nonvascular species. Species richness per plot ranks 3rd across ecotypes, although total species count overall is average. Common species include Salix alaxensis, Lupinus arcticus, Calamagrostis purpurascens, and Rhytidium rugosum. Rare species include Oxytropis tananensis (nearest synonym in Hulten 1968: Oxytropis campestris ssp. varians) and Aster yukonensis (syn: Symphyotrichum yukonense).

This ecotype is similar to Riverine Barrens, although it is more stable and with much greater vegetative cover. It differs from Alpine Dryas Dwarf Shrub by its occurrence on floodplains.

Table 82. Vegetation cover and frequency for Riverine Dryas Dwarf Shrub (n=9).

**Total Live Cover** 

Dryas drummondii

Dryas integrifolia

Empetrum nigrum

Juniperus communis Rhododendron lapponicum

Populus balsamifera

Total Deciduous Shrub

Arctostaphylos alpina

Arctostaphylos rubra

Shepherdia canadensis

Vaccinium uliginosum

Androsace chamaejasme

**Total Forb Cover** 

Artemisia borealis

Artemisia furcata

Aster yukonensis

Astragalus alpinus Astragalus eucosmus ssp.

Castilleja caudata

Galium boreale

Lupinus arcticus

Minuartia arctica

Oxytropis borealis
Oxytropis campestris ssp.

jordalii

varians

Cnidium cnidiifolium

Epilobium latifolium

Gentiana propinqua

Hedysarum alpinum

Hedysarum mackenzii

Oxytropis campestris ssp.

Papaver lapponicum

Potentilla hookeriana

Parnassia palustris

Potentilla uniflora

Selaginella sibirica Senecio lugens

Saxifraga flagellaris

Astragalus aboriginum

Aster sibiricus

Braya humilis

sealei

Potentilla fruticosa

Salix alaxensis Salix brachycarpa ssp.

niphoclada

Salix glauca

Salix hastata

Picea glauca

Cover

Cover

**Total Vascular Cover** 

**Total Evergreen Shrub** 

**Total Evergreen Tree Cover** 

**Total Deciduous Tree Cover** 

Cover

SD

68.9

20.0

0.5

0.5

18.6

15.0

20.3

1.1

3.8

0.4

1.9

1.9

14.4

1.5

2.0

0.7

2.0

10.8

5.6

1.5

1.9

1.7

14.3

0.5

8.0

1.1

0.4

0.4

0.5

8.0

8.0

0.4

1.9

0.9

0.4

1.9

1.1

0.4

2.6

0.4

8.0

1.5

5.7

0.4

8.0

0.4

8.0

0.4

2.3

0.8

29

29

14

43

Mean

128.6

66.6

0.3

0.3

26.0

7.1

16.9

0.4

1.4

0.1

0.7

0.7

17.9

0.6

1.2

0.4

1.9

8.9

2.4

0.6

1.0

1.0

14.4

<0.1

0.3

0.3

0.6

0.2

0.2

0.3

0.3

0.3

0.1

0.7

0.7

0.1

0.7

0.5

0.1

1.7 0.2

0.3

0.7

2.1

0.1

0.3

0.1

0.3

0.2

0.9

0.4

Freq % 100 100 43 43 100 29 71 29 14 14 29 29 100 14 43 86 71 100 43 14 57 29 100 43 29 14 71 29 43 29 29 14 14 29 71 14 29 43 14 43 29 14 29 14 14 29 14

Table 82. Continued.

|                                           | Cover      |            | Freq     |
|-------------------------------------------|------------|------------|----------|
|                                           | Mean       | SD         | %        |
| Senecio ogotorukensis                     | 0.3        | 0.5        | 29       |
| Solidago multiradiata                     | 0.3        | 0.8        | 29       |
| Zygadenus elegans                         | 0.2        | 0.4        | 57       |
| Total Grass Cover                         | 4.7        | 5.8        | 100      |
| Bromus pumpellianus                       | 0.2        | 0.4        | 43       |
| Bromus pumpellianus var.                  | 0.6        | 4.5        | 4.4      |
| arcticus                                  | 0.6        | 1.5        | 14       |
| Bromus pumpellianus var.<br>pumpellianus  | 0.4        | 0.8        | 29       |
| Calamagrostis lapponica                   | 0.1        | 0.4        | 14       |
| Calamagrostis purpurascens                | 1.3        | 2.2        | 43       |
| Elymus innovatus                          | 0.3        | 0.5        | 29       |
| Festuca altaica                           | 0.9        | 1.9        | 43       |
| Festuca rubra                             | 0.1        | 0.4        | 14       |
| Poa glauca                                | 0.2        | 0.4        | 57       |
| Total Sedge & Rush Cover                  | 2.6        | 3.4        | 71       |
| Carex concinna                            | 0.7        | 1.9        | 29       |
| Carex krausei                             | 0.4        | 1.1        | 29       |
| Carex scirpoidea                          | 1.0        | 1.7        | 43       |
| Kobresia myosuroides                      | 0.3        | 0.7        | 43       |
| Total Nonvascular Cover                   | 62.0       | 52.7       | 100      |
| Total Moss Cover                          | 41.3       | 35.4       | 100      |
| Abietinella abietina                      | 10.4       | 24.2       | 29       |
| Brachythecium salebrosum                  | 0.3        | 8.0        | 14       |
| Dicranum sp.                              | 1.7        | 3.1        | 29       |
| Distichium inclinatum                     | 1.1        | 3.0        | 14       |
| Ditrichum flexicaule                      | 0.3        | 8.0        | 14       |
| Hylocomium splendens                      | 0.7        | 1.9        | 14       |
| Polytrichum sp.                           | 0.6        | 1.1        | 29       |
| Racomitrium lanuginosum                   | 7.0        | 14.7       | 43       |
| Rhytidium rugosum                         | 7.9        | 14.4       | 57       |
| Sanionia uncinata                         | 0.3        | 8.0        | 14       |
| Tortella fragilis                         | 1.0        | 2.6        | 14       |
| Unknown moss                              | 10.0       | 19.1       | 29       |
| Total Lichen Cover                        | 20.7       | 34.1       | 86       |
| Alectoria ochroleuca                      | 0.1        | 0.4        | 14       |
| Asahinea chrysantha                       | 0.4        | 1.1        | 29       |
| Bryoria sp.                               | 0.1        | 0.4        | 14       |
| Cetraria cf. islandica                    | 0.1        | 0.4        | 14       |
| Cetrariella delisei                       | 0.1        | 0.4        | 14       |
| Cladonia pocillum                         | 0.3        | 0.8        | 14       |
| Cladonia pyxidata                         | 0.1        | 0.4        | 14       |
| Cladonia sp.                              | 2.4<br>1.6 | 3.7        | 43       |
| Cladonia symphycarpia                     | 0.7        | 3.0<br>1.2 | 29<br>43 |
| Flavocetraria cucullata                   | 0.7        | 0.8        |          |
| Flavocetraria nivalis                     | 0.3        | 1.1        | 29<br>14 |
| Hypogymnia sp.<br>Masonhalea richardsonii | 0.4        | 0.5        | 29       |
| Parmelia sp.                              | 0.3        | 1.1        | 14       |
| ·                                         | 0.4        | 0.4        | 43       |
| Peltigera sp.<br>Pertusaria sp.           | 0.2        | 1.9        | 29       |
| Sphaerophorus sp.                         | 0.7        | 1.1        | 14       |
| Stereocaulon sp.                          | 0.4        | 1.1        | 43       |
| Thamnolia sp.                             | 1.6        | 2.8        | 29       |
| Thamnolia sp.<br>Thamnolia vermicularis   | 0.1        | 0.4        | 14       |
| Unknown lichen                            | 9.3        | 18.8       | 29       |
| Total Bare Ground                         | 36.5       | 29.4       | 100      |
| Bare Soil                                 | 26.2       | 29.6       | 100      |
| Litter alone                              | 10.3       | 7.5        | 100      |
|                                           |            |            |          |

## Soils:



Soils are typically gravelly or bouldery and often lack a surface organic horizon (Table 83). Depth to permafrost is difficult to determine in the rocky soils, however if permafrost does occur it is assumed to be greater than 1 m given the well drained soils. Frost boils and loess caps are absent. Surface soils. Frost boils and loess caps are absent. Surface fragments are present at low to moderate abundance. Soil pH is alkaline, and EC is low. The soils are typically excessively to well drained, and depth to water table is typically greater than 1 m.

Table 83. Soil characteristics for Riverine Dryas Dwarf Shrub.

| Property                                   | Mean   | SD    | n |
|--------------------------------------------|--------|-------|---|
| Elevation (m)                              | 206.3  | 137.3 | 7 |
| Slope (degrees)                            | 2.0    | 0.0   | 2 |
| Surface Organics Depth(cm)                 | 3.0    | 0.0   | 2 |
| Cumulative Org. in 40 cm (cm)              | 2.2    | 1.4   | 3 |
| Loess Cap Thickness (cm)                   |        |       | 0 |
| Depth to Rocks (cm)                        | 2.3    | 1.2   | 3 |
| Surface Fragment Cover (%)                 | 11.8   | 13.4  | 6 |
| Frost Boil Cover (%)                       |        |       | 0 |
| Thaw Depth (cm)                            |        |       | 0 |
| Site pH at 10-cm depth                     | 7.9    | 0.3   | 7 |
| Site EC at 10-cm depth (µS/cm)             | 80.0   | 82.2  | 6 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -167.9 | 55.4  | 7 |

<sup>&</sup>lt;sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

Dominant soil subgroups in this ecotype include Oxyaquic Cryorthents (moist, occasionally lacking permafrost) and Typic Gelorthents (poorly developed with permafrost below 1 m). Less common soil types include Oxyaquic Cryopsamments (wet, saturated early in growing season, sandy, lacking permafrost), Oxyaquic Gelorthents (wet, saturated early in growing season, poorly developed with permafrost below 1 m), and Typic Eutrogelepts (non-acidic, partially developed with permafrost below 1 m). This ecotype and associated soils are part of the Riverine Gravelly Barrens and Shrublands soil landscape, which also includes Riverine Barrens, Riverine Moist Willow Tall Shrub, and Riverine Willow Low Shrub.

## **Riverine Forb Marsh**



## Geomorphology:

Riverine Forb Marsh occurs infrequently in channels, swales or flood basins on inactive channel deposits or on the margins of shallow riverine lakes. It is found infrequently at low elevations along the major rivers within the boreal zone in ARCN.

#### Plant Association:

Eleocharis acicularis-Equisetum fluviatile

Forbs dominate this ecotype, in particular horsetail (Table 84). Sedges and water-tolerant mosses are always present, while trees and lichens are absent. Common species include *Equisetum fluviatile*, *Caltha palustris*, *Carex saxatilis*, *Eleocharis acicularis*, and *Drepanocladus capillifolius*.

This ecotype is similar to Riverine Wet Sedge Meadow which occurs on similar terrain, but is drier, primarily arctic instead of boreal, and is dominated by sedges. Lacustrine Horsetail Marsh has some similar plant species but ecological processes, physical structure and community associations are unrelated. Riverine Forb Marsh was not mappable because it occurred in small, isolated patches.

Table 84. Vegetation cover and frequency for Riverine Forb Marsh (n=2).

|                                | Cover        |             | Freq       |
|--------------------------------|--------------|-------------|------------|
|                                | Mean         | SD          | %          |
| Total Live Cover               | 166.2        | 2.8         | 100        |
| Total Vascular Cover           | 121.2        | 39.6        | 100        |
| Total Deciduous Shrub Cover    | 0.2          | 0.1         | 100        |
| Salix alaxensis                | 0.1          | 0.1         | 50         |
| Salix arbusculoides            | 0.1          | 0.1         | 50         |
| Salix lanata ssp. richardsonii | 0.1          | 0.1         | 50         |
| Total Forb Cover               | 75.9         | 32.8        | 100        |
| Caltha palustris               | 1.1          | 1.3         | 100        |
| Cardamine umbellata            | 0.1          | 0.1         | 50         |
| Epilobium palustre             | 0.1          | 0.1         | 50         |
| Equisetum arvense              | 0.5          | 0.7         | 50         |
| Equisetum fluviatile           | 12.5         | 17.7        | 50         |
| Equisetum scirpoides           | 0.1          | 0.1         | 50         |
| Equisetum variegatum           | 0.1          | 0.1         | 50         |
| Galium trifidum ssp. trifidum  | 0.1          | 0.1         | 50         |
| Hippuris vulgaris              | 1.5          | 0.7         | 100        |
| Potamogeton pectinatus         | 27.5         | 10.6        | 100        |
| Potamogeton sp.                | 22.5         | 24.7        | 100        |
| Potamogeton vaginatus          | 5.0          | 7.1         | 50         |
| Ranunculus trichophyllus       | 5.0          | 7.1         | 50         |
| Sparganium sp.                 | 0.1          | 0.1         | 50         |
| Wilhelmsia physodes            | 0.1          | 0.1         | 50         |
| Total Grass Cover              | 1.1          | 1.6         | 50         |
| Arctagrostis latifolia         | 0.1          | 0.1         | 50         |
| Arctophila fulva               | 1.0          | 1.4         | 50         |
| Deschampsia caespitosa         | 0.1          | 0.1         | 50         |
| Total Sedge & Rush Cover       | 44.0         | 8.4         | 100        |
| Carex aquatilis ssp. aquatilis | 4.0          | 1.4         | 100        |
| Carex saxatilis                | 12.5         | 3.5         | 100        |
| Eleocharis acicularis          | 27.5         | 10.6        | 100        |
| Juncus triglumis               | 0.1          | 0.1         | 50         |
| Total Nonvascular Cover        | 45.0         | 42.4        | 100        |
| Total Moss Cover               | 45.0         | 42.4        | 100        |
| Calliergon sp.                 | 30.0         | 42.4        | 50         |
| Drepanocladus aduncus          | 2.0          | 2.8         | 50         |
| Drepanocladus capillifolius    | 7.5          | 10.6        | 50         |
| Limprichtia cossoni            | 2.0          | 2.8         | 50         |
| Scorpidium scorpioides         | 3.5          | 4.9         | 50         |
| Total Bare Ground              | 75.0<br>30.0 | 0.1<br>28.3 | 100<br>100 |
| Bare Soil                      | 30.0<br>42.5 |             |            |
| Water                          |              | 24.7        | 100        |
| Litter alone                   | 2.5          | 3.5         | 100        |

## Soils:



Soils are typically loamy or sandy and lack a surface organic horizon (Table 85). Thaw depths could not be determined as the depth to permafrost, if present, was always greater than the maximum depth sampled (1.3 m). Frost boils, surface fragments, and loess caps are absent. Soil pH is circumneutral to alkaline, and EC is low to moderate. The soils are typically very poorly drained or flooded. The water table occurs at shallow depths or above ground.

Table 85. Soil characteristics for Riverine Forb Marsh.

| Property                                   | Mean  | SD    | n |
|--------------------------------------------|-------|-------|---|
| Elevation (m)                              | 67.0  | 1.4   | 2 |
| Slope (degrees)                            |       |       | 0 |
| Surface Organics Depth(cm)                 |       |       | 0 |
| Cumulative Org. in 40 cm (cm)              |       |       | 0 |
| Loess Cap Thickness (cm)                   |       |       | 0 |
| Depth to Rocks (cm)                        |       |       | 0 |
| Surface Fragment Cover (%)                 |       |       | 0 |
| Frost Boil Cover (%)                       |       |       | 0 |
| Thaw Depth (cm)                            |       |       | 0 |
| Site pH at 10-cm depth                     | 8.1   | 0.4   | 2 |
| Site EC at 10-cm depth (µS/cm)             | 370.0 | 198.0 | 2 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | 32.5  | 67.2  | 2 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

Dominant soil subgroups in this ecotype are Typic Gelaquents (wet, poorly developed with permafrost below 1 m) and Oxyaquic Gelorthents (wet, saturated early in growing season, poorly developed with permafrost below 1 m). This ecotype and associated soils are part of the Riverine Loamy Wet Meadows and Marshes soil landscape. Also included in this soil landscape is Riverine Wet Sedge Meadow.

## **Riverine Lake**



## Geomorphology:

This ecotype consists of shallow oxbow lakes that have been isolated from an actively flowing river through depositional processes. They are associated with lower elevations on floodplains.

## Plant Association:

Potamogeton spp.—Utricularia vulgaris ssp. macrorhiza Aquatic vegetation grows on shallow bottoms and near the margins of these lakes (Table 86). Multiple species of pondweeds, Potamogeton spp., are common. We documented one rare species in this ecotype, Myriophyllum verticillatum. Sedges and grasses sometimes occur on shallow water near the margins of Riverine Lake.

Riverine Lake is most similar to Lowland Lake except it is formed by different physical properties. It is not very similar to Alpine Lake, which has reduced vegetative cover and different physical characteristics. Riverine Lake and River were mapped together as Riverine Water.

Table 86. Vegetation cover and frequency for Riverine Lake (n=2).

|                                       | Cov   | Cover |     |
|---------------------------------------|-------|-------|-----|
|                                       | Mean  | SD    | %   |
| <b>Total Live Cover</b>               | 31.4  | 41.2  | 100 |
| Total Vascular Cover                  | 24.9  | 32.0  | 100 |
| <b>Total Deciduous Shrub Cover</b>    | 0.1   | 0.0   | 100 |
| Alnus tenuifolia                      | 0.1   | 0.1   | 50  |
| Salix lanata ssp. richardsonii        | 0.1   | 0.1   | 50  |
| Total Forb Cover                      | 24.6  | 32.2  | 100 |
| Caltha palustris                      | 0.1   | 0.1   | 50  |
| Cardamine pratensis ssp. angustifolia | 0.1   | 0.1   | 50  |
| Equisetum fluviatile                  | 0.6   | 0.6   | 100 |
| Galium trifidum ssp. trifidum         | 0.1   | 0.1   | 50  |
| Hippuris vulgaris                     | 2.5   | 3.5   | 100 |
| Menyanthes trifoliata                 | 0.1   | 0.1   | 50  |
| Myriophyllum verticillatum            | 5.0   | 7.1   | 50  |
| Potamogeton alpinus ssp. tenuifolius  | 6.0   | 8.5   | 50  |
| Potamogeton praelongus                | 0.1   | 0.1   | 50  |
| Potamogeton zosterifolius             | 5.0   | 7.1   | 50  |
| Potentilla palustris                  | 0.1   | <0.1  | 100 |
| Ranunculus trichophyllus var.         |       |       | 50  |
| hispidulus                            | 0.1   | 0.1   |     |
| Sparganium minimum                    | 1.5   | 2.1   | 50  |
| Sparganium sp.                        | 0.1   | 0.1   | 50  |
| Utricularia intermedia                | 1.0   | 1.4   | 50  |
| Utricularia minor                     | 0.1   | 0.1   | 50  |
| Utricularia vulgaris ssp. macrorhiza  | 2.5   | 3.5   | 100 |
| Total Sedge & Rush Cover              | 0.1   | 0.1   | 50  |
| Carex aquatilis ssp. aquatilis        | 0.1   | 0.1   | 50  |
| Eriophorum angustifolium              | 0.1   | 0.1   | 50  |
| Total Nonvascular Cover               | 6.5   | 9.2   | 50  |
| Total Moss Cover                      | 6.5   | 9.2   | 50  |
| Scorpidium scorpioides                | 2.5   | 3.5   | 50  |
| Unknown moss                          | 4.0   | 5.7   | 50  |
| Total Bare Ground                     | 101.1 | 1.3   | 100 |
| Bare Soil                             | 0.1   | 0.1   | 50  |
| Water                                 | 97.5  | 3.5   | 100 |
| Litter alone                          | 3.5   | 4.9   | 100 |

#### Soils:

Flooded soils were not described. Water characteristics are listed in Table 87.

Table 87. Water characteristics for Riverine Lake.

| Property                                   | Mean  | SD   | n |
|--------------------------------------------|-------|------|---|
| Site pH at 10-cm depth                     | 7.7   | 0.6  | 2 |
| Site EC at 10-cm depth (µS/cm)             | 120.0 | 28.3 | 2 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | 100.0 | 0.0  | 2 |
|                                            |       |      |   |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

## **Riverine Moist Willow Tall Shrub**



## Geomorphology:

These tall willow communities occur on active floodplains, including braided active and inactive overbank deposits, meander active overbank deposits, braided and meander coarse active channel deposits, eolian active sand dunes, and moderately steep headwater channel deposits and floodplains. This ecotype is subject to frequent flooding.

### Plant Association:

Salix alaxensis-Aster sibiricus

This early-successional community is characterized by tall felt-leaf willow (*S. alaxensis*). Forbs are the prevalent understory life form. The amount of understory cover is variable, and due to sedimentation from flood events, cover of bare ground can be high (Table 88). Common species include *Aster sibiricus* (syn: *Eurybia sibirica*), *Hedysarum alpinum*, *Artemisia tilesii*, and *Festuca altaica*.

This ecotype varies from two willow-dominated riverine ecotypes, Riverine Wet Tall Willow Shrub and Riverine Willow Low Shrub, in species assemblages. It has drier soils and a higher disturbance rate than Riverine Wet Willow Tall Shrub, and a boreal distribution versus an arctic or mountain headwater stream distribution like Riverine Willow Low Shrub.

#### Soils:

Soils are typically gravelly, sandy, or loamy and often lack a surface organic horizon (Table 89). Depth to permafrost is difficult to determine, however if permafrost does occur it is assumed to be greater than 1 m given the well drained soils and immediate adjacency of flowing water. Frost boils were absent and loess caps are rare. Surface fragments are uncommon, however when they occur they tend to be

Table 88. Vegetation cover and frequency for Riverine Moist Willow Tall Shrub (n=49).

| Miverine Moist willow fall sinds (11–43          |       |      |      |
|--------------------------------------------------|-------|------|------|
|                                                  | Cov   | er   | Freq |
|                                                  | Mean  | SD   | %    |
| <b>Total Live Cover</b>                          | 137.3 | 57.8 | 100  |
| Total Vascular Cover                             | 116.8 | 47.2 | 100  |
| Total Evergreen Tree Cover Total Evergreen Shrub | 0.0   | 0.0  | 12   |
| Cover                                            | 16.2  | 22.0 | 54   |
| Dryas integrifolia                               | 1.9   | 12.3 | 6    |
| Dryas octopetala                                 | 14.1  | 19.7 | 38   |
| Empetrum nigrum                                  | 0.1   | 0.7  | 8    |
| Total Deciduous Tree<br>Cover                    | 0.9   | 2.1  | 29   |
| Populus balsamifera                              | 0.8   | 2.0  | 25   |
| Total Deciduous Shrub                            |       |      |      |
| Cover                                            | 51.1  | 31.7 | 100  |
| Alnus crispa                                     | 0.4   | 2.9  | 10   |
| Arctostaphylos rubra                             | 2.7   | 4.6  | 52   |
| Betula glandulosa                                | 0.3   | 1.5  | 8    |
| Potentilla fruticosa                             | 1.2   | 2.4  | 48   |
| Salix alaxensis                                  | 28.5  | 21.3 | 100  |
| Salix arbusculoides                              | 0.6   | 3.0  | 15   |
| Salix barclayi                                   | 1.4   | 5.6  | 10   |
| Salix brachycarpa ssp.<br>niphoclada             | 2.7   | 6.8  | 27   |
| Salix glauca                                     | 0.8   | 3.0  | 17   |
| Salix hastata                                    | 1.2   | 5.2  | 15   |
| Salix lanata ssp. richardsonii                   | 1.0   | 3.9  | 10   |
| Salix monticola                                  | 0.5   | 2.2  | 10   |
| Salix planifolia ssp. pulchra                    | 0.6   | 3.0  | 12   |
| Salix reticulata                                 | 5.8   | 8.1  | 50   |
| Shepherdia canadensis                            | 2.4   | 8.9  | 38   |
| Vaccinium uliginosum                             | 0.4   | 1.3  | 27   |
| Total Forb Cover                                 | 25.6  | 23.7 | 100  |
| Aconitum delphinifolium                          | 0.1   | 0.3  | 15   |
| Androsace chamaejasme                            | 0.2   | 0.5  | 19   |
| Anemone parviflora                               | 0.7   | 0.9  | 52   |
| Anemone richardsonii                             | 0.2   | 0.9  | 10   |
| Artemisia arctica ssp. arctica                   | 0.2   | 0.8  | 17   |
| Artemisia tilesii                                | 8.0   | 1.6  | 52   |
| Aster sibiricus                                  | 1.2   | 1.6  | 71   |
| Astragalus alpinus                               | 0.2   | 0.4  | 25   |
| Astragalus umbellatus                            | 0.1   | 0.3  | 19   |
| Boykinia richardsonii                            | <0.1  | 0.3  | 8    |
| Castilleja caudata                               | 0.3   | 0.9  | 23   |
| Chrysanthemum integrifolium                      | 0.1   | 0.2  | 12   |
| Cypripedium passerinum                           | 0.1   | 0.6  | 8    |
| Dodecatheon frigidum                             | 0.3   | 1.0  | 15   |
| Epilobium angustifolium                          | 0.1   | 0.4  | 10   |
| Epilobium latifolium                             | 0.8   | 1.6  | 33   |
| Equisetum arvense                                | 5.6   | 17.5 | 44   |
| Equisetum variegatum                             | 1.4   | 5.6  | 21   |
| Galium boreale                                   | 2.1   | 11.1 | 21   |
| Gentiana propinqua                               | 0.1   | 0.3  | 44   |
| Hedysarum alpinum                                | 3.1   | 3.3  | 71   |
| Hedysarum mackenzii                              | 0.8   | 2.4  | 12   |
| Mertensia paniculata                             | 0.3   | 1.5  | 10   |
| Parnassia palustris                              | 0.1   | 0.4  | 33   |
| Pedicularis capitata                             | <0.1  | 0.1  | 10   |
| Pedicularis sudetica                             | 0.1   | 0.3  | 19   |

Table 88. Continued.

| Mean         SD         %           Pedicularis verticillata         0.1         0.3         19           Polemonium acutiflorum         <0.1         0.2         10           Polygonum viviparum         0.1         0.3         23           Rubus arcticus ssp. arcticus         0.7         2.8         6           Rubus arcticus ssp. arcticus         0.1         0.5         8           Saxifraga oppositifolia         0.1         0.4         10           Senecio lugens         0.5         0.9         38           Silene acaulis         1.1         2.4         38           Solidago multiradiata         0.6         1.1         44           Thalictrum alpinum         0.1         0.3         15           Wilhelmsia physodes         0.1         0.3         15           Wilhelmsia physodes         0.1         0.7         2.9         25           Spadenus elegans         1.0         1.6         48           Total Grass Cover         13.0         1.0         10           Arctagrostis latifolia         0.7         2.9         25           Bromus pumpellianus         0.1         0.7         2.1         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | Cover |      | Freq |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----|-----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|-----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----|-----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----|-----|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----|-----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|-----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|-----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|-----|----|-----------------------------------------------------------------------------------------------------------------|--|-----|-----|----|-----------------------------------------------------------------------------------------------------------------|------------------|-----|-----|----|--|--|------|------|----|--------------------------------|-----------|------|------|----|--|--------------|-----|-----|----|
| Pedicularis verticillata         0.1         0.3         19           Polemonium acutiflorum         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Polemonium acutiflorum         <0.1         0.2         10           Polygonum viviparum         0.1         0.3         23           Rubus arcticus         0.7         2.8         6           Rubus arcticus ssp. arcticus         0.1         0.5         8           Saxifraga oppositifolia         0.1         0.4         10           Senecio lugens         0.5         0.9         38           Silene acaulis         1.1         2.1         38           Solidago multiradiata         0.6         1.1         44           Thalictrum alpinum         0.1         0.4         17           Valeriana capitata         0.1         0.4         17           Valeriana capitata         0.1         0.3         15           Wilhelmsia physodes         0.1         0.7         8           Zygadenus elegans         1.0         1.6         48           Total Grass Cover         13.0         11.0         100           Arctagrostis latifolia         0.7         2.9         25           Bromus pumpellianus         0.1         0.7         2.9           Calamagrostis canadensis         0.7         2.1         17           Calamagrost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pedicularis verticillata     |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Rubus arcticus         0.7         2.8         6           Rubus arcticus ssp. arcticus         0.1         0.5         8           Saxifraga oppositifolia         0.1         0.4         10           Senecio lugens         0.5         0.9         38           Silene acaulis         1.1         2.1         38           Solidago multiradiata         0.6         1.1         44           Thalictrum alpinum         0.1         0.4         17           Valeriana capitata         0.1         0.3         15           Wilhelmsia physodes         0.1         0.7         8           Zygadenus elegans         1.0         1.6         48           Total Grass Cover         13.0         11.0         100           Arctagrostis latifolia         0.7         2.9         25           Bromus pumpellianus         0.1         0.7         8           Calamagrostis canadensis         0.7         2.9         25           Bromus pumpellianus         0.1         0.7         8           Elymus innovatus         5.2         8.9         40           Elymus innovatus         5.2         8.9         40           Elymus trachycaulus <td></td> <td>&lt;0.1</td> <td>0.2</td> <td>10</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | <0.1  | 0.2  | 10   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Rubus arcticus         0.7         2.8         6           Rubus arcticus ssp. arcticus         0.1         0.5         8           Saxifraga oppositifolia         0.1         0.4         10           Senecio lugens         0.5         0.9         38           Silene acaulis         1.1         2.1         38           Solidago multiradiata         0.6         1.1         44           Thalictrum alpinum         0.1         0.4         17           Valeriana capitata         0.1         0.3         15           Wilhelmsia physodes         0.1         0.7         8           Zygadenus elegans         1.0         1.6         48           Total Grass Cover         13.0         11.0         100           Arctagrostis latifolia         0.7         2.9         25           Bromus pumpellianus         0.1         0.7         8           Calamagrostis canadensis         0.7         2.1         10           Calamagrostis purpurascens         0.3         1.6         10           Deschampsia caespitosa         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Polygonum viviparum          | 0.1   | 0.3  | 23   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Saxifraga oppositifolia         0.1         0.4         10           Senecio lugens         0.5         0.9         38           Silene acaulis         1.1         2.1         38           Solidago multiradiata         0.6         1.1         44           Thalictrum alpinum         0.1         0.4         17           Valeriana capitata         0.1         0.7         8           Zygadenus elegans         1.0         1.6         48           Total Grass Cover         13.0         11.0         100           Arctagrostis latifolia         0.7         2.9         25           Bromus pumpellianus         0.1         0.7         8           Calamagrostis canadensis         0.7         2.1         17           Calamagrostis purpurascens         0.3         1.6         10           Deschampsia caespitosa         c0.1         0.1         8           Elymus innovatus         5.2         8.9         40           Elymus trachycaulus         5.2         8.9         40           Elymus trachycaulus         0.1         0.2         10           Festuca altaica         3.4         5.8         52           Festuca richard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | 0.7   | 2.8  | 6    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Senecio lugens         0.5         0.9         38           Silene acaulis         1.1         2.1         38           Silene acaulis         1.1         2.1         38           Solidago multiradiata         0.6         1.1         44           Thalictrum alpinum         0.1         0.4         17           Valeriana capitata         0.1         0.7         8           Wilhelmsia physodes         0.1         0.7         8           Zygadenus elegans         1.0         1.6         48           Total Grass Cover         13.0         11.0         100           Arctagrostis latifolia         0.7         2.9         25           Bromus pumpellianus         0.1         0.7         8           Calamagrostis canadensis         0.7         2.1         10           Calamagrostis purpurascens         0.3         1.6         10           Deschampsia caespitosa         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rubus arcticus ssp. arcticus | 0.1   | 0.5  | 8    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Senecio lugens         0.5         0.9         38           Silene acaulis         1.1         2.1         38           Solidago multiradiata         0.6         1.1         44           Thalictrum alpinum         0.1         0.3         15           Wilhelmsia physodes         0.1         0.7         8           Zygadenus elegans         1.0         1.6         48           Total Grass Cover         13.0         11.0         100           Arctagrostis latifolia         0.7         2.9         25           Bromus pumpellianus         0.1         0.7         8           Calamagrostis canadensis         0.7         2.1         17           Calamagrostis canadensis         0.7         2.1         17           Calamagrostis purpurascens         0.3         1.6         10           Deschampsia caespitosa         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Saxifraga oppositifolia      | 0.1   | 0.4  | 10   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Silene acaulis         1.1         2.1         38           Solidago multiradiata         0.6         1.1         44           Thalictrum alpinum         0.1         0.4         17           Valeriana capitata         0.1         0.7         8           Wilhelmsia physodes         0.1         0.7         8           Zygadenus elegans         1.0         1.6         48           Total Grass Cover         13.0         11.0         100           Arctagrostis latifolia         0.7         2.9         25           Bromus pumpellianus         0.1         0.7         8           Calamagrostis canadensis         0.7         2.1         17           Calamagrostis purpurascens         0.3         1.6         10           Deschampsia caespitosa         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | 0.5   | 0.9  | 38   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Thalictrum alpinum  Thalictrum alpinum  Valeriana capitata  Vilhelmsia physodes  Zygadenus elegans  Total Grass Cover  Calamagrostis latifolia  Bromus pumpellianus  Calamagrostis canadensis  Calamagrostis purpurascens  Deschampsia caespitosa  Elymus innovatus  Elymus innovatus  Elymus trachycaulus  Festuca altaica  Festuca richardsonii  Poa alpina  Poa alpina  Poa alpina  Poa arctica  Trisetum spicatum ssp.  spicatum  Total Sedge & Rush Cover  Carex capillaris  Carex scirpoidea  Total Monvascular Cover  Total Moss Cover  Total M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =                            | 1.1   | 2.1  | 38   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Valeriana capitata         0.1         0.3         15           Wilhelmsia physodes         0.1         0.7         8           Zygadenus elegans         1.0         1.6         48           Total Grass Cover         13.0         11.0         100           Arctagrostis latifolia         0.7         2.9         25           Bromus pumpellianus         0.1         0.7         8           Calamagrostis canadensis         0.7         2.1         17           Calamagrostis purpurascens         0.3         1.6         10           Deschampsia caespitosa         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Solidago multiradiata        | 0.6   | 1.1  | 44   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Wilhelmsia physodes       0.1       0.7       8         Zygadenus elegans       1.0       1.6       48         Total Grass Cover       13.0       11.0       100         Arctagrostis latifolia       0.7       2.9       25         Bromus pumpellianus       0.1       0.7       8         Calamagrostis canadensis       0.7       2.1       17         Calamagrostis purpurascens       0.3       1.6       10         Deschampsia caespitosa       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Thalictrum alpinum           | 0.1   | 0.4  | 17   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Zygadenus elegans         1.0         1.6         48           Total Grass Cover         13.0         11.0         100           Arctagrostis latifolia         0.7         2.9         25           Bromus pumpellianus         0.1         0.7         8           Calamagrostis canadensis         0.7         2.1         17           Calamagrostis purpurascens         0.3         1.6         10           Deschampsia caespitosa         <0.1         0.1         8           Elymus innovatus         5.2         8.9         40           Elymus trachycaulus         0.1         0.2         10           Festuca altaica         3.4         5.8         52           Festuca richardsonii         0.2         0.8         17           Festuca richardsonii         0.2         0.8         17           Festuca rubra         0.3         1.3         12           Poa alpigena         0.1         0.3         10           Poa alpigena         0.1         0.3         10           Poa arctica         0.1         0.3         10           Trisetum spicatum ssp.         0.1         0.3         19           Total Sedge & Rush Cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Valeriana capitata           | 0.1   | 0.3  | 15   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Total Grass Cover         13.0         11.0         100           Arctagrostis latifolia         0.7         2.9         25           Bromus pumpellianus         0.1         0.7         8           Calamagrostis canadensis         0.7         2.1         17           Calamagrostis purpurascens         0.3         1.6         10           Deschampsia caespitosa         <0.1         0.1         8           Elymus innovatus         5.2         8.9         40           Elymus trachycaulus         0.1         0.2         10           Festuca altaica         3.4         5.8         5.2           Festuca richardsonii         0.2         0.8         17           Festuca richardsonii         0.1         0.3         10           Poa alpigena         0.1         0.3         10           Poa alpigena         0.1         0.3         10           Poa alpigena<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wilhelmsia physodes          | 0.1   | 0.7  | 8    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Arctagrostis latifolia 0.7 2.9 25 Bromus pumpellianus 0.1 0.7 8 Calamagrostis canadensis 0.7 2.1 17 Calamagrostis purpurascens 0.3 1.6 10 Deschampsia caespitosa <0.1 0.1 8 Elymus innovatus 5.2 8.9 40 Elymus trachycaulus 0.1 0.2 10 Festuca altaica 3.4 5.8 52 Festuca richardsonii 0.2 0.8 17 Festuca rubra 0.3 1.3 12 Poa alpigena 0.1 0.3 10 Poa alpigena 0.1 0.2 8 Trisetum spicatum ssp. spicatum 0.1 0.2 8 Trotal Sedge & Rush Cover 10.0 14.0 67 Carex capillaris 0.1 0.3 8 Carex rupestris 1.2 2.8 21 Carex scirpoidea 8.3 12.6 42 Total Nonvascular Cover 13.8 16.3 88 Brachythecium sp. 1.5 5.8 33 Bryum sp. 0.2 0.8 12 Ceratodon purpureus 1.8 8.1 8 Dicranum sp. 0.5 0.9 29 Ditrichum sp. 0.5 0.9 29 Hylocomium splendens 2.0 10.1 21 Hypnum sp. 0.4 1.2 15 Sanionia sp. 0.2 0.5 15 Sanionia uncinata 1.1 5.8 8 Unknown moss 1.6 5.9 15 Total Lichen Cover 7.1 12.6 54 Cetaria sp. 0.3 1.5 2.6 38 Flavocetraria cucullata 0.4 1.4 15 Cladonia sp. 1.5 2.6 38 Flavocetraria cucullata 0.4 1.0 27 Masonhalea richardsonii 0.3 1.0 25 Stereocaulon sp. 0.3 1.0 12 Total Bare Ground 22.0 31.1 54 Bare Soil 19.8 30.0 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zygadenus elegans            | 1.0   | 1.6  | 48   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Bromus pumpellianus         0.1         0.7         8           Calamagrostis canadensis         0.7         2.1         17           Calamagrostis purpurascens         0.3         1.6         10           Deschampsia caespitosa         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Grass Cover            | 13.0  | 11.0 | 100  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Calamagrostis canadensis         0.7         2.1         17           Calamagrostis purpurascens         0.3         1.6         10           Deschampsia caespitosa         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Arctagrostis latifolia       | 0.7   | 2.9  | 25   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Calamagrostis purpurascens         0.3         1.6         10           Deschampsia caespitosa         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bromus pumpellianus          | 0.1   | 0.7  | 8    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Deschampsia caespitosa         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Calamagrostis canadensis     | 0.7   | 2.1  | 17   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Elymus innovatus  Elymus trachycaulus  Festuca altaica  Festuca richardsonii  Poa alpigena  Poa alpigena  Poa arctica  Trisetum spicatum ssp. spicatum  Carex capillaris  Carex scirpoidea  Total Moss Cover  Total Moss Cover  Total Moss Cover  Total Sedy sp. Bryum sp.  Ceratodon purpureus  Ditrichum sp. Ditrichum sp. Ditrichum sp. Drepanocladus sp. Hylocomium splendens  Unknown moss  Cladina arbuscula  Cladonia sp. Flavocetraria cucullata  Masonhalea richardsonii  Stereocaulon sp. Total Bare Ground  Estuca 10.1 0.2 0.8 17  1.2 0.8 21  1.3 19  1.4 0.5 0.3 19  1.5 0.3 19  1.6 0.3 88  1.7 0.4 1.2 15  1.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calamagrostis purpurascens   | 0.3   | 1.6  | 10   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Elymus trachycaulus 0.1 0.2 10 Festuca altaica 3.4 5.8 52 Festuca richardsonii 0.2 0.8 17 Festuca rubra 0.3 1.3 12 Poa alpigena 0.1 0.4 23 Poa arctica 0.1 0.2 8 Trisetum spicatum ssp. spicatum 0.1 0.3 19 Total Sedge & Rush Cover 10.0 14.0 67 Carex capillaris 0.1 0.3 8 Carex rupestris 1.2 2.8 21 Carex scirpoidea 8.3 12.6 42 Total Nonvascular Cover 13.8 16.3 88 Brachythecium sp. 1.5 5.8 33 Bryum sp. 0.2 0.8 12 Ceratodon purpureus 1.8 8.1 8 Dicranum sp. 0.3 1.1 12 Ditrichum sp. 0.5 0.9 29 Drepanocladus sp. 0.7 3.2 8 Hylocomium splendens 2.0 10.1 21 Hypnum sp. 0.4 1.2 15 Sanionia sp. 0.2 0.5 15 Sanionia uncinata 1.1 5.8 8 Unknown moss 1.6 5.9 15 Total Lichen Cover 7.1 12.6 54 Cetraria sp. 1.5 2.6 38 Flavocetraria cucullata 0.4 1.4 15 Cladonia sp. 1.5 2.6 38 Flavocetraria cucullata 0.4 1.0 27 Masonhalea richardsonii 0.3 1.0 25 Total Bare Ground 19.8 30.0 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Deschampsia caespitosa       |       | 0.1  | 8    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Festuca altaica Festuca richardsonii Co. 2 Festuca richardsonii Co. 3 Festuca rubra Co. 3 Fostica rubra Co. 4 Fostica rubra Co. 4 Fostica rubra Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Elymus innovatus             | J     |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Festuca richardsonii         0.2         0.8         17           Festuca rubra         0.3         1.3         12           Poa alpigena         0.1         0.3         10           Poa alpina         0.1         0.4         23           Poa arctica         0.1         0.2         8           Trisetum spicatum ssp.         5         5         8           spicatum         0.1         0.3         19           Total Sedge & Rush Cover         10.0         14.0         67           Carex capillaris         0.1         0.3         8           Carex capillaris         0.1         0.3         8           Carex rupestris         1.2         2.8         21           Carex scirpoidea         8.3         12.6         42           Total Nonvascular Cover         20.5         18.0         90           Total Moss Cover         13.8         16.3         88           Brachythecium sp.         0.2         0.8         12           Ceratodon purpureus         1.8         8.1         8           Bryum sp.         0.2         0.8         12           Ditrichum sp.         0.5         0.9         29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Elymus trachycaulus          |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Festuca rubra         0.3         1.3         12           Poa alpigena         0.1         0.3         10           Poa alpina         0.1         0.4         23           Poa arctica         0.1         0.2         8           Trisetum spicatum ssp.         5         5         8           spicatum         0.1         0.3         19           Total Sedge & Rush Cover         10.0         14.0         67           Carex capillaris         0.1         0.3         8           Carex rupestris         1.2         2.8         21           Carex scirpoidea         8.3         12.6         42           Total Nonvascular Cover         20.5         18.0         90           Total Moss Cover         13.8         16.3         88           Brachythecium sp.         0.2         0.8         12           Ceratodon purpureus         1.8         8.1         8           Ditrichum sp.         0.2         0.8         12           Ceratodon purpureus         1.8         8.1         8           Ditrichum sp.         0.5         0.9         29           Drepanocladus sp.         0.7         3.2 <t< td=""><td>Festuca altaica</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Festuca altaica              |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Poa alpigena         0.1         0.3         10           Poa alpina         0.1         0.4         23           Poa arctica         0.1         0.2         8           Trisetum spicatum ssp.         5         5         8           spicatum         0.1         0.3         19           Total Sedge & Rush Cover         10.0         14.0         67           Carex capillaris         0.1         0.3         8           Carex rupestris         1.2         2.8         21           Carex scirpoidea         8.3         12.6         42           Total Monvascular Cover         20.5         18.0         90           Total Moss Cover         13.8         16.3         88           Brachythecium sp.         0.2         0.8         12           Ceratodon purpureus         1.8         8.1         8           Dicranum sp.         0.2         0.8         12           Ceratodon purpureus         1.8         8.1         8           Ditrichum sp.         0.5         0.9         29           Drepanocladus sp.         0.7         3.2         8           Hylocomium splendens         2.0         10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Festuca richardsonii         |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Poa alpjana         0.1         0.4         23           Poa arctica         0.1         0.2         8           Trisetum spicatum ssp. spicatum         0.1         0.3         19           Total Sedge & Rush Cover         10.0         14.0         67           Carex capillaris         0.1         0.3         8           Carex rupestris         1.2         2.8         21           Carex scirpoidea         8.3         12.6         42           Total Nonvascular Cover         20.5         18.0         90           Total Moss Cover         13.8         16.3         88           Brachythecium sp.         1.5         5.8         33           Bryum sp.         0.2         0.8         12           Ceratodon purpureus         1.8         8.1         8           Dicranum sp.         0.3         1.1         12           Ditrichum sp.         0.5         0.9         29           Drepanocladus sp.         0.7         3.2         8           Hylocomium splendens         2.0         10.1         21           Hypnum sp.         0.4         1.2         15           Sanionia uncinata         1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Festuca rubra                |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Poa arctica       0.1       0.2       8         Trisetum spicatum       0.1       0.3       19         Total Sedge & Rush Cover       10.0       14.0       67         Carex capillaris       0.1       0.3       8         Carex rupestris       1.2       2.8       21         Carex scirpoidea       8.3       12.6       42         Total Nonvascular Cover       20.5       18.0       90         Total Moss Cover       13.8       16.3       88         Brachythecium sp.       1.5       5.8       33         Bryum sp.       0.2       0.8       12         Ceratodon purpureus       1.8       8.1       8         Dicranum sp.       0.3       1.1       12         Ditrichum sp.       0.5       0.9       29         Drepanocladus sp.       0.7       3.2       8         Hylocomium splendens       2.0       10.1       21         Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.4       1.2       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15 <t< td=""><td>. •</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . •                          |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Trisetum spicatum       0.1       0.3       19         Total Sedge & Rush Cover       10.0       14.0       67         Carex capillaris       0.1       0.3       8         Carex rupestris       1.2       2.8       21         Carex scirpoidea       8.3       12.6       42         Total Nonvascular Cover       20.5       18.0       90         Total Moss Cover       13.8       16.3       88         Brachythecium sp.       1.5       5.8       33         Bryum sp.       0.2       0.8       12         Ceratodon purpureus       1.8       8.1       8         Dicranum sp.       0.3       1.1       12         Ditrichum sp.       0.5       0.9       29         Drepanocladus sp.       0.7       3.2       8         Hylocomium splendens       2.0       10.1       21         Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.4       1.2       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54 <td>•</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                            |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| spicatum         0.1         0.3         19           Total Sedge & Rush Cover         10.0         14.0         67           Carex capillaris         0.1         0.3         8           Carex rupestris         1.2         2.8         21           Carex scirpoidea         8.3         12.6         42           Total Monvascular Cover         20.5         18.0         90           Total Moss Cover         13.8         16.3         88           Brachythecium sp.         1.5         5.8         33           Bryum sp.         0.2         0.8         12           Ceratodon purpureus         1.8         8.1         8           Dicranum sp.         0.3         1.1         12           Ditrichum sp.         0.5         0.9         29           Drepanocladus sp.         0.7         3.2         8           Hylocomium splendens         2.0         10.1         21           Hypnum sp.         0.4         1.2         15           Sanionia sp.         0.2         0.5         15           Sanionia uncinata         1.1         5.8         8           Unknown moss         1.6         5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | 0.1   | 0.2  | 8    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Total Sedge & Rush Cover         10.0         14.0         67           Carex capillaris         0.1         0.3         8           Carex rupestris         1.2         2.8         21           Carex scirpoidea         8.3         12.6         42           Total Nonvascular Cover         20.5         18.0         90           Total Moss Cover         13.8         16.3         88           Brachythecium sp.         1.5         5.8         33           Bryum sp.         0.2         0.8         12           Ceratodon purpureus         1.8         8.1         8           Dicranum sp.         0.3         1.1         12           Ditrichum sp.         0.5         0.9         29           Drepanocladus sp.         0.7         3.2         8           Hylocomium splendens         2.0         10.1         21           Hypnum sp.         0.4         1.2         15           Sanionia uncinata         1.1         5.8         8           Unknown moss         1.6         5.9         15           Total Lichen Cover         7.1         12.6         54           Cetraria sp.         3.0         5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | 0.1   | U 3  | 10   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Carex capillaris         0.1         0.3         8           Carex rupestris         1.2         2.8         21           Carex scirpoidea         8.3         12.6         42           Total Nonvascular Cover         20.5         18.0         90           Total Moss Cover         13.8         16.3         88           Brachythecium sp.         1.5         5.8         33           Bryum sp.         0.2         0.8         12           Ceratodon purpureus         1.8         8.1         8           Dicranum sp.         0.3         1.1         12           Ditrichum sp.         0.5         0.9         29           Drepanocladus sp.         0.7         3.2         8           Hylocomium splendens         2.0         10.1         21           Hypnum sp.         0.4         1.2         15           Sanionia sp.         0.4         1.2         15           Sanionia uncinata         1.1         5.8         8           Unknown moss         1.6         5.9         15           Total Lichen Cover         7.1         12.6         54           Cetraria sp.         3.0         5.0         33<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Carex rupestris         1.2         2.8         21           Carex scirpoidea         8.3         12.6         42           Total Nonvascular Cover         20.5         18.0         90           Total Moss Cover         13.8         16.3         88           Brachythecium sp.         1.5         5.8         33           Bryum sp.         0.2         0.8         12           Ceratodon purpureus         1.8         8.1         8           Dicranum sp.         0.3         1.1         12           Ditrichum sp.         0.5         0.9         29           Drepanocladus sp.         0.7         3.2         8           Hylocomium splendens         2.0         10.1         21           Hypnum sp.         0.4         1.2         15           Sanionia sp.         0.4         1.2         15           Sanionia uncinata         1.1         5.8         8           Unknown moss         1.6         5.9         15           Total Lichen Cover         7.1         12.6         54           Cetraria sp.         3.0         5.0         33           Cladina arbuscula         0.4         1.4         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                            |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Carex scirpoidea         8.3         12.6         42           Total Nonvascular Cover         20.5         18.0         90           Total Moss Cover         13.8         16.3         88           Brachythecium sp.         1.5         5.8         33           Bryum sp.         0.2         0.8         12           Ceratodon purpureus         1.8         8.1         8           Dicranum sp.         0.3         1.1         12           Ditrichum sp.         0.5         0.9         29           Drepanocladus sp.         0.7         3.2         8           Hylocomium splendens         2.0         10.1         21           Hypnum sp.         0.4         1.2         15           Sanionia sp.         0.2         0.5         15           Sanionia uncinata         1.1         5.8         8           Unknown moss         1.6         5.9         15           Total Lichen Cover         7.1         12.6         54           Cetraria sp.         3.0         5.0         33           Cladonia sp.         1.5         2.6         38           Flavocetraria cucullata         0.4         1.0 <t< td=""><td>•</td><td></td><td></td><td>_</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                            |       |      | _    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Total Nonvascular Cover         20.5         18.0         90           Total Moss Cover         13.8         16.3         88           Brachythecium sp.         1.5         5.8         33           Bryum sp.         0.2         0.8         12           Ceratodon purpureus         1.8         8.1         8           Dicranum sp.         0.3         1.1         12           Ditrichum sp.         0.5         0.9         29           Drepanocladus sp.         0.7         3.2         8           Hylocomium splendens         2.0         10.1         21           Hypnum sp.         0.4         1.2         15           Sanionia sp.         0.2         0.5         15           Sanionia uncinata         1.1         5.8         8           Unknown moss         1.6         5.9         15           Total Lichen Cover         7.1         12.6         54           Cetraria sp.         3.0         5.0         33           Cladina arbuscula         0.4         1.4         15           Cladonia sp.         1.5         2.6         38           Flavocetraria cucullata         0.4         1.0 <t< td=""><td>•</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                            |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Total Moss Cover         13.8         16.3         88           Brachythecium sp.         1.5         5.8         33           Bryum sp.         0.2         0.8         12           Ceratodon purpureus         1.8         8.1         8           Dicranum sp.         0.3         1.1         12           Ditrichum sp.         0.5         0.9         29           Drepanocladus sp.         0.7         3.2         8           Hylocomium splendens         2.0         10.1         21           Hypnum sp.         0.4         1.2         15           Sanionia sp.         0.2         0.5         15           Sanionia uncinata         1.1         5.8         8           Unknown moss         1.6         5.9         15           Total Lichen Cover         7.1         12.6         54           Cetraria sp.         3.0         5.0         33           Cladina arbuscula         0.4         1.4         15           Cladonia sp.         1.5         2.6         38           Flavocetraria cucullata         0.4         1.0         27           Masonhalea richardsonii         0.3         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                            |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Brachythecium sp.       1.5       5.8       33         Bryum sp.       0.2       0.8       12         Ceratodon purpureus       1.8       8.1       8         Dicranum sp.       0.3       1.1       12         Ditrichum sp.       0.5       0.9       29         Drepanocladus sp.       0.7       3.2       8         Hylocomium splendens       2.0       10.1       21         Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54 <tr <="" td=""><td></td><td></td><td></td><td></td></tr> <tr><td>Bryum sp.         0.2         0.8         12           Ceratodon purpureus         1.8         8.1         8           Dicranum sp.         0.3         1.1         12           Ditrichum sp.         0.5         0.9         29           Drepanocladus sp.         0.7         3.2         8           Hylocomium splendens         2.0         10.1         21           Hypnum sp.         0.4         1.2         15           Sanionia sp.         0.2         0.5         15           Sanionia uncinata         1.1         5.8         8           Unknown moss         1.6         5.9         15           Total Lichen Cover         7.1         12.6         54           Cetraria sp.         3.0         5.0         33           Cladina arbuscula         0.4         1.4         15           Cladonia sp.         1.5         2.6         38           Flavocetraria cucullata         0.4         1.0         27           Masonhalea richardsonii         0.3         1.0         25           Stereocaulon sp.         0.3         1.0         12           Total Bare Ground         22.0         31.1</td><td></td><td></td><td></td><td></td></tr> <tr><td>Ceratodon purpureus       1.8       8.1       8         Dicranum sp.       0.3       1.1       12         Ditrichum sp.       0.5       0.9       29         Drepanocladus sp.       0.7       3.2       8         Hylocomium splendens       2.0       10.1       21         Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52</td><td>· ·</td><td></td><td></td><td>12</td></tr> <tr><td>Dicranum sp.       0.3       1.1       12         Ditrichum sp.       0.5       0.9       29         Drepanocladus sp.       0.7       3.2       8         Hylocomium splendens       2.0       10.1       21         Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52</td><td>, ,</td><td>1.8</td><td>8.1</td><td>8</td></tr> <tr><td>Ditrichum sp.       0.5       0.9       29         Drepanocladus sp.       0.7       3.2       8         Hylocomium splendens       2.0       10.1       21         Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52</td><td></td><td>0.3</td><td>1.1</td><td>12</td></tr> <tr><td>Drepanocladus sp.       0.7       3.2       8         Hylocomium splendens       2.0       10.1       21         Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52</td><td></td><td></td><td></td><td></td></tr> <tr><td>Hylocomium splendens       2.0       10.1       21         Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52</td><td>•</td><td></td><td></td><td></td></tr> <tr><td>Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52</td><td></td><td></td><td></td><td>21</td></tr> <tr><td>Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52</td><td></td><td></td><td>1.2</td><td>15</td></tr> <tr><td>Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52</td><td></td><td>0.2</td><td>0.5</td><td>15</td></tr> <tr><td>Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52</td><td></td><td>1.1</td><td>5.8</td><td>8</td></tr> <tr><td>Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52</td><td></td><td>1.6</td><td>5.9</td><td>15</td></tr> <tr><td>Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52</td><td>Total Lichen Cover</td><td>7.1</td><td>12.6</td><td>54</td></tr> <tr><td>Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52</td><td>Cetraria sp.</td><td>3.0</td><td>5.0</td><td>33</td></tr> <tr><td>Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52</td><td>· ·</td><td>0.4</td><td>1.4</td><td>15</td></tr> <tr><td>Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52</td><td>Cladonia sp.</td><td>1.5</td><td>2.6</td><td>38</td></tr> <tr><td>Masonhalea richardsonii         0.3         1.0         25           Stereocaulon sp.         0.3         1.0         12           Total Bare Ground         22.0         31.1         54           Bare Soil         19.8         30.0         52</td><td>· ·</td><td></td><td>1.0</td><td>27</td></tr> <tr><td>Total Bare Ground         22.0         31.1         54           Bare Soil         19.8         30.0         52</td><td></td><td>0.3</td><td>1.0</td><td>25</td></tr> <tr><td>Total Bare Ground         22.0         31.1         54           Bare Soil         19.8         30.0         52</td><td>Stereocaulon sp.</td><td>0.3</td><td>1.0</td><td>12</td></tr> <tr><td></td><td></td><td>22.0</td><td>31.1</td><td>54</td></tr> <tr><td><u>Litter alone</u> 2.3 3.3 50</td><td>Bare Soil</td><td>19.8</td><td>30.0</td><td>52</td></tr> <tr><td></td><td>Litter alone</td><td>2.3</td><td>3.3</td><td>50</td></tr> |                              |       |      |      | Bryum sp.         0.2         0.8         12           Ceratodon purpureus         1.8         8.1         8           Dicranum sp.         0.3         1.1         12           Ditrichum sp.         0.5         0.9         29           Drepanocladus sp.         0.7         3.2         8           Hylocomium splendens         2.0         10.1         21           Hypnum sp.         0.4         1.2         15           Sanionia sp.         0.2         0.5         15           Sanionia uncinata         1.1         5.8         8           Unknown moss         1.6         5.9         15           Total Lichen Cover         7.1         12.6         54           Cetraria sp.         3.0         5.0         33           Cladina arbuscula         0.4         1.4         15           Cladonia sp.         1.5         2.6         38           Flavocetraria cucullata         0.4         1.0         27           Masonhalea richardsonii         0.3         1.0         25           Stereocaulon sp.         0.3         1.0         12           Total Bare Ground         22.0         31.1 |  |  |  |  | Ceratodon purpureus       1.8       8.1       8         Dicranum sp.       0.3       1.1       12         Ditrichum sp.       0.5       0.9       29         Drepanocladus sp.       0.7       3.2       8         Hylocomium splendens       2.0       10.1       21         Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52 | · · |  |  | 12 | Dicranum sp.       0.3       1.1       12         Ditrichum sp.       0.5       0.9       29         Drepanocladus sp.       0.7       3.2       8         Hylocomium splendens       2.0       10.1       21         Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52 | , , | 1.8 | 8.1 | 8 | Ditrichum sp.       0.5       0.9       29         Drepanocladus sp.       0.7       3.2       8         Hylocomium splendens       2.0       10.1       21         Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52 |  | 0.3 | 1.1 | 12 | Drepanocladus sp.       0.7       3.2       8         Hylocomium splendens       2.0       10.1       21         Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52 |  |  |  |  | Hylocomium splendens       2.0       10.1       21         Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52 | • |  |  |  | Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52 |  |  |  | 21 | Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52 |  |  | 1.2 | 15 | Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52 |  | 0.2 | 0.5 | 15 | Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52 |  | 1.1 | 5.8 | 8 | Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52 |  | 1.6 | 5.9 | 15 | Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52 | Total Lichen Cover | 7.1 | 12.6 | 54 | Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52 | Cetraria sp. | 3.0 | 5.0 | 33 | Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52 | · · | 0.4 | 1.4 | 15 | Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52 | Cladonia sp. | 1.5 | 2.6 | 38 | Masonhalea richardsonii         0.3         1.0         25           Stereocaulon sp.         0.3         1.0         12           Total Bare Ground         22.0         31.1         54           Bare Soil         19.8         30.0         52 | · · |  | 1.0 | 27 | Total Bare Ground         22.0         31.1         54           Bare Soil         19.8         30.0         52 |  | 0.3 | 1.0 | 25 | Total Bare Ground         22.0         31.1         54           Bare Soil         19.8         30.0         52 | Stereocaulon sp. | 0.3 | 1.0 | 12 |  |  | 22.0 | 31.1 | 54 | <u>Litter alone</u> 2.3 3.3 50 | Bare Soil | 19.8 | 30.0 | 52 |  | Litter alone | 2.3 | 3.3 | 50 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Bryum sp.         0.2         0.8         12           Ceratodon purpureus         1.8         8.1         8           Dicranum sp.         0.3         1.1         12           Ditrichum sp.         0.5         0.9         29           Drepanocladus sp.         0.7         3.2         8           Hylocomium splendens         2.0         10.1         21           Hypnum sp.         0.4         1.2         15           Sanionia sp.         0.2         0.5         15           Sanionia uncinata         1.1         5.8         8           Unknown moss         1.6         5.9         15           Total Lichen Cover         7.1         12.6         54           Cetraria sp.         3.0         5.0         33           Cladina arbuscula         0.4         1.4         15           Cladonia sp.         1.5         2.6         38           Flavocetraria cucullata         0.4         1.0         27           Masonhalea richardsonii         0.3         1.0         25           Stereocaulon sp.         0.3         1.0         12           Total Bare Ground         22.0         31.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Ceratodon purpureus       1.8       8.1       8         Dicranum sp.       0.3       1.1       12         Ditrichum sp.       0.5       0.9       29         Drepanocladus sp.       0.7       3.2       8         Hylocomium splendens       2.0       10.1       21         Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · ·                          |       |      | 12   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Dicranum sp.       0.3       1.1       12         Ditrichum sp.       0.5       0.9       29         Drepanocladus sp.       0.7       3.2       8         Hylocomium splendens       2.0       10.1       21         Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , ,                          | 1.8   | 8.1  | 8    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Ditrichum sp.       0.5       0.9       29         Drepanocladus sp.       0.7       3.2       8         Hylocomium splendens       2.0       10.1       21         Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | 0.3   | 1.1  | 12   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Drepanocladus sp.       0.7       3.2       8         Hylocomium splendens       2.0       10.1       21         Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Hylocomium splendens       2.0       10.1       21         Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                            |       |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Hypnum sp.       0.4       1.2       15         Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |       |      | 21   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Sanionia sp.       0.2       0.5       15         Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |       | 1.2  | 15   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Sanionia uncinata       1.1       5.8       8         Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | 0.2   | 0.5  | 15   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Unknown moss       1.6       5.9       15         Total Lichen Cover       7.1       12.6       54         Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 1.1   | 5.8  | 8    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Cetraria sp.       3.0       5.0       33         Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 1.6   | 5.9  | 15   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total Lichen Cover           | 7.1   | 12.6 | 54   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Cladina arbuscula       0.4       1.4       15         Cladonia sp.       1.5       2.6       38         Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cetraria sp.                 | 3.0   | 5.0  | 33   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · ·                          | 0.4   | 1.4  | 15   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Flavocetraria cucullata       0.4       1.0       27         Masonhalea richardsonii       0.3       1.0       25         Stereocaulon sp.       0.3       1.0       12         Total Bare Ground       22.0       31.1       54         Bare Soil       19.8       30.0       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cladonia sp.                 | 1.5   | 2.6  | 38   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Masonhalea richardsonii         0.3         1.0         25           Stereocaulon sp.         0.3         1.0         12           Total Bare Ground         22.0         31.1         54           Bare Soil         19.8         30.0         52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · ·                          |       | 1.0  | 27   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Total Bare Ground         22.0         31.1         54           Bare Soil         19.8         30.0         52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | 0.3   | 1.0  | 25   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| Total Bare Ground         22.0         31.1         54           Bare Soil         19.8         30.0         52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stereocaulon sp.             | 0.3   | 1.0  | 12   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | 22.0  | 31.1 | 54   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
| <u>Litter alone</u> 2.3 3.3 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bare Soil                    | 19.8  | 30.0 | 52   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Litter alone                 | 2.3   | 3.3  | 50   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |     |     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |     |    |                                                                                                                                                                                                                                                                                                                                                                                            |                    |     |      |    |                                                                                                                                                                                                                                                                                                                                                                                            |              |     |     |    |                                                                                                                                                                                                                                                                                   |     |     |     |    |                                                                                                                                                                                                                                                                                   |              |     |     |    |                                                                                                                                                                                                                                                    |     |  |     |    |                                                                                                                 |  |     |     |    |                                                                                                                 |                  |     |     |    |  |  |      |      |    |                                |           |      |      |    |  |              |     |     |    |



abundant. Soil pH is circumneutral to alkaline, and EC is low. The soils are typically somewhat excessively to well drained, and depth to water table was typically greater than 1 m.

Table 89. Soil characteristics for Riverine Moist Willow Tall Shrub.

| Property                                   | Mean   | SD    | n  |
|--------------------------------------------|--------|-------|----|
| Elevation (m)                              | 155.9  | 148.8 | 30 |
| Slope (degrees)                            | 3.4    | 3.2   | 7  |
| Surface Organics Depth(cm)                 | 2.5    | 2.1   | 10 |
| Cumulative Org. in 40 cm (cm)              | 2.3    | 1.8   | 15 |
| Loess Cap Thickness (cm)                   | 2.0    |       | 1  |
| Depth to Rocks (cm)                        | 75.3   | 79.2  | 23 |
| Surface Fragment Cover (%)                 | 34.4   | 36.3  | 11 |
| Frost Boil Cover (%)                       |        |       | 0  |
| Thaw Depth (cm)                            | 109.0  | 44.0  | 4  |
| Site pH at 10-cm depth                     | 7.4    | 8.0   | 29 |
| Site EC at 10-cm depth (µS/cm)             | 93.3   | 75.3  | 27 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -118.2 | 45.0  | 26 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

Dominant soil subgroups in this ecotype are Oxyaquic Cryorthents (moist, saturated early in growing season, lacking permafrost), Typic Gelorthents (poorly developed with permafrost below 1 m), and Oxyaquic Gelorthents (wet, saturated early in growing season, poorly developed with permafrost below 1 m). A less common soil type is Oxyaquic Cryopsamments (wet, saturated early in growing season, sandy, low coarse fragment content, lacking permafrost). This ecotype and associated soils are part of the Riverine Gravelly Barrens and Shrublands soil landscape. Other ecotypes found in this soil landscape include Riverine Barrens, Riverine Dryas Dwarf Shrub, and Riverine Willow Low Shrub.

## **Riverine Poplar Forest**



## Geomorphology:

These early to mid-successional poplar stands occur on braided active and inactive overbank deposits, meander active and inactive overbank deposits, and eolian inactive sand dunes. Surfaces consist of levees, interfluves, flat banks, point bars, and linear dunes.

#### Plant Association:

Populus balsamifera-Picea glauca-Salix alaxensis

The rapid rate of succession that this ecotype experiences is reflected in its plant association, which contains a dominant species from the three stages through 100 years of the floodplain successional sequence. *Populus balsamifera* is the dominant species while forbs characterize the understory (Table 90). *Picea glauca* occurs as seedlings in the understory. Additional common species include *Shepherdia canadensis*, *Aster sibiricus* (syn: *Eurybia sibirica*), *Equisetum variegatum*, and *Hedysarum alpinum*.

Riverine Poplar Forest is most similar to Riverine White Spruce–Poplar Forest because it transitions to this ecotype as spruce grows into mature trees.

#### Soils:

Soils are typically loamy or sandy, and occasionally bouldery, with a thin, often scattered, surface organic horizon (Table 91). Depth to permafrost is difficult to determine, however if permafrost does occur it is assumed to be greater than 1 m given the well drained soils and proximity of flowing water. Frost boils and loess caps are absent. Surface fragments are rare, however when they do occur they tend to be abundant. Organic horizons, buried during flooding by riverine silts and sands, sometimes occur in these soils. Soil pH is circumneutral to alkaline, and EC is low. The soils are typically somewhat excessively to moderately well drained. Depth to water table often could not be

Table 90. Vegetation cover and frequency for Riverine Poplar Forest (n=15).

|                                        | Cove                 |              | Freq       |
|----------------------------------------|----------------------|--------------|------------|
| Tabilities Committee                   | <b>Mean</b><br>126.6 | <b>SD</b>    | 100        |
| Total Live Cover Total Vascular Cover  | 115.7                | 43.5<br>43.8 | 100<br>100 |
|                                        | 1.1                  | 43.6<br>1.6  | 77         |
| Total Evergreen Tree Cover             | 1.1                  | 1.6          | 77<br>77   |
| Picea glauca  Total Evergreen Shrub    | 1.1                  | 1.0          | ,,         |
| Cover                                  | 0.0                  | 0.0          | 15         |
| Juniperus communis                     | <0.1                 | <0.1         | 8          |
| Linnaea borealis                       | <0.1                 | < 0.1        | 8          |
| <b>Total Deciduous Tree Cover</b>      | 46.9                 | 16.7         | 100        |
| Populus balsamifera                    | 46.9                 | 16.7         | 100        |
| Total Deciduous Shrub                  |                      |              |            |
| Cover                                  | 37.4                 | 23.0         | 100        |
| Alnus crispa                           | 5.3                  | 13.1         | 38         |
| Alnus tenuifolia                       | 0.1                  | 0.3          | 8          |
| Arctostaphylos rubra                   | 1.2                  | 2.3          | 31         |
| Betula nana                            | 0.1                  | 0.3          | 8          |
| Potentilla fruticosa                   | 0.2                  | 0.6          | 23         |
| Rosa acicularis                        | 0.2                  | 0.8          | 15         |
| Salix alaxensis                        | 13.9                 | 15.4         | 85         |
| Salix arbusculoides                    | 0.1                  | 0.3          | 23         |
| Salix brachycarpa ssp.                 | 0.0                  | 2.2          | 15         |
| niphoclada                             | 0.8<br>1.6           | 2.3<br>5.5   | 23         |
| Salix glauca                           | 0.1                  | o.o<br>0.3   | 23<br>15   |
| Salix hastata                          | 0.1                  | 1.9          | 15<br>15   |
| Salix monticola                        | 0.8                  | 0.6          | 15<br>8    |
| Salix reticulata                       | 12.7                 | 12.8         | 85         |
| Shepherdia canadensis                  | 0.2                  | 0.6          | 85<br>15   |
| Vaccinium uliginosum  Total Forb Cover | 24.9                 | 17.9         | 100        |
| Aconitum delphinifolium                | 0.2                  | 0.6          | 8          |
| Allium schoenoprasum                   | 0.1                  | 0.3          | 8          |
| Anemone narcissiflora                  | <0.1                 | <0.1         | 15         |
| Anemone parviflora                     | <0.1                 | <0.1         | 23         |
| Anemone richardsonii                   | 1.2                  | 3.0          | 15         |
| Arnica alpina ssp. angustifolia        | 0.1                  | 0.3          | 8          |
| Artemisia tilesii                      | 1.3                  | 2.7          | 69         |
| Aster sibiricus                        | 3.8                  | 6.6          | 92         |
| Astragalus alpinus                     | <0.1                 | <0.1         | 31         |
| Boschniakia rossica                    | <0.1                 | <0.1         | 8          |
| Castilleja caudata                     | 0.1                  | 0.3          | 8          |
| Castilleja hyperborea                  | <0.1                 | <0.1         | 8          |
| Chrysanthemum bipinnatum               | 0.3                  | 0.8          | 15         |
| Cypripedium passerinum                 | 1.1                  | 2.3          | 54         |
| Epilobium angustifolium                | 0.2                  | 0.6          | 8          |
| Epilobium latifolium                   | 0.3                  | 0.7          | 23         |
| Equisetum arvense                      | 4.1                  | 6.5          | 54         |
| Equisetum pratense                     | 0.1                  | 0.3          | 8          |
| Equisetum variegatum                   | 0.1                  | 0.3          | 46         |
| Erigeron sp.                           | <0.1                 | <0.1         | 8          |
| Galium boreale                         | 0.5                  | 1.4          | 31         |
| Gentiana propinqua                     | <0.1                 | <0.1         | 23         |
| Hedysarum alpinum                      | 4.5                  | 6.6          | 69         |
| Hedysarum mackenzii                    | 1.3                  | 4.1          | 23         |
| Lupinus arcticus                       | 1.2                  | 2.8          | 31         |
| Mertensia paniculata                   | 1.5                  | 4.2          | 31         |
| Moneses uniflora                       | 0.1                  | 0.3          | 23         |
| Oxytropis campestris                   | 0.3                  | 0.9          | 23         |
| Parnassia palustris                    | <0.1                 | 0.1          | 38         |

Table 90. Continued.

|                                              | Cov        | er         | Freq     |
|----------------------------------------------|------------|------------|----------|
|                                              | Mean       | SD         | %        |
| Pedicularis sudetica                         | 0.1        | 0.3        | 23       |
| Pedicularis verticillata                     | <0.1       | <0.1       | 15       |
| Platanthera obtusata                         | <0.1       | 0.1        | 38       |
| Polygonum viviparum                          | <0.1       | <0.1       | 15       |
| Pyrola asarifolia                            | 0.6        | 1.4        | 31       |
| Pyrola secunda                               | <0.1       | <0.1       | 23       |
| Rubus arcticus                               | 1.9        | 3.2        | 38       |
| Trientalis europaea ssp. arctica             | 0.1        | 0.3        | 8        |
| Zygadenus elegans                            | < 0.1      | <0.1       | 15       |
| Total Grass Cover                            | 4.8        | 6.4        | 100      |
| Agropyron macrourum                          | 0.1        | 0.3        | 8        |
| Agropyron sp.                                | <0.1       | <0.1       | 15       |
| Arctagrostis latifolia                       | 0.6        | 1.4        | 23       |
| Bromus pumpellianus                          | 0.2        | 0.6        | 15       |
| Bromus sp.                                   | 1.1        | 2.0        | 46       |
| Calamagrostis canadensis                     | 0.2        | 0.6        | 23       |
| Calamagrostis purpurascens                   | 0.2        | 0.6        | 15       |
| Elymus sp.                                   | 0.5        | 1.7        | 15       |
| Elymus trachycaulus                          | 0.2        | 0.4        | 15       |
| Festuca altaica                              | 0.2        | 0.4        | 23       |
| Festuca richardsonii                         | 0.9        | 2.8        | 23       |
| Hierochloe odorata<br>Trisetum spicatum ssp. | 0.3        | 1.1        | 8        |
| spicatum                                     | 0.3        | 1.1        | 38       |
| Total Sedge & Rush Cover                     | 0.6        | 1.5        | 23       |
| Carex aurea                                  | <0.1       | <0.1       | 8        |
| Carex concinna                               | <0.1       | <0.1       | 8        |
| Carex krausei                                | <0.1       | <0.1       | 8        |
| Carex lapponica                              | 0.2        | 0.6        | 8        |
| Carex podocarpa                              | 0.4        | 1.4        | 8        |
| Juncus arcticus                              | <0.1       | < 0.1      | 8        |
| Total Nonvascular Cover                      | 10.9       | 10.4       | 77<br>77 |
| Total Moss Cover                             | 10.2       | 9.1        | 77       |
| Abietinella abietina                         | 0.8<br>0.5 | 2.8        | 8<br>31  |
| Brachythecium sp.                            |            | 0.9<br>0.6 |          |
| Campylium polygamum                          | 0.2<br>0.4 |            | 8<br>23  |
| Ceratodon purpureus                          | 0.4        | 1.0<br>0.8 | 23<br>8  |
| Ceratodon sp.                                | 0.2        | 1.7        | 8        |
| Didymodon sp.                                | 0.5        | 1.7        | 8        |
| Ditrichum flexicaule                         | 0.3        | 0.6        | 8        |
| Drepanocladus sendtneri                      | 3.1        | 6.3        | 23       |
| Hylocomium splendens                         | 0.2        | 0.5        | 23<br>8  |
| Hypnum lindbergii                            | 0.2        | 1.9        | 15       |
| Hypnum revolutum                             | 0.5        | 1.5        | 15       |
| Hypnum sp.                                   | 0.3        | 0.3        | 8        |
| Pohlia sp.<br>Sanionia uncinata              | 2.5        | 6.4        | 23       |
| Total Lichen Cover                           | 0.7        | 1.5        | 54       |
|                                              | 0.7        | 0.8        | 8        |
| Cladonia symphycarpia<br>Peltigera rufescens | 0.1        | 0.3        | 8        |
| Stereocaulon tomentosum                      | 0.4        | 1.4        | 8        |
| Total Bare Ground                            | 24.7       | 28.2       | 92       |
| Bare Soil                                    | 18.5       | 29.6       | 85       |
| Litter alone                                 | 6.2        | 6.0        | 77       |
| LICCE AIONE                                  | 0.2        | 0.0        | - ' '    |



measured but it is assumed to fluctuate throughout the year within the upper 2 m of the soil profile given the immediate adjacency to river water.

Table 91. Soil characteristics for Riverine Poplar Forest.

| Property                                   | Mean   | SD    | n  |
|--------------------------------------------|--------|-------|----|
| Elevation (m)                              | 152.3  | 134.3 | 13 |
| Slope (degrees)                            | 3.0    |       | 1  |
| Surface Organics Depth(cm)                 | 3.0    | 3.2   | 7  |
| Cumulative Org. in 40 cm (cm)              | 4.2    | 2.7   | 10 |
| Loess Cap Thickness (cm)                   |        |       | 0  |
| Depth to Rocks (cm)                        | 76.3   | 69.7  | 11 |
| Surface Fragment Cover (%)                 | 60.0   | 14.1  | 2  |
| Frost Boil Cover (%)                       |        |       | 0  |
| Thaw Depth (cm)                            |        |       | 0  |
| Site pH at 10-cm depth                     | 7.6    | 0.9   | 10 |
| Site EC at 10-cm depth (µS/cm)             | 98.0   | 60.3  | 10 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -137.5 | 35.4  | 8  |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Typic Gelorthents (poorly developed with permafrost below 1 m) and Typic Cryorthents (poorly developed soils, lacking permafrost). Less common soil types include Oxyaquic Gelorthents (wet, saturated early in growing season, poorly developed with permafrost below 1 m) and Typic Gelifluvents (poorly developed with buried organic horizons, permafrost below 1 m). This ecotype and associated soils are part of the Riverine Gravelly-loamy Forests soil landscape. Other ecotypes found in this soil landscape include Riverine White Spruce–Poplar Forest, Riverine White Spruce–Willow Forest, and Riverine White Spruce–Alder Forest.

# **Riverine Wet Sedge Meadow**



# Geomorphology:

Riverine Wet Sedge Meadow occurs in inactive or abandoned channels that were initially shallow or have infilled. These include meander coarse abandoned channel deposits and meander inactive overbank deposits along rivers, particularly in the treeless regions of ARCN. Macrotopography includes channels, swales, flood basins, and interfluves.

#### Plant Association:

Carex aquatilis-Eriophorum angustifolium

Sedges are the dominant life form in Riverine Wet Sedge Meadow, with grasses and forbs always comprising a minor component (Table 92). Deciduous shrubs are always present although in low quantities. Common species include *Salix planifolia* ssp. *pulchra* (syn: *S. pulchra*), *Polemonium acutiflorum*, *Saxifraga hirculus*, *Calamagrostis canadensis*, and *Carex saxatilis*.

This ecotype is similar to Riverine Forb Marsh, which has deeper water, is forb instead of sedge-dominated, and has a boreal distribution versus an arctic distribution. Riverine Wet Sedge Meadow occurred in patches too small to be mapped.

Table 92. Vegetation cover and frequency for Riverine Wet Sedge Meadow (n=3).

|                                                  |              |             | F.,,       |
|--------------------------------------------------|--------------|-------------|------------|
| -                                                | Cove         |             | Freq       |
|                                                  | Mean         | SD          | <u>%</u>   |
| Total Live Cover                                 | 88.5<br>78.4 | 23.0        | 100<br>100 |
| Total Vascular Cover                             | 78.4<br>0.0  | 24.9<br>0.1 | 33         |
| Total Evergreen Shrub Cover                      | <0.1         | 0.1         | 33         |
| Andromeda polifolia                              | <0.1<br>1.9  | 2.8         | 33<br>100  |
| Total Deciduous Shrub Cover                      | <0.1         | 2.8<br>0.1  | 33         |
| Arctostaphylos rubra                             | <0.1         | 0.1         | 33         |
| Potentilla fruticosa                             | <0.1         | 0.1         | 33         |
| Salix lanata ssp. richardsonii                   | 1.7          | 2.9         | 33         |
| Salix ovalifolia                                 | 0.1          | 0.1         | 55<br>67   |
| Salix planifolia ssp. pulchra                    | <0.1         | 0.1         | 33         |
| Salix reticulata                                 | <0.1         | 0.1         | 33         |
| Vaccinium uliginosum                             | 10.2         | 8.4         | 100        |
| Total Forb Cover                                 | 0.3          | 0.6         | 33         |
| Aconitum delphinifolium                          | <0.1         | 0.0         | 33         |
| Caltha palustris                                 | <0.1         | 0.1         | 33         |
| Cardamine sp.                                    | 0.3          | 0.1         | 33         |
| Chrysosplenium tetrandrum                        | 0.5<br><0.1  | 0.6         | 33         |
| Epilobium palustre                               | <0.1         | 0.1         | 33         |
| Equisetum arvense                                | 2.7          | 4.6         | 33         |
| Galium trifidum ssp. trifidum                    | <0.1         | 0.1         | 33         |
| Iris setosa                                      | <0.1         | 0.1         | 33         |
| Melandrium apetalum                              | <0.1         | 0.1         | 33         |
| Parnassia kotzebuei<br>Pedicularis sudetica ssp. | <0.1         | 0.1         | 33         |
| albolabiata                                      | <0.1         | 0.1         | 33         |
| Petasites frigidus                               | 1.7          | 2.9         | 33         |
| Polemonium acutiflorum                           | 0.4          | 0.6         | 67         |
| Polygonum viviparum                              | <0.1         | 0.1         | 33         |
| Potentilla palustris                             | 1.3          | 2.3         | 33         |
| Rorippa islandica ssp. fernaldiana               | 0.3          | 0.6         | 33         |
| Rubus arcticus                                   | <0.1         | 0.1         | 33         |
| Rumex arcticus                                   | 0.7          | 1.2         | 33         |
| Saxifraga cernua                                 | 0.7          | 1.2         | 33         |
| Saxifraga hirculus                               | 0.4          | 0.6         | 67         |
| Sparganium hyperboreum                           | <0.1         | 0.1         | 33         |
| Stellaria crassifolia                            | <0.1         | 0.1         | 33         |
| Stellaria longipes                               | <0.1         | 0.1         | 33         |
| Triglochin maritimum                             | <0.1         | 0.1         | 33         |
| Valeriana capitata                               | 1.0          | 1.7         | 33         |
| Total Grass Cover                                | 3.4          | 4.1         | 100        |
| Calamagrostis canadensis                         | 0.4          | 0.6         | 67         |
| Dupontia fischeri                                | 0.7          | 1.2         | 33         |
| Glyceria pulchella                               | 0.7          | 1.2         | 33         |
| Poa alpigena                                     | 1.7          | 2.9         | 33         |
| Poa arctica                                      | <0.1         | 0.1         | 33         |
| Total Sedge & Rush Cover                         | 62.9         | 31.7        | 100        |
| Carex aquatilis ssp. aquatilis                   | 6.0          | 5.3         | 67         |
| Carex arcta                                      | 10.0         | 17.3        | 33         |
| Carex capitata                                   | <0.1         | 0.1         | 33         |
| Carex garberi ssp. bifaria                       | <0.1         | 0.1         | 33         |
| Carex krausei                                    | <0.1         | 0.1         | 33         |
| Carex maritima                                   | <0.1         | 0.1         | 33         |
| Carex rostrata                                   | 16.7         | 28.9        | 33         |
| Carex saxatilis                                  | 10.0         | 10.0        | 67         |
| Carex vaginata                                   | <0.1         | 0.1         | 33         |
| Eriophorum angustifolium                         | 20.0         | 20.0        | 67         |

Table 92. Continued.

|                          | Cove | Cover |     |
|--------------------------|------|-------|-----|
|                          | Mean | SD    | %   |
| Kobresia simpliciuscula  | <0.1 | 0.1   | 33  |
| Trichophorum caespitosum | <0.1 | 0.1   | 33  |
| Total Nonvascular Cover  | 10.0 | 13.3  | 67  |
| Total Moss Cover         | 10.0 | 13.3  | 67  |
| Brachythecium sp.        | 1.7  | 2.9   | 67  |
| Scorpidium scorpioides   | 8.3  | 14.4  | 33  |
| Total Bare Ground        | 53.4 | 20.2  | 100 |
| Bare Soil                | 8.4  | 7.6   | 100 |
| Water                    | 8.4  | 14.4  | 67  |
| Litter alone             | 36.7 | 12.6  | 100 |

#### Soils:



Soils are typically loamy with a thin to moderately thick surface organic horizon (Table 93). Thaw depths could not be determined as the depth to permafrost, if present, was always greater than the maximum depth sampled (1.3 m). Organic horizons, buried during flooding by riverine silts and sands, commonly occur in these soils. Frost boils, surface fragments, and loess caps are absent. Soil pH is circumneutral to acidic, and EC is generally low, except along coastal rivers where it may be moderately high. The soils are typically very poorly to moderately well drained, and the water table occurs at shallow depths or above ground.

Table 93. Soil characteristics for Riverine Wet Sedge Meadow.

| Mean  | SD                                                           | n                                                                                  |
|-------|--------------------------------------------------------------|------------------------------------------------------------------------------------|
| 90.7  | 135.8                                                        | 3                                                                                  |
|       |                                                              | 0                                                                                  |
| 9.7   | 10.7                                                         | 3                                                                                  |
| 14.0  | 8.0                                                          | 3                                                                                  |
|       |                                                              | 0                                                                                  |
| 145.7 | 94.1                                                         | 3                                                                                  |
|       |                                                              | 0                                                                                  |
|       |                                                              | 0                                                                                  |
| 30.0  |                                                              | 1                                                                                  |
| 6.5   | 1.4                                                          | 3                                                                                  |
| 450.0 | 566.7                                                        | 3                                                                                  |
| -7.0  | 8.5                                                          | 2                                                                                  |
|       | 90.7<br>9.7<br>14.0<br>145.7<br>30.0<br>6.5<br>450.0<br>-7.0 | 90.7 135.8<br>9.7 10.7<br>14.0 8.0<br>145.7 94.1<br>30.0<br>6.5 1.4<br>450.0 566.7 |

 ${}^{\mathrm{a}}\mathrm{Measurements} > 1$  m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Typic Gelaquents (wet, poorly developed with permafrost below 1 m) and Oxyaquic Cryofluvents (wet, saturated early in growing season, poorly developed with thin buried horizons, lacking permafrost). A less common soil type is Fluvaquentic Aquorthels (wet, mineral soil with thin buried horizons, permafrost within 1 m). This ecotype and associated soils are part of the Riverine Loamy Wet Meadows and Marshes soil landscape. Also included in this soil landscape is Riverine Forb Marsh.

### **Riverine Wet Willow Tall Shrub**



# Geomorphology:

This ecotype occurs along drainages and channels on meander fine inactive channel deposits, lowland headwater floodplains and overbank deposits, and moderately steep headwater floodplains. Surfaces are usually flat and it occurs at <300 m elevation, mainly in the boreal zone in GAAR and KOVA.

#### Plant Association:

Salix planifolia ssp. pulchra-Potentilla palustris
Tall (>1.5 m) deciduous shrubs, mainly S.
planifolia spp. pulchra (syn: S. pulchra), dominate this
ecotype with a strong component of low shrubs, forbs,
grasses and mosses (Table 94). Sedge cover is variable.
This ecotype contains a mix of species that grow in
water-logged soils with those that grow on raised
micro-sites. Common species include Vaccinium
uliginosum, Equisetum arvense, Carex aquatilis, Carex
canescens, and Sanionia uncinata.

This ecotype varies from two willow dominated riverine ecotypes, Riverine Moist Tall Willow Shrub and Riverine Willow Low Shrub, in species assemblages. It also has higher soil moisture and a lower disturbance rate than Riverine Moist Willow Tall Shrub, and a boreal distribution versus an arctic or mountain headwater stream distribution like Riverine Willow Low Shrub. Due to spectral similarities, this ecotype was mapped with Riverine Moist Willow Tall Shrub.

Table 94. Vegetation cover and frequency for Riverine Wet Willow Tall Shrub (n=6).

|                                                   | Cover                |                | · ,             |
|---------------------------------------------------|----------------------|----------------|-----------------|
|                                                   |                      |                | Freq            |
| Total Live Cover                                  | <b>Mean</b><br>181.2 | <b>SD</b> 35.6 | <b>%</b><br>100 |
| Total Live Cover Total Vascular Cover             | 122.7                | 22.0           | 100             |
| Total Evergreen Tree                              | 122.7                | 22.0           | 100             |
| Cover                                             | 0.1                  | 0.1            | 67              |
| Picea glauca                                      | 0.1                  | 0.1            | 67              |
| Total Evergreen Shrub                             |                      |                |                 |
| Cover                                             | 0.0                  | 0.1            | 17              |
| Andromeda polifolia                               | <0.1                 | <0.1           | 17              |
| Vaccinium vitis-idaea                             | <0.1                 | <0.1           | 17              |
| Total Deciduous Shrub<br>Cover                    | 76.1                 | 37.8           | 100             |
| Alnus crispa                                      | 2.3                  | 3.9            | 50              |
| Betula glandulosa                                 | <0.1                 | <0.1           | 17              |
| Betula nana                                       | 1.2                  | 2.9            | 17              |
| Myrica gale                                       | 0.3                  | 0.8            | 17              |
| Potentilla fruticosa                              | 0.7                  | 1.6            | 17              |
| Salix alaxensis                                   | 5.5                  | 12.1           | 33              |
| Salix arbusculoides                               | 2.3                  | 3.0            | 50              |
| Salix bebbiana                                    | <0.1                 | <0.1           | 17              |
| Salix fuscescens                                  | 2.5                  | 6.1            | 33              |
| Salix glauca                                      | <0.1                 | <0.1           | 17              |
| Salix hastata                                     | 1.7                  | 4.1            | 33              |
| Salix lanata ssp.                                 |                      |                |                 |
| richardsonii                                      | 4.2                  | 10.2           | 17              |
| Salix planifolia ssp. pulchra                     | 51.3                 | 33.0           | 100             |
| Spiraea beauverdiana                              | 0.2                  | 0.4            | 33              |
| Vaccinium uliginosum                              | 3.9<br>27.1          | 4.9            | 67<br>100       |
| Total Forb Cover  Anemone richardsonii            | 1.3                  | 15.4<br>3.3    | 100<br>17       |
| Calla palustris                                   | <0.1                 | <0.1           | 17              |
| Cicuta mackenzieana                               | <0.1                 | <0.1           | 17              |
| Epilobium angustifolium                           | <0.1                 | <0.1           | 17              |
| Epilobium palustre                                | 1.0                  | 1.5            | 50              |
| Equisetum arvense                                 | 2.8                  | 2.8            | 67              |
| Equisetum fluviatile                              | 1.9                  | 4.0            | 50              |
| Equisetum palustre                                | 1.7                  | 4.1            | 17              |
| Galium trifidum ssp.                              |                      |                |                 |
| trifidum                                          | <0.1                 | <0.1           | 17              |
| Lycopodium annotinum                              | <0.1                 | <0.1           | 17              |
| Parnassia palustris                               | <0.1                 | <0.1           | 17              |
| <i>Pedicularis</i> sp.                            | <0.1                 | <0.1           | 17              |
| Potentilla palustris                              | 10.8                 | 13.8           | 83              |
| Pyrola asarifolia                                 | <0.1                 | <0.1           | 17              |
| Pyrola sp.                                        | <0.1                 | <0.1           | 17<br>17        |
| Ranunculus gmelini                                | <0.1<br><0.1         | <0.1<br><0.1   | 17<br>17        |
| Ranunculus lapponicus                             | 2.0                  | 4.0            | 50              |
| Rubus arcticus                                    | 1.0                  | 2.4            | 17              |
| Rubus arcticus ssp. arcticus<br>Rubus chamaemorus | 0.2                  | 0.4            | 17              |
| Rumex arcticus                                    | 2.5                  | 6.1            | 17              |
| Stellaria crassifolia                             | <0.1                 | <0.1           | 17              |
| Stellaria longifolia                              | 0.2                  | 0.4            | 17              |
| Viola epipsila ssp. repens                        | 0.5                  | 1.2            | 17              |
| Viola sp.                                         | 1.0                  | 1.5            | 33              |
| Total Grass Cover                                 | 7.3                  | 3.3            | 100             |
| Arctagrostis latifolia                            | 2.0                  | 4.0            | 33              |
| Calamagrostis canadensis                          | 4.8                  | 4.2            | 83              |
|                                                   |                      |                |                 |

Table 94. Continued.

|                                  | Cov         | er          | Freq     |
|----------------------------------|-------------|-------------|----------|
|                                  | Mean        | SD          | %        |
| Calamagrostis inexpansa          | 0.5         | 1.2         | 17       |
| Poa alpigena                     | <0.1        | <0.1        | 17       |
| Total Sedge & Rush               |             |             |          |
| Cover                            | 12.1        | 15.7        | 83       |
| Carex aquatilis ssp.             | 3.0         | 3.8         | 67       |
| aquatilis                        | 1.0         | 2.0         | 67       |
| Carex canescens<br>Carex diandra | 1.7         | 4.1         | 17       |
| Carex diandra<br>Carex media     | 0.5         | 1.2         | 17       |
|                                  | 3.3         | 6.1         | 33       |
| Carex saxatilis                  | 3.3<br><0.1 | <0.1        | 33<br>17 |
| Carex sp.                        | 1.7         | 4.1         | 17       |
| Carex utriculata                 | <0.1        | 4.1<br><0.1 |          |
| Eriophorum angustifolium         | <0.1        | <0.1        | 17       |
| Eriophorum<br>brachyantherum     | 0.8         | 2.0         | 17       |
| Total Nonvascular                | 0.0         | 2.0         | .,       |
| Cover                            | 58.5        | 23.8        | 100      |
| Total Moss Cover                 | 58.4        | 23.8        | 100      |
| Brachythecium nelsonii           | 6.7         | 16.3        | 17       |
| Calliergon cordifolium           | 1.0         | 2.4         | 17       |
| Calliergon sp.                   | 10.8        | 17.4        | 33       |
| Calliergon stramineum            | 3.3         | 8.2         | 17       |
| Climacium dendroides             | <0.1        | <0.1        | 17       |
| Drepanocladus sp.                | 1.3         | 3.3         | 17       |
| Hypnum dieckei                   | 10.8        | 26.5        | 17       |
| Paludella squarrosa              | 4.2         | 10.2        | 17       |
| Plagiomnium ellipticum           | 2.7         | 6.5         | 17       |
| Pleurozium schreberi             | 0.8         | 2.0         | 17       |
| Polytrichum sp.                  | <0.1        | <0.1        | 17       |
| Sanionia uncinata                | 6.3         | 8.0         | 50       |
| Sphagnum sp.                     | 1.2         | 2.8         | 33       |
| Sphagnum warnstorfii             | 0.8         | 2.0         | 17       |
| Unknown moss                     | 8.3         | 7.6         | 83       |
| Total Lichen Cover               | 0.1         | 0.1         | 50       |
| Cladonia sp.                     | <0.1        | <0.1        | 17       |
| Peltigera aphthosa               | <0.1        | 0.1         | 33       |
| Peltigera sp.                    | <0.1        | <0.1        | 17       |
| Total Bare Ground                | 5.7         | 5.1         | 83       |
| Bare Soil                        | 0.7         | 1.2         | 67       |
| Water                            | 1.8         | 2.7         | 50       |
| Litter alone                     | 3.2         | 2.6         | 83       |

### Soils:

Soils are loamy with a thin organic horizon above the mineral soil surface (Table 95). Permafrost is occasionally found in the upper meter of the soil profile, however permafrost is often difficult to determine due to the rocky soils, and it is assumed in these cases to be greater than 1 m given the well drained soils and immediate adjacency of flowing water. Frost boils, loess caps, and surface fragments are absent. Organic horizons, buried during flooding by riverine silts and sands, were commonly found in



these soils. Soil pH is acidic to circumneutral, and EC is low. The soils are typically moderately well to very poorly drained, and the water table is shallow to moderately deep.

Table 95. Soil characteristics for Riverine Wet Willow Tall Shrub.

| Property                                   | Mean  | SD   | n |
|--------------------------------------------|-------|------|---|
| Elevation (m)                              | 204.5 | 68.9 | 6 |
| Slope (degrees)                            | 2.0   | 1.0  | 3 |
| Surface Organics Depth(cm)                 | 5.3   | 4.1  | 6 |
| Cumulative Org. in 40 cm (cm)              | 8.5   | 3.6  | 6 |
| Loess Cap Thickness (cm)                   |       |      | 0 |
| Depth to Rocks (cm)                        | 97.2  | 76.3 | 4 |
| Surface Fragment Cover (%)                 |       |      | 0 |
| Frost Boil Cover (%)                       |       |      | 0 |
| Thaw Depth (cm)                            | 62.0  | 4.2  | 2 |
| Site pH at 10-cm depth                     | 6.4   | 8.0  | 5 |
| Site EC at 10-cm depth (µS/cm)             | 70.0  | 30.8 | 5 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -24.2 | 25.0 | 5 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroup in this ecotype is Fluvaquentic Aquorthels (wet, saturated within 50 cm, mineral soil with thin buried horizons, permafrost within 1 m). A less common soil subgroup is Typic Aquorthels (wet, mineral soil over permafrost lacking cryoturbation). This ecotype and associated soils are part of the Riverine Loamy Meadows and Shrublands soil landscape. Other ecotypes found in this soil landscape include Riverine Alder Tall Shrub, Riverine Birch–Willow Low Shrub, and Riverine Bluejoint Meadow.

## **Riverine White Spruce-Alder Forest**



# Geomorphology:

This ecotype consists of mature white spruce stands with alder characterizing the understory, a legacy from an earlier successional stage. It occurs on inactive and abandoned meander overbank deposits, moderately steep headwater floodplains and alluvial fan coarse inactive channels. It is widespread in riverine corridors in the boreal zone of KOVA and GAAR.

#### Plant Association:

Picea glauca–Alnus crispa–Calamagrostis canadensis
All life forms are represented in Riverine White
Spruce–Alder Forest, although it is not particularly
diverse (Table 96). Evergreen trees and tall deciduous
shrubs are co-dominant. Moss cover is typically high.
Common species include Linnaea borealis, Vaccinium
vitis-idaea, Arctostaphylos rubra (syn: Arctous rubra),
Rosa acicularis, Boschniakia rossica, Hylocomium
splendens and Peltigera aphthosa.

This ecotype is most similar to Riverine White Spruce–Willow Forest except spruce trees are co-dominant with *Salix lanata* ssp. *richardsonii* (syn: *S. richardsonii*) instead of *Alnus crispa* (syn: *A. viridis* ssp. *fruticosa*). Due to spectral similarities, it was mapped as Riverine White Spruce–Willow Forest.

## Soils:

Soils are typically gravelly, loamy, or sandy with a thin surface organic horizon (Table 97). Permafrost is often found in the upper meter of the soil profile, however permafrost was sometimes difficult to determine due to the rocky soils, and it was assumed in these cases to be present in the upper 2 m of the soil profile. Frost boils, surface fragments, and loess caps are absent. Organic horizons, buried during flooding by riverine silts and sands, often occur in these soils. Soil pH is acidic to circumneutral, and EC is low. The soils are well drained to moderately well drained.

Table 96. Vegetation cover and frequency for Riverine White Spruce–Alder Forest (n=8).

|                                          | Cov         | er           | Freq     |  |
|------------------------------------------|-------------|--------------|----------|--|
|                                          | Mean        | SD           | %        |  |
| Total Live Cover                         | 223.5       | 61.9         | 100      |  |
| Total Vascular Cover                     | 153.2       | 51.6         | 100      |  |
| Total Evergreen Tree Cover               | 26.6        | 8.7          | 100      |  |
| Picea glauca                             | 26.6        | 8.7          | 100      |  |
| Total Evergreen Shrub                    |             |              |          |  |
| Cover                                    | 14.0        | 14.0         | 100      |  |
| Andromeda polifolia                      | 0.4         | 1.1          | 12       |  |
| Empetrum nigrum                          | 1.9         | 3.7          | 25       |  |
| Ledum decumbens                          | 3.8         | 8.8          | 25       |  |
| Linnaea borealis                         | 4.6         | 7.1          | 62       |  |
| Vaccinium vitis-idaea                    | 3.4         | 4.4          | 75       |  |
| Total Deciduous Tree                     | 4.4         | 1.0          | 20       |  |
| Cover                                    | 1.1         | 1.9          | 38       |  |
| Betula papyrifera                        | 0.1         | 0.4          | 12       |  |
| Populus balsamifera                      | 1.0         | 1.9          | 25       |  |
| Total Deciduous Shrub<br>Cover           | 84.0        | 46.2         | 100      |  |
| Alnus crispa                             | 39.4        | 24.6         | 88       |  |
| Alnus trispa<br>Alnus tenuifolia         | 0.2         | 0.7          | 12       |  |
|                                          | 3.8         | 5.8          | 62       |  |
| Arctostaphylos rubra                     | 3.8<br>1.9  | 5.8<br>5.3   | 12       |  |
| Betula glandulosa<br>Betula occidentalis | 0.1         | 0.4          | 12       |  |
| Potentilla fruticosa                     | 0.1         | 0.4          | 12       |  |
|                                          | 1.0         | 2.4          | 38       |  |
| Ribes triste                             | 8.1         | 8.3          | 88       |  |
| Rosa acicularis                          | 0.5         | 0.9          | 38       |  |
| Salix alaxensis                          | <0.1        |              | 30<br>12 |  |
| Salix arbusculoides                      | <0.1<br>4.4 | <0.1<br>12.4 | 12       |  |
| Salix barclayi                           |             | 12.4         | 12       |  |
| Salix bebbiana                           | 0.6<br>0.6  | 1.8          | 25       |  |
| Salix glauca                             |             |              |          |  |
| Salix hastata                            | <0.1        | <0.1         | 12       |  |
| Salix planifolia ssp. pulchra            | <0.1        | <0.1         | 12       |  |
| Salix reticulata                         | 0.1         | 0.4          | 12       |  |
| Salix scouleriana                        | 1.2         | 3.5          | 12       |  |
| Shepherdia canadensis                    | 0.1         | 0.4          | 25       |  |
| Spiraea beauverdiana                     | 6.2         | 12.7         | 25       |  |
| Vaccinium uliginosum                     | 12.8        | 22.5         | 62       |  |
| Viburnum edule                           | 2.5         | 7.1          | 12       |  |
| Total Forb Cover                         | 24.1        | 21.0         | 100      |  |
| Aconitum delphinifolium                  | <0.1        | <0.1         | 25       |  |
| Anemone richardsonii                     | 1.4         | 3.5          | 50       |  |
| Artemisia tilesii                        | 0.2         | 0.3          | 50       |  |
| Aster sibiricus                          | 0.4         | 1.1          | 12       |  |
| Astragalus alpinus                       | 0.4         | 1.1          | 25       |  |
| Boschniakia rossica                      | 0.1         | 0.1          | 62       |  |
| Cardamine sp.                            | <0.1        | <0.1         | 12       |  |
| Corallorrhiza trifida                    | <0.1        | <0.1         | 12       |  |
| Dryopteris dilatata ssp.                 | -0.1        | ۰0 1         | 12       |  |
| americana                                | <0.1        | <0.1         | 12       |  |
| Epilobium angustifolium                  | <0.1        | <0.1         | 12       |  |
| Equisetum arvense                        | 1.6         | 2.4          | 50       |  |
| Equisetum pratense                       | 7.1         | 19.4         | 38       |  |
| Galium boreale                           | 0.2         | 0.7          | 12       |  |
| Geocaulon lividum                        | 0.4         | 1.1          | 12       |  |
| Hedysarum alpinum                        | 0.1         | 0.4          | 25       |  |
| Iris setosa                              | <0.1        | <0.1         | 12       |  |
| Listera borealis                         | <0.1        | <0.1         | 25       |  |

Table 96. Continued.

|                                     | Cover |       | Freq     |
|-------------------------------------|-------|-------|----------|
|                                     | Mean  | SD    | %        |
| Lupinus arcticus                    | <0.1  | 0.1   | 38       |
| Lycopodium annotinum                | 2.5   | 4.6   | 25       |
| Mertensia paniculata                | 0.3   | 0.5   | 38       |
| Moneses uniflora                    | 0.3   | 0.5   | 38       |
| Oxyria digyna                       | <0.1  | <0.1  | 12       |
| Petasites frigidus                  | <0.1  | <0.1  | 12       |
| Platanthera obtusata                | 0.1   | 0.3   | 38       |
| Pyrola asarifolia                   | 5.9   | 12.1  | 50       |
| Pyrola grandiflora                  | 0.1   | 0.4   | 12       |
| Pyrola secunda                      | 0.1   | 0.3   | 38       |
| Ranunculus lapponicus               | 0.1   | 0.4   | 12       |
| Rubus arcticus                      | 0.4   | 0.7   | 25       |
| Rubus arcticus ssp. arcticus        | 0.8   | 1.8   | 25       |
| Rubus chamaemorus                   | 1.2   | 3.5   | 12       |
| Saxifraga punctata                  | <0.1  | <0.1  | 12       |
| Sedum rosea ssp.                    | 0.4   | 0.4   | 42       |
| integrifolium                       | <0.1  | <0.1  | 12       |
| Solidago sp.                        | <0.1  | <0.1  | 12       |
| Stellaria sp.                       | <0.1  | <0.1  | 12       |
| Trientalis europaea ssp.<br>arctica | 0.1   | 0.4   | 12       |
| Viola epipsila ssp. repens          | <0.1  | <0.1  | 12       |
| Total Grass Cover                   | 2.8   | 5.2   | 75       |
| Calamagrostis canadensis            | 2.8   | 5.2   | 75<br>75 |
| Trisetum spicatum ssp.              | 2.0   | 3.2   | , ,      |
| spicatum                            | <0.1  | <0.1  | 12       |
| Total Sedge & Rush Cover            | 0.5   | 1.1   | 38       |
| Carex concinna                      | 0.2   | 0.5   | 25       |
| Carex livida                        | 0.2   | 0.7   | 12       |
| Carex sp.                           | <0.1  | <0.1  | 12       |
| Total Nonvascular Cover             | 70.3  | 24.5  | 100      |
| Total Moss Cover                    | 69.6  | 24.1  | 100      |
| Aulacomnium palustre                | 2.0   | 5.3   | 38       |
| Brachythecium salebrosum            | 3.1   | 8.8   | 12       |
| Dicranum sp.                        | 1.6   | 2.1   | 62       |
| Hylocomium splendens                | 51.9  | 25.9  | 100      |
| Pleurozium schreberi                | 1.8   | 3.1   | 38       |
| Polytrichum juniperinum             | 0.1   | 0.4   | 25       |
| Polytrichum sp.                     | 1.8   | 2.2   | 50       |
| Polytrichum strictum                | <0.1  | <0.1  | 12       |
| Ptilidium ciliare                   | <0.1  | <0.1  | 12       |
| Ptilium crista-castrensis           | 0.9   | 1.4   | 50       |
| Rhytidiadelphus triquetrus          | 2.6   | 7.0   | 38       |
| Sanionia uncinata                   | 2.0   | 3.7   | 50       |
| Sphagnum sp.                        | 1.0   | 2.4   | 25       |
| Thuidium sp.                        | 0.1   | 0.4   | 12       |
| Unknown moss                        | 0.6   | 1.8   | 12       |
| Total Lichen Cover                  | 0.7   | 0.9   | 88       |
| Cladina sp.                         | <0.1  | <0.1  | 12       |
| Cladonia sp.                        | 0.2   | 0.3   | 75       |
| Hypogymnia physodes                 | 0.1   | 0.4   | 12       |
| Peltigera aphthosa                  | 0.2   | 0.3   | 75       |
| Peltigera sp.                       | <0.1  | <0.1  | 25       |
| Rhizocarpon sp.                     | 0.1   | 0.4   | 12       |
| Usnea sp.                           | <0.1  | <0.1  | 12       |
| Total Bare Ground                   | 128.2 | 351.9 | 100      |
| Bare Soil                           | 0.1   | 0.1   | 62       |
| Litter alone                        | 128.1 | 351.9 | 100      |



Depth to water table often could not be measured but it is assumed to fluctuate throughout the year within the upper 2 m of the soil profile given the immediate adjacency to river water.

Table 97. Soil characteristics for Riverine White Spruce–Alder Forest.

| Property                                   | Mean  | SD    | n |
|--------------------------------------------|-------|-------|---|
| Elevation (m)                              | 192.8 | 161.8 | 8 |
| Slope (degrees)                            | 1.7   | 1.2   | 3 |
| Surface Organics Depth(cm)                 | 6.4   | 4.9   | 8 |
| Cumulative Org. in 40 cm (cm)              | 11.4  | 8.1   | 8 |
| Loess Cap Thickness (cm)                   |       |       | 0 |
| Depth to Rocks (cm)                        | 21.7  | 15.1  | 3 |
| Surface Fragment Cover (%)                 | 0.1   |       | 1 |
| Frost Boil Cover (%)                       |       |       | 0 |
| Thaw Depth (cm)                            | 57.2  | 8.4   | 4 |
| Site pH at 10-cm depth                     | 5.7   | 1.4   | 7 |
| Site EC at 10-cm depth (μS/cm)             | 57.1  | 26.9  | 7 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -48.5 | 20.7  | 4 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Typic Gelifluvents (poorly developed with buried organic horizons, permafrost below 1 m) and Fluventic Historthels (wet, organic rich soil with buried organic horizons over permafrost, lacking cryoturbation). A less common soil type is Typic Aquorthels (wet, mineral soil over permafrost lacking cryoturbation). This ecotype and associated soils are part of the Riverine Gravelly-loamy Forests soil landscape. Other ecotypes found in this soil landscape include Riverine Poplar Forest, Riverine White Spruce–Poplar Forest, and Riverine White Spruce–Willow Forest.

# **Riverine White Spruce-Poplar Forest**



Geomorphology:

This is a mid-successional ecotype that occurs along rivers throughout GAAR, KOVA and NOAT. It occurs on braided and meander inactive overbank deposits, braided coarse inactive channel deposits, and eolian inactive sand dunes. It most commonly is found under 450 m elevation.

#### Plant Association:

Populus balsamifera-Picea glauca-Salix alaxensis

A mix of evergreen and deciduous trees characterizes this ecotype (Table 98). Deciduous shrubs, forbs and mosses are prevalent in the understory. Common species include *Shepherdia canadensis*, *Moneses uniflora*, *Pyrola secunda*, *Hylocomium splendens*, and *Sanionia uncinata*.

Riverine White Spruce–Poplar Forest is most similar to Riverine Poplar Forest although it is an older successional stage and spruce trees are co-dominant.

## Soils:



Table 98. Vegetation cover and frequency for Riverine White Spruce–Poplar Forest (n=11)

|                                               | Cover                |                | Ero~            |
|-----------------------------------------------|----------------------|----------------|-----------------|
|                                               |                      |                | Freq<br>%       |
| Total Live Cover                              | <b>Mean</b><br>170.3 | <b>SD</b> 47.8 | <u>%</u><br>100 |
| Total Live Cover                              | 170.3                | 50.0           | 100             |
| Total Evergreen Tree                          | 115.0                | 30.0           | 100             |
| Cover                                         | 22.8                 | 10.7           | 100             |
| Picea glauca                                  | 22.8                 | 10.7           | 100             |
| Total Evergreen Shrub                         |                      |                |                 |
| Cover                                         | 3.5                  | 5.6            | 45              |
| Dryas integrifolia                            | 0.1                  | 0.3            | 9               |
| Dryas octopetala                              | <0.1<br>1.2          | <0.1           | 18              |
| Empetrum nigrum                               | 1.6                  | 2.4<br>4.5     | 27              |
| Juniperus communis                            | 0.2                  | 0.4            | 18<br>27        |
| Linnaea borealis<br>Vaccinium vitis-idaea     | 0.2                  | 0.4            | 27<br>18        |
| Total Deciduous Tree                          | 0.4                  | 0.5            | 10              |
| Cover                                         | 19.0                 | 9.6            | 100             |
| Populus balsamifera                           | 19.0                 | 9.6            | 100             |
| <b>Total Deciduous Shrub</b>                  |                      |                |                 |
| Cover                                         | 37.9                 | 16.2           | 100             |
| Alnus crispa                                  | 16.0                 | 21.0           | 55              |
| Arctostaphylos rubra                          | 4.1                  | 7.2            | 82              |
| Potentilla fruticosa                          | 0.2<br>0.3           | 0.6<br>0.9     | 36              |
| Rosa acicularis                               | 0.3<br>5.8           | 2.8            | 45              |
| Salix alaxensis                               | 5.8<br>1.1           | 2.6            | 100             |
| Salix arbusculoides<br>Salix brachycarpa ssp. | 1.1                  | 2.5            | 36              |
| niphoclada                                    | 0.7                  | 2.4            | 9               |
| ,<br>Salix glauca                             | 3.3                  | 9.0            | 27              |
| Salix hastata                                 | 0.5                  | 1.5            | 9               |
| Salix lanata ssp.                             |                      |                |                 |
| richardsonii                                  | 0.4                  | 1.2            | 18              |
| Salix monticola                               | 0.9                  | 2.0            | 18              |
| Shepherdia canadensis                         | 4.2                  | 5.2            | 82              |
| Vaccinium uliginosum                          | 0.4<br>34.3          | 0.9<br>37.5    | 27              |
| Total Forb Cover                              | 34.3<br>0.1          | 0.3            | 100<br>64       |
| Anemone parviflora<br>Anemone richardsonii    | 0.1                  | 3.0            | 18              |
| Arnica alpina ssp.                            | 0.5                  | 5.0            | 10              |
| angustifolia                                  | 0.3                  | 0.9            | 18              |
| Artemisia tilesii                             | <0.1                 | 0.1            | 45              |
| Aster sibiricus                               | 0.4                  | 0.9            | 55              |
| Boschniakia rossica                           | <0.1                 | <0.1           | 27              |
| Castilleja caudata                            | <0.1                 | <0.1           | 18              |
| Cypripedium passerinum                        | 0.6                  | 1.5            | 27              |
| Epilobium angustifolium                       | <0.1                 | <0.1           | 18              |
| Equisetum arvense                             | 10.9                 | 24.3           | 45              |
| Equisetum pratense                            | 10.9                 | 27.7           | 18              |
| Equisetum scirpoides                          | <0.1                 | <0.1           | 27              |
| Equisetum variegatum                          | 0.5                  | 1.5            | 36              |
| Galium boreale                                | 0.1                  | 0.3            | 18              |
| Gentiana propinqua                            | <0.1<br>4.3          | 0.1<br>6.3     | 36              |
| Hedysarum maskanzii                           | 4.3<br><0.1          | 6.3<br><0.1    | 55<br>27        |
| Hedysarum mackenzii                           | <0.1<br><0.1         | <0.1<br>0.1    | 27<br>26        |
| Listera borealis<br>Lupinus arcticus          | 0.6                  | 1.2            | 36<br>27        |
| Mertensia paniculata                          | 0.6                  | 1.5            | 27<br>27        |
| Moneses uniflora                              | 0.4                  | 0.7            | 27<br>64        |
| Parnassia palustris                           | <0.1                 | 0.7            | 36              |
| Platanthera obtusata                          | 0.1                  | 0.1            | 64              |
| . Id.airtifera Obtasata                       | <b></b>              | <b>~</b>       | 0-7             |

Table 98. Continued.

|                                           | Cover        |              | Freq    |  |
|-------------------------------------------|--------------|--------------|---------|--|
|                                           | Mean         | SD           | %       |  |
| Polygonum viviparum                       | <0.1         | <0.1         | 27      |  |
| Pyrola asarifolia                         | 0.6          | 0.9          | 73      |  |
| Pyrola grandiflora                        | <0.1         | <0.1         | 18      |  |
| Pyrola secunda                            | 0.6          | 1.2          | 82      |  |
| Rubus arcticus                            | 1.9          | 4.5          | 36      |  |
| Senecio lugens                            | <0.1         | <0.1         | 18      |  |
| Solidago multiradiata                     | 0.1          | 0.3          | 9       |  |
| Valeriana capitata                        | <0.1         | <0.1         | 18      |  |
| Zygadenus elegans                         | <0.1         | <0.1         | 27      |  |
| Total Grass Cover                         | 1.8          | 2.6          | 91      |  |
| Arctagrostis latifolia                    | 0.4          | 0.9          | 18      |  |
| Bromus sp.                                | 0.8          | 1.8          | 36      |  |
| Calamagrostis canadensis                  | 0.2          | 0.4          | 45      |  |
| Calamagrostis<br>purpurascens             | <0.1         | <0.1         | 27      |  |
| Festuca altaica                           | 0.1          | 0.3          | 27      |  |
| Festuca richardsonii                      | 0.1          | 0.3          | 18      |  |
| Total Sedge & Rush                        |              |              |         |  |
| Cover                                     | 0.2          | 0.4          | 55      |  |
| Carex concinna                            | 0.2          | 0.4          | 55      |  |
| Total Nonvascular                         | 50.7         | 22.2         | 400     |  |
| Cover                                     | 50.7<br>44.7 | 22.3<br>21.4 | 100     |  |
| Total Moss Cover                          | 0.4          | 0.9          | 100     |  |
| Abietinella abietina<br>Brachythecium sp. | 0.4          | 0.3          | 27<br>9 |  |
| Ceratodon purpureus                       | 0.1          | 1.5          | 18      |  |
| Dicranum sp.                              | 0.3          | 0.6          | 36      |  |
| Hylocomium splendens                      | 28.1         | 21.1         | 91      |  |
| Hypnum lindbergii                         | 0.3          | 0.9          | 9       |  |
| Pleurozium schreberi                      | 1.8          | 4.6          | 27      |  |
| Polytrichum sp.                           | 0.1          | 0.3          | 9       |  |
| Polytrichum strictum                      | <0.1         | <0.1         | 18      |  |
| Rhytidiadelphus triquetrus                | 0.9          | 2.0          | 18      |  |
| Rhytidium rugosum                         | 2.1          | 6.9          | 9       |  |
| Sanionia uncinata                         | 9.0          | 10.7         | 82      |  |
| Tomentypnum nitens                        | 0.6          | 1.6          | 18      |  |
| Unknown fungus                            | <0.1         | <0.1         | 18      |  |
| Unknown moss                              | 0.5          | 1.5          | 9       |  |
| Total Lichen Cover                        | 6.0          | 14.5         | 91      |  |
| <i>Bryoria</i> sp.                        | <0.1         | <0.1         | 18      |  |
| Cetraria pinastri                         | <0.1         | <0.1         | 18      |  |
| Cladina sp.                               | 0.1          | 0.3          | 18      |  |
| Cladonia sp.                              | 0.2          | 0.6          | 55      |  |
| Cladonia symphycarpia                     | 0.5<br>0.2   | 1.5<br>0.6   | 9       |  |
| Dactylina ramulosa                        | 0.2          | 0.0          | 9<br>18 |  |
| Flavocetraria nivalis                     | <0.1         | <0.1         | 18      |  |
| Hypogymnia physodes<br>Hypogymnia sp.     | <0.1         | <0.1         | 18      |  |
| Leptogium sp.                             | <0.1         | <0.1         | 18      |  |
| Nephroma sp.                              | 0.3          | 0.9          | 9       |  |
| Parmelia sp.                              | <0.1         | <0.1         | 18      |  |
| Peltigera aphthosa                        | 0.3          | 0.5          | 55      |  |
| Peltigera canina                          | 0.4          | 1.2          | 27      |  |
| Peltigera leucophlebia                    | 0.2          | 0.6          | 9       |  |
| Peltigera rufescens                       | 0.3          | 0.9          | 18      |  |
| Stereocaulon alpinum                      | 3.1          | 9.0          | 18      |  |
| Vulpicida pinastri                        | <0.1         | <0.1         | 18      |  |
| <b>Total Bare Ground</b>                  | 8.7          | 8.7          | 91      |  |
| Bare Soil                                 | 1.2          | 3.0          | 45      |  |
| Litter alone                              | 7.5          | 7.8          | 91      |  |

Soils are typically loamy or sandy with a thin surface organic horizon (Table 99). Depth to permafrost is difficult to determine, however if permafrost does occur it is assumed to be greater than 1 m given the well drained soils and adjacency of flowing water. Frost boils and surface fragments are rare, and loess caps are absent. Organic horizons, buried during flooding by riverine silts and sands, sometimes occur in these soils. Soil pH is circumneutral to alkaline, and EC is low. The soils are typically somewhat excessively to moderately well drained. Depth to water table often could not be measured but it is assumed to fluctuate throughout the year within the upper 2 m of the soil profile given the proximity to river water.

Table 99. Soil characteristics for Riverine White Spruce–Poplar Forest.

| Property                                   | Mean   | SD    | n  |
|--------------------------------------------|--------|-------|----|
| Elevation (m)                              | 232.6  | 178.2 | 11 |
| Slope (degrees)                            | 24.0   |       | 1  |
| Surface Organics Depth(cm)                 | 3.5    | 2.3   | 10 |
| Cumulative Org. in 40 cm (cm)              | 6.4    | 2.8   | 10 |
| Loess Cap Thickness (cm)                   |        |       | 0  |
| Depth to Rocks (cm)                        | 97.6   | 87.2  | 8  |
| Surface Fragment Cover (%)                 | 8.0    | 9.9   | 2  |
| Frost Boil Cover (%)                       | 1.0    |       | 1  |
| Thaw Depth (cm)                            | 96.0   |       | 1  |
| Site pH at 10-cm depth                     | 7.5    | 0.6   | 10 |
| Site EC at 10-cm depth (µS/cm)             | 87.0   | 39.2  | 10 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -160.0 | 22.4  | 5  |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Typic Gelorthents (poorly developed with permafrost below 1 m) and Typic Cryorthents (poorly developed soils, lacking permafrost). Less common soil types include Typic Gelifluvents (poorly developed with buried organic horizons, permafrost below 1 m), Typic Cryopsamments (sandy, low coarse fragment content, well drained, lacking permafrost), and Typic Haplorthels (mineral soil over permafrost lacking cryoturbation). This ecotype and associated soils are part of the Riverine Gravelly-loamy Forests soil landscape. Other ecotypes found in this soil landscape include Riverine Poplar Forest, Riverine White Spruce–Willow Forest, and Riverine White Spruce–Alder Forest.

## **Riverine White Spruce-Willow Forest**



## Geomorphology:

Riverine White Spruce–Willow Forest occurs on braided and meander inactive overbank deposits, and meander fine inactive channel deposits. Surface forms include interfluves, flat banks or channels.

### Plant Association:

Picea glauca–Salix lanata ssp. richardsonii– Moneses uniflora

Spruce trees in these mature forests have open canopies, and the understory consists of mixed low and tall shrubs and forbs growing out of a thick carpet of feather mosses (Table 100). All life forms can be present. Common species include *Empetrum nigrum*, *Vaccinium vitis-idaea*, *Arctostaphylos rubra* (syn: *Arctous rubra*), *Salix reticulata*, *Equisetum arvense*, *Hylocomium splendens*, and *Tomentypnum nitens*.

This ecotype is most similar to Riverine White Spruce–Alder Shrub as previously discussed.

### Soils:

Soils are typically loamy or sandy with a thin surface organic horizon (Table 101). Depth to permafrost is difficult to determine, however if permafrost does occur it is assumed to be greater than 1 m given the well drained soils and immediate adjacency of flowing water. Frost boils, surface fragments, and loess caps are absent. Organic horizons, buried during flooding by riverine silts and sands, often occur in these soils. Soil pH is circumneutral to alkaline, and EC is low. The soils are typically well- to moderately-well drained. Depth to water table often could not be measured but it is assumed to fluctuate throughout the year within the upper 2 m of the soil profile given its adjacency to river water.

Table 100. Vegetation cover and frequency for Riverine White Spruce–Willow Forest (n=8).

| (11=6).                                   |              |              |            |  |
|-------------------------------------------|--------------|--------------|------------|--|
|                                           | Cover        |              | _ Freq     |  |
|                                           | Mean         | SD           | <u>%</u>   |  |
| Total Live Cover                          | 191.8        | 70.2         | 100        |  |
| Total Vascular Cover                      | 127.4        | 56.0<br>9.8  | 100        |  |
| Total Evergreen Tree Cover                | 24.5<br>24.5 | 9.8<br>9.8   | 100<br>100 |  |
| Picea glauca  Total Evergreen Shrub       | 24.5         | 9.0          | 100        |  |
| Cover                                     | 6.4          | 11.3         | 62         |  |
| Andromeda polifolia                       | 0.2          | 0.7          | 12         |  |
| Dryas integrifolia                        | 1.2          | 3.5          | 12         |  |
| Empetrum nigrum                           | 3.9          | 6.9          | 62         |  |
| Ledum decumbens                           | 0.2          | 0.7          | 12         |  |
| Vaccinium vitis-idaea                     | 0.8          | 1.7          | 50         |  |
| <b>Total Deciduous Tree</b>               |              |              |            |  |
| Cover                                     | 0.0          | 0.1          | 38         |  |
| Populus balsamifera                       | <0.1         | 0.1          | 38         |  |
| Total Deciduous Shrub                     | 74.2         | 20.1         | 100        |  |
| Cover                                     | 74.2<br>12.8 | 39.1<br>15.2 | 100<br>50  |  |
| Alnus crispa<br>Alnus tenuifolia          | 0.6          | 15.2         | 50<br>12   |  |
|                                           | 6.4          | 6.4          | 100        |  |
| Arctostaphylos rubra<br>Betula glandulosa | 3.1          | 7.0          | 25         |  |
| Potentilla fruticosa                      | 3.1          | 6.9          | 50         |  |
| Rosa acicularis                           | 3.5<br>1.9   | 5.3          | 25         |  |
| Salix alaxensis                           | 5.9          | 5.9          | 62         |  |
| Salix arbusculoides                       | 2.1          | 4.8          | 50         |  |
| Salix barclayi                            | 1.9          | 3.7          | 25         |  |
| Salix bebbiana                            | 1.9          | 3.7          | 25         |  |
| Salix glauca                              | 6.9          | 10.0         | 50         |  |
| Salix hastata                             | 0.1          | 0.4          | 25         |  |
| Salix lanata ssp. richardsonii            | 7.8          | 8.6          | 75         |  |
| Salix monticola                           | 0.2          | 0.7          | 12         |  |
| Salix planifolia ssp. pulchra             | 2.1          | 3.6          | 38         |  |
| Salix reticulata                          | 6.0          | 10.3         | 75         |  |
| Shepherdia canadensis                     | 1.9          | 3.7          | 25         |  |
| Vaccinium uliginosum                      | 9.0          | 18.8         | 75         |  |
| Viburnum edule                            | 0.1          | 0.4          | 12         |  |
| <b>Total Forb Cover</b>                   | 16.9         | 11.6         | 100        |  |
| Anemone parviflora                        | 0.3          | 0.7          | 25         |  |
| Anemone richardsonii                      | 0.4          | 1.1          | 12         |  |
| Artemisia tilesii                         | 0.3          | 0.7          | 38         |  |
| Aster sibiricus                           | 0.4          | 0.7          | 38         |  |
| Chrysanthemum integrifolium               | 0.2          | 0.7          | 12         |  |
| Cypripedium passerinum                    | 0.1          | 0.4          | 25         |  |
| Dodecatheon frigidum                      | 0.1          | 0.4          | 12         |  |
| Equisetum arvense                         | 3.9          | 3.6          | 88         |  |
| Equisetum scirpoides                      | 0.2          | 0.3          | 50         |  |
| Equisetum variegatum                      | 0.1          | 0.4          | 12         |  |
| Galium boreale                            | 0.5          | 1.1          | 50         |  |
| Gentiana propinqua                        | <0.1         | 0.1          | 38         |  |
| Hedysarum alpinum                         | 2.1          | 2.1          | 62         |  |
| Lupinus arcticus                          | 1.8          | 3.1          | 38<br>50   |  |
| Mertensia paniculata                      | 1.8          | 2.7          | 50<br>50   |  |
| Moneses uniflora                          | 0.1<br>0.1   | 0.1<br>0.4   | 50<br>12   |  |
| Oxytropis deflexa var. foliosa            | 0.1          | 0.4          | 12         |  |
| Pedicularis capitata                      | 0.1          | 0.4          | 12<br>25   |  |
| Petasites frigidus                        | 0.1          | 0.4          | 25<br>50   |  |
| Polygonum viviparum                       | 0.2          | 0.3          | 50<br>50   |  |
| Pyrola secunda                            | 0.2          | 0.5          | 50         |  |

Table 100. Continued.

|                              | Cover |      | Freq |
|------------------------------|-------|------|------|
|                              | Mean  | SD   | %    |
| Rubus arcticus               | 1.1   | 2.1  | 25   |
| Sanguisorba officinalis      | 0.1   | 0.4  | 12   |
| Saussurea angustifolia       | 0.6   | 1.2  | 25   |
| Senecio lugens               | 0.1   | 0.3  | 38   |
| Solidago multiradiata        | 0.2   | 0.7  | 12   |
| Solidago multiradiata var.   |       |      |      |
| multiradiata                 | 8.0   | 1.8  | 25   |
| Thalictrum alpinum           | 0.2   | 0.7  | 12   |
| Zygadenus elegans            | 0.1   | 0.4  | 25   |
| Total Grass Cover            | 2.5   | 2.3  | 100  |
| Arctagrostis latifolia       | 0.1   | 0.3  | 38   |
| Calamagrostis canadensis     | 1.0   | 1.8  | 50   |
| Elymus arenarius ssp. mollis | 0.1   | 0.4  | 12   |
| Festuca altaica              | 0.7   | 1.8  | 50   |
| Total Sedge & Rush Cover     | 2.8   | 4.7  | 75   |
| Carex capillaris             | 0.1   | 0.4  | 12   |
| Carex concinna               | 0.1   | 0.4  | 12   |
| Carex livida                 | 0.1   | 0.4  | 12   |
| Carex membranacea            | 0.5   | 1.1  | 25   |
| Carex scirpoidea             | 1.2   | 3.5  | 12   |
| Carex vaginata               | 0.4   | 1.1  | 12   |
| Eriophorum angustifolium     | 0.1   | 0.4  | 12   |
| Total Nonvascular Cover      | 64.4  | 23.3 | 100  |
| Total Moss Cover             | 62.4  | 23.2 | 100  |
| Aulacomnium acuminatum       | 1.6   | 3.1  | 25   |
| Aulacomnium palustre         | 2.5   | 5.3  | 25   |
| Aulacomnium turgidum         | 0.1   | 0.4  | 12   |
| Bryum pseudotriquetrum       | 0.2   | 0.7  | 12   |
| Campylium arcticum           | 0.5   | 1.4  | 12   |
| Campylium polygamum          | 0.4   | 1.1  | 12   |
| Ceratodon purpureus          | 3.5   | 7.2  | 25   |
| Dicranum elongatum           | 0.5   | 1.4  | 12   |
| Dicranum sp.                 | 0.2   | 0.7  | 12   |
| Ditrichum flexicaule         | 0.5   | 1.4  | 12   |
| Drepanocladus revolvens      | 0.1   | 0.4  | 12   |
| Hylocomium splendens         | 35.2  | 30.0 | 100  |
| Polytrichum sp.              | 0.2   | 0.7  | 12   |
| Rhytidiadelphus triquetrus   | 4.6   | 8.5  | 50   |
| Sanionia uncinata            | 1.9   | 3.7  | 25   |
| Tomentypnum nitens           | 10.1  | 11.4 | 75   |
| Total Lichen Cover           | 1.9   | 2.6  | 88   |
| Bryoria sp.                  | 0.3   | 0.7  | 25   |
| Cetraria cf. islandica       | 0.2   | 0.7  | 12   |
| Cladina sp.                  | 0.1   | 0.4  | 12   |
| Cladonia sp.                 | 0.1   | 0.4  | 12   |
| Hypogymnia physodes          | 0.1   | 0.4  | 25   |
| Peltigera sp.                | 0.1   | 0.4  | 25   |
| Stereocaulon sp.             | 0.1   | 0.4  | 12   |
| Thamnolia vermicularis       | 0.1   | 0.4  | 12   |
| Unknown crustose lichen      | 0.6   | 1.2  | 25   |
| Total Bare Ground            | 6.5   | 4.7  | 100  |
| Bare Soil                    | 0.6   | 1.1  | 50   |
| Litter alone                 | 5.9   | 4.0  | 100  |



Table 101. Soil characteristics for Riverine White Spruce–Willow Forest.

| Property                                   | Mean   | SD    | n |
|--------------------------------------------|--------|-------|---|
| Elevation (m)                              | 154.5  | 196.3 | 8 |
| Slope (degrees)                            | 1.0    | 0.0   | 2 |
| Surface Organics Depth(cm)                 | 6.2    | 3.1   | 6 |
| Cumulative Org. in 40 cm (cm)              | 6.1    | 3.7   | 8 |
| Loess Cap Thickness (cm)                   |        |       | 0 |
| Depth to Rocks (cm)                        | 46.5   | 3.5   | 2 |
| Surface Fragment Cover (%)                 |        |       | 0 |
| Frost Boil Cover (%)                       |        |       | 0 |
| Thaw Depth (cm)                            | 102.0  |       | 1 |
| Site pH at 10-cm depth                     | 7.3    | 0.6   | 7 |
| Site EC at 10-cm depth (µS/cm)             | 86.7   | 41.3  | 6 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -166.7 | 28.9  | 3 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Typic Gelorthents (poorly developed with permafrost below 1 m) and Typic Gelifluvents (poorly developed with buried organic horizons, permafrost below 1 m). A less common soil type is Typic Cryofluvents (poorly developed with buried organic horizons, lacking permafrost). This ecotype and associated soils are part of the Riverine Gravelly-loamy Forests soil landscape. Other ecotypes found in this soil landscape include Riverine Poplar Forest, Riverine White Spruce–Poplar Forest, and Riverine White Spruce–Alder Forest.

### **Riverine Willow Low Shrub**



# Geomorphology:

This ecotype is common along rivers throughout ARCN, particularly in the arctic regions of NOAT, GAAR and CAKR beyond circumpolar treeline. It occurs on braided active channel deposits, braided and meander active and inactive overbank deposits, meander inactive channel deposits, old alluvial fans and moderately steep headwater floodplains and channel deposits. Surface forms include interfluves, flat banks, terraces and drainage-ways.

#### Plant Association:

Salix lanata ssp. richardsonii–Salix reticulata

This ecotype is characterized by open canopied, low (<1.5 m) willow with a subcomponent of dwarf shrubs, forbs and mosses (Table 102). Presence of graminoids and evergreen trees is variable. Common species include *S. lanata* ssp. *richardsonii* (syn: *S. richardsonii*), *S. reticulata*, *S. glauca*, *Anemone parviflora*, *Festuca altaica*, *Carex capillaris*, *Aulacomnium palustre*, *Hylocomium splendens* and *Flavocetraria cucullata*.

This ecotype differs from other riverine willow ecotypes in characteristic species, shrub heights are lower, and it has a more arctic distribution beyond circumpolar treeline.

### Soils:

Soils are typically gravelly, loamy, or sandy with a thin surface organic horizon (Table 103). Depth to permafrost is difficult to determine in the rocky soils, however if permafrost does occur it is assumed to be greater than 1 m given the well drained soils. Frost boils and loess caps are absent, and surface fragments are rare. Soil pH is circumneutral to alkaline, and EC is low to moderate. The soils are typically excessively to well drained. Depth to water table often could not be

Table 102. Vegetation cover and frequency for Riverine Willow Low Shrub (n=16).

|                                        | <u> </u>    |             |            |
|----------------------------------------|-------------|-------------|------------|
|                                        | Cove        |             | Freq       |
|                                        | Mean        | SD          | <u>%</u>   |
| Total Live Cover                       | 194.4       | 53.0        | 100        |
| Total Vascular Cover                   | 127.7       | 38.6        | 100<br>14  |
| Total Evergreen Tree Cover             | 0.4         | 1.3         |            |
| Picea glauca                           | 0.4         | 1.3         | 14         |
| Total Evergreen Shrub Cover            | 13.7        | 15.9        | 64         |
| Cassiope tetragona                     | 0.1         | 0.3         | 14         |
| Dryas integrifolia                     | 12.3<br>0.7 | 14.6        | 57         |
| Empetrum nigrum                        |             | 2.7         | 14         |
| Ledum decumbens                        | 0.2         | 0.8         | 14         |
| Rhododendron lapponicum                | 0.3<br>82.5 | 0.8         | 36         |
| Total Deciduous Shrub Cover            |             | 39.8        | 100<br>71  |
| Arctostaphylos rubra                   | 8.0         | 15.8<br>1.3 | 7 i<br>36  |
| Betula nana                            | 0.6         |             |            |
| Potentilla fruticosa                   | 2.6<br>10.4 | 4.0<br>18.3 | 71<br>64   |
| Salix alaxensis                        |             | 1.8         |            |
| Salix arbusculoides                    | 0.9<br>5.2  | 7.7         | 29         |
| Salix brachycarpa ssp. niphoclada      | 5.2<br>5.9  |             | 50         |
| Salix glauca                           |             | 9.1         | 64         |
| Salix hastata                          | 1.2         | 4.0         | 29         |
| Salix lanata ssp. richardsonii         | 31.5<br>4.0 | 28.8        | 93         |
| Salix planifolia ssp. pulchra          |             | 9.8         | 36         |
| Salix reticulata                       | 7.9         | 12.1        | 71         |
| Shepherdia canadensis                  | 0.1         | 0.5         | 14         |
| Vaccinium uliginosum                   | 4.1         | 7.0         | 64         |
| Total Forb Cover                       | 17.7        | 10.0        | 100        |
| Anemone parviflora                     | 1.2         | 1.6         | 79         |
| Arnica lessingii                       | 0.1         | 0.5         | 14         |
| Aster sibiricus                        | 0.2         | 0.6         | 50         |
| Astragalus alpinus                     | 0.1         | 0.4         | 21         |
| Astragalus umbellatus                  | 0.2         | 0.6         | 29         |
| Bupleurum triradiatum ssp.<br>arcticum | 0.2         | 0.5         | 21         |
| Dodecatheon frigidum                   | 0.4         | 1.3         | 14         |
| Epilobium latifolium                   | 0.8         | 2.7         | 29         |
| Equisetum arvense                      | 2.7         | 4.7         | 50         |
| Equisetum variegatum                   | 3.1         | 5.3         | 57         |
| Galium boreale                         | 0.2         | 0.6         | 36         |
| Gentiana propingua                     | <0.1        | 0.1         | 43         |
| Hedysarum alpinum                      | 0.9         | 1.2         | 57         |
| Lupinus arcticus                       | 1.4         | 2.1         | 43         |
| Oxytropis viscida                      | 0.6         | 2.1         | 7          |
| Parnassia kotzebuei                    | 0.1         | 0.3         | 36         |
| Parnassia palustris                    | 0.2         | 0.8         | 29         |
| Pedicularis verticillata               | 0.1         | 0.3         | 21         |
| Polemonium acutiflorum                 | 0.4         | 1.3         | 29         |
| Polygonum viviparum                    | 0.2         | 0.6         | 43         |
| Pyrola grandiflora                     | 0.1         | 0.4         | 14         |
| Rubus arcticus                         | 0.7         | 2.7         | 7          |
| Rubus arcticus ssp. arcticus           | 0.4         | 1.3         | 7          |
| Senecio lugens                         | 0.4         | 0.7         | 50         |
| Solidago multiradiata var.             | •••         | <b></b>     | - <b>-</b> |
| multiradiata                           | 0.1         | 0.3         | 21         |
| Tofieldia pusilla                      | 0.2         | 0.4         | 36         |
| Valeriana capitata                     | 0.8         | 2.4         | 36         |
| Zygadenus elegans                      | 0.2         | 0.5         | 29         |
| Total Grass Cover                      | 4.4         | 4.4         | 86         |

Table 102. Continued.

|                                | Cove       | er   | Freq     |
|--------------------------------|------------|------|----------|
|                                | Mean       | SD   | %        |
| Arctagrostis latifolia         | 0.3        | 1.1  | 29       |
| Bromus pumpellianus            | 0.5        | 1.4  | 14       |
| Calamagrostis purpurascens     | 0.4        | 0.9  | 21       |
| Festuca altaica                | 2.3        | 2.5  | 71       |
| Festuca richardsonii           | 0.4        | 1.3  | 14       |
| Festuca rubra                  | 0.1        | 0.4  | 21       |
| Total Sedge & Rush Cover       | 9.0        | 9.0  | 93       |
| Carex aquatilis ssp. aquatilis | 0.5        | 1.3  | 43       |
| Carex bigelowii                | 1.4        | 3.3  | 21       |
| Carex capillaris               | 0.6        | 1.5  | 57       |
| Carex capitata                 | 0.2        | 0.6  | 21       |
| Carex krausei                  | 0.1        | 0.3  | 14       |
| Carex membranacea              | 3.3        | 5.9  | 50       |
| Carex scirpoidea               | 1.1        | 2.7  | 29       |
| Carex vaginata                 | 0.1        | 0.5  | 14       |
| Eriophorum angustifolium       | 0.3        | 0.8  | 14       |
| Kobresia myosuroides           | 0.4        | 1.3  | 7        |
| Kobresia simpliciuscula        | 0.7        | 2.7  | 7        |
| Total Nonvascular Cover        | 66.7       | 61.2 | 93       |
| Total Moss Cover               | 64.9       | 59.2 | 93       |
| Abietinella abietina           | 0.9        | 2.7  | 21       |
| Aulacomnium acuminatum         | 0.7        | 2.7  | 7        |
| Aulacomnium palustre           | 3.3        | 5.3  | 57       |
| Aulacomnium turgidum           | 0.2        | 0.8  | 7        |
| Brachythecium sp.              | 1.1        | 4.0  | 7        |
| Bryum sp.                      | 0.4        | 1.3  | 7        |
| Calliergon sp.                 | 0.2        | 0.8  | 7        |
| Campylium stellatum            | 0.5        | 1.6  | 14       |
| Catoscopium nigritum           | 0.2        | 0.8  | 7        |
| Ceratodon purpureus            | 0.7        | 2.7  | 7        |
| Climacium dendroides           | 0.1        | 0.5  | 14       |
| Distichium capillaceum         | 0.2        | 0.8  | 7        |
| Ditrichum flexicaule           | 0.4        | 1.3  | 7        |
| Drepanocladus sp.              | 1.8        | 5.4  | 14       |
| Hamatocaulis vernicosus        | 0.2        | 0.8  | 7        |
| Hylocomium splendens           | 5.9        | 8.4  | 43       |
| Hypnum bambergeri              | 2.3        | 5.3  | 21       |
| Hypnum lindbergii              | 0.4        | 1.3  | 7        |
| Hypnum pratense                | 1.4        | 5.3  | 7        |
| Rhytidium rugosum              | 2.9        | 7.5  | 21       |
| Sanionia uncinata              | 2.7        | 6.9  | 21       |
| Tomentypnum nitens             | 14.1       | 17.2 | 71       |
| Tortella sp.                   | 0.7        | 2.7  | 7        |
| Unknown moss                   | 23.1       | 35.7 | 50       |
| Total Lichen Cover             | 1.8        | 3.5  | 57<br>26 |
| Cladonia sp.                   | 0.2<br>0.2 | 0.4  | 36<br>36 |
| Flavocetraria cucullata        |            | 0.6  | 36<br>14 |
| Masonhalea richardsonii        | 0.1        | 0.4  | 14       |
| Stereocaulon sp.               | 0.2        | 0.4  | 29       |
| Unknown lichen                 | 0.7        | 1.7  | 21       |
| Total Bare Ground              | 8.0        | 7.7  | 100      |
| Bare Soil                      | 2.0        | 3.5  | 71<br>21 |
| Water                          | 0.3        | 1.1  | 21       |
| Litter alone                   | 5.8        | 5.8  | 100      |



measured but it is assumed to fluctuate throughout the year within the upper 2 m of the soil profile given its adjacency to river water.

Table 103. Soil characteristics for Riverine Willow Low Shrub.

| Property                                   | Mean  | SD    | n  |
|--------------------------------------------|-------|-------|----|
| Elevation (m)                              | 240.3 | 206.7 | 14 |
| Slope (degrees)                            | 3.3   | 1.5   | 3  |
| Surface Organics Depth(cm)                 | 3.1   | 1.5   | 13 |
| Cumulative Org. in 40 cm (cm)              | 4.0   | 2.3   | 14 |
| Loess Cap Thickness (cm)                   |       |       | 0  |
| Depth to Rocks (cm)                        | 24.8  | 17.4  | 10 |
| Surface Fragment Cover (%)                 | 9.7   | 13.3  | 3  |
| Frost Boil Cover (%)                       |       |       | 0  |
| Thaw Depth (cm)                            | 51.5  | 4.9   | 2  |
| Site pH at 10-cm depth                     | 7.4   | 0.4   | 14 |
| Site EC at 10-cm depth (µS/cm)             | 273.8 | 283.3 | 13 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -80.5 | 67.3  | 10 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Typic Gelorthents (poorly developed with permafrost below 1 m) and Typic Eutrogelepts (non-acidic, partially developed with permafrost below 1 m). Less common soil types include Oxyaquic Cryorthents (moist, saturated early in growing season, lacking permafrost) and Oxyaquic Gelorthents (wet, saturated early in growing season, poorly developed with permafrost below 1 m). This ecotype and associated soils are part of the Riverine Gravelly Barrens and Shrublands soil landscape. Also included in this soil landscape are Riverine Barrens, Riverine Moist Willow Tall Shrub, and Riverine Dryas Dwarf Shrub.

# **Upland Alder-Willow Tall Shrub**



# Geomorphology:

This ecotype occurs on hillside colluvium, older moraine, solifluction deposits, talus and upland loess. It is found on upper and lower concave and convex slopes up to 600 m elevation throughout ARCN. At some sites, gelifluction lobes, tree mounds, and undifferentiated mounds create micro-topographic variation.

#### Plant Associations:

Alnus crispa–Calamagrostis canadensis Alnus crispa–Salix lanata ssp. richardsonii

These tall shrub communities have open (>25%) to closed (>75%) canopies with an understory of low and dwarf shrubs, forbs, grasses and mosses (Table 104). Lichen, sedge and tree cover is more variable. There are two distinct community types for Upland Alder–Willow Tall Shrub. The first has bluejoint grass, *C. canadensis* as an understory dominant while the second has a stronger willow subcomponent, particularly *S. lanata* ssp. *richardsonii*. Common species are *S. pulchra*, *Vaccinium uliginosum*, *Boykinia richardsonii*, *Hylocomium splendens*, and *Peltigera aphthosa*.

Upland Alder–Willow Tall Shrub is most similar to Upland Birch Forest in site factors although species assemblages are distinctly different. It is similar to Riverine Alder Tall Shrub in the dominance of *A. crispa.*, but physiographic characters are unrelated. *Soils:* 

Soils are typically loamy, blocky, or rubbly with a thin to moderately thick surface organic horizon (Table 105). Thaw depths often could not be determined in the rocky soils, but permafrost is presumed to be absent or to occur below a depth of 1 m. Frost boils are absent, and surface fragments and loess caps are uncommon. Soil pH is acidic to circumneutral, and EC is low. The soils are typically well drained to moderately well drained. Depth to

Table 104. Vegetation cover and frequency for Upland Alder–Willow Tall Shrub (n=32).

|                                                      | Cove                                    |                | Eron            |
|------------------------------------------------------|-----------------------------------------|----------------|-----------------|
|                                                      | Cove                                    |                | Freq            |
| Total Live Cover                                     | <b>Mean</b> 189.2                       | <b>SD</b> 70.6 | <u>%</u><br>100 |
| Total Vascular Cover                                 | 153.1                                   | 37.9           | 100             |
| Total Evergreen Tree Cover                           | 0.1                                     | 0.3            | 23              |
| Picea glauca                                         | 0.1                                     | 0.3            | 23              |
| Total Evergreen Shrub                                | • • • • • • • • • • • • • • • • • • • • | 0.5            |                 |
| Cover                                                | 16.7                                    | 20.9           | 77              |
| Andromeda polifolia                                  | 0.2                                     | 8.0            | 10              |
| Cassiope tetragona                                   | 4.7                                     | 9.3            | 32              |
| Dryas integrifolia                                   | 0.6                                     | 2.0            | 10              |
| Dryas octopetala                                     | 3.1                                     | 7.2            | 23              |
| Empetrum nigrum                                      | 1.4                                     | 3.1            | 42              |
| Ledum decumbens                                      | 2.8                                     | 4.8            | 52              |
| Ledum groenlandicum                                  | 0.2                                     | 0.9            | 6               |
| Linnaea borealis                                     | 0.4                                     | 1.5            | 26              |
| Vaccinium vitis-idaea                                | 3.1                                     | 6.5            | 48              |
| Total Deciduous Tree Cover Total Deciduous Shrub     | 0.9                                     | 4.8            | 3               |
| Cover                                                | 101.6                                   | 27.2           | 100             |
| Alnus crispa                                         | 53.7                                    | 21.3           | 100             |
| Arctostaphylos rubra                                 | 2.0                                     | 4.2            | 39              |
| Betula glandulosa                                    | 4.6                                     | 9.0            | 39              |
| Betula nana                                          | 1.8                                     | 6.7            | 16              |
| Potentilla fruticosa                                 | 1.5                                     | 3.2            | 35              |
| Ribes triste                                         | 1.8                                     | 4.3            | 26              |
| Salix alaxensis                                      | 1.5                                     | 3.9            | 16              |
| Salix glauca                                         | 1.7                                     | 4.4            | 26              |
| Salix lanata ssp. richardsonii                       | 7.7                                     | 11.8           | 52              |
| Salix planifolia ssp. pulchra                        | 5.1                                     | 10.6           | 55              |
| Salix reticulata                                     | 2.8                                     | 5.2            | 32              |
| Spiraea beauverdiana                                 | 6.7                                     | 14.1           | 45              |
| Vaccinium uliginosum                                 | 9.5                                     | 15.0           | 71              |
| Viburnum edule                                       | 0.2                                     | 0.9            | 10              |
| Total Forb Cover                                     | 15.4<br>0.2                             | 9.8<br>0.6     | 100<br>35       |
| Aconitum delphinifolium                              | 0.2                                     | 0.6            | 35<br>16        |
| Anemone narcissiflora Artemisia arctica ssp. arctica | 0.1                                     | 1.6            | 16              |
| Artemisia tilesii                                    | 0.5                                     | 1.3            | 19              |
| Boschniakia rossica                                  | <0.1                                    | 0.2            | 13              |
| Boykinia richardsonii                                | 1.4                                     | 3.1            | 32              |
| Dodecatheon frigidum                                 | 0.9                                     | 2.2            | 19              |
| Dryopteris dilatata ssp.                             |                                         |                |                 |
| americana                                            | 0.7                                     | 2.1            | 16              |
| Epilobium angustifolium                              | 0.3                                     | 0.7            | 29              |
| Equisetum arvense                                    | 2.0                                     | 5.1            | 29              |
| Equisetum pratense                                   | 0.8                                     | 2.6            | 13              |
| Galium boreale                                       | 0.2                                     | 0.7            | 13              |
| Gymnocarpium dryopteris                              | 0.9                                     | 3.1            | 13              |
| Hedysarum alpinum                                    | 0.2                                     | 0.7            | 13              |
| Lycopodium alpinum                                   | 0.3                                     | 1.8            | 6               |
| Lycopodium annotinum                                 | 0.4                                     | 1.1            | 23              |
| Mertensia paniculata                                 | 0.4                                     | 0.9            | 19              |
| Moehringia lateriflora                               | 0.3<br>0.1                              | 1.3<br>0.2     | 10<br>29        |
| Pedicularis capitata                                 | 0.1                                     | 0.2            | 29<br>26        |
| Petasites frigidus                                   | 0.4                                     | 0.8            | 26<br>32        |
| Polemonium acutiflorum                               | 0.1                                     | 0.2            | 32<br>10        |
| Pyrola grandiflora                                   | 0.1                                     | 0.7            | 10              |

Table 104. Continued.

|                                    | Cove       | er         | Freq    |
|------------------------------------|------------|------------|---------|
|                                    | Mean       | SD         | %       |
| Rubus arcticus ssp. arcticus       | 0.6        | 2.0        | 13      |
| Rubus chamaemorus                  | 1.2        | 4.4        | 13      |
| Saussurea angustifolia             | 0.2        | 0.6        | 16      |
| Saxifraga oppositifolia            | 0.2        | 0.9        | 10      |
| Saxifraga punctata                 | <0.1       | 0.2        | 10      |
| Solidago multiradiata              | 0.2        | 0.7        | 13      |
| Stellaria longipes                 | <0.1       | 0.2        | 10      |
| Trientalis europaea ssp. arctica   | 0.3        | 1.0        | 10      |
| Valeriana capitata                 | 0.3        | 0.7        | 32      |
| Total Grass Cover                  | 11.6       | 13.5       | 90      |
| Arctagrostis latifolia             | 0.3        | 0.6        | 16      |
| Calamagrostis canadensis           | 8.3        | 14.2       | 48      |
| Festuca altaica                    | 2.9        | 5.9        | 35      |
| Poa arctica                        | <0.1       | 0.2        | 10      |
| Total Sedge & Rush Cover           | 6.9        | 12.3       | 68      |
| Carex bigelowii                    | 1.4        | 3.9        | 19      |
| Carex podocarpa                    | 0.9        | 3.7        | 13      |
| Carex scirpoidea                   | 4.6        | 12.1       | 32      |
| Total Nonvascular Cover            | 36.1       | 38.8       | 90      |
| Total Moss Cover                   | 27.8       | 31.9       | 87      |
| Aulacomnium palustre               | 1.4        | 5.5        | 16      |
| Brachythecium sp.                  | 1.1        | 2.2        | 29      |
| Campylium sp.                      | 0.5        | 1.9        | 13      |
| Cyrtomnium sp.                     | 0.2        | 0.5        | 10      |
| Dicranum sp.                       | 1.1        | 2.3        | 29      |
| Ditrichum sp.                      | 0.2        | 0.7        | 10      |
| Drepanocladus sp.                  | 1.4        | 3.3        | 23      |
| Hylocomium splendens               | 9.7        | 13.0       | 52      |
| Hypnum sp.                         | 0.7        | 1.8        | 23      |
| Pleurozium schreberi               | 1.5        | 3.8        | 16      |
| Polytrichum sp.                    | 0.7        | 1.8        | 19      |
| Polytrichum strictum               | 0.1        | 0.4        | 13      |
| Ptilium sp.                        | 0.6<br>0.2 | 2.8<br>0.6 | 6       |
| Racomitrium sp.                    | 1.2        | 3.4        | 6<br>13 |
| Rhytidium rugosum                  | 3.2        | 10.6       | 19      |
| Sanionia sp.                       | 0.2        | 0.7        | 10      |
| Sphagnum sp.                       | 1.2        | 5.0        | 6       |
| Tomentypnum nitens<br>Unknown moss | 1.6        | 7.2        | 19      |
| Total Lichen Cover                 | 8.5        | 12.1       | 81      |
| Cetraria cf. islandica             | 0.2        | 0.7        | 16      |
| Cetraria sp.                       | 0.5        | 1.5        | 16      |
| Cladina arbuscula                  | 1.3        | 2.9        | 29      |
| Cladina mitis                      | 0.2        | 0.6        | 19      |
| Cladina rangiferina                | 0.9        | 2.1        | 32      |
| Cladina sp.                        | 0.4        | 1.8        | 10      |
| Cladina stellaris                  | 1.9        | 3.6        | 29      |
| Cladonia sp.                       | 0.7        | 0.9        | 58      |
| Dactylina sp.                      | 0.2        | 0.5        | 19      |
| Flavocetraria cucullata            | 1.0        | 1.8        | 32      |
| Peltigera aphthosa                 | 0.5        | 1.2        | 32      |
| Peltigera sp.                      | 0.3        | 0.7        | 19      |
| Total Bare Ground                  | 4.5        | 5.5        | 61      |
| Bare Soil                          | 0.6        | 1.4        | 35      |
| Litter alone                       | 3.9        | 5.3        | 61      |



water table often could not be measured and it was assumed in such instances to be at substantial depths given the well drained soils.

Table 105. Soil characteristics for Upland Alder–Willow Tall Shrub.

| Property                                   | Mean   | SD    | n  |
|--------------------------------------------|--------|-------|----|
| Elevation (m)                              | 389.4  | 189.9 | 22 |
| Slope (degrees)                            | 18.7   | 9.1   | 22 |
| Surface Organics Depth(cm)                 | 9.3    | 5.6   | 22 |
| Cumulative Org. in 40 cm (cm)              | 10.0   | 6.1   | 22 |
| Loess Cap Thickness (cm)                   | 26.5   | 18.6  | 4  |
| Depth to Rocks (cm)                        | 24.3   | 22.7  | 18 |
| Surface Fragment Cover (%)                 | 0.7    | 0.5   | 3  |
| Frost Boil Cover (%)                       | 0.1    | NA    | 1  |
| Thaw Depth (cm)                            | 55.2   | 22.7  | 4  |
| Site pH at 10-cm depth                     | 5.4    | 1.1   | 21 |
| Site EC at 10-cm depth (µS/cm)             | 131.0  | 252.3 | 21 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -133.1 | 74.2  | 8  |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

Dominant soil subgroups in this ecotype include Typic Eutrogelepts (non-acidic, partially developed with permafrost below 1 m), Typic Dystrocryepts (acidic, partially developed, lacking permafrost), and Typic Humicryepts (moist, acidic, organic-rich, partially developed, lacking permafrost). Less common subgroups include Typic Aquorthels (wet, mineral soil over permafrost lacking cryoturbation) and Typic Dystrogelepts (acidic, well drained, moderately thin organic horizon, permafrost below 1 m). This ecotype and associated soils are part of the Upland Rocky-loamy Circumacidic Tall Shrublands and Forests soil landscape, which includes Upland Birch Forest, Upland Spruce-Birch Forest, Upland Bluejoint Meadow, and Upland White Spruce-Ericaceous Forest.

# **Upland Birch Forest**



# Geomorphology:

The distribution of Upland Birch Forest is limited to localized, fragmented patches in GAAR and KOVA. It occurs on slopes of older moraine, hillside colluvium and eolian inactive sand dunes.

## Plant Association:

Betula papyrifera-Picea glauca-Vaccinium vitis-idaea Open to closed stands of birch (Betula papyrifera: syn: B. neoalaskana) dominate this ecotype, and all life forms except sedges are typically present (Table 106). Common species include Ledum decumbens, Vaccinium uliginosum, Epilobium angustifolium, Polytrichum juniperinum, and Cladina rangiferina.

Upland Birch Forest is comparable to Upland Spruce–Birch Forest, with which it shares a plant association. The primary difference is this ecotype is strictly birch-dominated, while the other is co-dominated by birch and white spruce.

Table 106. Vegetation cover and frequency for Upland Birch Forest (n=4).

| · · ·                                  | Cover                |            | Freq            |
|----------------------------------------|----------------------|------------|-----------------|
|                                        |                      | SD         | -               |
| Total Live Cover                       | <b>Mean</b><br>111.6 | 20.1       | <b>%</b><br>100 |
| Total Vascular Cover                   | 72.6                 | 21.3       | 100             |
| Total Evergreen Tree Cover             | 2.0                  | 2.1        | 100             |
| Picea glauca                           | 1.3                  | 0.9        | 100             |
| Picea mariana                          | 0.8                  | 1.5        | 50              |
| Total Evergreen Shrub                  |                      |            |                 |
| Cover                                  | 8.6                  | 11.7       | 100             |
| Empetrum nigrum                        | 0.8                  | 1.5        | 50              |
| Juniperus communis                     | <0.1                 | 0.1        | 25              |
| Ledum decumbens                        | 2.0                  | 2.4        | 75              |
| Linnaea borealis                       | 1.3                  | 2.5        | 50              |
| Vaccinium vitis-idaea                  | 4.5                  | 7.1        | 75              |
| Total Deciduous Tree Cover             | 52.5                 | 29.8       | 100             |
| Betula papyrifera                      | 52.5                 | 29.9       | 100             |
| Populus tremuloides                    | <0.1                 | 0.1        | 25              |
| Total Deciduous Shrub                  | 0.5                  | 6.3        | 100             |
| Cover                                  | 8.5<br>2.2           | 6.3<br>3.9 | 100<br>50       |
| Alnus crispa                           | 2.2<br>0.8           | 3.9<br>1.5 | 50<br>25        |
| Betula glandulosa                      | 0.8<br>1.0           | 2.0        | 25<br>25        |
| Betula nana                            | <0.1                 |            |                 |
| Ribes triste                           | <0.1<br>0.2          | 0.1<br>0.5 | 25<br>25        |
| Rosa acicularis                        | 0.2                  | 0.5        | 25<br>75        |
| Salix bebbiana                         | 0.8<br><0.1          | 0.9        | 75<br>25        |
| Salix glauca                           | <0.1<br><0.1         | 0.1        | 25<br>25        |
| Salix planifolia ssp. pulchra          | <0.1                 | 0.1        | 25<br>25        |
| Salix scouleriana                      | 0.1                  | 0.1        | 50              |
| Spiraea beauverdiana                   | 3.3                  | 3.9        | 100             |
| Vaccinium uliginosum  Total Forb Cover | 0.6                  | 0.5        | 100             |
| Epilobium angustifolium                | 0.1                  | <0.1       | 100             |
| Equisetum arvense                      | <0.1                 | 0.1        | 25              |
| Geocaulon lividum                      | 0.1                  | 0.1        | 75              |
| Gymnocarpium dryopteris                | <0.1                 | 0.1        | 25              |
| Lycopodium annotinum                   | <0.1                 | 0.1        | 25              |
| Lycopodium complanatum                 | 0.3                  | 0.5        | 50              |
| Pedicularis labradorica                | <0.1                 | 0.1        | 25              |
| Solidago multiradiata                  | <0.1                 | 0.1        | 25              |
| Total Grass Cover                      | 0.3                  | 0.4        | 100             |
| Calamagrostis canadensis               | 0.3                  | 0.5        | 50              |
| Calamagrostis inexpansa                | 0.1                  | 0.1        | 50              |
| Festuca altaica                        | <0.1                 | 0.1        | 25              |
| Total Nonvascular Cover                | 39.0                 | 18.9       | 100             |
| Total Moss Cover                       | 29.1                 | 15.4       | 100             |
| Ceratodon purpureus                    | 1.2                  | 2.5        | 25              |
| Dicranum polysetum                     | 1.2                  | 2.5        | 25              |
| Dicranum sp.                           | 0.2                  | 0.5        | 25              |
| Dicranum undulatum                     | 1.0                  | 2.0        | 25              |
| Hylocomium splendens                   | 1.8                  | 2.1        | 50              |
| Hypnum sp.                             | <0.1                 | 0.1        | 25              |
| Pleurozium schreberi                   | 1.0                  | 1.4        | 50              |
| Pohlia nutans                          | 0.2                  | 0.5        | 25              |
| Polytrichum commune                    | 1.2                  | 2.5        | 25              |
| Polytrichum juniperinum                | 19.2                 | 20.0       | 100             |
| Polytrichum piliferum                  | 0.3                  | 0.5        | 50              |
| Racomitrium sp.                        | 0.5                  | 1.0        | 25              |
| Rhytidium rugosum                      | 1.0                  | 2.0        | 25              |
| Total Lichen Cover                     | 8.7                  | 4.3        | 100             |
|                                        |                      |            |                 |

Table 106. Continued.

|                         | Cover |     | Freq |
|-------------------------|-------|-----|------|
|                         | Mean  | SD  | %    |
| Cetraria laevigata      | <0.1  | 0.1 | 25   |
| Cladina arbuscula       | 0.8   | 1.5 | 25   |
| Cladina rangiferina     | 1.0   | 1.4 | 50   |
| Cladina sp.             | <0.1  | 0.1 | 25   |
| Cladina stellaris       | <0.1  | 0.1 | 25   |
| Cladonia cenotea        | <0.1  | 0.1 | 25   |
| Cladonia sp.            | 3.8   | 3.5 | 75   |
| Flavocetraria cucullata | 0.8   | 1.5 | 25   |
| Nephroma arcticum       | 0.8   | 1.5 | 50   |
| Peltigera aphthosa      | 0.2   | 0.5 | 25   |
| Peltigera canina        | <0.1  | 0.1 | 25   |
| Peltigera sp.           | 0.5   | 1.0 | 50   |
| Stereocaulon sp.        | 0.5   | 1.0 | 50   |
| Trapeliopsis granulosa  | 1.2   | 2.5 | 25   |
| Unknown crustose lichen | 0.3   | 0.5 | 50   |
| Total Bare Ground       | 17.0  | 7.6 | 100  |
| Bare Soil               | 4.2   | 3.0 | 100  |
| Litter alone            | 12.8  | 8.2 | 100  |

The soils are typically somewhat excessively to well drained. Depth to water table often could not be measured but it is assumed to be at substantial depths given the well drained soils.

Table 107. Soil characteristics for Upland Birch Forest.

| Property                                   | Mean   | SD   | n |
|--------------------------------------------|--------|------|---|
| Elevation (m)                              | 173.5  | 95.1 | 4 |
| Slope (degrees)                            | 23.2   | 11.1 | 4 |
| Surface Organics Depth(cm)                 | 3.8    | 1.3  | 4 |
| Cumulative Org. in 40 cm (cm)              | 3.8    | 1.3  | 4 |
| Loess Cap Thickness (cm)                   |        |      | 0 |
| Depth to Rocks (cm)                        | 53.2   | 97.8 | 4 |
| Surface Fragment Cover (%)                 | 20.0   | 0.0  | 2 |
| Frost Boil Cover (%)                       | 2.0    |      | 1 |
| Thaw Depth (cm)                            |        |      | 0 |
| Site pH at 10-cm depth                     | 4.8    | 0.5  | 4 |
| Site EC at 10-cm depth (μS/cm)             | 35.0   | 30.0 | 4 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -200.0 |      | 1 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

#### Soils:



Soils are typically rubbly, blocky, or bouldery and feature a thin surface organic horizon (Table 107). Thaw depths often could not be determined in the rocky soils, but permafrost is presumed to be absent or to occur below a depth of 2 m. Frost boils and loess caps are rare. Surface fragments are common at low to moderate abundance. Soil pH is acidic, and EC is low.

The dominant soil subgroup in this ecotype is Typic Dystrocryepts (acidic, partially developed, lacking permafrost). A less common subgroup is Typic Haplocryods (moist, acidic, with a highly leached horizon). This ecotype and associated soils are part of the Upland Rocky-loamy Circumacidic Tall Shrublands and Forests soil landscape. Other ecotypes in this soil landscape include Upland Spruce–Birch Forest, Upland Alder–Willow Tall Shrub, Upland Bluejoint Meadow, and Upland White Spruce–Ericaceous Forest.

# **Upland Birch-Ericaceous Low Shrub**



## Geomorphology:

This low shrub-dominated ecotype is common throughout ARCN in upland areas up to the alpine boundary. It occurs on hillside colluvium, older moraine, solifluction deposits, upland loess, eolian inactive sand deposits, and abandoned alluvial fan deposits.

#### Plant Association:

Betula nana-Ledum decumbens

Both dwarf and low shrubs characterize this ecotype (Table 108). Mosses and lichens are well represented, and sedges, grasses, forbs and trees are present with low cover. Ericaceous shrubs and dwarf birch (*B. nana*) are abundant. Common species include *Vaccinium vitis-idaea*, *V. uliginosum*, *Pedicularis labradorica*, *Hylocomium splendens*, *Flavocetraria cucullata*, and *Cladina rangiferina*.

This ecotype is most similar to Upland Birch–Willow Low Shrub, where willows are co-dominant. Lowland Birch–Ericaceous Low Shrub has similar species but has wetter, loamy, and organic-rich soils.

### Soils:

Soils are loamy, blocky, or rubbly and feature a thin to moderately thick surface organic horizon (Table 109). Thaw depths often could not be determined in the rocky soils, but permafrost is presumed to be present with in the upper 2 m of the soil profile. Cryoturbation is commonly evident. Frost boils are uncommon, and surface fragments and loess caps are rare. Soil pH is acidic, and EC is low. The soils are typically somewhat excessively to moderately well drained. Depth to water table ranges from shallow to moderately deep, however the rocky soils made it difficult to measure water depth.

Table 108. Vegetation cover and frequency for Upland Birch–Ericaceous Low Shrub (n=24).

| ··· - ·/·                           |       |      |      |
|-------------------------------------|-------|------|------|
|                                     | Cov   |      | Freq |
|                                     | Mean  | SD   | %    |
| Total Live Cover                    | 171.2 | 63.8 | 100  |
| Total Vascular Cover                | 114.1 | 39.9 | 100  |
| Total Evergreen Tree<br>Cover       | 0.4   | 1.1  | 33   |
|                                     | 0.4   | 1.1  | 33   |
| Picea glauca  Total Evergreen Shrub | 0.4   | 1.1  | 33   |
| Cover                               | 34.1  | 23.1 | 100  |
| Cassiope tetragona                  | 1.6   | 5.2  | 25   |
| Dryas octopetala                    | 0.8   | 2.1  | 17   |
| Empetrum nigrum                     | 5.7   | 7.4  | 75   |
| Ledum decumbens                     | 12.5  | 13.3 | 92   |
| Linnaea borealis                    | 0.1   | 0.3  | 17   |
| Loiseleuria procumbens              | 1.1   | 3.4  | 21   |
| Vaccinium vitis-idaea               | 12.4  | 11.6 | 96   |
| Total Deciduous Tree                |       |      |      |
| Cover                               | 0.3   | 1.2  | 8    |
| Total Deciduous Shrub               |       |      |      |
| Cover                               | 68.1  | 28.0 | 100  |
| Alnus crispa                        | 1.6   | 4.4  | 25   |
| Arctostaphylos alpina               | 0.8   | 1.8  | 21   |
| Arctostaphylos rubra                | 0.3   | 1.4  | 17   |
| Betula glandulosa                   | 10.4  | 23.4 | 21   |
| Betula nana                         | 28.4  | 25.7 | 79   |
| Potentilla fruticosa                | <0.1  | 0.2  | 8    |
| Salix arctica                       | 0.6   | 2.2  | 8    |
| Salix brachycarpa ssp.              |       |      |      |
| niphoclada                          | 2.7   | 5.7  | 21   |
| Salix glauca                        | 1.6   | 3.9  | 29   |
| Salix lanata ssp. richardsonii      | 0.1   | 0.4  | 12   |
| Salix phlebophylla                  | 0.7   | 3.1  | 17   |
| Salix planifolia ssp. pulchra       | 2.7   | 4.7  | 54   |
| Salix reticulata                    | 0.2   | 1.0  | 8    |
| Spiraea beauverdiana                | 0.3   | 1.0  | 25   |
| Vaccinium uliginosum                | 17.6  | 16.3 | 88   |
| Total Forb Cover                    | 3.6   | 5.6  | 88   |
| Anemone narcissiflora               | 0.1   | 0.4  | 21   |
| Antennaria friesiana                | <0.1  | 0.2  | 8    |
| Artemisia arctica ssp. arctica      | 0.1   | 0.3  | 38   |
| Lupinus arcticus                    | 0.1   | 0.4  | 8    |
| Lycopodium alpinum                  | 0.1   | 0.4  | 8    |
| Lycopodium annotinum                | 0.1   | 0.2  | 12   |
| Minuartia arctica                   | <0.1  | 0.2  | 8    |
| Pedicularis capitata                | <0.1  | 0.2  | 8    |
| Pedicularis labradorica             | 0.1   | 0.2  | 21   |
| Petasites frigidus                  | 0.8   | 3.1  | 12   |
| Polygonum bistorta                  | 0.2   | 0.7  | 25   |
| Pyrola asarifolia                   | 0.2   | 1.0  | 8    |
| Rubus chamaemorus                   | 8.0   | 1.7  | 33   |
| Saxifraga punctata                  | 0.1   | 0.2  | 17   |
| Selaginella sibirica                | <0.1  | 0.2  | 8    |
| Total Grass Cover                   | 2.7   | 4.7  | 83   |
| Arctagrostis latifolia              | 0.1   | 0.6  | 12   |
| Calamagrostis canadensis            | 0.2   | 0.7  | 17   |
| Festuca altaica                     | 1.5   | 3.9  | 38   |
| Hierochloe alpina                   | 0.6   | 2.1  | 29   |
| Poa arctica                         | 0.2   | 0.5  | 25   |
| Total Sedge & Rush Cover            | 4.9   | 7.6  | 75   |
|                                     |       |      |      |

Table 108. Continued.

|                                                  | Cover      |      | Cover    |  | Freq |
|--------------------------------------------------|------------|------|----------|--|------|
|                                                  | Mean       | SD   | %        |  |      |
| Carex aquatilis ssp. aquatilis                   | 0.4        | 2.0  | 4        |  |      |
| Carex bigelowii                                  | 2.3        | 3.4  | 50       |  |      |
| Carex podocarpa                                  | 0.2        | 0.5  | 17       |  |      |
| Eriophorum angustifolium                         | 0.7        | 3.1  | 8        |  |      |
| Eriophorum vaginatum                             | 0.8        | 2.1  | 17       |  |      |
| Luzula parviflora                                | 0.1        | 0.4  | 8        |  |      |
| Total Nonvascular Cover                          | 57.1       | 38.0 | 96       |  |      |
| Total Moss Cover                                 | 31.0       | 25.9 | 96       |  |      |
| Abietinella abietina                             | 0.4        | 2.0  | 4        |  |      |
| Aulacomnium palustre                             | 0.5        | 1.3  | 17       |  |      |
| Aulacomnium sp.                                  | 0.6        | 2.5  | 12       |  |      |
| Aulacomnium turgidum                             | 1.2        | 3.8  | 25       |  |      |
| Ceratodon purpureus                              | 0.4        | 2.0  | 4        |  |      |
| Dicranum sp.                                     | 1.2        | 2.0  | 42       |  |      |
| Drepanocladus sp.                                | 0.4        | 2.0  | 8        |  |      |
| Hylocomium splendens                             | 11.0       | 15.2 | 62       |  |      |
| Pleurozium schreberi                             | 0.8        | 1.7  | 21       |  |      |
| Polytrichum commune                              | 1.0        | 5.1  | 4        |  |      |
| Polytrichum piliferum                            | 1.8        | 6.4  | 17       |  |      |
| Polytrichum sp.                                  | 0.8        | 1.6  | 29       |  |      |
| Polytrichum strictum                             | 0.9        | 1.6  | 33       |  |      |
| Ptilidium ciliare                                | 0.7        | 3.1  | 8        |  |      |
| Ptilium crista-castrensis                        | 1.0        | 4.9  | 4        |  |      |
| Rhytidium rugosum                                | 1.8        | 4.1  | 33       |  |      |
| Sanionia uncinata                                | 0.6        | 2.2  | 8        |  |      |
| Sphagnum lenense                                 | 1.2        | 6.1  | 4        |  |      |
| Sphagnum sp.                                     | 2.3        | 11.2 | 12       |  |      |
| Tomentypnum nitens                               | 0.5        | 1.5  | 12       |  |      |
| Unknown moss                                     | 0.4        | 1.5  | 12       |  |      |
| Total Lichen Cover                               | 26.2       | 29.4 | 96       |  |      |
| Cetraria cf. islandica                           | 0.8        | 1.6  | 33       |  |      |
| Cladina arbuscula                                | 3.2        | 5.4  | 42       |  |      |
| Cladina mitis                                    | 0.5        | 1.0  | 25       |  |      |
| Cladina mitis<br>Cladina rangiferina             | 4.0        | 7.6  | 50       |  |      |
| Cladina sp.                                      | 0.9        | 3.2  | 21       |  |      |
| Cladina sp.<br>Cladina stellaris                 | 6.2        | 16.8 | 25       |  |      |
| Cladina steriaris<br>Cladina stygia              | 0.2        | 2.4  | 12       |  |      |
| Cladina stygia<br>Cladonia sp.                   | 3.4        | 8.1  | 75       |  |      |
|                                                  | 0.1        | 0.3  | 12       |  |      |
| Dactylina arctica                                | 2.4        | 3.4  | 62       |  |      |
| Flavocetraria cucullata                          | 0.3        | 0.5  | 33       |  |      |
| Flavocetraria nivalis<br>Masonhalea richardsonii | 0.3        | 0.5  | 33       |  |      |
|                                                  | 0.3        | 1.0  | <br>8    |  |      |
| Parmelia sp.                                     | 0.2        |      | o<br>38  |  |      |
| Peltigera aphthosa                               |            | 0.9  |          |  |      |
| Peltigera sp.                                    | 0.4        | 0.8  | 33       |  |      |
| Pertusaria sp.                                   | <0.1       | 0.2  | 8        |  |      |
| Sphaerophorus globosus                           | 0.1        | 0.3  | 8        |  |      |
| Stereocaulon sp.                                 | 0.5        | 1.2  | 25       |  |      |
| Thamnolia sp.                                    | 0.1        | 0.4  | 8        |  |      |
| Thamnolia vermicularis                           | 0.4        | 0.9  | 29       |  |      |
| Unknown crustose lichen                          | 0.5        | 2.1  | 8        |  |      |
| Unknown lichen                                   | 0.1        | 0.3  | 8        |  |      |
|                                                  | 12.3       | 15.9 | 79       |  |      |
|                                                  |            |      |          |  |      |
| <b>Total Bare Ground</b><br>Bare Soil<br>Water   | 5.0<br>0.3 | 10.7 | 58<br>12 |  |      |



Table 109. Soil characteristics for Upland Birch–Ericaceous Low Shrub.

| Property                                   | Mean   | SD    | n  |
|--------------------------------------------|--------|-------|----|
| Elevation (m)                              | 325.1  | 179.3 | 20 |
| Slope (degrees)                            | 11.0   | 9.6   | 17 |
| Surface Organics Depth(cm)                 | 9.0    | 7.8   | 20 |
| Cumulative Org. in 40 cm (cm)              | 9.2    | 7.9   | 20 |
| Loess Cap Thickness (cm)                   | 13.0   | NA    | 1  |
| Depth to Rocks (cm)                        | 73.7   | 88.7  | 16 |
| Surface Fragment Cover (%)                 | 4.8    | 8.5   | 5  |
| Frost Boil Cover (%)                       | 2.3    | 2.2   | 4  |
| Thaw Depth (cm)                            | 50.9   | 34.9  | 8  |
| Site pH at 10-cm depth                     | 4.9    | 0.7   | 19 |
| Site EC at 10-cm depth (µS/cm)             | 66.8   | 54.4  | 19 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -140.0 | 90.2  | 9  |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

Dominant soil subgroups include Typic Dystrogelepts (acidic, well drained, moderately thin organic horizon, permafrost below 1 m), Typic Historthels (wet, organic rich soil over permafrost lacking cryoturbation), and Typic Haploturbels (mineral soil over permafrost with cryoturbation). Less common subgroups include Typic Histoturbels (wet, organic rich soil over permafrost with cryoturbation) and Typic Haplorthels (mineral soil over permafrost lacking cryoturbation). This ecotype and associated soils are part of the Upland Rocky-loamy Acidic Low Shrublands soil landscape, which also includes Upland Birch–Willow Low Shrub and Upland Spiraea Low Shrub.

# **Upland Birch-Willow Low Shrub**



# Geomorphology:

Upland Birch–Willow Low Shrub is a widespread arctic ecotype that is abundant beyond treeline in GAAR, NOAT and northern KOVA. It occurs on older moraine, hillside colluvium, solifluction deposits, upland loess, upland retransported deposits, and abandoned alluvial fan deposits. Surfaces are typically sloped.

#### Plant Associations:

Betula nana–Vaccinium vitis-idaea–Dryas octopetala Salix planifolia ssp. pulchra–Betula nana– Polygonum bistorta

This ecotype has two plant associations, both containing a mix of low birch and willow shrub communities (Table 110). The first is dominated by *B. nana* with a reduced willow component, and the second is dominated by *S. planifolia* ssp. *pulchra* with a reduced dwarf birch component. Upland Birch–Willow Low Shrub has variable cover of most life forms. Common species include *Salix glauca*, *Vaccinium uliginosum*, *Polygonum bistorta* (syn: *Bistora plumosa*), *Petasites frigidus*, *Carex bigelowii*, *Hylocomium splendens*, and *Flavocetraria cucullata*.

This ecotype is most similar to Upland Birch–Ericaceous Low Shrub as previously discussed. It is also comparable to Lowland Birch–Willow Low Shrub, although the vegetation community is different because soils are drier and rockier with less organic matter.

#### Soils:

Soils are loamy, blocky, or gravelly with a thin surface organic horizon (Table 111). Thaw depths often could not be determined in the rocky soils, but permafrost is presumed to be present within the upper 2 m of the soil profile. Cryoturbation is rare. Frost boils are uncommon, and surface fragments and loess caps are rare. Soil pH is acidic to circumneutral, and EC is low. The soils are typically well drained to moderately well drained, or somewhat poorly

Table 110. Vegetation cover and frequency for Upland Birch–Willow Low Shrub (n=27).

| -                                   |              |             |           |
|-------------------------------------|--------------|-------------|-----------|
|                                     | Cove         |             | Freq      |
|                                     | Mean         | SD          | <u>%</u>  |
| Total Vaccular Cover                | 169.8        | 61.6        | 100       |
| Total Vascular Cover                | 115.1<br>0.2 | 46.4<br>1.0 | 100<br>20 |
| Total Evergreen Tree Cover          | 0.2          | 1.0         | 20        |
| Picea glauca  Total Evergreen Shrub | 0.2          | 1.0         | 20        |
| Cover                               | 17.6         | 12.9        | 92        |
| Andromeda polifolia                 | 0.4          | 1.3         | 20        |
| Cassiope tetragona                  | 1.8          | 3.0         | 60        |
| Dryas integrifolia                  | 0.3          | 1.1         | 8         |
| Dryas octopetala                    | 2.0          | 5.2         | 24        |
| Dryas octopetala ssp.               |              |             |           |
| alaskensis                          | 2.8          | 9.3         | 12        |
| Empetrum nigrum                     | 1.9          | 2.6         | 60        |
| Ledum decumbens                     | 3.0          | 5.5         | 60        |
| Linnaea borealis                    | 1.4          | 6.0         | 8         |
| Loiseleuria procumbens              | 0.5          | 1.2         | 20        |
| Vaccinium vitis-idaea               | 3.5          | 3.4         | 84        |
| Total Deciduous Shrub               | 60.0         | 25.0        | 06        |
| Cover                               | 68.0<br>0.6  | 25.9<br>2.1 | 96<br>12  |
| Alnus crispa                        | 0.6          | 1.0         | 12        |
| Arctostaphylos alpina               | 0.2          | 4.0         | 8         |
| Arctostaphylos rubra                | 5.4          | 18.7        | 16        |
| Betula glandulosa<br>Betula nana    | 11.8         | 16.3        | 72        |
| Salix arctica                       | 0.8          | 2.4         | 12        |
| Salix chamissonis                   | 0.8          | 3.0         | 16        |
| Salix glauca                        | 5.9          | 9.3         | 52        |
| Salix Ianata ssp. richardsonii      | 1.2          | 3.5         | 16        |
| Salix phlebophylla                  | 0.2          | 0.7         | 16        |
| Salix planifolia ssp. pulchra       | 26.1         | 24.7        | 88        |
| Salix reticulata                    | 3.4          | 5.2         | 52        |
| Spiraea beauverdiana                | 0.8          | 2.2         | 36        |
| Vaccinium uliginosum                | 9.6          | 10.1        | 88        |
| Total Forb Cover                    | 17.0         | 21.3        | 100       |
| Aconitum delphinifolium             | 0.1          | 0.2         | 16        |
| Anemone narcissiflora               | 0.6          | 1.3         | 40        |
| Anemone parviflora                  | 0.6          | 3.0         | 12        |
| Arnica lessingii                    | 0.6          | 1.5         | 24        |
| Artemisia arctica ssp. arctica      | 1.6          | 3.1         | 36        |
| Astragalus umbellatus               | <0.1         | 0.2         | 12        |
| Dodecatheon frigidum                | 0.6          | 1.2         | 24        |
| Equisetum arvense                   | 7.6          | 17.8        | 36        |
| Lupinus arcticus                    | 0.2          | 1.0         | 16        |
| Lycopodium annotinum                | 0.2          | 0.7         | 8         |
| Pedicularis capitata                | 0.2          | 0.3         | 44        |
| Pedicularis labradorica             | 0.1          | 0.2         | 20        |
| Petasites frigidus                  | 1.4          | 2.3         | 60        |
| Polemonium acutiflorum              | 0.5          | 1.2         | 36        |
| Polygonum bistorta                  | 0.4          | 0.7         | 64        |
| Polygonum viviparum                 | 0.1          | 0.2         | 28        |
| Pyrola asarifolia                   | 0.1          | 0.3         | 24        |
| Pyrola grandiflora                  | 0.1          | 0.3         | 20        |
| Rubus chamaemorus                   | 0.4          | 1.4         | 16        |
| Saussurea angustifolia              | 0.2          | 0.5         | 48        |
| Sedum rosea ssp. integrifolium      | 0.1          | 0.4         | 8         |
| Valeriana capitata                  | 0.4          | 0.9         | 24        |
|                                     |              |             |           |

Table 110. Continued.

|                                   | Cover |      | Freq |
|-----------------------------------|-------|------|------|
|                                   | Mean  | SD   | %    |
| Total Grass Cover                 | 4.9   | 5.1  | 92   |
| Arctagrostis latifolia            | 2.4   | 2.5  | 72   |
| Festuca altaica                   | 1.8   | 3.8  | 32   |
| Hierochloe alpina                 | 0.1   | 0.4  | 16   |
| Poa arctica                       | 0.4   | 0.6  | 56   |
| Total Sedge & Rush Cover          | 7.4   | 8.3  | 92   |
| Carex bigelowii                   | 4.3   | 5.0  | 72   |
| Carex membranacea                 | 0.4   | 1.3  | 8    |
| Carex microchaeta                 | 0.6   | 3.0  | 8    |
| Carex podocarpa                   | 1.4   | 3.3  | 24   |
| Carex scirpoidea                  | 0.1   | 0.4  | 8    |
| Eriophorum angustifolium          | 0.2   | 1.0  | 8    |
| Eriophorum vaginatum              | 0.2   | 1.0  | 8    |
| Total Nonvascular Cover           | 54.7  | 27.0 | 96   |
| Total Moss Cover                  | 47.0  | 25.4 | 96   |
| Aulacomnium acuminatum            | 0.7   | 2.2  | 12   |
| Aulacomnium palustre              | 1.9   | 3.4  | 44   |
| Aulacomnium turgidum              | 1.6   | 3.4  | 40   |
| Brachythecium sp.                 | 0.3   | 1.1  | 8    |
| Dicranum elongatum                | 0.6   | 1.6  | 16   |
| Dicranum sp.                      | 0.4   | 1.2  | 24   |
| Hylocomium splendens              | 14.2  | 16.3 | 60   |
| Loeskypnum badium                 | 0.4   | 1.5  | 8    |
| Pleurozium schreberi              | 1.3   | 3.0  | 24   |
| Polytrichum sp.                   | 4.0   | 9.9  | 40   |
| Polytrichum strictum              | 0.4   | 1.1  | 20   |
| Rhytidium rugosum                 | 1.0   | 2.2  | 20   |
| Sanionia uncinata                 | 1.2   | 5.1  | 12   |
| Sphagnum sp.                      | 3.4   | 10.6 | 28   |
| Thuidium recognitum               | 2.4   | 7.1  | 12   |
| Thuidium sp.                      | 0.8   | 3.1  | 12   |
| Tomentypnum nitens                | 3.7   | 7.2  | 36   |
| Unknown moss                      | 1.5   | 6.0  | 16   |
| Total Lichen Cover                | 7.7   | 8.6  | 88   |
| Cetraria cf. islandica            | 0.5   | 0.9  | 40   |
| Cetraria islandica ssp. islandica | 0.2   | 0.4  | 16   |
| Cladina arbuscula                 | 0.4   | 1.1  | 24   |
| Cladina mitis                     | 0.4   | 1.1  | 20   |
|                                   | 0.7   | 1.7  | 24   |
| Cladina rangiferina               | 0.7   | 2.8  | 12   |
| Cladina sp.                       | 0.5   | 0.8  | 52   |
| Cladonia sp.                      | 0.3   | 0.8  | 20   |
| Dactylina arctica                 | 0.1   |      |      |
| Flavocetraria cucullata           |       | 1.1  | 56   |
| Flavocetraria nivalis             | 0.2   | 0.5  | 16   |
| Lobaria sp.                       | 0.1   | 0.2  | 20   |
| Masonhalea richardsonii           | 0.2   | 0.5  | 36   |
| Nephroma arcticum                 | 0.4   | 0.8  | 28   |
| Peltigera aphthosa                | 0.4   | 0.6  | 56   |
| Sphaerophorus fragilis            | 0.1   | 0.4  | 12   |
| Stereocaulon sp.                  | 0.4   | 1.1  | 24   |
| Thamnolia vermicularis            | 0.3   | 0.5  | 32   |
| Unknown crustose lichen           | 0.4   | 1.2  | 16   |
| Total Bare Ground                 | 8.8   | 11.2 | 92   |
| Bare Soil                         | 3.7   | 11.0 | 68   |
| Litter alone                      | 5.1   | 4.2  | 88   |



drained. Depth to water table ranged from shallow to moderately deep, however the rocky soils made it difficult to measure water depth in all soil pits sampled.

Table 111. Soil characteristics for Upland Birch—Willow Low Shrub.

| Property                                   | Mean  | SD    | n  |
|--------------------------------------------|-------|-------|----|
| Elevation (m)                              | 504.8 | 261.9 | 25 |
| Slope (degrees)                            | 8.2   | 6.0   | 25 |
| Surface Organics Depth(cm)                 | 8.2   | 5.5   | 24 |
| Cumulative Org. in 40 cm (cm)              | 8.5   | 6.3   | 24 |
| Loess Cap Thickness (cm)                   | 21.5  | 30.4  | 4  |
| Depth to Rocks (cm)                        | 19.1  | 15.7  | 20 |
| Surface Fragment Cover (%)                 | 13.4  | 27.3  | 8  |
| Frost Boil Cover (%)                       | 6.5   | 13.6  | 10 |
| Thaw Depth (cm)                            | 58.0  | 13.1  | 7  |
| Site pH at 10-cm depth                     | 5.6   | 1.0   | 24 |
| Site EC at 10-cm depth (µS/cm)             | 62.5  | 54.1  | 24 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -84.9 | 70.5  | 10 |

 $^{\mathrm{a}}\mathrm{Measurements} > 1$  m indicate minimum depth, not true depth

At well drained sites, the dominant soil subgroups are Typic Dystrogelepts (acidic, well drained, moderately thin organic horizon, permafrost below 1 m) and Typic Haplorthels (mineral soil over permafrost lacking cryoturbation). At poorly drained sites, dominant soil subgroups include Typic Haploturbels (mineral soil over permafrost with cryoturbation) and Typic Aquorthels (wet, mineral soil over permafrost lacking cryoturbation). This ecotype and associated soils are part of the Upland Rocky-loamy Acidic Low Shrublands soil landscape, which also includes Upland Birch–Ericaceous Low Shrub and Upland Spiraea Low Shrub ecotypes.

## **Upland Bluejoint Meadow**



# Geomorphology:

Upland Bluejoint Meadow primarily occurs after fire, and is uncommon in ARCN. It occurs on upper slopes on hillside colluvium. Due to its low abundance, this ecotype was not mapped.

### Plant Association:

Calamagrostis canadensis-Polemonium acutiflorum

Upland Bluejoint Meadow is primarily grass-dominated although forbs can be co-dominant at some sites (Table 112). Trees and tall shrubs are absent, but all other life forms are represented. Total nonvascular cover is often low. Common species include *Aconitum delphinifolium*, *Petasites frigidus*, and *Carex podocarpa*.

Upland Bluejoint Meadow is similar to Riverine Bluejoint Meadow and Lacustrine Bluejoint Meadow in species composition, although physiographic factors are unrelated.

## Soils:

Soils are typically loamy, blocky, or rubbly with a thin surface organic horizon and a thick, dense root mat (Table 113). Thaw depths often could not be determined in the rocky soils, but permafrost is presumed to be absent or to occur below a depth of 1 m. Frost boils and loess caps are absent, and surface fragments are rare. Soil pH is acidic to circumneutral, and EC is low. The soils are typically well drained to moderately well drained. Depth to water table often could not be measured.

Table 112. Vegetation cover and frequency for Upland Bluejoint Meadow (n=4).

| Opiand Bluejoint Meadow (n=4).              |              |            |           |
|---------------------------------------------|--------------|------------|-----------|
|                                             | Cove         | er         | Freq      |
|                                             | Mean         | SD         | %         |
| Total Live Cover                            | 137.1        | 34.8       | 100       |
| Total Vascular Cover                        | 119.8        | 38.0       | 100       |
| Total Evergreen Shrub                       | 0.0          | 0.1        | 25        |
| Cover                                       | 0.0          | 0.1        | 25        |
| Vaccinium vitis-idaea Total Deciduous Shrub | <0.1         | 0.1        | 25        |
| Cover                                       | 15.1         | 12.3       | 100       |
| Rosa acicularis                             | 1.2          | 2.5        | 25        |
| Rubus idaeus                                | 2.5          | 5.0        | 25        |
| Salix chamissonis                           | 2.5          | 5.0        | 25        |
| Salix planifolia ssp. pulchra               | 2.5          | 2.9        | 75        |
| Salix reticulata                            | 1.2          | 2.5        | 25        |
| Sorbus scopulina                            | <0.1         | 0.1        | 25        |
| Spiraea beauverdiana                        | 1.3          | 2.5        | 50        |
| Viburnum edule                              | 3.8          | 7.5        | 25        |
| Total Forb Cover                            | 45.5         | 27.3       | 100       |
| Aconitum delphinifolium                     | 3.5          | 3.7        | 75        |
| Adoxa moschatellina                         | <0.1         | 0.1        | 25        |
| Anemone narcissiflora                       | <0.1         | 0.1        | 25        |
| Anemone parviflora                          | 3.8          | 7.5        | 50        |
| Anemone richardsonii                        | 0.8          | 1.5        | 50        |
| Arabis drummondii                           | <0.1         | 0.1        | 25        |
| Arabis lyrata kamchatica                    | <0.1         | 0.1        | 25        |
| Arnica lessingii                            | 0.2          | 0.5        | 25        |
| Artemisia arctica ssp. arctica              | 5.0          | 7.1        | 50        |
| Artemisia tilesii                           | 0.8          | 1.5        | 50        |
| Astragalus alpinus                          | <0.1         | 0.1        | 25        |
| Botrychium minganense                       | <0.1         | 0.1        | 25        |
| Campanula lasiocarpa                        | <0.1         | 0.1        | 25        |
| Cardamine pratensis ssp.                    |              |            |           |
| angustifolia                                | 0.2          | 0.5        | 25        |
| Cardamine umbellata                         | <0.1         | 0.1        | 25        |
| Castilleja elegans                          | <0.1         | 0.1        | 25        |
| Cerastium beeringianum var.                 |              |            | 25        |
| grandiflorum                                | 0.2          | 0.5        | 25        |
| Chrysosplenium tetrandrum                   | 0.2          | 0.5        | 25        |
| Claytonia sarmentosa                        | <0.1         | 0.1        | 25        |
| Cryptogramma sitchensis                     | <0.1         | 0.1        | 25        |
| Cystopteris fragilis                        | <0.1         | 0.1        | 25        |
| Dodecatheon frigidum                        | 1.5          | 2.4        | 50<br>25  |
| Dryopteris fragrans                         | <0.1<br>6.2  | 0.1        | 25        |
| Epilobium angustifolium                     |              | 12.5       | 25        |
| Epilobium latifolium                        | 0.2          | 0.5        | 25        |
| Equisetum arvense                           | 5.0          | 7.1        | 50<br>25  |
| Equisetum pratense                          | 1.0          | 2.0        | 25        |
| Galium boreale                              | 0.8          | 1.5        | 25        |
| Gentiana glauca                             | <0.1<br><0.1 | 0.1<br>0.1 | 25<br>25  |
| Heracleum lanatum                           | <0.1<br><0.1 | 0.1        | 25<br>25  |
| Mertensia paniculata                        | <0.1         | 0.1        | 25<br>25  |
| Moehringia lateriflora                      | <0.1<br><0.1 | 0.1        | 25<br>25  |
| Myosotis alpestris ssp. asiatica            |              |            |           |
| Parnassia kotzebuei                         | <0.1         | 0.1<br>7.5 | 25<br>75  |
| Petasites frigidus                          | 6.3          | 7.5        | 75<br>100 |
| Polemonium acutiflorum                      | 1.8          | 2.2        | 100       |
| Ranunculus nivalis                          | <0.1         | 0.1        | 25<br>25  |
| Rumex acetosa alpestris                     | 0.8          | 1.5        | 25<br>50  |
| Rumex arcticus                              | 0.6<br>-0.1  | 1.0        |           |
| Saxifraga hieracifolia                      | <0.1         | 0.1        | 25        |

Table 112. Continued.

|                                   | Cover |      | Freq      |
|-----------------------------------|-------|------|-----------|
|                                   | Mean  | SD   | %         |
| Saxifraga punctata                | 1.2   | 2.5  | 25        |
| Saxifraga punctata ssp.           |       |      |           |
| nelsoniana                        | 0.1   | 0.1  | 50        |
| Senecio lugens                    | 0.2   | 0.5  | 25        |
| Solidago multiradiata             | 0.5   | 1.0  | 50        |
| Stellaria calycantha isophylla    | <0.1  | 0.1  | 25        |
| Stellaria edwardsii               | <0.1  | 0.1  | 25        |
| Valeriana capitata                | 3.0   | 4.8  | 50        |
| Veratrum album oxysepalum         | <0.1  | 0.1  | 25        |
| Viola epipsila ssp. repens        | 0.8   | 1.0  | 50        |
| Viola selkirkii                   | <0.1  | 0.1  | 25        |
| Wilhelmsia physodes               | <0.1  | 0.1  | 25        |
| Woodsia ilvensis                  | <0.1  | 0.1  | 25        |
| Woodsia sp.                       | <0.1  | 0.1  | 25        |
| Zygadenus elegans                 | <0.1  | 0.1  | 25        |
| Total Grass Cover                 | 41.6  | 28.1 | 100       |
| Agropyron pauciflorum pauciflorum | 0.8   | 1.5  | 25        |
| Arctagrostis latifolia            | 2.5   | 5.0  | 50        |
| Calamagrostis canadensis          | 36.2  | 29.8 | 100       |
| Festuca altaica                   | 0.8   | 1.0  | 50        |
| Poa alpigena                      | 0.2   | 0.5  | 25        |
| Poa alpina                        | <0.1  | 0.1  | 25        |
| Poa arctica                       | 0.1   | 0.1  | 50        |
| Poa sp.                           | <0.1  | 0.1  | 25        |
| Schizachne purpurascens           | 1.0   | 2.0  | 25        |
| Total Sedge & Rush Cover          | 17.6  | 10.5 | 100       |
| Carex aquatilis ssp. aquatilis    | 3.8   | 7.5  | 25        |
| Carex bigelowii                   | 0.2   | 0.5  | 25        |
| Carex lachenalii                  | 0.5   | 1.0  | 25        |
| Carex podocarpa                   | 11.3  | 13.1 | 75        |
| Carex praticola                   | 0.5   | 1.0  | 25        |
| Carex stylosa                     | <0.1  | 0.1  | 25        |
| Eriophorum angustifolium          | 1.2   | 2.5  | 25        |
| Luzula multiflora                 | <0.1  | 0.1  | 25        |
| Total Nonvascular Cover           | 17.4  | 29.5 | 75        |
| Total Moss Cover                  | 17.1  | 29.0 | 75        |
| Brachythecium reflexum            | <0.1  | 0.1  | 25        |
| Bryum pseudotriquetrum            | 7.5   | 15.0 | 25        |
| Campylium stellatum               | 2.5   | 5.0  | 25        |
| Plagiomnium sp.                   | <0.1  | 0.1  | 25        |
| Sanionia uncinata                 | 2.5   | 5.0  | 25        |
| Tomentypnum nitens                | 2.0   | 4.0  | 25        |
| Unknown fungus                    | <0.1  | 0.1  | 25        |
| Unknown liverwort                 | 2.5   | 5.0  | 25        |
| Total Lichen Cover                | 0.3   | 0.5  | 50        |
| Peltigera aphthosa                | <0.1  | 0.1  | 25        |
| Peltigera canina                  | 0.2   | 0.5  | 25        |
| Total Bare Ground                 | 10.8  | 11.5 | 100       |
| Bare Soil                         | 3.8   | 7.5  | 75<br>50  |
| Water                             | 0.3   | 0.5  | 50<br>100 |
| Litter alone                      | 6.8   | 5.3  | 100       |



Table 113. Soil characteristics for Upland Bluejoint Meadow.

| Property                                   | Mean   | SD    | n |
|--------------------------------------------|--------|-------|---|
| Elevation (m)                              | 367.0  | 223.1 | 4 |
| Slope (degrees)                            | 18.8   | 15.2  | 4 |
| Surface Organics Depth(cm)                 | 7.5    | 3.3   | 4 |
| Cumulative Org. in 40 cm (cm)              | 7.5    | 3.3   | 4 |
| Loess Cap Thickness (cm)                   |        |       | 0 |
| Depth to Rocks (cm)                        | 56.8   | 95.5  | 4 |
| Surface Fragment Cover (%)                 | 2.0    | 1.4   | 2 |
| Frost Boil Cover (%)                       |        |       | 0 |
| Thaw Depth (cm)                            | 30.0   |       | 1 |
| Site pH at 10-cm depth                     | 5.4    | 0.9   | 4 |
| Site EC at 10-cm depth (µS/cm)             | 137.5  | 79.7  | 4 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -123.0 | 93.5  | 3 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

Dominant soil subgroups in this ecotype include Typic Eutrogelepts (non-acidic, partially developed with permafrost below 1 m) and Typic Dystrogelepts (acidic, partially developed, permafrost below 1 m). A less common subgroup is Typic Haplocryolls (non-acidic, well drained, thick organic rich A horizon, lacking permafrost). This ecotype and associated soils are part of the Upland Rocky-loamy Circumacidic Tall Shrublands and Forests soil landscape, which also includes Upland Birch Forest, Upland Spruce–Birch Forest, Upland Alder–Willow Tall Shrub, and Upland White Spruce–Ericaceous Forest ecotypes.

# **Upland Dwarf Birch-Tussock Shrub**



## Geomorphology:

Upland Dwarf Birch–Tussock Shrub is the most abundant ecotype in ARCN. It is found on moderate to gentle slopes at elevations averaging 250 m. It occurs on lowland and upland loess, older moraine, hillside colluvium, ice-rich centers and margins of thaw basins, drained basins, and bogs.

#### Plant Association:

Betula nana-Eriophorum vaginatum

Vegetation in this type is dominated by the tussock forming sedge *Eriophorum vaginatum*, and the dwarf shrub *Betula nana* (Table 114). It is the primary ecotype used by caribou for winter lichen grazing, and lichen cover is higher in this ecotype than in other similar ones. Other common species include *Ledum decumbens*, *Vaccinium vitis-idaea*, *V. uliginosum*, *Rubus chamaemorus*, *Carex bigelowii*, and *Flavocetraria cucullata*. *Sphagnum* mosses are also abundant and diverse.

This ecotype is very similar to Upland Moist Birch–Ericaceous Shrub, Lowland Moist Birch–Ericaceous Shrub and Lowland Wet Dwarf Birch–Ericaceous Shrub but differs by the prevalence of tussocks formed by *Eriophorum vaginatum* and lower cover of ericaceous shrubs.

### Soils:

Soils are typically organic-rich loams and silt-loams and feature a moderately thick to thick surface organic horizon (Table 115). Depth to permafrost is typically less than 1 m. Cryoturbation was common in the upper meter of the soil profile, and buried discontinuous organic layers sometimes occur as the result of cryoturbation of surface organics. Frost boils are uncommon with low abundance, while loess caps and surface fragments are rare. Soil pH is acidic, and EC is low. The soils are typically poorly to somewhat poorly drained, and water table was shallow to moderately deep.

Table 114. Vegetation cover and frequency for Upland Dwarf Birch–Tussock Shrub (n=80).

|                                                | Cover       |            | Freq     |
|------------------------------------------------|-------------|------------|----------|
|                                                | Mean        | SD         | %        |
| Total Live Cover                               | 136.6       | 40.5       | 100      |
| Total Vascular Cover                           | 81.9        | 31.4       | 100      |
| <b>Total Evergreen Tree Cover</b>              | 0.0         | 0.0        | 8        |
| Total Evergreen Shrub                          |             |            |          |
| Cover                                          | 26.4        | 18.2       | 97       |
| Andromeda polifolia                            | 0.3         | 1.2        | 15       |
| Cassiope tetragona                             | <0.1        | 0.2        | 8        |
| Empetrum nigrum                                | 2.6         | 3.5        | 59<br>07 |
| Ledum decumbens                                | 13.3<br>0.1 | 9.7<br>0.2 | 97<br>15 |
| Oxycoccus microcarpus                          | 10.1        | 9.1        | 95       |
| Vaccinium vitis-idaea Total Deciduous Shrub    | 10.1        | 9.1        | 95       |
| Cover                                          | 26.3        | 17.7       | 100      |
| Alnus crispa                                   | 0.6         | 4.0        | 8        |
| Arctostaphylos rubra                           | 0.2         | 0.5        | 10       |
| Betula nana                                    | 15.3        | 14.3       | 100      |
| Salix fuscescens                               | 0.3         | 1.6        | 5        |
| Salix glauca                                   | 0.3         | 0.9        | 13       |
| Salix planifolia ssp. pulchra                  | 2.4         | 4.2        | 59       |
| Salix reticulata                               | 0.1         | 0.3        | 5        |
| Vaccinium uliginosum                           | 7.0         | 7.2        | 79       |
| Total Forb Cover                               | 5.7         | 6.5        | 95       |
| Lupinus arcticus                               | <0.1        | 0.2        | 5        |
| Pedicularis labradorica                        | <0.1        | 0.2        | 8        |
| Petasites frigidus                             | 0.7         | 1.9        | 23       |
| Polygonum bistorta                             | 0.1         | 0.2        | 10       |
| Rubus chamaemorus                              | 4.7         | 5.8        | 69       |
| Rumex arcticus                                 | <0.1        | 0.2        | 8        |
| Total Grass Cover                              | 0.4         | 1.1        | 33       |
| Arctagrostis latifolia                         | 0.3         | 1.0        | 23       |
| Calamagrostis lapponica                        | <0.1        | 0.2        | 5        |
| Hierochloe alpina                              | <0.1        | 0.2        | 5        |
| Total Sedge & Rush Cover                       | 23.1        | 16.8       | 100      |
| Carex him lawii                                | 0.6         | 1.7        | 28       |
| Carex bigelowii                                | 3.4<br>0.5  | 4.0<br>1.8 | 74<br>21 |
| Carex rotundata                                | 0.5         |            | 21<br>3  |
| Carex stylosa                                  | 0.1         | 0.8<br>1.0 | 3<br>31  |
| Eriophorum angustifolium                       | 3.3         | 11.8       | 3 I<br>8 |
| Eriophorum brachyantherum                      | 3.3<br>0.1  | 0.3        | 3        |
| Eriophorum scheuchzeri<br>Eriophorum vaginatum | 14.5        | 9.7        | э<br>97  |
| Total Nonvascular Cover                        | 54.8        | 25.7       | 100      |
| Total Moss Cover                               | 43.4        | 22.1       | 100      |
| Abietinella abietina                           | 0.1         | 0.8        | 3        |
| Aulacomnium acuminatum                         | 0.1         | 0.8        | 3        |
| Aulacomnium palustre                           | 2.3         | 3.3        | 46       |
| Aulacomnium turgidum                           | 3.2         | 3.7        | 67       |
| Bryum sp.                                      | 0.1         | 0.3        | 3        |
| Dicranum acutifolium                           | 0.1         | 0.8        | 5        |
| Dicranum elongatum                             | 1.4         | 3.8        | 18       |
| Dicranum groenlandicum                         | 0.8         | 2.9        | 10       |
| Dicranum laevidens                             | 0.1         | 0.8        | 3        |
| Dicranum majus                                 | 0.1         | 0.8        | 3        |
| Dicranum sp.                                   | 1.0         | 1.8        | 36       |
| Hylocomium splendens                           | 6.2         | 11.3       | 36       |
| Hypnum plicatulum                              | 0.1         | 0.3        | 3        |
|                                                |             |            |          |

Table 114. Continued.

|                                                   | Cover       |            | Freq    |
|---------------------------------------------------|-------------|------------|---------|
|                                                   | Mean        | SD         | %       |
| Pleurozium schreberi                              | 0.6         | 2.0        | 13      |
| Polytrichum juniperinum                           | 0.4         | 1.0        | 18      |
| Polytrichum sp.                                   | 0.5         | 1.2        | 26      |
| Polytrichum strictum                              | 0.6         | 1.8        | 26      |
| Ptilidium ciliare                                 | <0.1        | 0.2        | 8       |
| Rhytidium rugosum                                 | 0.7         | 2.6        | 15      |
| Sanionia uncinata                                 | 0.1         | 0.2        | 8       |
| Sphagnum angustifolium                            | 0.1         | 0.8        | 3       |
| Sphagnum balticum                                 | 5.1         | 10.6       | 26      |
| Sphagnum capillifolium                            | 1.2         | 4.7        | 8       |
| Sphagnum fuscum                                   | 3.0         | 7.4        | 26      |
| Sphagnum girgensohnii                             | 0.1         | 0.8        | 5       |
| Sphagnum lenense                                  | 0.8         | 3.5        | 8       |
| Sphagnum magellanicum                             | 0.3         | 1.6        | 3       |
| Sphagnum sp.                                      | 12.8        | 19.9       | 64      |
| Sphagnum warnstorfii                              | 0.4         | 2.4        | 3       |
| . •                                               | 0.1         | 0.4        | 10      |
| Sphenolobus minutus                               | 0.6         | 2.0        | 15      |
| Tomentypnum nitens                                | <0.1        | 0.2        | 8       |
| Unknown moss                                      | 0.1         | 0.2        | 3       |
| Warnstorfia sarmentosa                            | 11.3        | 16.3       | 95      |
| Total Lichen Cover                                | 0.1         | 0.5        | 95<br>5 |
| Alectoria nigricans                               | 0.1         | 0.5        | 23      |
| Cetraria cf. islandica<br>Cetraria islandica ssp. | 0.1         | 0.5        | 23      |
| crispiformis                                      | <0.1        | 0.2        | 5       |
| Cetraria laevigata                                | 0.1         | 0.4        | 8       |
| Cetrariella delisei                               | 0.2         | 0.9        | 8       |
| Cladina arbuscula                                 | 0.9         | 2.6        | 33      |
| Cladina mitis                                     | 1.0         | 3.0        | 18      |
| Cladina rangiferina                               | 1.8         | 3.1        | 54      |
| Cladina sp.                                       | 0.5         | 1.6        | 28      |
| Cladina stellaris                                 | 0.1         | 0.2        | 8       |
| Cladina stygia                                    | 0.6         | 1.9        | 15      |
| Cladonia stygia<br>Cladonia bellidiflora          | 0.1         | 0.5        | 3       |
| Cladonia pleurota                                 | 0.1         | 0.4        | 3       |
| •                                                 | 0.1         | 0.4        | 59      |
| Cladonia sp.                                      | 0.4         | 0.4        | 5       |
| Cladonia subfurcata                               | 0.1         | 0.4        | 5       |
| Cladonia uncialis                                 | 2.2         | 5.1        | 74      |
| Flavocetraria cucullata                           |             |            | 13      |
| Flavocetraria nivalis                             | 0.3<br><0.1 | 1.6<br>0.2 | 5       |
| Lobaria sp.                                       |             |            |         |
| Nephroma arcticum                                 | 0.2         | 0.6        | 23      |
| Ochrolechia frigida                               | 0.2         | 0.9        | 5       |
| Peltigera aphthosa                                | 0.9         | 1.2        | 54      |
| Peltigera canina                                  | 0.1         | 0.4        | 10      |
| Peltigera sp.                                     | 0.1         | 0.2        | 15      |
| Sphaerophorus globosus                            | 0.1         | 0.2        | 8       |
| Stereocaulon paschale                             | <0.1        | 0.2        | 5       |
| Thamnolia vermicularis                            | 0.5         | 1.0        | 38      |
| Unknown crustose lichen                           | 0.2         | 8.0        | 15      |
| Total Bare Ground                                 | 12.1        | 9.1        | 95      |
| Bare Soil                                         | 0.9         | 1.6        | 64      |
| Water                                             | 0.1         | 0.4        | 26      |
| Litter alone                                      | 11.1        | 8.3        | 95      |



Table 115. Soil characteristics for Upland Dwarf Birch–Tussock Shrub.

| Property                                   | Mean  | SD    | n  |
|--------------------------------------------|-------|-------|----|
| Elevation (m)                              | 254.9 | 258.8 | 38 |
| Slope (degrees)                            | 3.4   | 2.7   | 18 |
| Surface Organics Depth(cm)                 | 22.0  | 13.0  | 39 |
| Cumulative Org. in 40 cm (cm)              | 22.2  | 11.3  | 39 |
| Loess Cap Thickness (cm)                   | 12.1  | 11.5  | 8  |
| Depth to Rocks (cm)                        | 168.4 | 67.5  | 10 |
| Surface Fragment Cover (%)                 | 0.1   | 0.0   | 3  |
| Frost Boil Cover (%)                       | 3.6   | 3.9   | 13 |
| Thaw Depth (cm)                            | 33.2  | 9.7   | 38 |
| Site pH at 10-cm depth                     | 4.7   | 0.7   | 37 |
| Site EC at 10-cm depth (µS/cm)             | 84.9  | 89.4  | 37 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -25.8 | 13.2  | 32 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Typic Historthels (wet, organic rich soil over permafrost lacking cryoturbation) and Typic Aquiturbels (wet, mineral soil over permafrost with cryoturbation). Less common soil subgroups include Typic Fibristels (wet, poorly decomposed organic horizon thicker than 40 cm, permafrost present), Typic Hemistels (wet, moderately decomposed organic horizon thicker than 40 cm, permafrost present), and Typic Histoturbels (wet, organic rich soil over permafrost with cryoturbation). This is the sole ecotype comprising the Upland Loamy Wet Tussock Shrublands soil landscape.

# **Upland Mafic Barrens**



# Geomorphology:

The distribution of this unique ecotype is restricted to lava flows in BELA. These flows consist of younger volcanic mafic rocks, specifically basalts. Surface forms include slopes, crests and complex patterns.

## Plant Association:

Cladina stellaris-Loiseleuria procumbens

Lichens characterize this ecotype, while other life forms grow in micro-sites in rock cracks and protected areas (Table 116). Trees are absent. Common species include Loiseleuria procumbens, Ledum decumbens, Hierochloe alpina, Racomitrium lanuginosum, Alectoria ochroleuca, Bryocaulon divergens, Cladina stellaris, Flavocetraria cucullata and Thamnolia vermicularis. Bare ground is always present.

Upland Mafic Barrens is unique. Some sites in Alpine Acidic Barrens have similar lichen communities and cover, but physiography, bedrock types, and plant associations are different.

Table 116. Vegetation cover and frequency for Upland Mafic Barrens (n=4).

| Opiana Mane Be                                      | and barrens (n=4). |      |           |
|-----------------------------------------------------|--------------------|------|-----------|
|                                                     | Cove               | er   | Freq      |
|                                                     | Mean               | SD   | %         |
| <b>Total Live Cover</b>                             | 110.2              | 9.9  | 100       |
| Total Vascular Cover                                | 7.2                | 11.6 | 100       |
| Total Evergreen Shrub                               |                    |      |           |
| Cover                                               | 2.7                | 3.7  | 100       |
| Cassiope tetragona                                  | <0.1               | 0.1  | 25        |
| Empetrum nigrum                                     | 0.8                | 0.9  | 100       |
| Ledum decumbens                                     | 0.3                | 0.5  | 75        |
| Loiseleuria procumbens                              | 1.6                | 2.3  | 100       |
| Vaccinium vitis-idaea                               | <0.1               | 0.1  | 25        |
| Total Deciduous Shrub                               | 4.0                | 7.4  | 100       |
| Cover                                               | 4.0<br>0.5         | 7.4  | 100<br>50 |
| Alnus crispa                                        |                    | 1.0  |           |
| Betula nana                                         | 2.5                | 5.0  | 25        |
| Potentilla fruticosa                                | 0.1                | 0.1  | 50        |
| Salix brachycarpa ssp.<br>niphoclada                | <0.1               | 0.1  | 25        |
| Salix glauca                                        | <0.1               | 0.1  | 25        |
| <u> </u>                                            | <0.1               | 0.1  | 25        |
| Salix phlebophylla<br>Salix planifolia ssp. pulchra | 0.2                | 0.5  | 25        |
|                                                     | <0.1               | 0.1  | 25        |
| Spiraea beauverdiana                                | 0.6                | 0.1  | 100       |
| Vaccinium uliginosum  Total Forb Cover              | 0.0                | 0.3  | 75        |
|                                                     | <0.1               | 0.1  | 75<br>25  |
| Saxifraga bronchialis                               | <0.1               | 0.1  | 25        |
| Saxifraga tricuspidata                              | <0.1               | 0.1  | 25        |
| Senecio lugens                                      | <0.1               | 0.1  | 25        |
| Woodsia alpina                                      | 0.4                | 0.1  | 25<br>75  |
| Total Grass Cover                                   | <0.4               | 0.0  | 75<br>25  |
| Festuca rubra                                       | <0.1               | 0.1  | 25        |
| Festuca sp.                                         | 0.3                | 0.1  | 25<br>50  |
| Hierochloe alpina                                   | <0.1               | 0.5  | 25        |
| Poa arctica<br>Trisetum spicatum ssp.               | <0.1               | 0.1  | 25        |
| spicatum                                            | <0.1               | 0.1  | 25        |
| Total Sedge & Rush Cover                            | 0.1                | 0.1  | 75        |
| Carex glareosa                                      | <0.1               | 0.1  | 25        |
| Carex sp.                                           | 0.1                | 0.1  | 50        |
| Total Nonvascular Cover                             | 103.0              | 11.1 | 100       |
| Total Moss Cover                                    | 0.4                | 0.4  | 100       |
| Dicranum sp.                                        | <0.1               | 0.1  | 25        |
| Polytrichum hyperboreum                             | <0.1               | 0.1  | 25        |
| Racomitrium lanuginosum                             | 0.3                | 0.5  | 100       |
| Total Lichen Cover                                  | 102.6              | 11.2 | 100       |
| Alectoria nigricans                                 | 1.3                | 2.5  | 50        |
| Alectoria ochroleuca                                | 3.8                | 4.8  | 75        |
| Arctoparmelia sp.                                   | 0.5                | 1.0  | 25        |
| Bryocaulon divergens                                | 2.0                | 2.4  | 75        |
| Bryoria nitidula                                    | <0.1               | 0.1  | 25        |
| Cetraria cf. islandica                              | 0.8                | 1.0  | 50        |
| Cetraria nigricans                                  | 0.1                | 0.1  | 50        |
| Cetrariella delisei                                 | 0.2                | 0.5  | 25        |
| Cladina arbuscula                                   | 0.8                | 1.5  | 50        |
| Cladina mitis                                       | 0.2                | 0.5  | 25        |
| Cladina sp.                                         | 0.5                | 1.0  | 25        |
| Cladina sp.<br>Cladina stellaris                    | 14.5               | 23.8 | 75        |
| Cladina stygia                                      | 1.2                | 2.5  | 25        |
| Cladonia coccifera                                  | 1.0                | 1.4  | 50        |
| Cladonia nipponica                                  | 0.5                | 0.6  | 50        |
| Cladonia squamosa                                   | 0.2                | 0.5  | 25        |
|                                                     |                    |      | -         |

Table 116. Continued.

|                           | Cov  | er   | Freq |
|---------------------------|------|------|------|
|                           | Mean | SD   | %    |
| Flavocetraria cucullata   | 0.8  | 0.9  | 75   |
| Flavocetraria nivalis     | 1.5  | 1.7  | 50   |
| Nephroma arcticum         | 0.1  | 0.1  | 50   |
| Ochrolechia frigida       | 17.5 | 35.0 | 25   |
| Ophioparma lapponica      | 3.8  | 7.5  | 25   |
| Pertusaria sp.            | 0.2  | 0.5  | 25   |
| Pseudephebe pubescens     | 1.2  | 2.5  | 25   |
| Rhizocarpon geographicum  | 2.5  | 2.9  | 50   |
| Sphaerophorus globosus    | <0.1 | 0.1  | 25   |
| Thamnolia vermicularis    | 1.0  | 8.0  | 100  |
| Umbilicaria hyperborea    | 16.2 | 26.3 | 50   |
| Unknown crustose lichen   | 16.2 | 29.3 | 50   |
| Unknown foliose/fruticose |      |      |      |
| lichen                    | 6.2  | 9.5  | 50   |
| Xanthoria sp.             | 7.5  | 9.6  | 50   |
| Total Bare Ground         | 13.5 | 9.6  | 100  |
| Bare Soil                 | 12.5 | 9.6  | 100  |
| Water                     | <0.1 | 0.1  | 25   |
| Litter alone              | 1.0  | 0.8  | 75   |

### Soils:



The soils in this ecotype were rarely sampled due to the typical very high cover of exposed bedrock and surface fragments. The soils that do occur in this ecotype are typically patchy, minimally developed, and occur as a thin veneer over basalt bedrock (Table 117).

Table 117. Soil characteristics for Upland Mafic

| Property                                   | Mean   | SD    | n |
|--------------------------------------------|--------|-------|---|
| Elevation (m)                              | 221.2  | 27.2  | 4 |
| Slope (degrees)                            |        |       | 0 |
| Surface Organics Depth(cm)                 | 3.5    |       | 1 |
| Cumulative Org. in 40 cm (cm)              | 3.5    |       | 1 |
| Loess Cap Thickness (cm)                   | 17.0   |       | 1 |
| Depth to Rocks (cm)                        | 20.0   |       | 1 |
| Surface Fragment Cover (%)                 |        |       | 0 |
| Frost Boil Cover (%)                       |        |       | 0 |
| Thaw Depth (cm)                            |        |       | 0 |
| Site pH at 10-cm depth                     | 6.7    |       | 1 |
| Site EC at 10-cm depth (µS/cm)             | 20.0   |       | 1 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -140.0 | 103.9 | 3 |
|                                            |        |       |   |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The one soil that was sampled was classified to Lithic Dystrogelepts. The soil was shallow to bedrock, with a thin surface organic horizon and a high volume of course fragments. Upland Mafic Barrens is the sole ecotype in the Upland Rocky Circumalkaline Barrens soil landscape.

# **Upland Sandy Barrens**



## Geomorphology:

Upland Sandy Barrens encompasses the active portions of the Great Kobuk Sand Dunes, Little Kobuk Sand Dunes and isolated smaller exposed dunes in ARCN. These eolian active sand dunes are found at < 100 m elevation.

### Plant Association:

Calamagrostis purpurascens-Oxytropis kobukensis
The unique flora of the Kobuk Sand Dunes has been well documented (Parker 1996). All life forms can be present in trace quantities (Table 118). Forbs and grasses are the most represented. We documented two rare species in this ecotype, Oxytropis kobukensis and Lupinus kuschei. Common species include Eritrichium splendens, Minuartia elegans, Senecio ogotorukensis, Bromus pumpellianus var. arcticus, and Calamagrostis purpurascens.

This ecotype is unique. Its closest analog is Upland White Spruce–Lichen Woodland, which occurs adjacent to it on stabilized dunes.

Table 118. Vegetation cover and frequency for Upland Sandy Barrens (n=13).

| . ,                               |      |       |      |
|-----------------------------------|------|-------|------|
|                                   | Cove | er    | Freq |
|                                   | Mean | SD    | %    |
| Total Live Cover                  | 16.4 | 17.1  | 92   |
| <b>Total Vascular Cover</b>       | 13.5 | 11.7  | 92   |
| <b>Total Evergreen Tree Cover</b> | 0.0  | 0.0   | 8    |
| Picea glauca                      | <0.1 | <0.1  | 8    |
| Total Deciduous Tree Cover        | 3.1  | 11.1  | 8    |
| Populus balsamifera               | 3.1  | 11.1  | 8    |
| Total Deciduous Shrub             |      |       |      |
| Cover                             | 0.0  | 0.1   | 15   |
| Salix alaxensis                   | <0.1 | <0.1  | 15   |
| Salix glauca                      | <0.1 | <0.1  | 8    |
| <b>Total Forb Cover</b>           | 5.5  | 5.1   | 92   |
| Androsace chamaejasme             | <0.1 | <0.1  | 15   |
| Anemone drummondii                | <0.1 | <0.1  | 23   |
| Arabis lyrata ssp. kamchatica     | 0.1  | 0.3   | 15   |
| Artemisia borealis                | 0.7  | 1.0   | 46   |
| Artemisia furcata                 | 0.4  | 0.6   | 46   |
| Aster sibiricus                   | 0.4  | 0.9   | 38   |
| Astragalus aboriginum             | 0.1  | 0.3   | 46   |
| Astragalus alpinus                | 0.2  | 0.6   | 15   |
| Braya humilis                     | <0.1 | < 0.1 | 15   |
| Bupleurum triradiatum ssp.        |      |       |      |
| arcticum .                        | 0.3  | 0.8   | 46   |
| Chrysanthemum bipinnatum          | 0.2  | 0.6   | 15   |
| Cnidium cnidiifolium              | 0.4  | 1.1   | 62   |
| Dianthus repens                   | <0.1 | 0.1   | 38   |
| Draba cinerea                     | <0.1 | <0.1  | 8    |
| Epilobium latifolium              | <0.1 | <0.1  | 8    |
| Erigeron elatus                   | 0.1  | 0.3   | 8    |
| Eritrichium splendens             | 0.1  | 0.3   | 54   |
| Lesquerella arctica               | <0.1 | <0.1  | 31   |
| Lupinus kuschei                   | 0.2  | 0.5   | 38   |
| ,<br>Minuartia arctica            | 0.2  | 0.4   | 23   |
| Minuartia elegans                 | 0.2  | 0.4   | 54   |
| Oxytropis borealis                | <0.1 | <0.1  | 15   |
| Oxytropis campestris ssp.         |      |       |      |
| jordalii                          | 0.1  | 0.3   | 8    |
| Oxytropis kobukensis              | 0.4  | 0.5   | 69   |
| Parrya nudicaulis                 | <0.1 | <0.1  | 23   |
| Parrya nudicaulis ssp. interior   | <0.1 | <0.1  | 8    |
| Plantago canescens                | 0.3  | 0.7   | 31   |
| Pulsatilla patens ssp. multifida  | 0.1  | 0.3   | 8    |
| Senecio ogotorukensis             | 0.3  | 0.6   | 69   |
| Silene acaulis                    | <0.1 | <0.1  | 15   |
| Zygadenus elegans                 | 0.5  | 1.0   | 38   |
| Total Grass Cover                 | 4.3  | 4.0   | 92   |
| Bromus pumpellianus               | 0.2  | 0.8   | 8    |
| Bromus pumpellianus var.          |      |       |      |
| arcticus                          | 8.0  | 1.5   | 62   |
| Calamagrostis purpurascens        | 2.8  | 4.2   | 69   |
| Elymus arenarius ssp. mollis      | 0.4  | 1.0   | 23   |
| Festuca richardsonii              | <0.1 | 0.1   | 38   |
| Festuca rubra                     | 0.1  | 0.3   | 8    |
| Total Sedge & Rush Cover          | 0.6  | 1.2   | 31   |
| Carex filifolia                   | 0.5  | 1.1   | 23   |
| Carex supina ssp. spaniocarpa     | 0.2  | 0.6   | 8    |
| Total Nonvascular Cover           | 2.8  | 10.0  | 38   |
| Total Moss Cover                  | 1.4  | 5.0   | 31   |
|                                   |      |       |      |

Table 118. Continued.

|                        | Cov  | Cover |     |
|------------------------|------|-------|-----|
|                        | Mean | SD    | %   |
| Tortella inclinata     | <0.1 | <0.1  | 15  |
| Unknown moss           | 0.1  | 0.3   | 15  |
| Total Lichen Cover     | 1.4  | 5.0   | 31  |
| Cetraria aculeata      | 0.1  | 0.3   | 23  |
| Evernia perfragilis    | <0.1 | <0.1  | 15  |
| Flavocetraria nivalis  | 0.1  | 0.3   | 8   |
| Stereocaulon paschale  | 1.2  | 4.2   | 8   |
| Stereocaulon sp.       | <0.1 | <0.1  | 15  |
| Thamnolia sp.          | <0.1 | <0.1  | 8   |
| Thamnolia vermicularis | 0.1  | 0.3   | 8   |
| Total Bare Ground      | 89.6 | 16.9  | 100 |
| Bare Soil              | 87.1 | 20.1  | 100 |
| Litter alone           | 2.6  | 4.1   | 85  |

## Soils:



Soils are sandy and lack a surface organic horizon (Table 119). Thaw depths could not be determined as the depth to permafrost, if present, was always greater than the maximum depth sampled (1.3 m). Frost boils, surface fragments, and loess caps are absent. Thin organic horizons, buried by wind blown sands, occurred occasionally. Soil pH is alkaline to circumneutral, and EC is low. The soils are excessively drained. Depth to water table often could not be measured but it is assumed to be at substantial depths given the excessively drained soils.

Table 119. Soil characteristics for Upland Sandy Barrens.

| Property                                   | Mean   | SD   | n  |
|--------------------------------------------|--------|------|----|
| Elevation (m)                              | 81.2   | 13.0 | 13 |
| Slope (degrees)                            | 4.8    | 3.2  | 9  |
| Surface Organics Depth(cm)                 |        |      | 0  |
| Cumulative Org. in 40 cm (cm)              | 1.0    |      | 1  |
| Loess Cap Thickness (cm)                   |        |      | 0  |
| Depth to Rocks (cm)                        | 200.0  | 0.0  | 12 |
| Surface Fragment Cover (%)                 |        |      | 0  |
| Frost Boil Cover (%)                       |        |      | 0  |
| Thaw Depth (cm)                            |        |      | 0  |
| Site pH at 10-cm depth                     | 8.4    | 0.7  | 12 |
| Site EC at 10-cm depth (µS/cm)             | 32.5   | 12.9 | 12 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -200.0 | 0.0  | 12 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

This ecotype included one soil subgroup, Typic Cryopsamments (sandy, low coarse fragment content, well drained, lacking permafrost). This is the sole ecotype comprising the Upland Sandy Barrens soil landscape.

# **Upland Sedge-Dryas Meadow**



# Geomorphology:

These upland meadows are strongly associated with carbonate-rich bedrock types. Surface geomorphology consists of hillside colluvium, older moraine, and upland retransported deposits. Surfaces are sloped and feature mineral-cored hummocks, stripes, and gelifluction lobes. It occurs at elevations up to 800 m throughout ARCN, particularly in CAKR and NOAT.

#### Plant Association:

Dryas integrifolia–Carex bigelowii–Equisetum arvense Dryas integrifolia–Carex scirpoidea– Rhododendron lapponicum

Dwarf shrubs, sedges, forbs and mosses are prevalent in Upland Sedge–Dryas Meadow (Table 120). This ecotype is diverse with the highest average species count per plot across ecotypes, and the 6th highest species count overall. We identified two distinct plant associations in this ecotype. Common species include Salix reticulata, Chrysanthemum integrifolium (syn: Hulteniella integrifolia), Polygonum viviparum (syn: Bistorta vivipara), Thalictrum alpinum.

This ecotype is similar to Alpine Alkaline Dryas Dwarf Shrub except soils are moist to wet instead of dry, and sites occur at slightly lower elevations and have higher cover of sedges.

Lowland Sedge–Dryas Meadow is a regionally rare but locally abundant ecotype originally mapped on the coastal plains of BELA and CAKR (Jorgenson et al. 2004) that was included in Upland Sedge–Dryas Meadow to simplify the classification (see the following section, Rare Ecotypes). The lowland class was retained in the ARCN-wide mapping because of its importance in BELA.

Table 120. Vegetation cover and frequency for Upland Sedge–Dryas Meadow (n=38).

|                                                | Cov   | er   | Freq     |
|------------------------------------------------|-------|------|----------|
|                                                | Mean  | SD   | %        |
| Total Live Cover                               | 141.1 | 49.8 | 100      |
| <b>Total Vascular Cover</b>                    | 92.8  | 22.2 | 100      |
| Total Evergreen Shrub                          | 20.4  | 22.4 | 400      |
| Cover                                          | 29.4  | 22.4 | 100      |
| Andromeda polifolia                            | 0.5   | 1.2  | 32       |
| Cassiope tetragona                             | 0.7   | 1.3  | 41       |
| Dryas integrifolia                             | 23.6  | 22.0 | 68       |
| Dryas octopetala                               | 2.9   | 7.6  | 27       |
| Rhododendron lapponicum  Total Deciduous Shrub | 1.5   | 2.7  | 45       |
| Cover                                          | 17.2  | 7.1  | 100      |
| Arctostaphylos rubra                           | 2.2   | 2.8  | 68       |
| Potentilla fruticosa                           | 0.7   | 1.5  | 36       |
| Salix alaxensis                                | 0.1   | 0.2  | 14       |
| Salix arctica                                  | 3.5   | 3.6  | 73       |
| Salix glauca                                   | 0.4   | 1.3  | 9        |
| Salix lanata ssp. richardsonii                 | 0.9   | 1.6  | 59       |
| Salix reticulata                               | 6.8   | 6.6  | 77       |
| Salix rotundifolia                             | 1.2   | 3.0  | 18       |
| Shepherdia canadensis                          | 0.1   | 0.5  | 18       |
| Vaccinium uliginosum                           | 1.3   | 1.5  | 50       |
| Total Forb Cover                               | 18.5  | 13.6 | 100      |
| Androsace chamaejasme                          | 0.4   | 1.1  | 50       |
| Anemone parviflora                             | 0.3   | 0.9  | 36       |
| Astragalus umbellatus                          | 0.2   | 0.3  | 41       |
| Castilleja elegans                             | 0.2   | 0.5  | 23       |
| Chrysanthemum                                  |       |      |          |
| integrifolium                                  | 0.6   | 1.1  | 64       |
| Epilobium latifolium                           | 0.3   | 0.6  | 23       |
| Equisetum arvense                              | 7.0   | 13.1 | 41       |
| Equisetum palustre                             | 1.1   | 3.8  | 9        |
| Equisetum scirpoides                           | 0.1   | 0.2  | 14       |
| Equisetum variegatum                           | 0.2   | 0.5  | 18       |
| Gentiana propinqua                             | 0.1   | 0.2  | 14       |
| Hedysarum alpinum                              | 0.5   | 1.2  | 32       |
| Lagotis glauca ssp. glauca                     | 0.1   | 0.2  | 45       |
| Minuartia arctica                              | 0.1   | 0.2  | 32       |
| Minuartia rossii                               | 0.1   | 0.3  | 14       |
| Oxytropis borealis                             | 0.7   | 1.9  | 23       |
| Papaver macounii                               | 0.1   | 0.5  | 14       |
| Parnassia palustris                            | 0.1   | 0.2  | 32       |
| Pedicularis capitata                           | 0.1   | 0.3  | 32       |
| Pinguicula vulgaris                            | 0.1   | 0.2  | 36       |
| Polygonum bistorta                             | 0.1   | 0.2  | 14       |
| Polygonum viviparum                            | 0.5   | 0.6  | 82       |
| Potentilla biflora                             | 0.2   | 0.4  | 32       |
| Saussurea angustifolia                         | 0.2   | 0.3  | 32       |
| Saxifraga hirculus                             | 0.3   | 0.4  | 50       |
| Saxifraga oppositifolia                        | 1.9   | 4.4  | 41       |
| Senecio atropurpureus                          | 0.1   | 0.2  | 32       |
| Silene acaulis                                 | 0.6   | 1.0  | 45       |
| Thalictrum alpinum                             | 0.1   | 0.1  | 55<br>50 |
| Tofieldia pusilla                              | 0.1   | 0.3  | 50       |
| Total Grass Cover                              | 0.9   | 1.3  | 68<br>41 |
| Arctagrostis latifolia                         | 0.5   | 0.8  | 41<br>19 |
| Festuca altaica                                | 0.2   | 0.7  | 18       |
|                                                |       |      |          |

Table 120. Continued.

|                                  | Cov  | Cover |          |
|----------------------------------|------|-------|----------|
|                                  | Mean | SD    | %        |
| Poa arctica                      | 0.1  | 0.2   | 14       |
| Total Sedge & Rush Cover         | 26.8 | 19.0  | 100      |
| Carex atrofusca                  | 8.1  | 13.8  | 64       |
| Carex bigelowii                  | 3.5  | 5.5   | 45       |
| Carex capillaris                 | 0.2  | 0.5   | 27       |
| Carex krausei                    | 1.0  | 1.9   | 27       |
| Carex membranacea                | 3.0  | 6.6   | 41       |
| Carex misandra                   | 3.6  | 8.8   | 55       |
| Carex rotundata                  | 0.4  | 1.2   | 18       |
| Carex scirpoidea                 | 2.4  | 2.2   | 77       |
| Eriophorum angustifolium         | 1.4  | 2.9   | 27       |
| Eriophorum callitrix             | 0.4  | 1.5   | 14       |
| Eriophorum vaginatum             | 0.1  | 0.2   | 14       |
| Juncus biglumis                  | 0.2  | 0.4   | 32       |
| Juncus castaneus ssp.            |      |       |          |
| castaneus                        | 0.1  | 0.4   | 27       |
| Juncus triglumis                 | 0.2  | 0.9   | 18       |
| Total Nonvascular Cover          | 48.3 | 36.1  | 100      |
| Total Moss Cover                 | 42.0 | 35.4  | 100      |
| Andreaeobryum sp.                | 0.9  | 2.9   | 9        |
| Aulacomnium acuminatum           | 1.6  | 4.7   | 14       |
| Aulacomnium palustre             | 0.2  | 0.7   | 18       |
| Campylium sp.                    | 0.9  | 2.5   | 14       |
| Campylium stellatum              | 0.5  | 1.5   | 14       |
| Catoscopium sp.                  | 1.3  | 2.9   | 18       |
| Cinclidium sp.                   | 0.7  | 1.8   | 14       |
| Dicranum sp.                     | 1.2  | 2.1   | 27       |
| Distichium capillaceum           | 0.1  | 0.3   | 14       |
| Ditrichum flexicaule             | 0.1  | 0.3   | 14       |
| Drepanocladus sp.                | 0.7  | 1.7   | 18       |
| Hylocomium splendens             | 4.5  | 7.9   | 36       |
| Hypnum bambergeri                | 0.9  | 2.5   | 14       |
| Hypnum sp.                       | 1.0  | 2.4   | 18       |
| Pohlia sp.                       | 2.0  | 3.6   | 32       |
| Ptilidium ciliare                | 0.6  | 1.5   | 18       |
| Rhytidium rugosum                | 3.6  | 5.4   | 50       |
| Sanionia sp.                     | 0.6  | 2.0   | 9        |
| Tomentypnum nitens               | 12.9 | 17.9  | 55       |
| ,,                               | 4.1  | 16.0  | 23       |
| Unknown moss  Total Lichen Cover | 6.5  | 8.1   | 82       |
|                                  | 0.4  | 1.1   | 27       |
| Asahinea chrysantha              | 0.4  | 0.5   | 23       |
| Cetraria cf. islandica           | 0.2  | 0.3   | 14       |
| Cetraria tilesii<br>Cladonia sp. | 0.1  | 0.5   | 27       |
|                                  | 0.2  | 0.2   | 14       |
| Dactylina arctica                | 1.8  | 2.5   | 68       |
| Flavocetraria cucullata          | 0.5  | 0.7   | 32       |
| Flavocetraria nivalis            | 0.5  |       | 32<br>18 |
| Masonhalea richardsonii          |      | 0.5   | 27       |
| Pertusaria sp.                   | 0.8  | 1.7   |          |
| Thamnolia vermicularis           | 1.1  | 1.8   | 36<br>o  |
| Unknown lichen                   | 0.5  | 2.2   | 9<br>14  |
| Vulpicida tilesii                | 0.1  | 0.2   | 14<br>72 |
| Total Bare Ground                | 11.0 | 9.3   | 73<br>73 |
| Bare Soil                        | 2.6  | 3.6   | 73       |
| Water                            | 0.6  | 1.0   | 45<br>72 |
| Litter alone                     | 7.9  | 6.8   | 73       |

#### Soils:



Soils are loamy to rubbly, with a thin to moderately thick surface organic horizon (Table 121). Permafrost often occurs in the upper meter of the soil profile. Frost boils and sorted ground are common. Surface fragments and loess caps are rare. Buried discontinuous organic layers sometimes occur as the result of cryoturbation. Soil pH is alkaline to circumneutral, and EC is low. The soils are somewhat poorly drained, and occasionally well drained. The water table is shallow to moderately deep.

Table 121. Soil characteristics for Upland Sedge–Dryas Meadow.

| Property                                   | Mean  | SD    | n  |
|--------------------------------------------|-------|-------|----|
| Elevation (m)                              | 296.9 | 182.8 | 16 |
| Slope (degrees)                            | 7.5   | 5.6   | 16 |
| Surface Organics Depth(cm)                 | 6.9   | 4.8   | 16 |
| Cumulative Org. in 40 cm (cm)              | 7.0   | 4.9   | 16 |
| Loess Cap Thickness (cm)                   | 10.0  | NA    | 1  |
| Depth to Rocks (cm)                        | 34.8  | 64.7  | 16 |
| Surface Fragment Cover (%)                 | 4.7   | 4.7   | 3  |
| Frost Boil Cover (%)                       | 4.5   | 4.3   | 11 |
| Thaw Depth (cm)                            | 70.8  | 20.6  | 9  |
| Site pH at 10-cm depth                     | 7.6   | 0.3   | 16 |
| Site EC at 10-cm depth (μS/cm)             | 313.1 | 133.5 | 16 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -35.5 | 34.2  | 15 |

 ${}^{\mathrm{a}}\mathrm{Measurements}$  >1 m indicate minimum depth, not true depth

Dominant soil subgroups include Typic Aquiturbels (wet, mineral soil over permafrost with cryoturbation), Ruptic-histic Aquiturbels (wet, highly cryoturbated surface organics and mineral soil above permafrost), and Typic Gelaquepts (wet, partially developed, permafrost below 1 m). A less common subgroup that occurs on sites with better drainage is Typic Eutrogelepts (non-acidic, partially developed with permafrost below 1 m). This ecotype and associated soils are part of the Upland Rocky-loamy Circumalkaline Low Shrublands and Forests soil landscape, which also includes Upland Willow Low Shrub and Upland White Spruce–Willow Forest ecotypes.

## **Upland Spiraea Low Shrub**



# Geomorphology:

Upland Spiraea Low Shrub occurs on moderate to steep slopes of hillside colluvium. This type is found at mid-elevations, averaging 500 m.

#### Plant Association:

Spiraea beauverdiana-Festuca altaica

Vegetation in this ecotype is dominated by deciduous shrubs, specifically *Spiraea beauverdiana* (syn: *S. stevenii*). All life forms can be present although low shrubs and forbs typically contribute the most to total cover (Table 122). Other common species include *Vaccinium uliginosum*, *V. vitis-idaea*, *Anemone narcissiflora*, *Festuca altaica*, *Calamagrostis canadensis* and *Carex podocarpa*. We found two rare species in this ecotype, *Carex deflexa* and *Schizachne purpurascens*.

This ecotype is similar to Upland Birch–Ericaceous Low Shrub and Upland Birch–Willow Low Shrub, except it has fewer forbs, and birch shrubs and willows are not dominant. It is spectrally indistinguishable from Upland Birch–Willow Low Shrub, with which it was mapped.

## Soils:

Soils are typically rubbly or blocky and feature a thin surface organic horizon (Table 123). Thaw depths often could not be determined in the rocky soils, but permafrost is presumed to be absent or present below 2 m due to the steep slope gradients, south- and west-slope aspects, and rocky, well drained soils associated with these sites. Frost boils and loess caps are rare, and surface fragments are common at low abundance. Soil pH is acidic, and EC is low. The soils are typically somewhat excessively to moderately well drained. Depth to water table often could not be measured but it is assumed to be at substantial depths given the well drained soils.

Table 122. Vegetation cover and frequency for Upland Spiraea Low Shrub (n=10).

| - Franca - Franca                                          | Cov                  | er (           | Free            |
|------------------------------------------------------------|----------------------|----------------|-----------------|
|                                                            |                      |                | Freq            |
| Total Live Cover                                           | <b>Mean</b><br>147.1 | <b>SD</b> 33.4 | <u>%</u><br>100 |
| Total Live Cover Total Vascular Cover                      | 147.1                | 36.0           | 100             |
| Total Evergreen Tree                                       | .23.1                | 30.0           | 100             |
| Cover                                                      | 1.2                  | 3.8            | 60              |
| Picea glauca                                               | 1.2                  | 3.8            | 60              |
| Total Evergreen Shrub                                      |                      |                |                 |
| Cover                                                      | 18.6                 | 20.3           | 100             |
| Andromeda polifolia                                        | <0.1                 | <0.1           | 10              |
| Cassiope tetragona                                         | 0.1                  | 0.3            | 20              |
| Empetrum nigrum                                            | 3.1                  | 5.2            | 50              |
| Juniperus communis                                         | 2.2                  | 6.3            | 30              |
| Ledum decumbens                                            | 2.0                  | 2.6            | 50              |
| Linnaea borealis                                           | 3.3                  | 5.0            | 60              |
| Loiseleuria procumbens                                     | 0.2                  | 0.6            | 10              |
| Vaccinium vitis-idaea                                      | 7.6                  | 20.2           | 70              |
| Total Deciduous Tree<br>Cover                              | 0.5                  | 1.6            | 10              |
| Betula hybrids                                             | 0.5                  | 1.6            | 10              |
| Total Deciduous Shrub                                      | 0.5                  | 1.0            | 10              |
| Cover                                                      | 58.3                 | 35.9           | 100             |
| Alnus crispa                                               | 6.0                  | 11.5           | 40              |
| Betula nana                                                | 1.5                  | 4.7            | 10              |
| Rosa acicularis                                            | 1.0                  | 3.2            | 10              |
| Salix arctica                                              | 0.1                  | 0.3            | 10              |
| Salix planifolia ssp. pulchra                              | 9.1                  | 26.7           | 40              |
| Spiraea beauverdiana                                       | 24.5                 | 16.2           | 100             |
| Vaccinium uliginosum                                       | 15.1                 | 16.0           | 90              |
| Viburnum edule                                             | 1.0                  | 3.2            | 10              |
| <b>Total Forb Cover</b>                                    | 19.6                 | 20.3           | 100             |
| Aconitum delphinifolium                                    | 0.1                  | 0.3            | 30              |
| Anemone narcissiflora                                      | 0.8                  | 1.9            | 70              |
| Angelica lucida                                            | <0.1                 | <0.1           | 10              |
| Antennaria sp.                                             | 0.2                  | 0.6            | 10              |
| Arabis lyrata ssp.                                         | <0.1                 | <0.1           | 10              |
| kamchatica<br>Artemisia arctica                            | <0.1<br>0.8          | <0.1<br>1.4    | 30              |
| Artemisia arctica ssp. arctica                             | 6.1                  | 9.2            | 60              |
| Campanula lasiocarpa                                       | <0.1                 | <0.1           | 20              |
| Carripariula lasiocarpa<br>Castilleja elegans              | <0.1                 | <0.1           | 10              |
| Claytonia sarmentosa                                       | 0.3                  | 0.7            | 20              |
| Dryopteris dilatata ssp.                                   | 0.5                  | J.,            |                 |
| americana                                                  | <0.1                 | <0.1           | 30              |
| Epilobium angustifolium                                    | 0.6                  | 0.7            | 50              |
| Galium boreale                                             | 0.3                  | 0.9            | 10              |
| Gentiana glauca                                            | <0.1                 | <0.1           | 30              |
| Gymnocarpium dryopteris                                    | 1.0                  | 3.2            | 30              |
| Lupinus arcticus                                           | 2.1                  | 3.3            | 40              |
| Lycopodium alpinum                                         | 0.1                  | 0.3            | 40              |
| Lycopodium annotinum                                       | 0.6                  | 1.1            | 40              |
| Polemonium acutiflorum                                     | 0.3                  | 0.7            | 40              |
| Polygonum bistorta                                         | 0.2                  | 0.6            | 20              |
| Pulsatilla patens ssp.                                     | <0.1                 | <0.1           | 10              |
| multifida<br>Pyrola minor                                  | <0.1<br><0.1         | <0.1<br><0.1   | 10              |
| Rubus arcticus                                             | 2.6                  | 6.9            | 20              |
| Rubus arcticus ssp. arcticus                               | 0.4                  | 0.8            | 20              |
| Rubus arcticus ssp. arcticus Rubus arcticus ssp. stellatus | 0.4                  | 0.6            | 10              |
| Rubus chamaemorus                                          | 0.2                  | 0.6            | 20              |
| Saxifraga bronchialis                                      | <0.1                 | <0.1           | 10              |
| Janii aya Di UliCillalis                                   | <b>~0.1</b>          | <b>~0.1</b>    | 10              |

Table 122. Continued.

|                                                     | Cov  | er   | Fred |
|-----------------------------------------------------|------|------|------|
|                                                     | Mean | SD   | %    |
| Saxifraga tricuspidata                              | <0.1 | <0.1 | 10   |
| Sedum rosea ssp.                                    |      |      |      |
| integrifolium                                       | 0.1  | 0.3  | 10   |
| Selaginella sibirica                                | 0.6  | 1.3  | 20   |
| Silene repens                                       | <0.1 | <0.1 | 10   |
| Solidago multiradiata                               | 0.3  | 0.7  | 30   |
| Thelypteris phegopteris<br>Trientalis europaea ssp. | 0.4  | 1.3  | 20   |
| arctica                                             | 0.7  | 1.2  | 30   |
| Valeriana capitata                                  | 0.1  | 0.3  | 20   |
| <i>Viola</i> sp.                                    | 0.1  | 0.3  | 10   |
| Woodsia ilvensis                                    | <0.1 | <0.1 | 10   |
| Total Grass Cover                                   | 21.7 | 20.7 | 100  |
| Calamagrostis canadensis                            | 13.3 | 22.1 | 100  |
| Festuca altaica                                     | 8.1  | 11.7 | 70   |
| Hierochloe alpina                                   | 0.1  | 0.3  | 10   |
| Poa arctica                                         | 0.1  | 0.3  | 10   |
| Schizachne purpurascens                             | 0.1  | 0.3  | 10   |
| Total Sedge & Rush Cover                            | 3.7  | 3.4  | 90   |
| Carex bigelowii                                     | 1.5  | 2.8  | 50   |
| Carex brunnescens                                   | 0.1  | 0.3  | 10   |
| Carex deflexa                                       | 0.1  | 0.3  | 10   |
| Carex podocarpa                                     | 1.9  | 2.8  | 70   |
| Luzula multiflora                                   | <0.1 | <0.1 | 20   |
| Luzula parviflora                                   | <0.1 | <0.1 | 20   |
| Luzula wahlenbergii ssp.                            |      |      |      |
| wahlenbergii                                        | <0.1 | <0.1 | 10   |
| Total Nonvascular Cover                             | 23.5 | 26.7 | 100  |
| Total Moss Cover                                    | 18.4 | 20.8 | 100  |
| Brachythecium sp.                                   | 0.3  | 0.9  | 10   |
| Dicranum sp.                                        | 1.0  | 1.2  | 50   |
| Drepanocladus sp.                                   | 0.5  | 0.8  | 30   |
| Hylocomium splendens                                | 2.6  | 5.4  | 30   |
| Pleurozium schreberi                                | 5.2  | 10.7 | 30   |
| Polytrichum juniperinum                             | 4.7  | 11.1 | 30   |
| Polytrichum piliferum                               | 0.1  | 0.3  | 10   |
| Polytrichum sp.                                     | 1.8  | 2.8  | 40   |
| Racomitrium sp.                                     | 0.2  | 0.6  | 10   |
| Rhytidium rugosum                                   | 0.2  | 0.6  | 10   |
| Rhytidium sp.                                       | 0.1  | 0.3  | 10   |
| Sphagnum sp.                                        | 0.5  | 1.6  | 20   |
| Thuidium recognitum                                 | 0.5  | 1.6  | 10   |
| Unknown moss                                        | 0.6  | 1.0  | 30   |
| Total Lichen Cover                                  | 5.1  | 6.8  | 90   |
| Cetraria cf. islandica                              | 0.5  | 1.3  | 60   |
| Cladina arbuscula                                   | 1.3  | 3.2  | 20   |
| Cladina rangiferina                                 | 0.3  | 0.7  | 20   |
| Cladina sp.                                         | 0.1  | 0.3  | 10   |
| Cladina sp.<br>Cladina stellaris                    | 0.6  | 1.3  | 20   |
| Cladina stygia                                      | 0.3  | 0.9  | 10   |
| Cladinia stygia<br>Cladonia sp.                     | 1.4  | 2.5  | 80   |
| Ciadoriia sp.<br>Masonhalea richardsonii            | <0.1 | <0.1 | 20   |
| Peltigera aphthosa                                  | <0.1 | <0.1 | 20   |
|                                                     | <0.1 | <0.1 | 20   |
| Peltigera sp.                                       | <0.1 | <0.1 | 20   |
| Stereocaulon sp.                                    | 0.4  | 1.0  | 20   |
| Unknown crustose lichen                             | 15.3 | 15.5 | 100  |
| Total Bare Ground                                   |      |      |      |
| Bare Soil                                           | 4.4  | 11.0 | 90   |



Table 123. Soil characteristics for Upland Spiraea Low Shrub.

| Mean   | SD                                                                      | n                                                                                                               |
|--------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 488.4  | 135.6                                                                   | 10                                                                                                              |
| 21.2   | 9.4                                                                     | 10                                                                                                              |
| 5.4    | 2.3                                                                     | 10                                                                                                              |
| 6.3    | 3.9                                                                     | 10                                                                                                              |
| 8.5    | 4.9                                                                     | 2                                                                                                               |
| 17.1   | 20.0                                                                    | 10                                                                                                              |
| 8.3    | 2.9                                                                     | 3                                                                                                               |
| 5.0    |                                                                         | 1                                                                                                               |
|        |                                                                         | 0                                                                                                               |
| 4.3    | 0.3                                                                     | 10                                                                                                              |
| 28.9   | 11.7                                                                    | 9                                                                                                               |
| -185.0 | 47.4                                                                    | 10                                                                                                              |
|        | 488.4<br>21.2<br>5.4<br>6.3<br>8.5<br>17.1<br>8.3<br>5.0<br>4.3<br>28.9 | 488.4 135.6<br>21.2 9.4<br>5.4 2.3<br>6.3 3.9<br>8.5 4.9<br>17.1 20.0<br>8.3 2.9<br>5.0<br>4.3 0.3<br>28.9 11.7 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Typic Dystrocryepts (acidic, partially developed, lacking permafrost) and Typic Dystrogelepts (acidic, well drained, moderately thin organic horizon, permafrost below 1 m). Less common soil subgroups include Typic Cryorthents (poorly developed soil lacking permafrost) and Typic Humicryepts (moist, acidic, organic-rich, partially developed, lacking permafrost). This ecotype and associated soils are part of the Upland Rocky-loamy Acidic Low Shrublands soil landscape. Other ecotypes found in this soil landscape include Upland Birch–Ericaceous Low Shrub and Upland Birch–Willow Low Shrub.

# **Upland Spruce-Birch Forest**



# Geomorphology:

These mixed forests are uncommon and occur on hillside colluvium, eolian inactive sand deposits, older moraine and older till within the boreal forest zone in KOVA and GAAR. Surfaces are always sloped, and rock outcrops are frequently present.

### Plant Association:

Betula papyrifera-Picea glauca-Vaccinium vitis-idaea White spruce and birch trees are co-dominant in open to closed stands in this ecotype, and all life forms except sedges are typically present (Table 124). Common species include Ledum decumbens, Vaccinium uliginosum, Geocaulon lividum, Pleurozium schreberi, Cladina rangiferina, and Peltigera aphthosa.

Upland Spruce–Birch Forest is comparable to Upland Birch Forest, as previously discussed. It is somewhat similar to Upland White Spruce–Ericaceous Forest and Upland White Spruce–Willow Forest in that white spruce is a dominant species, but varies in actual species composition and site factors.

## Soils:



Table 124. Vegetation cover and frequency for Upland Spruce–Birch Forest (n=10).

| -1 2-1                                     | Cover         |              |                 |  |
|--------------------------------------------|---------------|--------------|-----------------|--|
|                                            | Cove          |              | Freq            |  |
| Total Live Cover                           | Mean          | SD<br>21.7   | <b>%</b><br>100 |  |
| Total Live Cover Total Vascular Cover      | 132.2<br>94.8 | 21.7<br>31.6 | 100             |  |
|                                            | 21.5          | 8.4          | 100             |  |
| Total Evergreen Tree Cover                 | 19.7          | 9.5          | 100             |  |
| Picea glauca<br>Picea mariana              | 19.7          | 3.3          | 40              |  |
| Total Evergreen Shrub                      | 1.0           | 3.3          | 40              |  |
| Cover                                      | 16.0          | 13.1         | 100             |  |
| Arctostaphylos uva-ursi                    | <0.1          | <0.1         | 10              |  |
| Cassiope tetragona                         | <0.1          | <0.1         | 10              |  |
| Dryas integrifolia                         | 0.1           | 0.3          | 20              |  |
| Empetrum nigrum                            | 2.9           | 5.3          | 50              |  |
| Juniperus communis                         | 0.1           | 0.3          | 40              |  |
| Ledum decumbens                            | 4.0           | 5.0          | 70              |  |
| Ledum groenlandicum                        | 2.3           | 4.2          | 30              |  |
| Linnaea borealis                           | 0.5           | 1.1          | 50              |  |
| Loiseleuria procumbens                     | <0.1          | <0.1         | 20              |  |
| Vaccinium vitis-idaea                      | 5.9           | 9.0          | 100             |  |
| <b>Total Deciduous Tree Cover</b>          | 21.2          | 10.6         | 100             |  |
| Betula hybrids                             | <0.1          | <0.1         | 10              |  |
| Betula papyrifera                          | 20.5          | 11.3         | 100             |  |
| Populus balsamifera                        | 0.4           | 1.3          | 20              |  |
| Populus tremuloides                        | 0.3           | 0.9          | 10              |  |
| <b>Total Deciduous Shrub</b>               |               |              |                 |  |
| Cover                                      | 27.9          | 14.4         | 100             |  |
| Alnus crispa                               | 7.2           | 8.7          | 50              |  |
| Arctostaphylos alpina                      | 0.3           | 0.9          | 10              |  |
| Arctostaphylos rubra                       | 0.1           | 0.3          | 20              |  |
| Betula glandulosa                          | 0.4           | 0.8          | 20              |  |
| Potentilla fruticosa                       | 0.5           | 1.1          | 30              |  |
| Ribes triste                               | 0.8           | 2.2          | 30              |  |
| Rosa acicularis                            | 2.0           | 2.7          | 50              |  |
| Rubus idaeus                               | 0.3           | 0.9          | 10              |  |
| Salix arbusculoides                        | 0.5           | 1.6          | 10              |  |
| Salix bebbiana                             | 3.2           | 4.6          | 50<br>40        |  |
| Salix glauca                               | 2.5           | 4.1          | 40              |  |
| Salix planifolia ssp. pulchra              | <0.1          | <0.1         | 20              |  |
| Salix scouleriana                          | 0.1           | 0.3          | 10              |  |
| Spiraea beauverdiana                       | 1.1           | 1.9          | 50              |  |
| Vaccinium uliginosum                       | 8.8           | 7.7          | 80<br>100       |  |
| Total Forb Cover                           | 6.8<br><0.1   | 8.9<br>-0.1  | 100             |  |
| Cystopteris fragilis                       | <0.1<br><0.1  | <0.1         | 30<br>40        |  |
| Epilobium angustifolium                    | <0.1<br><0.1  | 0.1<br><0.1  | 40<br>10        |  |
| Equisetum arvense                          | <0.1<br>0.2   | 0.6          | 10              |  |
| Equisetum pratense                         | <0.2<br><0.1  | <0.1         | 20              |  |
| Equisetum scirpoides                       | 3.0           | 9.5          | 20              |  |
| Equisetum sylvaticum                       | <0.1          | <0.1         | 20              |  |
| Gentiana propinqua<br>Geocaulon lividum    | 2.1           | 3.2          | 60              |  |
|                                            | 0.2           | 0.6          | 20              |  |
| Gymnocarpium dryopteris                    | 0.2           | 0.3          | 10              |  |
| Hedysarum alpinum                          | <0.1          | <0.1         | 20              |  |
| Lycopodium annotinum                       | <0.1<br>0.5   | <0.1<br>1.1  | 20              |  |
| Lycopodium clavatum                        | <0.5          | <0.1         | 30              |  |
| Lycopodium complanatum                     | 0.1           | 0.3          | 20              |  |
| Mertensia paniculata<br>Petasites frigidus | 0.1           | 0.3          | 10              |  |
| _                                          | <0.1          | <0.1         | 10              |  |
| Polygonum alaskanum                        | <b>~</b> 0.1  | <b>~∪.</b> I | 10              |  |

Table 124. Continued.

|                                   | Cove | Cover      |          |
|-----------------------------------|------|------------|----------|
|                                   | Mean | SD         | %        |
| Pyrola asarifolia                 | <0.1 | <0.1       | 20       |
| Pyrola grandiflora                | <0.1 | <0.1       | 20       |
| Pyrola secunda                    | <0.1 | <0.1       | 20       |
| Solidago multiradiata var.        |      |            |          |
| multiradiata                      | 0.1  | 0.3        | 10       |
| Stellaria sp.                     | <0.1 | <0.1       | 10       |
| Total Grass Cover                 | 1.2  | 1.4        | 80       |
| Calamagrostis canadensis          | 0.9  | 1.4        | 30       |
| Calamagrostis purpurascens        | <0.1 | <0.1       | 20       |
| Festuca altaica                   | 0.2  | 0.6        | 30       |
| Total Sedge & Rush Cover          | 0.2  | 0.3        | 50       |
| Carex bigelowii                   | <0.1 | <0.1       | 10       |
| Carex concinna                    | <0.1 | <0.1       | 20       |
| Carex scirpoidea                  | 0.1  | 0.3        | 10       |
| Carex sp.                         | <0.1 | < 0.1      | 20       |
| Carex vaginata                    | <0.1 | <0.1       | 20       |
| Total Nonvascular Cover           | 37.5 | 25.2       | 100      |
| Total Moss Cover                  | 19.6 | 15.0       | 100      |
| Dicranum polysetum                | 0.1  | 0.3        | 10       |
| Dicranum sp.                      | 0.9  | 1.7        | 30       |
| Ditrichum flexicaule              | 0.2  | 0.6        | 10       |
| Hylocomium splendens              | 7.6  | 8.4        | 70       |
| Hypnum sp.                        | 4.2  | 13.3       | 10       |
| Pleurozium schreberi              | 3.1  | 3.3        | 60       |
| Polytrichum juniperinum           | 0.3  | 0.9        | 10       |
| Polytrichum piliferum             | 0.8  | 2.5        | 10       |
| Polytrichum sp.                   | 0.4  | 0.8        | 50       |
| Racomitrium sp.                   | 1.4  | 4.4        | 10       |
| Rhytidium rugosum                 | 0.2  | 0.6        | 10       |
| Tomentypnum nitens                | 0.1  | 0.3        | 10       |
| Tortella fragilis                 | 0.1  | 0.3        | 10       |
| Unknown moss                      | 0.1  | 0.3        | 10       |
| Total Lichen Cover                | 17.9 | 24.1       | 100      |
| Cetraria cf. islandica            | 0.7  | 1.5        | 20       |
| Cetrariella delisei               | 0.3  | 0.9        | 10       |
| Cladina arbuscula                 | 1.2  | 3.2        | 20       |
| Cladina mitis                     | 0.9  | 1.9        | 20       |
| Cladina rangiferina               | 2.9  | 4.6        | 80       |
| Cladina sp.                       | 1.0  | 3.2        | 10       |
| Cladina stellaris                 | 1.4  | 2.7        | 30       |
| Cladina stygia                    | 0.1  | 0.3        | 10       |
| Cladonia amaurocraea              | 0.1  | 0.3        | 10       |
| Cladonia cenotea                  | 0.3  | 0.9        | 10       |
| Cladonia sp.                      | 2.8  | 6.1        | 80       |
| Flavocetraria cucullata           | 1.0  | 3.2        | 10       |
| Nephroma arcticum                 | 0.3  | 0.7        | 20       |
| •                                 | 0.8  | 2.2        | 70       |
| Peltigera aphthosa                | 0.8  | 0.4        | 30       |
| Peltigera canina<br>Peltigera sp. | 0.2  | 0.4        | 40       |
|                                   | 1.9  | 4.7        | 30       |
| Stereocaulon sp.                  | 0.1  | 0.3        | 30<br>10 |
| Umbilicaria sp.                   | 1.5  | 0.3<br>4.7 |          |
| Unknown crustose lichen           |      |            | 40       |
| Total Bare Ground                 | 12.1 | 7.4        | 100      |
| Bare Soil                         | 0.5  | 0.7        | 90       |
| Litter alone                      | 11.6 | 7.5        | 100      |

Soils are typically loamy, sandy, or rubbly and feature a thin to moderately thick surface organic horizon (Table 125). Thaw depths could not be determined in the rocky soils, but in most cases permafrost is presumed to be absent or to occur below a depth of 2 m. Frost boils and loess caps are absent. Evidence of cryoturbation sometimes occurs in the upper meter of the soil profile. Surface fragments are common and occur at low abundance. Soil pH is acidic to circumneutral, and EC is low. The soils are typically somewhat excessively to well drained. Depth to water table often could not be measured but it is assumed to be at substantial depths given the well drained soils.

Table 125. Soil characteristics for Upland Spruce–Birch Forest.

| Property                                   | Mean   | SD    | n  |
|--------------------------------------------|--------|-------|----|
| Elevation (m)                              | 206.4  | 115.6 | 10 |
| Slope (degrees)                            | 23.9   | 11.3  | 9  |
| Surface Organics Depth(cm)                 | 13.1   | 8.5   | 10 |
| Cumulative Org. in 40 cm (cm)              | 13.3   | 9.0   | 10 |
| Loess Cap Thickness (cm)                   |        |       | 0  |
| Depth to Rocks (cm)                        | 63.0   | 85.0  | 8  |
| Surface Fragment Cover (%)                 | 5.4    | 8.4   | 5  |
| Frost Boil Cover (%)                       |        |       | 0  |
| Thaw Depth (cm)                            |        |       | 0  |
| Site pH at 10-cm depth                     | 5.8    | 1.4   | 10 |
| Site EC at 10-cm depth (µS/cm)             | 65.0   | 46.5  | 10 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -200.0 | 0.0   | 4  |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

Dominant soil subgroups in this ecotype are Typic Dystrocryepts (acidic, partially developed, lacking permafrost), and Typic Haplocryepts (non-acidic, partially developed, lacking permafrost). Less common subgroups include Spodic Dystrocryepts (moist, acidic, partially developed and somewhat leached), and Typic Histoturbels (wet, organic rich soil over permafrost with cryoturbation). This ecotype and associated soils are part of the Upland Rocky-loamy Circumacidic Tall Shrublands and Forests soil landscape. Other ecotypes found in this soil landscape include Upland Birch Forest, Upland Alder–Willow Tall Shrub, Upland Bluejoint Meadow, and Upland White Spruce– Ericaceous Forest.

# **Upland White Spruce-Dryas Woodland**



# Geomorphology:

This woodland ecotype is strongly associated with sand dunes in KOVA and occurs on both eolian active and inactive sands. Average elevation is 60 m and surface forms include flats, crests and eolian patterns.

#### Plant Association:

Picea glauca-Dryas integrifolia

White spruce trees have 10–24% cover in Upland White Spruce–Dryas Woodland, while dwarf and low shrubs, forbs, mosses and lichens characterize the understory (Table 126). All species are adapted to dry, sandy soil. Common species include *Picea glauca*, *Arctostaphylos uva-ursi*, *Dryas integrifolia*, *Shepherdia canadensis*, *Solidago multiradiata*, *Calamagrostis purpurascens*, *Carex glacialis*, *Abietinella abietina*, and *Stereocaulon* spp.

This ecotype is most similar to Upland White Spruce–Lichen Woodland, except *Dryas integrifolia* is dominant and lichen cover is lower. It occurred in patch sizes too small to be mappable and was, therefore, included within Upland White Spruce–Lichen Woodland.

## Soils:

Soils are sandy and lack a surface organic horizon (Table 127). Thaw depths could not be determined as the depth to permafrost, if present, was always greater than the maximum depth sampled (1.3 m). Frost boils, surface fragments, and loess caps are absent. Soil pH is alkaline to circumneutral, and EC is low. The soils are somewhat excessively drained. Depth to water table often could not be measured but it is assumed to be at substantial depths given the well drained soils.

Table 126. Vegetation cover and frequency for Upland White Spruce–Dryas Woodland (n=6).

| (11–0).                                         |                   |                | F               |
|-------------------------------------------------|-------------------|----------------|-----------------|
|                                                 | Cove              |                | Freq            |
| Total Live Carra                                | <b>Mean</b> 120.2 | <b>SD</b> 74.1 | <u>%</u><br>100 |
| Total Vaccular Cover                            | 81.7              | 45.7           | 100             |
| Total Vascular Cover Total Evergreen Tree Cover | 10.3              | 11.5           | 100             |
| Picea glauca                                    | 10.3              | 11.5           | 100             |
| Total Evergreen Shrub                           | 10.5              | 11.5           | 100             |
| Cover                                           | 36.4              | 13.2           | 100             |
| Arctostaphylos uva-ursi                         | 10.0              | 8.3            | 83              |
| Dryas integrifolia                              | 25.0              | 16.7           | 100             |
| Empetrum nigrum                                 | 0.8               | 2.0            | 17              |
| Juniperus communis                              | 0.5               | 0.5            | 50              |
| Total Deciduous Tree Cover                      | 0.0               | 0.0            | 17              |
| Populus balsamifera                             | <0.1              | <0.1           | 17              |
| Total Deciduous Shrub                           |                   |                |                 |
| Cover                                           | 26.6              | 37.1           | 100             |
| Arctostaphylos rubra                            | 9.0               | 14.0           | 83              |
| Betula glandulosa                               | 8.0               | 2.0            | 17              |
| Salix alaxensis                                 | 0.2               | 0.4            | 17              |
| Salix brachycarpa ssp.                          | -0.1              | -0.1           | 17              |
| niphoclada                                      | < 0.1             | <0.1           | 17<br>67        |
| Salix glauca                                    | 11.5              | 15.0           | 67<br>17        |
| Salix hastata                                   | <0.1<br>1.7       | <0.1<br>4.1    | 17<br>17        |
| Salix reticulata                                |                   |                | 17              |
| Shepherdia canadensis                           | 1.7               | 1.8            | 83<br>17        |
| Vaccinium uliginosum                            | 1.7<br>5.2        | 4.1<br>2.8     | 17<br>100       |
| Total Forb Cover                                | 0.1               | 0.1            | 50              |
| Androsace chamaejasme                           | <0.1              | 0.1            | 33              |
| Anemone drummondii                              | <0.1              | 0.1            | 33              |
| Anemone narcissiflora                           | 0.8               | 2.0            | 33<br>17        |
| Artemisia borealis                              | <0.1              | 0.1            | 33              |
| Artemisia furcata                               | 0.2               | 0.1            | 50              |
| Aster sibiricus                                 | <0.1              | <0.1           | 17              |
| Aster yukonensis                                | 0.2               | 0.4            | 50              |
| Astragalus aboriginum<br>Braya humilis          | <0.1              | <0.4           | 17              |
| Bupleurum triradiatum ssp.                      | <0.1              | <0.1           | 17              |
| arcticum                                        | <0.1              | 0.1            | 33              |
| Castilleja hyperborea                           | <0.1              | <0.1           | 17              |
| Cnidium cnidiifolium                            | <0.1              | 0.1            | 33              |
| Dianthus repens                                 | 0.1               | 0.1            | 50              |
| Draba cinerea                                   | <0.1              | <0.1           | 17              |
| Equisetum variegatum                            | <0.1              | <0.1           | 17              |
| Erigeron elatus                                 | <0.1              | <0.1           | 17              |
| Listera borealis                                | <0.1              | <0.1           | 17              |
| Lupinus arcticus                                | 0.2               | 0.4            | 33              |
| Lupinus kuschei                                 | <0.1              | <0.1           | 17              |
| Minuartia arctica                               | 0.2               | 0.4            | 33              |
| Minuartia elegans                               | 0.1               | 0.1            | 50              |
| Oxytropis borealis                              | 0.3               | 0.8            | 33              |
| Oxytropis kobukensis                            | 0.1               | 0.1            | 50              |
| Pedicularis kanei                               | <0.1              | 0.1            | 33              |
| Pedicularis labradorica                         | 0.2               | 0.4            | 17              |
| Pedicularis langsdorffii ssp.                   |                   |                |                 |
| arctica                                         | 0.2               | 0.4            | 33              |
| Polygonum viviparum                             | <0.1              | <0.1           | 17              |
| Pyrola asarifolia                               | 0.2               | 0.4            | 17              |
| Pyrola grandiflora                              | <0.1              | <0.1           | 17              |
| Pyrola secunda                                  | 0.2               | 0.4            | 33              |
| Saxifraga oppositifolia                         | <0.1              | <0.1           | 17              |
|                                                 |                   |                |                 |

Table 126. Continued.

|                                   | Cover |      | Freq |
|-----------------------------------|-------|------|------|
|                                   | Mean  | SD   | %    |
| Senecio ogotorukensis             | <0.1  | 0.1  | 33   |
| Silene acaulis                    | 0.5   | 0.8  | 33   |
| Solidago multiradiata var.        |       |      |      |
| multiradiata                      | 1.0   | 0.9  | 100  |
| Tofieldia pusilla                 | 0.3   | 8.0  | 33   |
| Zygadenus elegans                 | 0.1   | 0.1  | 50   |
| Total Grass Cover                 | 1.2   | 1.6  | 83   |
| Bromus pumpellianus var.          | 0.4   | 0.4  | 22   |
| arcticus                          | <0.1  | 0.1  | 33   |
| Calamagrostis purpurascens        | 1.0   | 1.5  | 83   |
| Festuca altaica                   | <0.1  | <0.1 | 17   |
| Festuca richardsonii              | <0.1  | 0.1  | 33   |
| Festuca rubra                     | <0.1  | 0.1  | 33   |
| Total Sedge & Rush Cover          | 2.0   | 2.3  | 100  |
| Carex filifolia                   | 0.7   | 1.6  | 33   |
| Carex glacialis                   | 0.7   | 0.8  | 67   |
| Carex petricosa                   | 0.2   | 0.4  | 17   |
| Carex williamsii                  | 0.2   | 0.4  | 17   |
| Kobresia sibirica                 | 0.3   | 0.8  | 33   |
| Total Nonvascular Cover           | 38.5  | 41.3 | 100  |
| Total Moss Cover                  | 14.3  | 25.0 | 83   |
| Abietinella abietina              | 10.7  | 24.2 | 50   |
| Bryum sp.                         | 0.2   | 0.4  | 17   |
| Ceratodon purpureus               | 0.2   | 0.4  | 17   |
| Ditrichum flexicaule              | 0.7   | 1.6  | 17   |
| Hylocomium splendens              | 0.8   | 2.0  | 17   |
| Pohlia sp.                        | 0.2   | 0.4  | 17   |
| Racomitrium canescens             | 0.8   | 2.0  | 17   |
| Rhytidium rugosum                 | 0.2   | 0.4  | 17   |
| Syntrichia ruralis                | 0.7   | 1.6  | 17   |
| Total Lichen Cover                | 23.1  | 27.8 | 100  |
| Cetraria aculeata                 | 5.0   | 10.0 | 50   |
| Cetraria islandica ssp. islandica | 0.5   | 1.2  | 50   |
| Cetraria tilesii                  | <0.1  | <0.1 | 17   |
| Cladina rangiferina               | 1.7   | 4.1  | 17   |
| Cladina sp.                       | 0.2   | 0.4  | 17   |
| Cladonia sp.                      | 1.7   | 4.1  | 17   |
| Dactylina arctica                 | <0.1  | 0.1  | 33   |
| Dactylina madreporiformis         | 0.2   | 0.4  | 17   |
| Flavocetraria cucullata           | 0.8   | 2.0  | 17   |
| Flavocetraria nivalis             | 1.0   | 1.3  | 50   |
| Peltigera rufescens               | 0.2   | 0.4  | 33   |
| <i>Peltigera</i> sp.              | <0.1  | <0.1 | 17   |
| Squamarina lentigera              | 0.8   | 1.3  | 33   |
| Stereocaulon glareosum            | 2.8   | 6.0  | 33   |
| Stereocaulon sp.                  | 5.7   | 9.7  | 67   |
| Thamnolia sp.                     | 1.3   | 3.3  | 17   |
| Thamnolia vermicularis            | 0.5   | 0.8  | 33   |
| Unknown crustose lichen           | 1.7   | 4.1  | 33   |
| Total Bare Ground                 | 39.0  | 29.7 | 100  |
| Bare Soil                         | 27.7  | 25.6 | 83   |
| Litter alone                      | 11.3  | 11.2 | 100  |



Table 127. Soil characteristics for Upland White Spruce–Dryas Woodland.

| Property                                   | Mean   | SD   | n |
|--------------------------------------------|--------|------|---|
| Elevation (m)                              | 60.5   | 14.4 | 6 |
| Slope (degrees)                            | 4.0    | 4.2  | 2 |
| Surface Organics Depth(cm)                 |        |      | 0 |
| Cumulative Org. in 40 cm (cm)              |        |      | 0 |
| Loess Cap Thickness (cm)                   |        |      | 0 |
| Depth to Rocks (cm)                        | 200.0  | 0.0  | 2 |
| Surface Fragment Cover (%)                 |        |      | 0 |
| Frost Boil Cover (%)                       |        |      | 0 |
| Thaw Depth (cm)                            |        |      | 0 |
| Site pH at 10-cm depth                     | 7.2    | 1.1  | 6 |
| Site EC at 10-cm depth (µS/cm)             | 36.7   | 5.2  | 6 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -200.0 | 0.0  | 2 |

 $^{\mathrm{a}}\mathrm{Measurements}>1~\mathrm{m}$  indicate minimum depth, not true depth

The dominant soil subgroup in this ecotype is Typic Cryopsamments (sandy, low coarse fragment content, well drained, lacking permafrost). A less common subgroup is Typic Haplocryepts (non-acidic, partially developed, lacking permafrost). This ecotype and associated soils are part of the Upland Sandy Forest soil landscape. Also included in this soil landscape is Upland White Spruce–Lichen Woodland.

# **Upland White Spruce-Ericaceous Forest**



## Geomorphology:

Upland White Spruce–Ericaceous Forest is common throughout GAAR, KOVA, NOAT and CAKR, commonly forming the circumpolar treeline. Surfaces are sloped. It is found on hillside colluvium, upland loess, older moraine, retransported deposits and eolian inactive sand dunes upwards to 700 m elevation.

#### Plant Association:

Picea glauca-Ledum decumbens

White spruce, *P. glauca*, predominates and occurs in open stands (Table 128). The understory is dominated by evergreen shrubs but also contains a mixture of deciduous low and tall shrubs, forbs, and nonvascular species, with more variable cover of graminoids. Common species include *Empetrum nigrum*, *Ledum decumbens*, *Vaccinium uliginosum*, *Lycopodium annotinum*, *Hylocomium splendens*, *Pleurozium schreberi*, and *Cladina rangiferina*.

This ecotype is similar to Upland White Spruce–Willow Forest except that low and dwarf ericaceous shrubs are more prevalent than are willow species, it is more acidic, and has lower species diversity.

## Soils:

Soils are typically loamy, blocky, or rubbly with a thin to moderately thick surface organic horizon (Table 129). Thaw depths often could not be determined in the rocky soils, but permafrost is presumed to be absent or to occur below a depth of 1 m. Frost boils are absent, and surface fragments are rare. Loess caps are uncommon and moderately thick to thick. Soil pH is acidic to circumneutral, and EC is low. The soils are well to moderately well drained. Depth to water table often could not be measured and it is assumed to be at substantial depth.

Table 128. Vegetation cover and frequency for Upland White Spruce–Ericaceous Forest (n=20).

|                                           | Cover                |                | Freq            |
|-------------------------------------------|----------------------|----------------|-----------------|
|                                           | Cover                |                | -               |
| Total Live Cover                          | <b>Mean</b><br>198.2 | <b>SD</b> 52.5 | <u>%</u><br>100 |
| Total Vascular Cover                      | 133.9                | 36.2           | 100             |
| Total Evergreen Tree Cover                | 21.5                 | 8.7            | 100             |
| Picea glauca                              | 21.5                 | 8.7            | 100             |
| Total Evergreen Shrub                     | 21.3                 | 0.,            | 100             |
| Cover                                     | 23.2                 | 13.5           | 100             |
| Andromeda polifolia                       | 0.1                  | 0.5            | 6               |
| Dryas octopetala ssp.                     |                      |                |                 |
| alaskensis                                | 0.4                  | 1.7            | 12              |
| Empetrum nigrum                           | 9.5                  | 9.7            | 82              |
| Juniperus communis                        | 0.1                  | 0.2            | 12              |
| Ledum decumbens                           | 4.6                  | 5.5            | 82              |
| Ledum groenlandicum                       | 0.3                  | 0.8            | 12              |
| Linnaea borealis                          | 2.4                  | 3.2            | 53              |
| Loiseleuria procumbens                    | 0.1                  | 0.2            | 6               |
| Vaccinium vitis-idaea                     | 5.8                  | 6.1            | 94              |
| Total Deciduous Tree Cover                | 0.0                  | 0.0            | 12              |
| Total Deciduous Shrub                     | 67.7                 | 33.2           | 100             |
| Cover Alnus crispa                        | 9.2                  | 11.4           | 59              |
| Arctostaphylos alpina                     | 0.1                  | 0.3            | 12              |
|                                           | 0.5                  | 1.1            | 24              |
| Arctostaphylos rubra<br>Betula glandulosa | 12.7                 | 19.2           | 53              |
| Betula nana                               | 6.2                  | 12.0           | 47              |
| Rosa acicularis                           | 0.1                  | 0.2            | 12              |
| Salix chamissonis                         | 1.5                  | 4.9            | 12              |
| Salix fuscescens                          | 1.0                  | 3.6            | 12              |
| Salix glauca                              | 1.5                  | 3.4            | 24              |
| Salix lanata ssp. richardsonii            | 0.9                  | 1.9            | 29              |
| Salix planifolia ssp. pulchra             | 3.9                  | 7.5            | 65              |
| Shepherdia canadensis                     | 0.2                  | 0.5            | 12              |
| Spiraea beauverdiana                      | 7.7                  | 13.0           | 65              |
| Vaccinium uliginosum                      | 22.1                 | 17.1           | 94              |
| Total Forb Cover                          | 12.8                 | 19.0           | 100             |
| Anemone parviflora                        | 0.4                  | 1.5            | 6               |
| Anemone richardsonii                      | 0.1                  | 0.2            | 6               |
| Artemisia arctica ssp. arctica            | 0.2                  | 0.7            | 12              |
| Boykinia richardsonii                     | 0.1                  | 0.5            | 6               |
| Dodecatheon frigidum                      | 0.4                  | 1.1            | 12              |
| Dryopteris dilatata ssp.                  |                      |                | _               |
| americana                                 | 0.3                  | 1.2            | 6               |
| Equisetum arvense                         | 1.2                  | 3.7            | 24              |
| Equisetum pratense                        | 4.1                  | 15.7           | 12              |
| Equisetum sylvaticum                      | 0.2                  | 0.7            | 12              |
| Gymnocarpium dryopteris                   | 0.3                  | 1.2            | 6               |
| Lupinus arcticus                          | 0.2                  | 0.7            | 12              |
| Lycopodium alpinum                        | 0.4                  | 1.7            | 6               |
| Lycopodium annotinum                      | 0.5                  | 1.0            | 47              |
| Lycopodium clavatum                       | 0.1                  | 0.2            | 12              |
| Lycopodium complanatum                    | 0.1                  | 0.2            | 6               |
| Mertensia paniculata                      | 0.1                  | 0.2            | 6               |
| Pedicularis labradorica                   | 0.1                  | 0.2            | 29              |
| Petasites frigidus                        | 0.8                  | 2.9            | 12              |
| Pyrola secunda                            | 0.2                  | 0.5            | 29              |
| Rubus arcticus                            | 0.2                  | 1.0            | 12              |
| Rubus arcticus ssp. arcticus              | 0.2                  | 0.5            | 12              |
| Rubus arcticus ssp. stellatus             | 0.1                  | 0.2            | 6               |

Table 128. Continued.

|                                              | Cover      |            | Freq                 |
|----------------------------------------------|------------|------------|----------------------|
|                                              | Mean       | SD         | %                    |
| Rubus chamaemorus                            | 2.0        | 5.1        | 29                   |
| Saussurea angustifolia                       | 0.1        | 0.3        | 29                   |
| Trientalis europaea ssp. arctica             | 0.2        | 0.6        | 24                   |
| Valeriana capitata                           | 0.1        | 0.2        | 18                   |
| Total Grass Cover                            | 5.0        | 6.8        | 94                   |
| Arctagrostis latifolia                       | 0.5        | 0.9        | 35                   |
| Calamagrostis canadensis                     | 3.7        | 6.9        | 59                   |
| Festuca altaica                              | 0.7        | 1.8        | 24                   |
| Total Sedge & Rush Cover                     | 3.8        | 6.7        | 71                   |
| Carex aquatilis ssp. aquatilis               | 0.1        | 0.2        | 6                    |
| Carex bigelowii                              | 1.1        | 1.7        | 53                   |
| Carex membranacea                            | 0.1        | 0.5        | 6                    |
| Carex podocarpa                              | 0.5        | 1.2        | 18                   |
| Carex scirpoidea                             | 0.7        | 2.9        | 18                   |
| Carex vaginata                               | 0.1        | 0.2        | 6                    |
| Eriophorum angustifolium                     | 1.2        | 4.9        | 6                    |
| Eriophorum vaginatum                         | 0.1        | 0.2        | 6                    |
| <b>Total Nonvascular Cover</b>               | 64.2       | 27.7       | 100                  |
| Total Moss Cover                             | 49.8       | 28.1       | 100                  |
| Aulacomnium acuminatum                       | 0.3        | 1.2        | 6                    |
| Aulacomnium palustre                         | 0.8        | 1.6        | 35                   |
| Aulacomnium sp.                              | 0.2        | 1.0        | 6                    |
| Aulacomnium turgidum                         | 0.2        | 0.8        | 18                   |
| Dicranum elongatum                           | 0.2        | 1.0        | 6                    |
| Dicranum sp.                                 | 1.6        | 1.9        | 59                   |
| Hylocomium splendens                         | 27.3       | 22.3       | 82                   |
| Pleurozium schreberi                         | 9.1        | 8.5        | 76                   |
| Polytrichum commune                          | 1.2        | 4.9        | 6                    |
| Polytrichum juniperinum                      | 0.3        | 0.8        | 12                   |
| Polytrichum sp.                              | 0.7        | 1.4        | 35                   |
| Ptilidium ciliare                            | 0.9        | 3.6        | 18                   |
| Rhytidiadelphus triquetrus                   | 0.2        | 0.7        | 6                    |
| Rhytidium rugosum                            | 0.4        | 1.3        | 12                   |
| Sphagnum sp.                                 | 3.6        | 12.0       | 41                   |
| Thuidium sp.                                 | 0.6        | 2.4        | 6                    |
| Tomentypnum nitens                           | 1.2        | 3.8        | 18                   |
| Unknown moss                                 | 0.6        | 2.4        | 12                   |
| Total Lichen Cover                           | 14.4       | 18.3       | 94                   |
| Cetraria cf. islandica                       | 1.4        | 2.5<br>1.7 | 53                   |
| Cetraria islandica ssp. islandica            | 0.4        |            | 6<br>10              |
| Cladina arbuscula                            | 1.2<br>0.3 | 2.9        | 18                   |
| Cladina mitis                                | 0.3<br>2.4 | 0.8<br>4.2 | 18<br>59             |
| Cladina rangiferina                          | 0.5        | 1.3        | 18                   |
| Cladina sp.                                  | 3.5        | 9.1        | 41                   |
| Cladina stellaris                            | 1.0        | 2.2        | 18                   |
| Cladina stygia                               | 2.1        | 3.9        | 59                   |
| Cladonia sp.                                 | 0.5        | 1.3        | 24                   |
| Flavocetraria cucullata<br>Nephroma arcticum | 0.5        | 1.0        | 2 <del>4</del><br>29 |
| ,                                            | 0.4        | 0.4        | 47                   |
| Peltigera aphthosa<br>Peltigera sp.          | 0.2        | 0.4        | 24                   |
| Stereocaulon sp.                             | 0.1        | 0.8        | 12                   |
| Total Bare Ground                            | 4.9        | 3.1        | 100                  |
| Bare Soil                                    | 0.4        | 1.2        | 53                   |
| Litter alone                                 | 4.4        | 2.6        | 100                  |
| Litter alone                                 |            | 2.0        | 100                  |



Table 129. Soil characteristics for Upland White Spruce–Ericaceous Forest.

| Property                                   | Mean   | SD    | n  |
|--------------------------------------------|--------|-------|----|
| Elevation (m)                              | 289.9  | 178.4 | 16 |
| Slope (degrees)                            | 11.8   | 5.3   | 16 |
| Surface Organics Depth(cm)                 | 9.8    | 6.9   | 17 |
| Cumulative Org. in 40 cm (cm)              | 10.2   | 7.1   | 17 |
| Loess Cap Thickness (cm)                   | 24.6   | 31.2  | 5  |
| Depth to Rocks (cm)                        | 51.1   | 69.2  | 14 |
| Surface Fragment Cover (%)                 | 1.4    | 1.5   | 3  |
| Frost Boil Cover (%)                       |        |       | 0  |
| Thaw Depth (cm)                            | 49.0   | 33.9  | 2  |
| Site pH at 10-cm depth                     | 5.0    | 1.0   | 17 |
| Site EC at 10-cm depth (µS/cm)             | 55.9   | 33.9  | 17 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -169.8 | 70.5  | 12 |

 ${}^{\mathrm{a}}\mathrm{Measurements}>1~\mathrm{m}$  indicate minimum depth, not true depth

Dominant soil subgroups include Typic Dystrocryepts (acidic, partially developed, lacking permafrost), Typic Eutrogelepts (non-acidic, partially developed with permafrost below 1 m), and Typic Haplorthels (mineral soil over permafrost lacking cryoturbation). Uncommon subgroups include Humic Dystrogelepts (acidic, well drained, a moderately thick organic-rich A horizon, permafrost below 1 m) and Typic Haplocryods (moist, acidic, highly leached). This ecotype and associated soils are part of the Upland Rocky-loamy Circumacidic Tall Shrublands and Forests soil landscape, which also includes Upland Birch Forest, Upland Spruce–Birch Forest, Upland Alder–Willow Tall Shrub, and Upland Bluejoint Meadow.

#### **Upland White Spruce-Lichen Woodland**



#### Geomorphology:

This ecotype occurs on eolian inactive sand dunes in KOVA. These dunes are stable enough for a thick cover of lichens to develop. Surface forms include slopes, shoulders and crests.

#### Plant Association:

Picea glauca-Cladina stellaris

Lichens and white spruce are co-dominant in this ecotype (Table 130). Spruce trees have 10–24% cover. Deciduous and evergreen shrubs, grasses and forbs are always present in low quantities. Sedges are absent. Common species include *Empetrum nigrum*, *Vaccinium uliginosum*, *Solidago multiradiata*, *Cladina rangiferina*, *C. stellaris*, *Flavocetraria nivalis* and *Stereocaulon* sp.

This ecotype is most similar to Upland White Spruce–Dryas Woodland except the substrate is more stabilized and lichens are more prevalent.

Table 130. Vegetation cover and frequency for Upland White Spruce–Lichen Woodland (n=4).

|                                | Cove  | er   | Freq |
|--------------------------------|-------|------|------|
|                                | Mean  | SD   | %    |
| Total Live Cover               | 122.6 | 6.0  | 100  |
| Total Vascular Cover           | 45.7  | 27.4 | 100  |
| Total Evergreen Tree Cover     | 20.0  | 10.0 | 100  |
| Picea glauca                   | 20.0  | 10.0 | 100  |
| Total Evergreen Shrub          |       |      |      |
| Cover                          | 8.0   | 8.7  | 100  |
| Arctostaphylos uva-ursi        | 1.3   | 0.6  | 100  |
| Empetrum nigrum                | 6.0   | 7.8  | 100  |
| Vaccinium vitis-idaea          | 0.7   | 1.1  | 67   |
| Total Deciduous Tree Cover     | 0.1   | 0.1  | 67   |
| Populus balsamifera            | <0.1  | 0.1  | 33   |
| Populus tremuloides            | <0.1  | 0.1  | 33   |
| Total Deciduous Shrub          |       |      |      |
| Cover                          | 14.2  | 16.3 | 100  |
| Betula nana                    | 5.0   | 8.6  | 67   |
| Betula occidentalis            | 0.7   | 1.2  | 33   |
| Salix bebbiana                 | <0.1  | 0.1  | 33   |
| Salix monticola                | <0.1  | 0.1  | 33   |
| Salix sp.                      | <0.1  | 0.1  | 33   |
| Vaccinium uliginosum           | 8.4   | 7.6  | 100  |
| Total Forb Cover               | 2.7   | 2.3  | 100  |
| Armeria maritima               | <0.1  | 0.1  | 33   |
| Arnica frigida                 | <0.1  | 0.1  | 33   |
| Artemisia arctica ssp. arctica | 0.7   | 1.2  | 33   |
| Artemisia furcata              | <0.1  | 0.1  | 33   |
| Astragalus aboriginum          | <0.1  | 0.1  | 33   |
| Bupleurum triradiatum ssp.     |       |      |      |
| arcticum                       | <0.1  | 0.1  | 33   |
| Cnidium cnidiifolium           | <0.1  | 0.1  | 33   |
| Dianthus repens                | <0.1  | 0.1  | 33   |
| Epilobium angustifolium        | <0.1  | 0.1  | 33   |
| Erigeron elatus                | <0.1  | 0.1  | 33   |
| Geocaulon lividum              | 1.3   | 1.5  | 67   |
| Lupinus arcticus               | <0.1  | 0.1  | 33   |
| Lupinus kuschei                | <0.1  | 0.1  | 33   |
| Minuartia sp.                  | <0.1  | 0.1  | 33   |
| Pedicularis labradorica        | 0.1   | 0.1  | 67   |
| Pulsatilla patens multifida    | <0.1  | 0.1  | 33   |
| Rumex acetosa ssp. acetosa     | <0.1  | 0.1  | 33   |
| Selaginella sibirica           | <0.1  | 0.1  | 33   |
| Senecio ogotorukensis          | <0.1  | 0.1  | 33   |
| Solidago multiradiata var.     |       |      |      |
| multiradiata                   | 0.1   | <0.1 | 100  |
| Total Grass Cover              | 8.0   | 0.4  | 100  |
| Bromus pumpellianus var.       | .0.1  | 0.1  | 22   |
| arcticus                       | <0.1  | 0.1  | 33   |
| Calamagrostis purpurascens     | <0.1  | 0.1  | 33   |
| Festuca altaica                | 0.7   | 0.6  | 67   |
| Festuca saximontana            | <0.1  | 0.1  | 33   |
| Total Nonvascular Cover        | 76.8  | 21.5 | 100  |
| Total Moss Cover               | 9.1   | 9.9  | 100  |
| Abietinella abietina           | <0.1  | 0.1  | 33   |
| Dicranum sp.                   | 0.3   | 0.6  | 33   |
| Pleurozium schreberi           | 1.7   | 2.9  | 67   |
| Polytrichum juniperinum        | 0.3   | 0.6  | 33   |
| Polytrichum piliferum          | 1.7   | 2.9  | 33   |
| Racomitrium lanuginosum        | 5.0   | 8.7  | 33   |
| Rhytidium rugosum              | <0.1  | 0.1  | 33   |
|                                |       |      |      |

Table 130. Continued.

| Mean<br>67.7 | SD                                                                  | 0/  |
|--------------|---------------------------------------------------------------------|-----|
| 677          |                                                                     | %   |
| 67.7         | 14.3                                                                | 100 |
| 0.3          | 0.6                                                                 | 33  |
| 3.3          | 5.8                                                                 | 33  |
| 3.3          | 5.8                                                                 | 33  |
| 5.0          | 5.0                                                                 | 67  |
| 0.7          | 1.2                                                                 | 33  |
| 28.3         | 20.2                                                                | 100 |
| 3.3          | 5.8                                                                 | 33  |
| 3.0          | 1.7                                                                 | 100 |
| 2.3          | 1.5                                                                 | 100 |
| 1.0          | 1.0                                                                 | 67  |
| 0.4          | 0.6                                                                 | 67  |
| < 0.1        | 0.1                                                                 | 33  |
| 15.0         | 26.0                                                                | 33  |
| 1.3          | 1.2                                                                 | 67  |
| 0.3          | 0.6                                                                 | 33  |
| 1.7          | 0.6                                                                 | 100 |
| <0.1         | 0.1                                                                 | 33  |
| 1.7          | 0.6                                                                 | 100 |
|              | 0.3 3.3 3.3 5.0 0.7 28.3 3.0 2.3 1.0 0.4 <0.1 15.0 1.3 0.3 1.7 <0.1 | 0.3 |



Soils are sandy and typically feature a thin discontinuous surface organic horizon (Table 131). Thaw depths could not be determined as the depth to permafrost, if present, was always greater than the maximum depth sampled (1.3 m). Frost boils, surface fragments, and loess caps are absent. Soil pH is acidic, and EC is low. The soils are typically excessively to

somewhat excessively well drained. Depth to water table often could not be measured but it is assumed to be at substantial depths given the well drained soils.

Table 131. Soil characteristics for Upland White Spruce–Lichen Woodland.

| Property                                             | Mean   | SD   | n |
|------------------------------------------------------|--------|------|---|
| Elevation (m)                                        | 77.0   | 4.9  | 4 |
| Slope (degrees)                                      | 8.0    | 2.8  | 2 |
| Surface Organics Depth(cm)                           | 1.7    | 1.2  | 3 |
| Cumulative Org. in 40 cm (cm)                        | 1.7    | 1.2  | 3 |
| Loess Cap Thickness (cm)                             |        |      | 0 |
| Depth to Rocks (cm)                                  | 200.0  |      | 1 |
| Surface Fragment Cover (%)                           |        |      | 0 |
| Frost Boil Cover (%)                                 |        |      | 0 |
| Thaw Depth (cm)                                      |        |      | 0 |
| Site pH at 10-cm depth                               | 5.4    | 0.1  | 4 |
| Site EC at 10-cm depth (μS/cm)                       | 20.0   | 17.3 | 3 |
| Water Depth (cm,+ above grnd) <sup>a</sup>           | -200.0 |      | 1 |
| aMassuraments > 1 m indicate minimum denth, not true |        |      |   |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroup in this ecotype is Typic Cryopsamments (sandy, low coarse fragment content, well drained, lacking permafrost). A less common subgroup is Typic Dystrocryepts (acidic, partially developed, lacking permafrost). This ecotype and associated soils are part of the Upland Sandy Forest soil landscape. Also included in this soil landscape is Upland White Spruce–Dryas Woodland.

#### **Upland White Spruce-Willow Forest**



#### Geomorphology:

This ecotype is widespread in uplands in the boreal regions of ARCN, sometimes comprising circumpolar treeline. Surfaces are sloped and it occurs at elevations up to 550 m. It is found on hillside colluvium, older moraine, retransported deposits and abandoned alluvial fan deposits. Parent material is usually alkaline.

#### Plant Association:

Picea glauca-Salix reticulata-Carex scirpoidea

Vegetation is dominated by white spruce and deciduous shrubs. White spruce stands vary from woodlands to open canopies (10–74% cover). Cover of evergreen shrubs, forbs and mosses can be high (Table 132). Sedges are usually present in low amounts. This ecotype has high species diversity and ranks 3rd highest in species count per plot and 7th highest in the overall species count. Common species include Arctostaphylos rubra, Potentilla fruticosa (syn: Dasiphora fruticosa), Salix reticulata, S. lanata ssp. richardsonii (syn. S. richardsonii), Vaccinium uliginosum, Anemone parviflora, Carex scirpoidea, Hylocomium splendens, and Peltigera aphthosa.

This ecotype is similar to Upland White Spruce–Ericaceous Forest except willow is the dominant understory species instead of ericaceous shrubs. Site chemistry is also more alkaline, and it has higher species diversity.

#### Soils:

Soils are typically rubbly, blocky, or loamy and feature a thin to moderately thick surface organic horizon (Table 133). Thaw depths often could not be determined in the rocky soils, but permafrost is presumed to be present below 1 m. Frost boils, loess caps, and surface fragments are rare. Soil pH is alkaline to circumneutral, and EC is low. The soils are typically moderately well to well drained. Depth to water table often could not be measured but it is assumed to be at substantial depths given the well drained soils.

Table 132. Vegetation cover and frequency for Upland White Spruce–Willow Forest (n=19).

| (11-13).                             |               |              |            |
|--------------------------------------|---------------|--------------|------------|
|                                      | Cove          |              | Freq       |
| Total Line C                         | Mean          | <b>SD</b>    | 100        |
| Total Live Cover                     | 176.9         | 59.7         | 100        |
| Total Vascular Cover                 | 132.2<br>26.2 | 41.1<br>15.5 | 100<br>100 |
| Total Evergreen Tree Cover           | 26.2          | 11.9         | 100        |
| Picea glauca                         | 24.1          | 8.5          | 100        |
| Picea mariana  Total Evergreen Shrub | 2.1           | 0.5          | 12         |
| Cover                                | 17.2          | 12.3         | 100        |
| Andromeda polifolia                  | 1.1           | 2.6          | 59         |
| Cassiope tetragona                   | 1.0           | 1.8          | 41         |
| Dryas integrifolia                   | 2.5           | 6.4          | 41         |
| Dryas octopetala                     | 5.4           | 9.1          | 41         |
| Empetrum nigrum                      | 3.2           | 4.9          | 65         |
| Juniperus communis                   | 0.6           | 1.1          | 35         |
| Ledum decumbens                      | 0.3           | 0.7          | 18         |
| Ledum groenlandicum                  | 0.5           | 1.4          | 12         |
| Linnaea borealis                     | 0.7           | 1.6          | 24         |
| Vaccinium vitis-idaea                | 1.0           | 2.6          | 29         |
| <b>Total Deciduous Tree Cover</b>    | 0.0           | 0.0          | 6          |
| Total Deciduous Shrub                |               |              |            |
| Cover                                | 53.5          | 28.0         | 100        |
| Alnus crispa                         | 8.4           | 11.2         | 59         |
| Arctostaphylos rubra                 | 4.4           | 6.2          | 88         |
| Betula glandulosa                    | 0.4           | 1.2          | 18         |
| Betula nana                          | 4.3           | 11.9         | 47         |
| Potentilla fruticosa                 | 4.9           | 4.9          | 82         |
| Salix alaxensis                      | 1.4           | 3.9          | 29         |
| Salix arctica                        | 1.4           | 2.8          | 24         |
| Salix glauca                         | 4.2           | 5.4          | 59         |
| Salix lanata ssp. richardsonii       | 5.6           | 5.1          | 76         |
| Salix planifolia ssp. pulchra        | 0.7           | 2.4          | 24<br>76   |
| Salix reticulata                     | 8.6<br>8.1    | 9.4<br>9.6   | 76<br>76   |
| Vaccinium uliginosum                 | 26.3          | 14.9         | 100        |
| Total Forb Cover                     | 1.4           | 2.0          | 71         |
| Anemone parviflora Aster sibiricus   | 1.4           | 2.5          | 41         |
| Boykinia richardsonii                | 1.6           | 6.1          | 12         |
| Chrysanthemum integrifolium          | 0.4           | 0.9          | 29         |
| Cypripedium passerinum               | 0.4           | 0.5          | 24         |
| Cystopteris montana                  | 0.2           | 0.7          | 12         |
| Dodecatheon frigidum                 | 0.4           | 0.6          | 35         |
| Dodecatheon pulchellum               | 0.5           | 1.3          | 18         |
| Equisetum arvense                    | 7.6           | 12.7         | 59         |
| Equisetum scirpoides                 | 0.3           | 0.6          | 41         |
| Equisetum variegatum                 | 0.1           | 0.2          | 18         |
| Gentiana propingua                   | 0.2           | 0.4          | 29         |
| Hedysarum alpinum                    | 1.4           | 2.0          | 47         |
| Lagotis glauca ssp. glauca           | 0.4           | 0.7          | 47         |
| Lycopodium annotinum                 | 0.3           | 0.8          | 12         |
| Mertensia paniculata                 | 0.8           | 1.4          | 35         |
| Minuartia arctica                    | 0.2           | 0.6          | 18         |
| Moneses uniflora                     | 0.1           | 0.5          | 35         |
| Parnassia palustris                  | 0.1           | 0.3          | 24         |
| Parrya nudicaulis                    | 0.1           | 0.2          | 18         |
| Pedicularis capitata                 | 0.2           | 0.6          | 24         |
| Pedicularis labradorica              | 0.2           | 0.5          | 24         |
| Pedicularis langsdorffii             | 0.1           | 0.3          | 24         |
| Pinguicula vulgaris                  | 0.1           | 0.2          | 18         |
|                                      |               |              |            |

Table 132. Continued.

|                            | Cover |      | Freq |
|----------------------------|-------|------|------|
|                            | Mean  | SD   | %    |
| Polygonum bistorta         | 0.1   | 0.2  | 18   |
| Polygonum viviparum        | 0.3   | 0.5  | 47   |
| Rubus arcticus             | 0.4   | 1.2  | 18   |
| Saussurea angustifolia     | 1.2   | 1.7  | 65   |
| Saxifraga bronchialis      | 0.1   | 0.2  | 18   |
| Senecio atropurpureus      | 0.1   | 0.3  | 18   |
| Silene acaulis             | 0.4   | 0.6  | 47   |
| Solidago multiradiata      | 0.4   | 1.0  | 29   |
| Solidago multiradiata var. |       |      |      |
| multiradiata               | 0.2   | 0.5  | 18   |
| Thalictrum alpinum         | 0.3   | 8.0  | 47   |
| Tofieldia coccinea         | 0.2   | 0.4  | 29   |
| Tofieldia pusilla          | 0.1   | 0.2  | 24   |
| Zygadenus elegans          | 0.6   | 0.9  | 41   |
| Total Grass Cover          | 3.0   | 2.6  | 94   |
| Arctagrostis latifolia     | 0.2   | 0.4  | 35   |
| Calamagrostis canadensis   | 0.1   | 0.3  | 24   |
| Festuca altaica            | 2.4   | 2.5  | 65   |
| Total Sedge & Rush Cover   | 5.9   | 4.7  | 100  |
| Carex bigelowii            | 0.4   | 1.3  | 18   |
| Carex capillaris           | 0.1   | 0.3  | 24   |
| Carex membranacea          | 0.5   | 1.1  | 35   |
| Carex scirpoidea           | 4.0   | 4.4  | 71   |
| Kobresia myosuroides       | 0.2   | 0.5  | 12   |
| Total Nonvascular Cover    | 44.7  | 29.3 | 100  |
| Total Moss Cover           | 39.9  | 29.9 | 100  |
| Aulacomnium palustre       | 1.3   | 3.8  | 18   |
| Brachythecium salebrosum   | 0.7   | 2.1  | 12   |
| Dicranum sp.               | 0.9   | 1.8  | 29   |
| Drepanocladus sp.          | 8.0   | 1.7  | 24   |
| Hylocomiastrum pyrenaicum  | 0.3   | 1.0  | 12   |
| Hylocomium splendens       | 23.2  | 25.4 | 71   |
| Pleurozium schreberi       | 0.4   | 1.2  | 12   |
| Ptilidium ciliare          | 0.1   | 0.3  | 18   |
| Rhytidium rugosum          | 3.5   | 7.7  | 24   |
| Sanionia uncinata          | 1.9   | 3.0  | 47   |
| Tomentypnum nitens         | 3.8   | 6.5  | 41   |
| Unknown moss               | 0.4   | 0.9  | 18   |
| Total Lichen Cover         | 4.8   | 5.4  | 100  |
| Cetraria cf. islandica     | 0.3   | 0.7  | 18   |
| Cladina arbuscula          | 0.3   | 0.8  | 18   |
| Cladina mitis              | 0.4   | 1.3  | 24   |
| Cladina rangiferina        | 0.2   | 0.7  | 12   |
| Cladina stygia             | 0.2   | 0.8  | 12   |
| Cladonia sp.               | 0.5   | 1.0  | 65   |
| Flavocetraria cucullata    | 0.2   | 0.7  | 18   |
| Flavocetraria nivalis      | 0.4   | 1.0  | 12   |
| Peltigera aphthosa         | 0.2   | 0.4  | 47   |
| Peltigera sp.              | 0.1   | 0.3  | 24   |
| Unknown crustose lichen    | 1.0   | 2.6  | 18   |
| Vulpicida sp.              | 0.4   | 0.9  | 18   |
| Total Bare Ground          | 9.3   | 12.0 | 94   |
| Bare Soil                  | 1.9   | 4.3  | 53   |
| Litter alone               | 7.4   | 8.2  | 94   |



Table 133. Soil characteristics for Upland White Spruce–Willow Forest.

| Property                                   | Mean   | SD    | n  |
|--------------------------------------------|--------|-------|----|
| Elevation (m)                              | 237.5  | 121.4 | 17 |
| Slope (degrees)                            | 10.3   | 7.7   | 17 |
| Surface Organics Depth(cm)                 | 9.2    | 6.7   | 17 |
| Cumulative Org. in 40 cm (cm)              | 9.5    | 6.8   | 17 |
| Loess Cap Thickness (cm)                   | 13.0   | NA    | 1  |
| Depth to Rocks (cm)                        | 16.1   | 11.5  | 15 |
| Surface Fragment Cover (%)                 | 13.3   | 10.4  | 3  |
| Frost Boil Cover (%)                       | 6.5    | 5.7   | 4  |
| Thaw Depth (cm)                            | 107.0  | 60.8  | 2  |
| Site pH at 10-cm depth                     | 7.0    | 8.0   | 16 |
| Site EC at 10-cm depth (µS/cm)             | 118.8  | 39.8  | 16 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -152.3 | 45.4  | 11 |

<sup>a</sup>Measurements >1 m indicate minimum depth, not true depth

The dominant soil subgroups in this ecotype are Typic Eutrogelepts (non-acidic, partially developed with permafrost below 1 m), Humic Eutrogelepts (non-acidic, well drained, a moderately thick organic-rich A horizon, permafrost below 1 m), and Typic Haplorthels (mineral soil over permafrost lacking cryoturbation). Less common subgroups include Typic Haplocryepts (non-acidic, partially developed, lacking permafrost) and Typic Haplogelolls (non-acidic, well-drained, thick organic-rich A horizon, permafrost below 1 m and lacking cryoturbation). This ecotype and associated soils are part of the Upland Rocky-loamy Circumalkaline Low Shrublands and Forests soil landscape. Other ecotypes found in this soil landscape include Upland Sedge-Dryas Meadow and Upland Willow Low Shrub.

#### **Upland Willow Low Shrub**



#### Geomorphology:

Upland gentle to moderate slopes on colluvium and alluvial fan deposits. This type is found throughout ARCN at elevations between 150 and 600 m and is associated with alkaline soil parent material.

#### Plant Association:

Salix lanata ssp. richardsonii–Equisetum arvense
Vegetation is dominated by low willows
(0.2–1.5 m tall), with an open to closed canopy (Table 134). The canopy is dominated by Salix lanata ssp. richardsonii (syn: S. richardsonii), but often includes S. glauca and S. planifolia ssp. pulchra (syn: S. pulchra). Forbs are prevalent, specifically Equisetum arvense and Valeriana capitata. Other common species include Dryas spp., Vaccinium uliginosum, S. reticulata, and Festuca altaica. The mosses
Tomentypnum nitens and Hylocomium splendens are also common. This ecotype has high species diversity.

Upland Birch–Willow Low Shrub is similar to this ecotype except dwarf birch is co-dominant and *S. planifolia* ssp. *pulchra* is usually the dominant willow.

#### Soils:

Soils are loamy with a moderately thick surface organic horizon (Table 135). Permafrost often occurs in the upper meter of the soil profile. Frost boils, surface fragments, and loess caps are rare. Buried discontinuous organic layers sometimes occur as the result of cryoturbation of the surface organics. Soil pH is alkaline to circumneutral, and EC is low. The soils are somewhat poorly to well drained. The water table is shallow to moderately deep.

Table 134. Vegetation cover and frequency for Upland Willow Low Shrub (n=13).

| ·                                          |                |              |            |
|--------------------------------------------|----------------|--------------|------------|
|                                            | Cove           |              | Freq       |
|                                            | Mean           | SD           | <u>%</u>   |
| Total Live Cover                           | 217.3<br>152.1 | 74.8<br>45.8 | 100<br>100 |
| Total Vascular Cover                       | 13.2           | 12.3         | 77         |
| Total Evergreen Shrub Cover                | 0.9            | 1.9          | 31         |
| Andromeda polifolia                        | 0.3            | 0.4          | 54         |
| Cassiope tetragona                         | 5.2            | 7.9          | 46         |
| Dryas integrifolia<br>Dryas octopetala     | 0.4            | 1.4          | 8          |
| Dryas octopetala ssp. alaskensis           | 5.4            | 11.1         | 23         |
| Empetrum nigrum                            | 0.3            | 0.8          | 31         |
| Ledum decumbens                            | 0.4            | 1.0          | 31         |
| Rhododendron lapponicum                    | 0.2            | 0.6          | 31         |
| Vaccinium vitis-idaea                      | 0.1            | 0.3          | 23         |
| Total Deciduous Shrub Cover                | 76.6           | 22.6         | 100        |
| Arctostaphylos alpina                      | 0.7            | 1.7          | 15         |
| Arctostaphylos rubra                       | 2.5            | 5.6          | 46         |
| Betula glandulosa                          | 2.1            | 6.9          | 23         |
| Betula nana                                | 0.9            | 1.5          | 46         |
| Potentilla fruticosa                       | 1.4            | 2.3          | 38         |
| Salix alaxensis                            | 1.4            | 4.2          | 23         |
| Salix glauca                               | 4.4            | 8.6          | 46         |
| Salix hastata                              | 5.8            | 20.8         | 15         |
| Salix lanata ssp. richardsonii             | 29.5           | 18.7         | 92         |
| Salix planifolia ssp. pulchra              | 2.7            | 5.9          | 38         |
| Salix reticulata                           | 21.2           | 16.6         | 92         |
| Shepherdia canadensis                      | 0.3            | 0.9          | 15         |
| Vaccinium uliginosum                       | 3.8            | 4.8          | 85         |
| Total Forb Cover                           | 49.1           | 31.5         | 100        |
| Aconitum delphinifolium                    | 0.2            | 0.6          | 15         |
| Anemone parviflora                         | 3.0            | 5.1          | 62         |
| Anemone richardsonii                       | 0.8            | 2.2          | 31         |
| Arnica lessingii                           | 0.1            | 0.3          | 15         |
| Artemisia arctica ssp. arctica             | 0.3            | 0.9          | 15         |
| Aster sibiricus                            | 0.8            | 1.6          | 38         |
| Boykinia richardsonii                      | 0.5            | 1.4          | 15         |
| Dodecatheon frigidum                       | 1.1            | 2.0          | 54         |
| Epilobium angustifolium                    | 0.2            | 0.8          | 8          |
| Equisetum arvense                          | 30.8           | 31.1         | 92         |
| Equisetum scirpoides                       | 0.1            | 0.3          | 23         |
| Equisetum variegatum                       | 0.1            | 0.3          | 31         |
| Hedysarum alpinum                          | 1.8            | 3.3          | 38         |
| Mertensia paniculata                       | 0.5            | 1.9          | 8          |
| Myosotis alpestris ssp. asiatica           | 0.5            | 1.1          | 15         |
| Pedicularis capitata                       | <0.1           | 0.1          | 46         |
| Petasites frigidus                         | 1.2            | 2.8          | 31         |
| Petasites hyperboreus                      | 0.4            | 1.0          | 15         |
| Polemonium acutiflorum                     | 2.6            | 8.2          | 62         |
| Polygonum bistorta                         | 0.1            | 0.3          | 23         |
| Polygonum viviparum                        | 0.1            | 0.3          | 38         |
| Rubus chamaemorus                          | 0.2            | 0.8          | 8          |
| Saussurea angustifolia                     | 0.1            | 0.3          | 31         |
| Saxifraga punctata                         | 0.2            | 0.4          | 15         |
| Senecio lugens                             | 0.2            | 0.5          | 38         |
| Solidago multiradiata var.<br>multiradiata | 0.1            | 0.3          | 23         |
|                                            |                |              |            |

Table 134. Continued.

|                                  | Cover      |            | Freq     |  |
|----------------------------------|------------|------------|----------|--|
|                                  | Mean       | SD         | %        |  |
| Thalictrum alpinum               | 0.2        | 0.6        | 31       |  |
| Valeriana capitata               | 1.6        | 2.7        | 92       |  |
| Zygadenus elegans                | 0.3        | 0.8        | 38       |  |
| Total Grass Cover                | 6.3        | 9.7        | 100      |  |
| Arctagrostis latifolia           | 0.6        | 1.1        | 38       |  |
| Festuca altaica                  | 5.0        | 9.3        | 77       |  |
| Poa alpina                       | 0.1        | 0.3        | 31       |  |
| Poa arctica                      | 0.1        | 0.3        | 31       |  |
| Trisetum spicatum ssp. spicatum  | 0.1        | 0.3        | 54       |  |
| Total Sedge & Rush Cover         | 7.0        | 7.5        | 85       |  |
| Carex aquatilis ssp. aquatilis   | 0.8        | 2.8        | 8        |  |
| Carex atrofusca                  | 0.1        | 0.3        | 15       |  |
| Carex bigelowii                  | 3.6        | 5.8        | 62       |  |
| Carex membranacea                | 0.4        | 8.0        | 23       |  |
| Carex podocarpa                  | 0.7        | 1.7        | 15       |  |
| Carex scirpoidea                 | 0.6        | 1.0        | 46       |  |
| Eriophorum angustifolium         | 0.3        | 0.9        | 15       |  |
| Eriophorum brachyantherum        | 0.3        | 1.1        | 8        |  |
| Total Nonvascular Cover          | 65.2       | 48.4       | 100      |  |
| Total Moss Cover                 | 63.1       | 48.2       | 100      |  |
| Abietinella abietina             | 0.2        | 0.6        | 8        |  |
| Aulacomnium palustre             | 3.7        | 7.4        | 31       |  |
| Brachythecium coruscum           | 0.8        | 2.8        | 8        |  |
| Bryum pseudotriquetrum           | 8.0        | 2.8        | 8        |  |
| Bryum sp.                        | 0.1        | 0.3        | 15       |  |
| Dicranum sp.                     | 0.9        | 1.3        | 38       |  |
| Distichium capillaceum           | 0.2        | 0.8        | 8        |  |
| Drepanocladus sp.                | 2.3        | 5.6        | 15       |  |
| Hylocomium splendens             | 14.4       | 21.0       | 69       |  |
| Hypnum sp.                       | 0.4        | 1.4        | 8        |  |
| Mnium sp.                        | 0.8        | 1.9        | 15       |  |
| Pleurozium schreberi             | 0.7        | 1.7        | 15<br>15 |  |
| Polytrichum juniperinum          | 0.2        | 0.8        | 15<br>15 |  |
| Ptilidium ciliare                | 0.8<br>0.2 | 1.9<br>0.6 | 15       |  |
| Racomitrium lanuginosum          | 0.2        | 1.7        | 8<br>8   |  |
| Rhytidium rugosum                | 1.2        | 2.2        | 23       |  |
| Sanionia uncinata                | 0.2        | 0.6        | 23<br>8  |  |
| Syntrichia norvegica             | 0.2        | 2.2        | 8        |  |
| Thuidium recognitum              | 12.8       | 13.6       | 92       |  |
| Tomentypnum nitens               | 0.2        | 0.8        | 15       |  |
| Tortula norvegica                | 21.2       | 30.1       | 46       |  |
| Unknown moss Total Lichen Cover  | 2.1        | 3.3        | 77       |  |
| Cetraria cf. islandica           | 0.2        | 0.6        | 15       |  |
| Cladina arbuscula                | 0.2        | 0.3        | 15       |  |
| Cladonia sp.                     | 0.1        | 0.5        | 46       |  |
| Flavocetraria cucullata          | 0.2        | 0.5        | 31       |  |
| Peltigera aphthosa               | 0.3        | 0.6        | 38       |  |
| <b>5</b> ,                       | 0.1        | 0.3        | 23       |  |
| Peltigera sp. Stereocaulon sp.   | 0.1        | 0.8        | 8        |  |
|                                  | 0.2        | 0.6        | 15       |  |
| Unknown lichen Total Bare Ground | 6.3        | 5.4        | 100      |  |
| Bare Soil                        | 1.0        | 1.9        | 69       |  |
|                                  | 0.2        | 0.6        | 15       |  |
| Water                            | 5.2        | 4.8        | 100      |  |
| Litter alone                     | ٥.८        | 4.0        | 100      |  |



Table 135. Soil characteristics for Upland Willow Low Shrub.

| Property                                   | Mean  | SD    | n  |
|--------------------------------------------|-------|-------|----|
| Elevation (m)                              | 363.7 | 174.1 | 13 |
| Slope (degrees)                            | 10.2  | 7.3   | 13 |
| Surface Organics Depth(cm)                 | 9.5   | 6.3   | 13 |
| Cumulative Org. in 40 cm (cm)              | 12.2  | 6.9   | 13 |
| Loess Cap Thickness (cm)                   | 13.0  | NA    | 1  |
| Depth to Rocks (cm)                        | 85.2  | 81.2  | 10 |
| Surface Fragment Cover (%)                 | 1.0   | NA    | 1  |
| Frost Boil Cover (%)                       | 1.0   | 0.0   | 2  |
| Thaw Depth (cm)                            | 67.0  | 33.7  | 7  |
| Site pH at 10-cm depth                     | 7.0   | 0.6   | 13 |
| Site EC at 10-cm depth (µS/cm)             | 214.6 | 168.0 | 13 |
| Water Depth (cm,+ above grnd) <sup>a</sup> | -63.2 | 53.0  | 12 |

 ${}^{\mathrm{a}}\mathrm{Measurements} > 1$  m indicate minimum depth, not true depth

Dominant soil subgroups include Typic Aquorthels (wet, mineral soil over permafrost lacking cryoturbation) and Typic Eutrogelepts (non-acidic, partially developed with permafrost below 1 m). Uncommon subgroups include Aquic Eutrogelepts (wet, non-acidic, mineral soil, permafrost below 1 m), Typic Historthels (wet, organic rich soil over permafrost lacking cryoturbation), and Typic Haploturbels (mineral soil over permafrost with cryoturbation). This ecotype and associated soils are part of the Upland Rocky-loamy Circumalkaline Low Shrublands and Forests soil landscape, which also includes Upland Sedge–Dryas Meadow and Upland White Spruce–Willow Forest ecotypes.

#### **Snow/Glaciers**



#### Geomorphology:

Permanent snowfields and glaciers occur infrequently on high-elevation mountaintops and cirques within GAAR and NOAT. Snow/Glaciers occur near the crest of the Brooks Range.

#### Plant Association:

No vegetation is present on the snow and ice surfaces.

#### Soil:

No soils are associated with the snow and ice, although rocks and fine-grained debris can accumulate on the glacial surface at lower elevations.

#### **Rare Ecotypes**

We identified 8 ecotypes that were rare in ARCN. These include Alpine Rocky-loamy Moist Circumneutral Willow Dwarf Shrub, Coastal Aquatic Brackish Marestail Marsh, Lowland Circumneutral Sweetgale Low Shrub Fen, Lowland Organic-rich Moist Circumalkaline White Spruce Forest, Riverine Loamy Moist Circumacidic Birch Forest, Upland Loamy Moist Circumacidic Willow Tall Shrub, and Upland Sandy Dry Circumneutral Aspen Forest.

Alpine Rocky-loamy Moist Circumneutral Willow Dwarf Shrub occurs in small patches in late-thawing snow beds in the mountains throughout ARCN. It is species-rich with a plant association of Salix polaris–Boykinia richardsonii. Common species include Salix reticulata, Salix rotundifolia, Equisetum arvense and Racomitrium spp. Surface horizons vary from thin to thick and the dominant texture varies from blocky to organic.

Coastal Aquatic Brackish Marestail Marsh occurs in shallow waters near the coast in BELA and CAKR. It is characterized by *Hippurus tetraphylla*. Water is brackish and soils are permanently flooded.

Lowland Circumneutral Sweetgale Low Shrub Fen occurs in small patches in organic fen ecosystems and usually grows inter-mixed with Lowland Birch–Willow Low Shrub. Dominant plant species include *Equisetum fluviatile*, *Myrica gale*, *Menyanthes trifoliata*, *Sphagnum russowii* and *Sphagnum fuscum*. Surface horizons are typically thick and depth to the water table is shallow.

Lowland Organic-rich Moist Circumalkaline White Spruce Forest is occurs uncommonly throughout the boreal regions of KOVA and GAAR. Dominant plant species include *Picea glauca*, *Empetrum nigrum*, *Vaccinium vitis-idaea*, *Hylocomium splendens*, and *Sphagnum warnstorfii*. Soils are loamy to organic and surface organic layers are moderate to thick. Surface geomorphology includes braided abandoned overbank deposits and retransported deposits.

Riverine Loamy Moist Circumacidic Birch Forest occurs infrequently on meander inactive overbank deposits in GAAR. Dominant plant species include Betula papyrifera (syn: B. neoalaskana), Calamagrostis canadensis, Linnaea borealis, Equisetum pratense and Hylocomium splendens. Soils are loamy with a thin surface organic horizon.

Upland Loamy Moist Circumacidic Willow Tall Shrub was documented in CAKR. Dominant plant species include *Salix lanata* ssp. *richardsonii* (syn: *S. richardsonii*), *Equisetum arvense*, *Petasites frigidus*, and *Valeriana capitata*. We did not collect any soils data on this ecotype.

Upland Sandy Dry Circumneutral Aspen Forest occurs in small, isolated stands on stabilizedeolian inactive sand dunes in KOVA. Dominant plant species include *Populus tremuloides*, *Cladina* spp., *Salix glauca*, *Rosa acicularis*, *Polytrichum piliferum*, and *Flavocetraria cucullata*. Soils are sandy with a thin surface organic horizon. The water table is typically at >2 m depth.

Lowland Sedge–Dryas Meadow occurs on the coastal plains of BELA and CAKR. The main difference between this ecotype and Upland Sedge–Dryas Meadow, with which it was aggregated for mapping in NOAT and KOVA, is that it occurs at lower elevations on coastal plains and drainages versus upland or mountainous areas.

### Table 136. Key to ecotypes for the Arctic Network.<sup>1,2</sup>

| Tuble 150. Rey to ecotypes for the Arctic Network.                                                                                                                                     |                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 1a. Permanent <b>waterbody</b> (water typically >10 cm deep)                                                                                                                           |                                   |
| 2a. Waterbody with < 10% cover of emergent vegetation                                                                                                                                  |                                   |
| 3a. Waterbody occurs near the coast and is affected by the ocean                                                                                                                       |                                   |
| 4a. Waterbody is an ocean                                                                                                                                                              |                                   |
| 4b. Waterbody is a river near its confluence with the ocean that experiences tidal fluctuation                                                                                         |                                   |
| 4c. Waterbody is an estuarine lake or pond                                                                                                                                             |                                   |
| 3b. Waterbody occurs inland and is not affected by the ocean                                                                                                                           |                                   |
| 5a. Waterbody is a perennial river (flowing water)                                                                                                                                     |                                   |
| 5b. Waterbody is a lake or pond                                                                                                                                                        |                                   |
| 6a. Lake developed in an abandoned river channel on a floodplain                                                                                                                       |                                   |
| 6b. Lake did not develop in an abandoned river channel on a floodpain                                                                                                                  |                                   |
| 7a. Lake is at low elevations in valley bottoms and flatlands                                                                                                                          |                                   |
| 7b. Lake is at high elevations in the mountains                                                                                                                                        | · ·                               |
| 2b. Waterbody with ≥ 10% cover of emergent vegetation                                                                                                                                  |                                   |
| 8a. Waterbody occurs in a shallow river channel and <i>Equisetum fluviatile</i> is the dominant species.                                                                               |                                   |
| 8b. Waterbody occurs in a lake basin                                                                                                                                                   |                                   |
| 9a. Vegetation has higher cover of graminoids than forbs                                                                                                                               |                                   |
| 9b. Vegetation is predominately forbs.                                                                                                                                                 |                                   |
| 10a. Vegetation occurs on floating mats and the dominant forb is <i>Menyanthes trifoliata</i>                                                                                          |                                   |
| 10b. Vegetation does not occur on floating mats and <i>Menyanthes trifoliata</i> is not the do                                                                                         |                                   |
| 11a. Pondlily, <i>Nuphar polysepalum</i> is the dominant forb and grows in deep water                                                                                                  | -                                 |
| 11b. Pondlilies are absent or present in trace amounts                                                                                                                                 |                                   |
| 12a. The dominant species is marestail, Hippurus vulgaris                                                                                                                              |                                   |
| 12b. The dominant species is horsetail, Equisetum fluviatile                                                                                                                           |                                   |
| 1b. Not a permanent waterbody                                                                                                                                                          |                                   |
| 13a. Site is proximal to the <b>ocean</b> , electrical conductivity (EC) is > 800 µs/cm, and is affected by ocea including tidal fluctuations, storm surges, and wind-borne salt water |                                   |
| 14a. Vegetation cover <30%                                                                                                                                                             |                                   |
| 15a. Site occurs on active marine beaches and soil is dry                                                                                                                              |                                   |
| 15b. Site occurs on active tidal flats and soil is wet                                                                                                                                 | •                                 |
| 14b. Vegetation cover ≥30%                                                                                                                                                             |                                   |
| 16a.Shrub cover ≥ 25%                                                                                                                                                                  |                                   |
| 17a. Soils are moist to dry and dominant species is crowberry, <i>Empetrum nigrum</i>                                                                                                  |                                   |
| 17b. Soils are wet and dominant species is the willow, Salix ovalifolia                                                                                                                |                                   |
| 16b. Shrub cover < 25%                                                                                                                                                                 |                                   |
| 18a. Soils are moist to dry and dominant species is lyme grass ( <i>Elymus arenarius</i> ssp. <i>mol</i> or syn: <i>Leymus mollis</i> )                                                | lis                               |
| 18b. Sites are wet and dominant species is Carex ramenskii                                                                                                                             |                                   |
| 19a. Water chemistry is brackish (800-15,999 µs/cm) and <i>Dupontia fischeri</i> is abundant                                                                                           |                                   |
| 19b. Water chemistry is saline (>16,000 µs/cm) and Puccinellia phryganodes is                                                                                                          |                                   |
| abundant                                                                                                                                                                               | Coastal Saline Sedge–Grass Meadow |
| 13b. Site occurs <b>inland</b> , electrical conductivity is < 800 μs/cm, and is not affected by the ocean                                                                              |                                   |
| 20a. <b>Barren</b> or partially vegetated where total <u>vascular</u> plant cover <30%                                                                                                 | 21                                |
| 21a. Site is on an active floodplain                                                                                                                                                   | Riverine Barrens                  |
| 21b. Site is on other terrain                                                                                                                                                          | 22                                |
| 22a. Site located in drained lake basin or margin of a waterbody                                                                                                                       | Lacustrine Barrens                |
| 22b. Site not adjacent to a waterbody or lake basin                                                                                                                                    | 23                                |
| 23a. Site occurs on old lava flows in BELA                                                                                                                                             | Upland Mafic Barrens              |
| 23b. Site occurs elsewhere                                                                                                                                                             | 24                                |
| 24a. Site is an active sand dune                                                                                                                                                       | Upland Sandy Barrens              |
| 24b. Site is in mountains at higher elevations than the vegetated zone                                                                                                                 | 25                                |
| 25a. Site chemistry is acidic                                                                                                                                                          | Alpine Acidic Barrens             |
| 25b. Site chemistry is alkaline                                                                                                                                                        | 26                                |
| 26a. Bedrock consists of mafic or ultramafic, iron-rich rocks                                                                                                                          | Alpine Mafic Barrens              |
| 26b. Bedrock consists of other types of alkaline rocks                                                                                                                                 | •                                 |
| 20b. Vegetation cover (vascular species only) ≥ 30%                                                                                                                                    | 27                                |

#### Table 136. Continued.

| .7a. <b>Tree canopy is &lt; 10% cover</b>                                                                                                | 28                                      |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 28a. Shrub cover is < 25% and vegetation is primarily graminoid-dominated                                                                | 29                                      |
| 29a. Cover of grasses, particularly bluejoint, <i>Calamagrostis</i> spp., is > cover of sedges                                           | 30                                      |
| 30a. Soils are wet and site occurs in a lake basin                                                                                       |                                         |
| 30b. Soils are wet to moist and site occurs on an inactive floodplain                                                                    | Riverine Bluejoint Meadow               |
| 30c. Soils are moist and site occurs on a hillside                                                                                       | Upland Bluejoint Meadow                 |
| 29b Cover of sedges is greater than cover of grasses                                                                                     | 31                                      |
| 31a. Tussock cover is >25%                                                                                                               | Upland Dwarf Birch–Tussock Shrub        |
| 31b. Tussock cover is < 25%                                                                                                              | •                                       |
| 32a. Soils are moist and <i>Dryas</i> spp. have 1–24% cover                                                                              | Upland Sedge-Dryas Meadow               |
| 32b. Soils are wet and <i>Dryas</i> spp. mostly absent                                                                                   |                                         |
| 33a. Site is located on a floodplain and soils are predominantly loamy                                                                   |                                         |
| 33b. Site is not located on a floodplain                                                                                                 | _                                       |
| 34a Site is located in a lake basin, soils are loamy to organic, <i>Potentilla p.</i> (syn: <i>Comarum palustris</i> ) typically present | alustris<br>Lacustrine Wet Sedge Meadow |
| 34b Site is not located in a lake basin                                                                                                  | 35                                      |
| 35a. Soils are rocky and/or elevation >500 m                                                                                             | Alpine Wet Sedge Meadow                 |
| 35b. Soils are peaty to organic-rich, elevation lower                                                                                    | 36                                      |
| 36a. Diamond-leaved willow, S. <i>planifolia</i> ssp. <i>pulchra</i> (syn: S. <i>p</i> is present                                        | oulchra)                                |
| 36b. <i>S. pulchra</i> usually absent or in trace quantities, total shrub cover is <5%                                                   |                                         |
| 28b. <b>Shrub cover is &gt;25%</b>                                                                                                       | =                                       |
| 37a. <b>Shrub height &lt; 0.20 m</b>                                                                                                     |                                         |
| 38a. <i>Dryas</i> spp. are dominant and have higher cover than other shrub species                                                       |                                         |
| 39a. Site occurs on river floodplains                                                                                                    |                                         |
| 39b. Site occurs at higher elevations, not on floodplains                                                                                | _                                       |
| 40a. Sedges are co-dominant and <i>Dryas</i> cover is near 25%                                                                           |                                         |
| 40b. Sedges are not co-dominant and <i>Dryas</i> cover is theat 25 %                                                                     |                                         |
| 41a. Soils are acidic, Hierochloe alpina usually present                                                                                 |                                         |
| 41b. Soils are alkaline, <i>Hierochloe alpina</i> usually absent                                                                         |                                         |
| 38b. Ericaceous species are dominant and have higher cover than <i>Dryas</i> spp                                                         |                                         |
| 42a. Bell Heather, Cassiope tetragona is the most common ericaceous shrub                                                                |                                         |
| 42b. C. tetragona is not the most common ericaceous shrub                                                                                |                                         |
| 37b. Shrub height > 0.20m                                                                                                                |                                         |
| 43a. <b>Shrub height &lt; 1.5 m</b>                                                                                                      |                                         |
| 44a. Tussocks (formed by <i>Eriophorum vaginatum</i> ) have >25% cover                                                                   |                                         |
| 44b. Tussocks have <25% cover                                                                                                            |                                         |
| 44b. Tussocks flave <25% cover                                                                                                           |                                         |
| 46a. Dwarf birch, Betula nana is co-dominant with Salix pulchra                                                                          |                                         |
| 46b. <i>B. nana</i> is absent or has low cover, and the dominant species is                                                              | Riverine Birch-villow Low Sillub        |
| Salix lanata ssp. richardsonii (syn: S. richardsonii)                                                                                    |                                         |
| 45b. Sites are in lowland, lacustrine or upland areas                                                                                    |                                         |
|                                                                                                                                          |                                         |
| 47b. Site is not in a lake basin                                                                                                         | pamy, infrequently                      |
| 50a. <i>Spiraea beauverdiana</i> (syn: S. stevenii) has the highes<br>shrub cover                                                        | t                                       |
| 50b. Dwarf birch and willows are co-dominant, and willow is > ericaceous shrub cover                                                     | v cover                                 |
| 50c. Dwarf birch and ericaceous species are co-dominant, a cover is < ericaceous shrub cover                                             | and willow                              |
| 48b. Site is on flats or in lowland areas, soils are organic to peaty                                                                    |                                         |
| 51a. Willow comprises ≥75% of total shrub cover                                                                                          |                                         |
| 51b. Willow comprises <25% of total shrub cover                                                                                          |                                         |
| 52a. Dwarf birch and willows are co-dominant, and willow                                                                                 |                                         |
| is > ericaceous shrub cover                                                                                                              |                                         |
| 52b. Ericaceous species cover is > willow cover                                                                                          | 53                                      |
| 53a. Dwarf birch cover is typically < 15%, site is wet                                                                                   | Lowland Ericaceous Shrub Bog            |
| 53b. Dwarf birch cover is typically ≥ 15%, site is moist                                                                                 | to wet                                  |
|                                                                                                                                          | Lowland Birch-Ericaceous Low Shrub      |

#### Table 136. Continued.

| 43b. <b>Shrub height &gt; 1.5 m</b>                                                                                             | 54                                    |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 54a. Site is on hillslopes in upland areas                                                                                      | Upland Alder–Willow Tall Shrub        |
| 54b. Site is located on low, gentle slopes and flats in lowland areas                                                           | Lowland Alder Tall Shrub              |
| 54c. Site is located on riverine floodplains                                                                                    | 55                                    |
| 55a. Vegetation is predominantly alder                                                                                          | Riverine Alder Tall Shrub             |
| 55b. Vegetation is predominantly willow                                                                                         | 56                                    |
| 56a. Felt Leaf willow, Salix alaxensis is the dominant species                                                                  | Riverine Moist Willow Tall Shrub      |
| 56b. Diamond leaf willow, S. pulchra is the dominant species                                                                    | Riverine Wet Willow Tall Shrub        |
| 8b. <b>Tree canopy is &gt;10%</b> cover                                                                                         | 57                                    |
| 57a. <b>Needleleaf</b> trees comprise >75% of total tree cover                                                                  | 58                                    |
| 58a. Site occurs in lowland areas and black spruce, <i>Picea mariana</i> is the dominant tree species                           | Lowland Black Spruce Forest           |
| 58b. Site occurs in other areas and white spruce, P. glauca is the dominant tree                                                | 59                                    |
| 59a. Site occurs on a floodplain                                                                                                | 60                                    |
| 60a. The dominant understory species is <i>Alnus crispa</i> and site chemistry is circumacidic                                  |                                       |
| 60b. The dominant understory species is Salix richardsonii and site chemistry is circumalkaline                                 | Riverine White Spruce–Willow Forest   |
| 59b. Site occurs on upland slopes in KOVA and GAAR                                                                              | 61                                    |
| 61a. Site occurs on hill slopes and mountainsides, usually on rocky or loamy soils                                              | 62                                    |
| 62a. Ericaceous species are dominant in the understory and site chemistry is circumacidic                                       | Upland White Spruce–Ericaceous Forest |
| 62b. Willow species are dominant in the understory and site chemistry is circumalkaline                                         | Upland White Spruce–Willow Forest     |
| 61b. Site occurs on stabilized sand dunes                                                                                       | 63                                    |
| 63a. Soils are circumalkaline and <i>Dryas</i> species are dominant in the understory                                           | Upland White Spruce–Dryas Woodland    |
| 63b. Soils are acidic and reindeer lichen, <i>Cladina</i> spp., are dominant in the understory                                  | Upland White Spruce–Lichen Woodland   |
| 57b. Needleleaf trees comprise <75% of total tree cover                                                                         | 64                                    |
| 64a. <b>Deciduous tree</b> species comprise >75% of total tree cover                                                            | 65                                    |
| 65a. Site occurs on a floodplain and the dominant tree species is Populus balsamifera                                           | Riverine Poplar Forest                |
| 65b. Site occurs on hill slopes and the dominant tree species is Betula papyrifera (syn: B. neoalaskana)                        | Upland Birch Forest                   |
| 64b. Deciduous tree species comprise < 75% total tree cover                                                                     |                                       |
| 66a. Site occurs on a floodplain and <i>Picea glauc</i> a and <i>Populus balsamifera</i> are co-dominant                        |                                       |
| 66b. Site occurs on hill slopes and <i>Picea glauca</i> and <i>Betula papyrifera</i> (syn: <i>B. neoalaskar</i> are co-dominant |                                       |

<sup>1.</sup> Shrub cover cutpoints represent general guidelines and classification should also rely on dominant indicator species and landscape position.

Rare ecotypes were not included in mapping, analysis or this key. These include Alpine Rocky-loamy Moist Circumneutral Willow Dwarf Shrub, Coastal Aquatic Brackish Marestail Marsh, Lowland Circumneutral Sweetgale Low Shrub Fen, Lowland Organic-rich Moist Circumalkaline White Spruce Forest, Riverine Loamy Moist Circumacidic Birch Forest, Upland Loamy Moist Circumacidic Willow Tall Shrub, and Upland Sandy Dry Circumneutral Aspen Forest.

#### **Landscape Relationships**

#### **Toposequences**

The classification of ecotypes (local-scale ecosystems) was based on the survey of ecological components (topography, geomorphology, soil, hydrology, permafrost, and vegetation) along toposequences. The toposequences display two-dimensional views of the lithofacies that were used as the basis for classifying and mapping geomorphic units (Figures 4-8). Vegetation classes follow the AVC. Five ecosubsections within the study area are described below and they summarize some of the main ecological relationships within alkaline alpine-upland, nonalkaline alpine-upland, lowland (coastal plain), riverine, and coastal physiographic environments.

On an alpine and upland toposequence representative of the Nukatpiat Mountains, which were formed from noncarbonated sedimentary rock, the geomorphology was dominated by weathered bedrock, residual soils, hillslope colluvium, and narrow headwater floodplains (Figure 4). Soils on the rounded mountains vary from extremely rocky, excessively drained, strongly acidic soils near the summits, to moderately well-drained soils with moderately thick organic horizons mid-slope, to saturated organic soils on the toe slopes. Vegetation ranges from partially vegetated areas at the crests, to Dryas Dwarf Shrub Tundra on the upper slopes, to moist Open Low Shrub Birch-Ericaceous Shrub on mid- to lower slopes. The headwater floodplains support Open Tall Alder Shrub.

On an alkaline alpine and upland toposequence representative of the Squirrel Mountains, which were formed from carbonate sedimentary rock, the geomorphology was dominated by

weathered bedrock, hillslope colluvium, and narrow headwater floodplains (Figure 5). Soils on the rounded mountains range from extremely rocky, excessively drained, strongly alkaline soils near the peaks, to moderately well-drained soils with moderately thick organic horizons mid-slope, to saturated organic soils on the toe slope. Vegetation ranges from partially vegetated areas at the crests, to Dryas Dwarf Shrub Tundra on the upper slopes, to Sedge-Dryas Tundra on mid- to lower slopes. The headwater floodplains support Open Tall Alder-Willow Shrub. Snowbeds, which are uncommon, support Cassiope Dwarf Shrub Tundra.

On a lowland and upland toposequence on glaciated terrain representative of the Nigu Glaciated Upland, the topography is gently undulating with prominent kettle lakes and drained basins (Figure 6). Geomorphic units include glacial till and colluvium draping old gentle slopes. Soils range from poorly drained silt loam soils to very poorly drained organic soils in drained basins, to moderately well-drained deposits on gentle upland slopes. In lake basins, vegetation shifts from Marestail and Fresh Grass Marshes in shallow water, to Bluejoint Meadows and Open Low Willow Shrub in recently drained basins, to Sedge Fen Meadows, Sedge-Moss Fen Meadows and Open Low Shrub Birch-Willow Shrub in wet, older portions of the basins. The gently sloping upland areas are dominated by Open Low Mixed Shrub Birch-Tussock Tundra and Mesic Shrub-Tussock Tundra, while windswept gravelly ridges support Dryas Tundra.

On a riverine toposequence representative of the Lower Noatak Floodplain, the geomorphology ranges from active, high-energy fluvial regimes associated with the meander active channel deposits to lower energy regimes associated with meander inactive overbank deposits and abandoned channels (Figure 7). Across this

### **Nukatpiat Mountains**

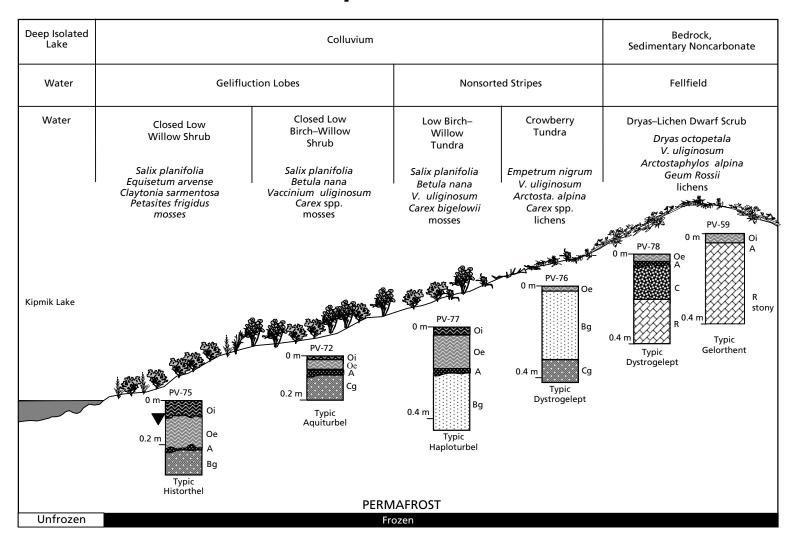



Figure 4. A generalized toposequence illustrating relationships among topography, geology, geomorphology, permafrost, soils, and vegetation within the Nukatpiat Mountains subsection.

### **Squirrel Mountains**

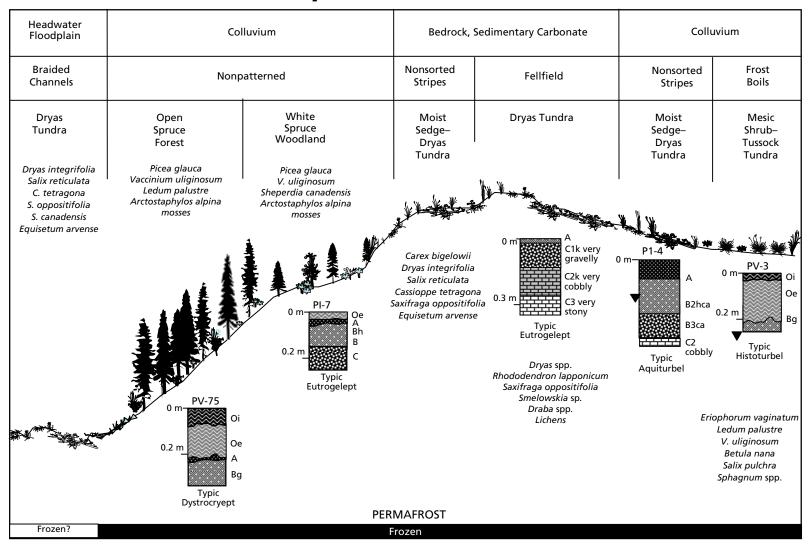



Figure 5. A generalized toposequence illustrating relationships among topography, geology, geomorphology, permafrost, soils, and vegetation within the Squirrel Mountains subsection.

### **Nigu Glaciated Upland**

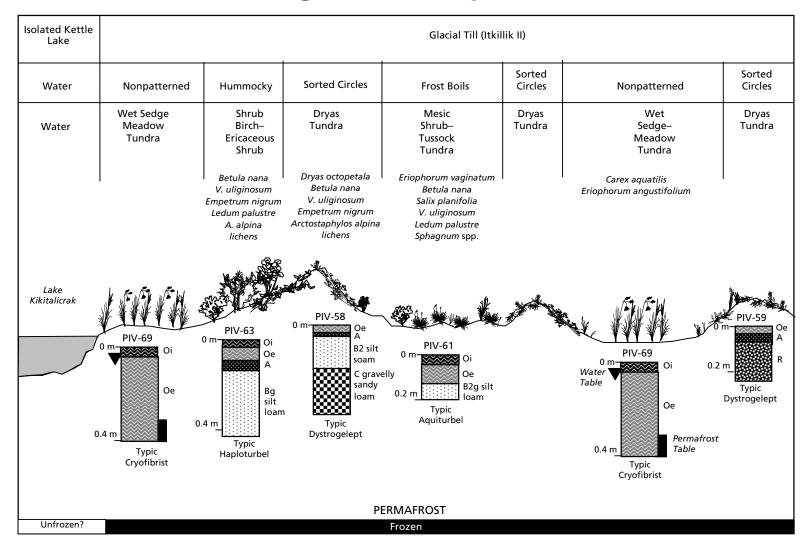



Figure 6. A generalized toposequence illustrating relationships among topography, geomorphology, permafrost, soils, and vegetation within the Nigu Glaciated Upland.

### **Lower Noatak Floodplain**

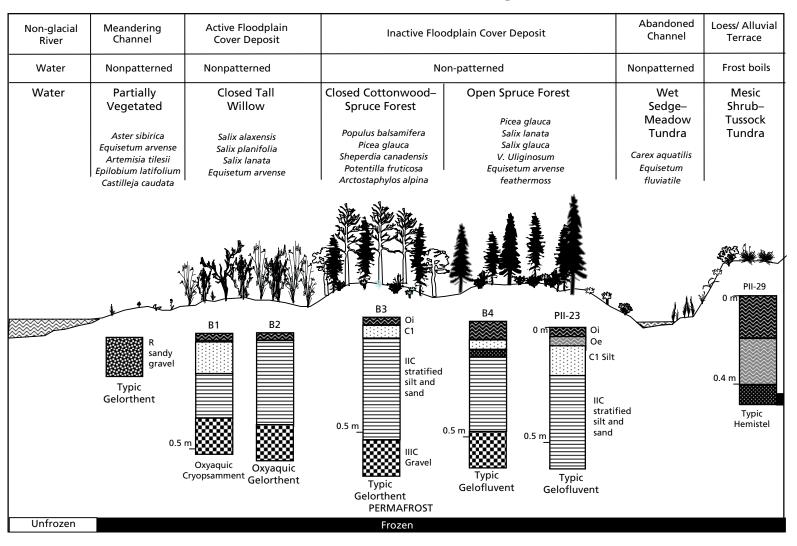



Figure 7. A generalized toposequence illustrating relationships among topography, geomorphology, permafrost, soils, and vegetation within the Lower Noatak Floodplain subsection.

### **Cape Espenberg Coast**

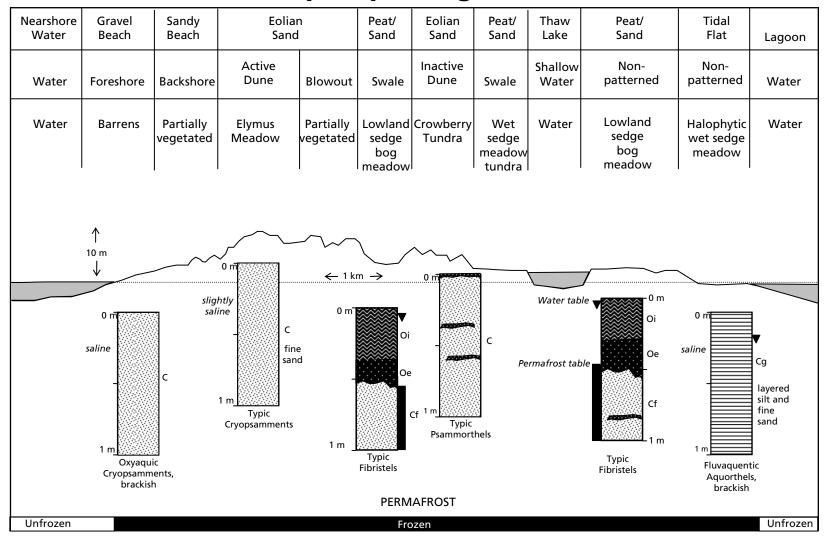



Figure 8. A generalized toposequence illustrating relationships among topography, geomorphology, permafrost, soils, and vegetation within the Cape Espenberg Coast subsection.

toposequence, the rate of sedimentation decreases while accumulation rates for organic matter and ice increase. On the newly-formed surfaces associated with the active floodplain, soils along the channels are well drained and sandy, whereas the soils on the older portions of the floodplain are poorly drained and have thick organic accumulations. Soil nutrients become less available, due to decreasing cation concentrations (indicated by lower electrical conductivity) and pH. Over the successional sequences, ice aggrades both as segregated ice and as wedge ice, transforming the surface patterns from non-patterned to low-centered polygons. The oldest ice-rich portions of the floodplain accumulate sufficient ground ice that they become unstable and susceptible to thermokarst and formation of thaw lakes. Vegetation responds to these changing environmental conditions with changes in both structure and species composition. Open Tall Willow Shrub, dominated by Salix alaxensis, occurs on the well-drained, sandy soils. Behind this zone, Open Low Willow Shrub, dominated by Salix lanata ssp. richardsonii (syn: S. richardsonii), S. planifolia ssp. pulchra (syn: S. pulchra), and S. brachycarpa ssp. niphoclada (syn: S. niphoclada) is found on moderately well-drained soils with thin, interbedded organic layers. Farther back from the channel, moist Open Low Shrub Birch–Willow Shrub, dominated by Betula nana and S. pulchra, occurs on somewhat poorly drained soils, while Lowland Sedge-Moss Fen Meadows, dominated by Carex aquatilis and *Sphagnum* spp., is found on very poorly drained organic soils.

On a coastal toposequence representative of the Cape Espenberg Coast, which is dominated by marine and estuarine processes, the geomorphology is dominated by sandy beaches, eolian coastal sand, active and inactive tidal flats, and nearshore water (Figure 8). The

topography is generally flat except for prominent ridges of dunes, beach ridges, and swales that form parallel features along the coast. The soils on active tidal flats are loamy, poorly drained, and lack organic matter accumulation, while soils on inactive tidal flats have moderately thick organic accumulations. Coastal dunes have well drained sandy soils, while beach ridges formed during storm surges have excessively drained soils. Vegetation on these deposits ranged from saline Halophytic Sedge-Grass Wet Meadow (dominated by Puccinellia phryganodes), brackish Halophytic Sedge-Grass Wet Meadow (dominated by Carex ramenskii), Marestail Marsh (mostly Hippuris tetraphylla), and Elymus Meadow. On inactive dunes away from the coast, Crowberry Tundra (dominated by Empetrum nigrum) is prevalent.

#### Hierarchical Organization of Ecological Components

We developed hierarchical relationships among ecological components by successively grouping data from the 986 intensive plots by physiography, soil texture, geomorphology, slope position, surface form, drainage, soil chemistry, vegetation structure, and floristic class. Frequently, geomorphic units with similar textures or genesis were grouped (e.g., loamy and organic were grouped for some lowlands) to reduce the number of classes. Ecotypes then were derived from these tabular associations to differentiate sets of associated characteristics.

Analyzing the toposequences and cross-tabulation of the plot data revealed consistent associations among soil texture, geomorphic units that denote depositional environments, slope position, surface forms related to ice aggradation and active-layer processes, hydrology, and vegetation structure (Table 137). The hierarchical organization of the ecological components reveals how tightly or

ARCN Ecological Land Survey \ 151

Table 137. Landscape relationships for ecotypes in the Arctic Network, 2002–2008.

| Physio-<br>graphy                                                            | Geomorphic Units                                                                                                                                   | Soil-Water<br>Chemistry | Soil Texture      | Drainage                              | Vegetation Types (Level IV)                                                                                                                                 | Plant Association                                               | Ecotype                                |  |  |  |  |  |  |  |       |  |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------|--|--|--|--|--|--|--|-------|--|
| Alpine                                                                       | Weathered Bedrock, Talus,<br>Hillside Colluvium, Solifluction<br>Deposit, Younger Moraine,<br>Carbonate Sedimentary                                | Alkaline                | Blocky–<br>Rubbly | Excessive to<br>Somewhat<br>Excessive | Barrens (<5% veg.), Partially<br>Vegetated (5–30% Vegetated)                                                                                                |                                                                 | Alpine Alkaline Barrens                |  |  |  |  |  |  |  |       |  |
|                                                                              | carsonate seamentary                                                                                                                               |                         |                   |                                       |                                                                                                                                                             | Dryas octopetala-<br>Saxifraga oppositifolia                    | Alpine Alkaline Barrens                |  |  |  |  |  |  |  |       |  |
|                                                                              |                                                                                                                                                    |                         |                   | Excessive to<br>Well                  | Dryas–Lichen Dwarf Shrub<br>Tundra, Dryas Dwarf Shrub<br>Tundra, Dryas–Sedge Dwarf<br>Shrub Tundra                                                          | Dryas integrifolia-<br>Carex scirpoidea-<br>Silene acaulis      | Alpine Alkaline Dryas<br>Dwarf Shrub   |  |  |  |  |  |  |  |       |  |
|                                                                              |                                                                                                                                                    |                         |                   |                                       |                                                                                                                                                             | Dryas octopetala-<br>Saxifraga oppositifolia                    | Alpine Alkaline Dryas<br>Dwarf Shrub   |  |  |  |  |  |  |  |       |  |
| So<br>In<br>In<br>W<br>H<br>D<br>N                                           | Talus, Hillside Colluvium,<br>Solifluction Deposit, Alluvial Fan<br>Inactive Deposit, Mafic<br>Intrusive, Ultramafic Intrusive                     | Circumalkaline          | Blocky–<br>Rubbly | Excessive to<br>Well                  | Barrens (<5% veg.), Partially<br>Vegetated (5–30% Vegetated)                                                                                                | Salix arctica–<br>Minuartia arctica                             | Alpine Mafic Barrens                   |  |  |  |  |  |  |  |       |  |
|                                                                              | Weathered Bedrock, Talus,<br>Hillside Colluvium, Solifluction<br>Deposit, Older Moraine,<br>Noncarbonate Metamorphic,<br>Noncarbonate Sedimentary, | Acidic                  | Blocky–<br>Rubbly | Excessive to<br>Somewhat<br>Excessive | Barrens (<5% veg.),-Partially<br>Vegetated (5–30% Vegetated)                                                                                                | Lichen-Hierochloe<br>alpina                                     | Alpine Acidic Barrens                  |  |  |  |  |  |  |  |       |  |
|                                                                              | Felsic Intrusive, Mafic Intrusive                                                                                                                  |                         |                   |                                       | Dryas–Lichen Dwarf Shrub<br>Tundra, Dryas Dwarf Shrub<br>Tundra, Dryas–Sedge Dwarf<br>Shrub Tundra                                                          | Dryas octopetala–<br>Hierochloe alpina                          | Alpine Acidic Dryas Dwarf<br>Shrub     |  |  |  |  |  |  |  |       |  |
|                                                                              |                                                                                                                                                    | Circumacidic            | Rubbly E          | Excessive to<br>Well                  | Dryas Dwarf Shrub Tundra,<br>Ericaceous Dwarf Shrub Tundra,<br>Crowberry Dwarf Shrub Tundra,<br>Cassiope Dwarf Shrub Tundra,<br>Open Shrub Birch–Ericaceous | Dryas octopetala-<br>Vaccinium<br>uliginosum-Festuca<br>altaica | Alpine Ericaceous–Dryas<br>Dwarf Shrub |  |  |  |  |  |  |  |       |  |
| Deposit, Carbonate<br>Sedimentary, Noncarbonate<br>Sedimentary, Noncarbonate |                                                                                                                                                    |                         |                   |                                       |                                                                                                                                                             |                                                                 |                                        |  |  |  |  |  |  |  | Shrub |  |
|                                                                              |                                                                                                                                                    |                         |                   |                                       |                                                                                                                                                             | Betula nana-<br>Loiseleuria<br>procumbens                       | Alpine Ericaceous–Dryas<br>Dwarf Shrub |  |  |  |  |  |  |  |       |  |
|                                                                              | Hillside Colluvium, Solifluction<br>Deposit, Carbonate<br>Sedimentary, Noncarbonate                                                                | Circumneutral           | Blocky–<br>Rubbly | Somewhat<br>Excessive to<br>Well      | Cassiope Dwarf Shrub Tundra,<br>Dryas Dwarf Shrub Tundra                                                                                                    |                                                                 | Alpine Cassiope Dwarf<br>Shrub         |  |  |  |  |  |  |  |       |  |

Table 137. Continued.

| Physio-<br>graphy | Geomorphic Units                                                                                                                                                     | Soil-Water<br>Chemistry | Soil Texture                            | Drainage                                  | Vegetation Types (Level IV)                                                                               | Plant Association                                                      | Ecotype                                 |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------|
| діарну            | Hillside Colluvium, Solifluction<br>Deposit, Noncarbonate<br>Metamorphic, Noncarbonate<br>Sedimentary, Felsic Intrusive,<br>Mafic Intrusive, Ultramafic<br>Intrusive | Circumneutral           | Blocky–<br>Rubbly–<br>Loamy–<br>Organic | Somewhat<br>Poor to<br>Poor               | Wet Sedge Tundra, Mixed Herbs                                                                             | Eriophorum<br>angustifolium-<br>Pedicularis sudetica                   | Alpine Wet Sedge<br>Meadow              |
|                   | Deep Isolated Lake                                                                                                                                                   | Circumalkaline          | Water                                   | Flooded                                   | Water                                                                                                     | Water                                                                  | Alpine Lake                             |
| Upland            | Volcanic–mafic–younger (basalt)<br>& Volcanic–mafic–younger                                                                                                          | Circumneutral           | Blocky                                  | Excessive to<br>Somewhat<br>Excessive     | Dry Bryophyte                                                                                             | Cladina stellaris-<br>Loiseleuria<br>procumbens                        | Upland Mafic Barrens                    |
|                   | Eolian Active Sand Dune                                                                                                                                              | Alkaline                | Sandy                                   | Excessive to<br>Somewhat<br>Excessive     | Barrens (<5% veg.), Partially<br>Vegetated (5–30% Vegetated)                                              | Calamagrostis<br>purpurascens–<br>Oxytropis kobukensis                 | Upland Sandy Barrens                    |
|                   | Eolian Active Sand Dune, Eolian<br>Inactive Sand Dune                                                                                                                | Acidic                  | Sandy                                   | Excessive to<br>Somewhat<br>Excessive     | Open White Spruce Forest,<br>White Spruce Woodland                                                        | Picea glauca–Cladina<br>stellaris                                      | Upland White Spruce–<br>Lichen Woodland |
|                   |                                                                                                                                                                      | Circumalkaline          | Sandy                                   | Excessive to<br>Somewhat<br>Excessive     | Woodland White Spruce Forest,<br>Dryas Dwarf Shrub Tundra                                                 | Picea glauca–<br>Arctostaphylos uva–<br>ursi                           | Upland White Spruce–<br>Dryas Woodland  |
|                   | Hillside Colluvium, Solifluction<br>Deposit, Retransported Deposit,<br>Carbonate Sedimentary, Older<br>Moraine, Alluvial Fan                                         | Alkaline                | Blocky–<br>Rubbly–<br>Loamy             | Moderately<br>Well to<br>Somewhat<br>Poor | Moist Sedge–Dryas Meadow,<br>Dryas–Sedge Dwarf Shrub                                                      | Dryas integrifolia–<br>Carex bigelowii–<br>Equisetum arvense           | Upland Sedge–Dryas<br>Meadow            |
|                   | Abandoned Deposit                                                                                                                                                    |                         |                                         |                                           |                                                                                                           | Dryas integrifolia—<br>Carex scirpoidea—<br>Rhododendron<br>Iapponicum | Upland Sedge–Dryas<br>Meadow            |
|                   |                                                                                                                                                                      | Circumalkaline          | Blocky–<br>Rubbly–<br>Loamy             | Well to<br>Moderately<br>Well             | Open White Spruce Forest,<br>Woodland White Spruce Forest                                                 | Picea glauca–Salix<br>reticulata                                       | Upland White Spruce–<br>Willow Forest   |
|                   |                                                                                                                                                                      |                         |                                         | Well to<br>Somewhat<br>Poor               | Open Tall Willow Shrub, Open<br>Low Willow Shrub, Closed Tall<br>Willow Shrub, Closed Low<br>Willow Shrub | Salix lanata ssp.<br>richardsonii–<br>Equisetum arvense                | Upland Willow Low Shrub                 |
|                   | Bogs, Hillside Colluvium,<br>Lowland Loess, Ice–Rich Thaw<br>Basin, Meander Abandoned<br>Overbank Deposit , Old Alluvial                                             | Acidic                  | Loamy–<br>Organic–Peat                  | Moderately<br>Well to<br>Poor             | Open Mixed–Shrub Tussock<br>Tundra, Tussock Tundra, Open<br>Mixed–Shrub Tussock Tundra<br>Boq             | Betula nana–<br>Eriophorum<br>vaginatum                                | Upland Dwarf Birch–<br>Tussock Shrub    |
|                   | Terrace, Older Moraine                                                                                                                                               |                         |                                         |                                           |                                                                                                           | E. vaginatum–Drosera rotundifolia                                      | Upland Dwarf Birch–<br>Tussock Shrub    |

ARCN Ecological Land Survey \ 153

Table 137. Continued.

| Physio–<br>graphy | Geomorphic Units                                                                                                                                                            | Soil–Water<br>Chemistry | Soil Texture                      | Drainage                                       | Vegetation Types (Level IV)                                                                                                                        | Plant Association                                                      | Ecotype                                   |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------|
| <u>grupriy</u>    | Hillside Colluvium, Upland<br>Loess, Eolian Inactive Sand<br>Dune, Alluvial Fan Abandoned<br>Deposit–Older Moraine,<br>Noncarbonate Sedimentary,<br>Schist, Mafic Intrusive | Acidic                  | Blocky-<br>Rubbly                 | Well                                           | Open Low Ericaceous Shrub,<br>Vaccinium Dwarf Shrub Tundra,<br>Open Tall Alder Shrub                                                               | Spiraea beauverdiana-                                                  | Upland Spiraea Low<br>Shrub               |
|                   | Scrist, Maric Intrusive                                                                                                                                                     |                         | Blocky–<br>Rubbly                 | Well to<br>Somewhat<br>Poor                    | Closed Low Birch Shrub, Closed<br>Low Birch Ericaceous Shrub,<br>Open Shrub Birch–Ericaceous<br>Shrub                                              |                                                                        | Upland Birch–<br>Ericaceous Low Shrub     |
|                   |                                                                                                                                                                             | Circumacidic            | Blocky–<br>Rubbly–<br>Sandy–Loamy | Somewhat<br>Excessive to<br>Moderately<br>Well | Closed Birch Forest, Open Birch<br>Forest                                                                                                          | Betula papyrifera-Picea<br>glauca-Vaccinium vitis-<br>idaea            | Upland Birch Forest                       |
|                   |                                                                                                                                                                             |                         |                                   |                                                | Open Spruce–Birch Forest,<br>Spruce–Birch Woodland                                                                                                 | Betula papyrifera–Picea<br>glauca–Vaccinium vitis-<br>idaea            | Upland Spruce–Birch<br>Forest             |
|                   |                                                                                                                                                                             |                         |                                   |                                                | Open White Spruce Forest,<br>Woodland White Spruce Forest                                                                                          | Picea glauca–Ledum<br>decumbens                                        | Upland White Spruce-<br>Ericaceous Forest |
|                   |                                                                                                                                                                             |                         |                                   |                                                | Bluejoint Meadow, Bluejoint–<br>Shrub Meadow                                                                                                       |                                                                        | Upland Bluejoint<br>Meadow                |
|                   |                                                                                                                                                                             |                         |                                   |                                                | Closed Tall Alder Shrub, Open<br>Tall Alder Shrub, Open Tall<br>Alder–Willow Shrub, Low Open<br>Alder–Willow Shrub                                 | Alnus crispa–<br>Calamagrostis canadensis                              | Upland Alder–Willow<br>Tall Shrub         |
|                   |                                                                                                                                                                             |                         |                                   | Well to<br>Somewhat<br>Poor                    | Closed Low Birch Shrub, Closed<br>Low Birch–Willow Shrub, Low<br>Open Birch–Willow Shrub, Open<br>Shrub Birch–Ericaceous Shrub,<br>Open Low Willow | Salix planifolia ssp.<br>pulchra–Betula nana–<br>Polygonum bistorta    | Upland Birch–Willow<br>Low Shrub          |
| owland            | Solifluction Deposit, Hillside<br>Colluvium, Lowland Loess, Ice–<br>Rich Thaw Basin, Older<br>Moraine, Meander Abandoned                                                    | Acidic                  | Loamy–<br>Organic                 | Moderately<br>Well to<br>Somewhat<br>Poor      | Closed Low Birch Ericaceous<br>Shrub, Open Shrub Birch–<br>Ericaceous Shrub                                                                        | Andromeda polifolia–<br>Sphagnum sp.                                   | Lowland Birch–<br>Ericaceous Low Shrub    |
|                   | Overbank Deposit, Braided<br>Abandoned Overbank Deposit                                                                                                                     |                         |                                   |                                                |                                                                                                                                                    | Ledum decumbens-<br>Vaccinium vitis-idaea-<br>Foliose/fruticose lichen | Lowland Birch–<br>Ericaceous Low Shrub    |

Table 137. Continued.

| Physio–<br>graphy | Geomorphic Units                                                                                                         | Soil-Water<br>Chemistry | Soil Texture | Drainage                                  | Vegetation Types (Level IV)                                                                                                    | Plant Association                                                           | Ecotype                           |
|-------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------|
|                   | ·                                                                                                                        | Acidic                  |              |                                           | Open Black Spruce Forest, Black<br>Spruce Woodland, Dwarf Open<br>Black Spruce Scrub Forest                                    | Picea mariana–Ledum<br>decumbens                                            | Lowland Black Spruce<br>Forest    |
|                   |                                                                                                                          | Circumacidic            | Organic      | Moderately<br>Well to<br>Poor             | Open Tall Willow, Open Low<br>Willow, Closed Tall Willow,<br>Closed Low Willow                                                 | Salix planifolia ssp.<br>pulchra–Valeriana<br>capitata                      | Lowland Willow Low<br>Shrub       |
|                   |                                                                                                                          |                         |              |                                           | Closed Low Birch Shrub, Closed<br>Low Birch–Willow Shrub, Low<br>Open Birch–Willow Shrub, Open<br>Shrub Birch–Ericaceous Shrub | Betula nana–Salix<br>planifolia ssp.<br>pulchra–Eriophorum<br>angustifolium | Lowland Birch–Willow Low<br>Shrub |
|                   | Bogs, Meander Abandoned<br>Overbank Deposit, Ice-rich and<br>Ice-poor Drained Basin, Older<br>Moraine                    | Acidic                  | Peat–Organic | Poor to<br>Very Poor                      | Open Low Ericaceous Shrub Bog,<br>Low Open Birch Shrub Bog, Wet<br>Sedge–Moss Bog                                              | Andromeda polifolia–<br>Sphagnum sp.                                        | Lowland Ericaceous Shrub<br>Bog   |
|                   | Organic Fen, Meander<br>Abandoned Overbank Deposit ,<br>Ice–rich Drained Basin, Ice–Poor<br>Drained Basin, Older Moraine | Circumacidic            | Peat-Organic | Very Poor                                 | Wet Sedge–Moss Bog, Subarctic<br>Lowland Sedge Wet Meadow,<br>Wet Sedge Tundra                                                 | Carex chordorrhiza-<br>Carex aquatilis                                      | Lowland Sedge Fen                 |
|                   | Statica Basin, Graci Wording                                                                                             |                         |              |                                           | Wet Sedge Tundra, Subarctic<br>Lowland Sedge Wet Meadow,<br>Wet Sedge–Moss Bog                                                 | Carex aquatilis-Salix<br>planifolia ssp. pulchra                            | Lowland Sedge–Willow<br>Fen       |
| Lacustrine        | Ice–Poor Drained Basin,<br>Glaciolacustrine Deposit, Older<br>Moraine                                                    | Circumalkaline          | Gravelly–    | Well to<br>Somewhat<br>Poor               | Barrens (<5% veg.), Partially<br>Vegetated (5–30% Vegetated)                                                                   | Eriophorum<br>angustifolium–<br>Epilobium palustre                          | Lacustrine Barrens                |
|                   |                                                                                                                          | Circumacidic            | Loamy        | Moderately<br>Well to<br>Somewhat<br>Poor | Bluejoint Meadow, Bluejoint–<br>Herb Meadow                                                                                    | Calamagrostis<br>canadensis-Potentilla<br>palustris                         | Lacustrine Bluejoint<br>Meadow    |
|                   |                                                                                                                          | Circumneutral           | Gravelly–    | Somewhat<br>Poor to<br>Poor               | Open Low Willow, Closed Low<br>Willow, Low Open Birch–Willow<br>Shrub                                                          | Salix planifolia ssp.<br>pulchra–Potentilla<br>palustris                    | Lacustrine Willow Shrub           |

ARCN Ecological Land Survey \ 155

Table 137. Continued.

| Physio–<br>graphy                              | Geomorphic Units                                                                                                                                                 | Soil-Water<br>Chemistry | Soil Texture                        | Drainage                              | Vegetation Types (Level IV)                                                                       | Plant Association                                             | Ecotype                             |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------|
| <u> </u>                                       | Organic Fen, Ice–Poor Thaw<br>Basin, Ice–Rich Thaw Basin,<br>Older Moraine                                                                                       | Circumacidic            | Loamy–<br>Organic                   | Very Poor                             | Wet Sedge Tundra, Subarctic<br>Lowland Sedge Wet Meadow,<br>Subarctic Lowland Sedge Bog<br>Meadow | Carex aquatilis–<br>Potentilla palustris                      | Lacustrine Wet Sedge<br>Meadow      |
|                                                |                                                                                                                                                                  |                         | Peat–Organic                        | Flooded to<br>Very Poor               | Subarctic Lowland Herb Bog<br>Meadow, Subarctic Lowland<br>Sedge Wet Meadow                       | Menyanthes<br>trifoliata–Potentilla<br>palustris              | Lacustrine Buckbean Fen             |
|                                                | Shallow Isolated Thaw Lake,<br>Shallow Isolated Moraine or<br>Kettle Lake, Ice–poor Drained<br>Basin, Older Moraine                                              | Circumneutral           | Sandy–Loamy                         | Flooded to<br>Very Poor               | Fresh Grass Marsh, Common<br>Marestail                                                            | Arctophila fulva–<br>Hippuris vulgaris                        | Lacustrine Pendent Grass<br>Marsh   |
|                                                | Shallow Isolated Thaw Lake,<br>Shallow Isolated Moraine or                                                                                                       | Circumneutral           | Water                               | Flooded                               | Common Marestail, Pondlily,<br>Fresh Pondweed, Burreed                                            | Equisetum fluviatile–<br>Potentilla palustris                 | Lacustrine Horsetail Marsh          |
|                                                | Kettle Lake                                                                                                                                                      |                         |                                     |                                       |                                                                                                   | Hippuris vulgaris–<br>Utricularia vulgaris<br>ssp. macrorhiza | Lacustrine Marestail Marsh          |
|                                                | Deep Isolated Moraine or Kettle<br>Lake, Shallow Isolated Moraine<br>or Kettle Lake, Shallow Isolated<br>Thaw Lake                                               | Circumacidic            | Water                               | Flooded                               | Pondlily, Fresh Pondweed                                                                          | Nuphar polysepalum–<br>Sparganium sp.                         | Lacustrine Pondlily Lake            |
|                                                | Deep or Shallow Isolated Thaw<br>Lake, Deep or Shallow Isolated<br>Moraine or Kettle Lake, Deep<br>Connected Moraine or Kettle<br>Lake, Shallow Isolated Dune L. | Circumalkaline          | Water                               | Flooded                               | Water, Aquatic Buttercup, Fresh<br>Pondweed                                                       | Water–Potamogeton sp.                                         | Lowland Lake                        |
| Riverine                                       | Braided or Meander Active<br>Channel Deposit, Braided or<br>Meaner Active Overbank                                                                               | Alkaline                | Blocky–<br>Gravelly–<br>Sandy       | Excessive to<br>Somewhat<br>Excessive | Dryas Dwarf Shrub, Dryas–Lichen<br>Dwarf Shrub, Open Low Willow<br>Shrub                          | Dryas drummondii–<br>Oxytropis campestris                     | Riverine Dryas Dwarf<br>Shrub       |
| Deposit, Moderately St<br>Headwater Floodplain | Deposit, Moderately Steep<br>Headwater Floodplain                                                                                                                |                         |                                     |                                       |                                                                                                   | Dryas integrifolia–<br>Salix brachycarpa ssp.<br>niphoclada   | Riverine Dryas Dwarf<br>Shrub       |
|                                                |                                                                                                                                                                  | Circumalkaline          | Blocky–<br>Gravelly–<br>Sandy       | Excessive to<br>Well                  | Barrens (<5% veg.), Partially<br>Vegetated (5–30% Vegetated),<br>Elymus, Seral Herbs              | Salix alaxensis–<br>Epilobium latifolium                      | Riverine Barrens                    |
|                                                |                                                                                                                                                                  |                         | Blocky–<br>Gravelly–<br>Sandy–Loamy | Somewhat<br>Excessive to<br>Well      | Closed Tall Willow Shrub, Open<br>Tall Willow Shrub                                               | Salix alaxensis–Aster<br>sibiricus                            | Riverine Moist Willow Tall<br>Shrub |

Table 137. Continued.

| Physio-<br>graphy | Geomorphic Units                                                                                                                               | Soil-Water<br>Chemistry       | Soil Texture                        | Drainage                      | Vegetation Types (Level IV)                                                                    | Plant Association                                                        | Ecotype                                 |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|
|                   | Braided Active Overbank<br>Deposit, Meander Active<br>Overbank Deposit, Braided<br>Inactive Overbank Deposit,                                  | Circumalkaline                |                                     | Somewhat Excessive to         | Closed Poplar Forest, Open<br>Poplar Forest                                                    | Populus balsamifera–<br>Picea glauca–Salix<br>alaxensis                  | Riverine Poplar Forest                  |
|                   | Meander Inactive Overbank<br>Deposit                                                                                                           |                               |                                     |                               | Open Mixed Spruce–Poplar<br>Forest, Mixed Spruce–Poplar<br>Woodland                            | Populus balsamifera–<br>Picea glauca–Salix<br>alaxensis                  | Riverine White Spruce–<br>Poplar Forest |
|                   |                                                                                                                                                |                               |                                     | Well to<br>Somewhat<br>Poor   | Open Tall Willow Shrub, Open<br>Low Willow Shrub, Moist Sedge–<br>Dryas Meadow                 | Salix lanata ssp.<br>richardsonii–Salix<br>reticulata                    | Riverine Willow Low Shrub               |
|                   | Meander Inactive Overbank<br>Deposit, Braided Inactive<br>Overbank Deposit, Meander<br>Inactive Channel Deposit,<br>Moderately Steep Headwater | Circumalkaline                | Blocky–<br>Gravelly–<br>Sandy–Loamy |                               | Open White Spruce Forest,<br>White Spruce Woodland                                             | Picea glauca-Salix<br>lanata ssp.<br>richardsonii-Salix<br>arbusculoides | Riverine White Spruce–<br>Willow Forest |
|                   | Floodplain, Lowland Headwater (Floodplain                                                                                                      | Headwater Circumacidic B G S. | Blocky–<br>Gravelly–<br>Sandy–Loamy | Well to<br>Moderately<br>Well | Open White Spruce Forest,<br>White Spruce Woodland                                             | Picea glauca–Alnus<br>crispa–Artemisia tilesii                           | Riverine White Spruce–<br>Alder Forest  |
|                   |                                                                                                                                                |                               |                                     | Well to<br>Somewhat<br>Poor   | Closed Low Birch–Willow Shrub,<br>Closed Low Birch Shrub, Closed<br>Low Birch–Ericaceous Shrub | Betula nana-Salix<br>planifolia ssp.<br>pulchra-Pyrola<br>grandiflora    | Riverine Birch–Willow Low<br>Shrub      |
|                   |                                                                                                                                                |                               |                                     |                               | Closed Tall Alder Shrub, Open<br>Tall Alder Shrub, Closed Tall<br>Alder–Willow Shrub           | Alnus crispa-Rubus<br>arcticus                                           | Riverine Alder Tall Shrub               |
|                   |                                                                                                                                                |                               |                                     | Moderately<br>Well to<br>Poor | Bluejoint Meadow, Bluejoint–<br>Herb Meadow                                                    | Calamagrostis<br>canadensis-Potentilla<br>palustris                      | Riverine Bluejoint<br>Meadow            |
|                   |                                                                                                                                                |                               |                                     |                               | Closed Tall Willow Shrub, Open<br>Tall Willow Shrub, Tall Closed<br>Birch–Willow Shrub         | Salix planifolia ssp.<br>pulchra–Potentilla<br>palustris                 | Riverine Wet Willow Tall<br>Shrub       |
|                   |                                                                                                                                                |                               |                                     |                               | Wet Sedge Tundra, Subarctic<br>Lowland Sedge Wet Meadow                                        | Carex aquatilis–<br>Eriophorum<br>angustifolium                          | Riverine Wet Sedge<br>Meadow            |

ARCN Ecological Land Survey \ 157

Table 137. Continued.

| Physio–<br>graphy | Geomorphic Units                                                                         | Soil–Water<br>Chemistry | Soil Texture                | Drainage                              | Vegetation Types (Level IV)                                  | Plant Association                                           | Ecotype                                 |
|-------------------|------------------------------------------------------------------------------------------|-------------------------|-----------------------------|---------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------|
|                   | Shallow Isolated Riverine Lake,<br>Braided Inactive Channel<br>Deposit, Meander Inactive | Circumalkaline          | Water                       | Flooded                               | Fresh Pondweed                                               | Potamogeton sp.–<br>Utricularia vulgaris<br>ssp. macrorhiza | Riverine Lake                           |
|                   | Channel Deposit                                                                          | Circumneutral           | Loamy                       | Flooded to<br>Somewhat<br>Poor        | Fresh Pondweed, Subarctic<br>Lowland Sedge Wet Meadow        | Equisetum fluviatile–<br>Hippurus vulgaris                  | Riverine Forb Marsh                     |
|                   | Non–glacial Lower Perennial<br>and Upper Perennial River,<br>Mountain Headwater Stream   | Circumalkaline          | Water                       | Flooded                               | Water                                                        | Water                                                       | River                                   |
| Coastal           | Active Marine Beach, Eolian<br>Active Coastal Sand Deposit                               | Saline–<br>Brackish     | Sandy                       | Excessive to<br>Poor                  | Barrens (<5% veg.), Partially<br>Vegetated (5–30% Vegetated) | Elymus arenarius ssp.<br>mollis–Lathyrus<br>maritimus       | Coastal Dry Barrens                     |
|                   |                                                                                          | Brackish                | Gravelly–<br>Sandy          | Excessive to<br>Somewhat<br>Excessive | Elymus                                                       | Elymus arenarius ssp.<br>mollis-Lathyrus<br>maritimus       | Coastal Brackish Dunegrass<br>Meadow    |
|                   | Inactive Marine Beach, Eolian<br>Inactive Coastal Sand Deposit                           | Circumacidic            | Gravelly–<br>Sandy          | Somewhat<br>Excessive to<br>Well      | Crowberry Dwarf Shrub Tundra                                 | Empetrum nigrum–<br>Elymus arenarius ssp.<br>mollis         | Coastal Crowberry Dwarf<br>Shrub        |
|                   | Active Tidal Flat                                                                        | Saline–<br>Brackish     | Sandy                       | Excessive to<br>Poor                  | Barrens (<5% veg.), Partially<br>Vegetated (5–30% Vegetated) | Carex ramenskii–<br>Puccinellia<br>phryganodes              | Coastal Wet Barrens                     |
|                   | Inactive Tidal Flat                                                                      | Saline                  | Sandy–<br>Loamy–<br>Organic | Moderately<br>Well to<br>Poor         | Halophytic Sedge–Grass Wet<br>Meadow, saline                 | Carex ramenskii–<br>Puccinellia<br>phryganodes              | Coastal Saline Sedge–Grass<br>Meadow    |
|                   |                                                                                          | Brackish                | Sandy–<br>Loamy–<br>Organic | Moderately<br>Well to<br>Poor         | Halophytic Sedge–Grass Wet<br>Meadow, brackish               | Carex ramenskii–<br>Dupontia fischeri                       | Coastal Brackish Sedge–<br>Grass Meadow |
|                   |                                                                                          |                         | Sandy                       | Very Poor                             | Halophytic Willow–Graminoid<br>Dwarf Shrub Tundra            | Salix ovalifolia–<br>Deschampsia<br>caespitosa              | Coastal Brackish Willow<br>Shrub        |
|                   | Tidal River, Tidal Gut                                                                   | Brackish                | Water                       | Flooded                               | Marine Water                                                 | Water                                                       | Coastal Tidal River                     |
|                   | Isolated or Connected Brackish<br>Shallow Lake, Tidal Lake                               | Brackish                | Water                       | Flooded                               | Marine Water                                                 | Water                                                       | Coastal Brackish Water                  |
| i                 | Nearshore Water                                                                          | Saline                  | Water                       | Flooded                               | Marine Water                                                 | Water                                                       | Coastal Nearshore Water                 |

loosely the components are linked. For example, some physiographic settings included several geomorphic units with similar soil textures. Similarly, a given vegetation type could occur on several geomorphic units, depending on surface form characteristics and hydrology. In contrast, some geomorphic units (e.g. tidal flats) were associated only with a few distinct vegetation types.

Results from this analysis were used in several ways. First, they were used to evaluate how ecosystems respond to the evolving landscape comprising a wide variety of geomorphic processes associated with alpine, upland, lowland, lacustrine, riverine, and coastal areas (see section on Factors Affecting Landscape Evolution). Identifying the changing patterns in geomorphic units and vegetation, along with analysis of changes in soil properties, helps identify processes (e.g., acidification, sedimentation) that affect the changing patterns. Second, the hierarchical relationships developed "from the ground up" were used to determine the rules for modeling and restricting the distribution of map classes differentiated by spectral characteristics "from the top down" (see Methods, Spectral Classification Development). Third, knowing the ecological relationships, we can recode the ecotype map and derive maps of other ecological characteristics, such as a soils map or a lichen map (see Results, Classification and Description of Soil Landscapes).

The contingency table analysis also can be used to evaluate how well these general relationships conform to the data set, and how reliably they can be used to extrapolate trends across the landscape. During development of the relationships, 11% of the observations were excluded from the table because of inconsistencies among physiography, texture, geomorphology, drainage, soil chemistry, and vegetation. We excluded these points because our primary goal was to identify the most distinct and consistent trends,

not necessarily to include every plot. We believe that there is an upper limit to our ability to describe landscape patterns; there will always be a proportion (in this case 11%) of sites that do not conform to the overall relationships among factors. These sites may be: (1) transitional (ecotones); (2) sites where vegetation and soils have been affected by historical factors (e.g., changes in water levels, disturbances) in ways that are not readily explainable based on current environmental conditions, or (3) rare and thus not mappable.

#### Environmental Characteristics Single-factor Comparisons by Ecotype

Six environmental parameters (surface organic-horizon thickness, rock depth, thaw depth, depth to groundwater, pH, and electrical conductivity) were charted for comparison among ecotypes. We excluded ecotypes with insufficient data.

The thickness of the surface organic horizon showed large differences among sites (Figure 9). Ecotypes where surface organic accumulations were absent ranged from areas with severe climate and soil conditions, such as Alpine Alkaline Barrens, to areas with frequent sediment deposition, such as Riverine Barrens and Riverine Moist Tall Willow Shrub. The thickest surface organic accumulations were found in Lowland Buckbean Fen and Lowland Ericaceous Shrub Bog, indicating long-term paludification and reduced frequency or absence of sedimentation events.

Depth to rocks (soils with >15% rocks) was shallowest on alpine ridges and crests (e.g., Alpine Alkaline Dryas Shrub) and rocky hillsides (Upland Alder–Willow Tall Shrub) and deepest in lowland and coastal areas with fine-grained deposits (e.g. Coastal Barrens, Lowland Buckbean Fen) (Figure 9). Ecotypes with rock depths ≥ 2 m represent an estimated minimum depth. Thaw depths varied four-fold among ecotypes (Figure 9). While permafrost

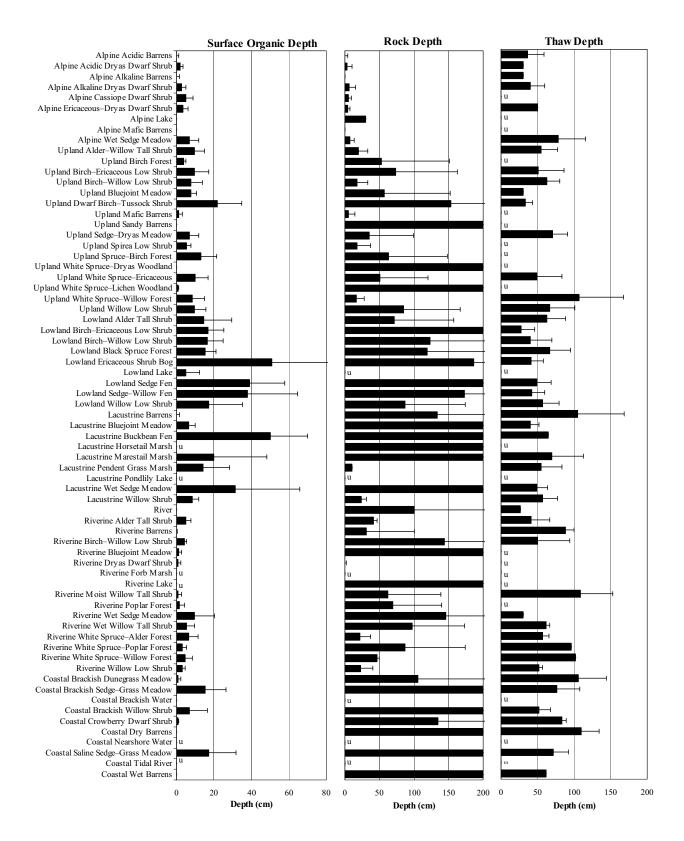



Figure 9. Mean (± SD) thickness of the surface organic layer, depth to rock (>15% coarse fragments) and depth of thaw for ecotypes in the Arctic Network. Outliers have been excluded.

was found at all sites with fine-grained soils, the permafrost status of rocky sites, particularly on south-facing slopes, is unknown. Values generally were shallowest for lowland and lacustrine ecotypes and for gently sloping upland areas with Upland Dwarf Birch–Tussock Shrub. Deepest thaw depths were found in coastal and riverine areas with well-drained sandy soils and early successional vegetation (e.g. Coastal Dunegrass Meadow, Riverine Moist Tall Willow Shrub).

Depth to water above (+) or below (−) the surface also varied widely among ecotypes, but relatively little within ecotypes (Figure 10). Mean water depths were above the soil surface for 12 ecotypes, and were highest for Coastal Tidal River and Lowland Lake. Ecotypes with the deepest water tables were found in alpine areas with rocky soils (e.g., Alpine Alkaline Dryas Dwarf Shrub) and upland areas with sandy soils (e.g., Upland Sandy Barrens). Values ≥ 1 m represent minimum, estimated depths.

Site pH values ranged from 3.3–8.3 among ecotypes (Figure 10). Ecotypes with the lowest (most acidic) pH values occurred in alpine acidic ecotypes (e.g., Alpine Acidic Dryas Dwarf Shrub), late-successional upland ecotypes (Upland Dwarf Birch-Tussock Shrub, Upland Spiraea Low Shrub), and in lowland ecotypes (e.g., Lowland Ericaceous Shrub Bog, Lowland Black Spruce Forest). These ecotypes are late successional, where carbonates have been leached from soils over long periods. Ecotypes with the highest pH values tended to occur in alkaline alpine and upland areas (Alpine Alkaline Dryas Dwarf Shrub, Upland Moist Sedge-Dryas Dwarf Shrub) and in riverine and coastal early successional environments with frequent mineral sedimentation (e.g., Riverine Barrens, Coastal Barrens). The Upland Sandy Barrens ecotype at the Kobuk dunes had unusually high pH values, presumably due to high sodium concentrations. Electrical conductivity (EC) measurements indicated that most ecotypes were non-saline (Figure 10). High mean EC values (>800  $\mu\text{S/cm}^{-1}$ ), indicating brackish or slightly brackish to saline conditions, were limited to coastal areas (e.g., Coastal Saline Wet Sedge–Grass Meadow, Coastal Barrens). EC values were low (<200  $\mu\text{S/cm}^{-1}$ ) in nearly all other ecotypes. Variability was low within non-saline ecotypes and high within saline ecotypes.

## Single-factor Comparisons by Plant Species

To determine how the environmental parameters measured influence the distribution of individual plant and cryptogam species, we calculated the mean value of each parameter for 99 common species that occur in lowland, lacustrine, and riverine ecotypes (Figures 11–14) and for 98 common species that occur in upland and alpine ecotypes. Only sites where a species had >1% cover were included, to exclude locations with atypical conditions for that species.

Thickness of the surface organic horizon (an indication of frequency of sedimentation) was highly variable both among and within species in field plots (Figures 11 and 13). Species typically found on sites with thin organic horizons at the surface (indicating frequent sedimentation), included Lathyrus maritimus, Epilobium latifolium, Deschampsia caespitosa, and Salix alaxensis. These species typically occur mainly in early successional ecotypes subject to frequent fluvial or eolian deposition. Species characteristic of sites with thick surface organic accumulations included Carex chordorrhiza, Calla palustris, Salix fuscescens, Carex aquatilis, and Sphagnum fuscum. These species typically occurred on wet soils subjected to little or no disturbance.

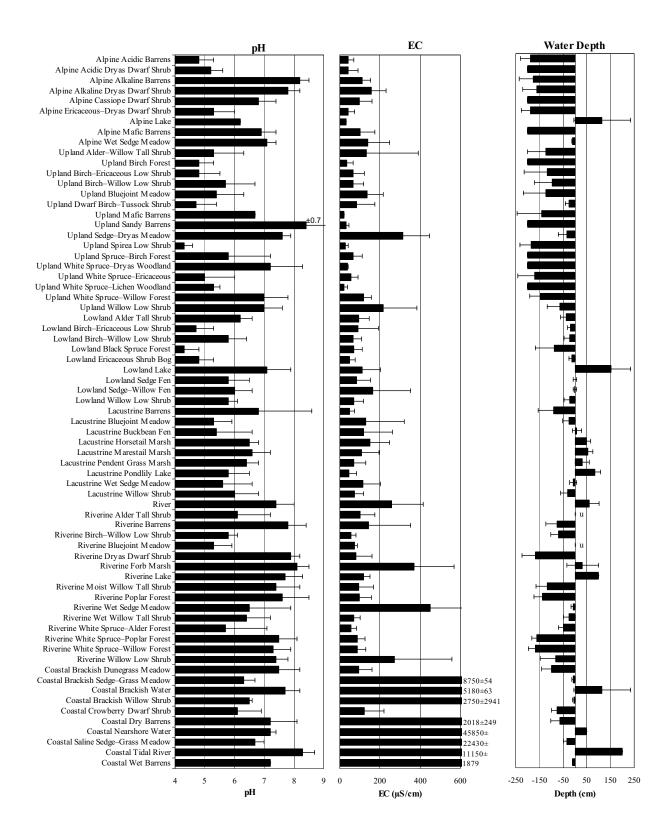



Figure 10. Mean (± SD) pH, electrical conductivity (EC), and water depth for ecotypes in the Arctic Network. Outliers have been excluded.

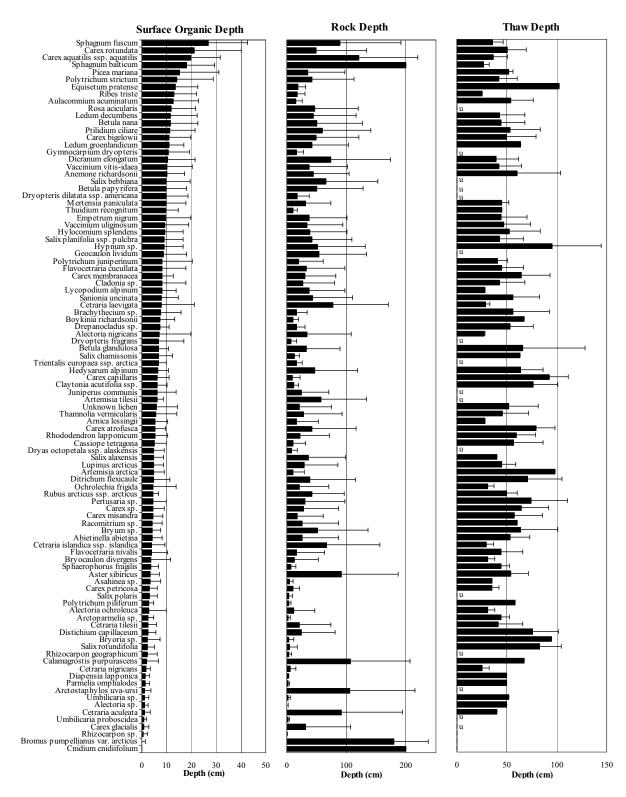



Figure 11. Mean (± SD) thickness of the surface organic layer, depth to rock (>15% coarse fragments) and depth of thaw for plant and cryptogam species in upland and alpine ecotypes in the Arctic Network. Outliers have been excluded.



Figure 12. Mean (± SD) pH, electrical conductivity (EC), and water depth for plant and cryptogam species in upland and alpine ecotypes in the Arctic Network. Outliers have been excluded.

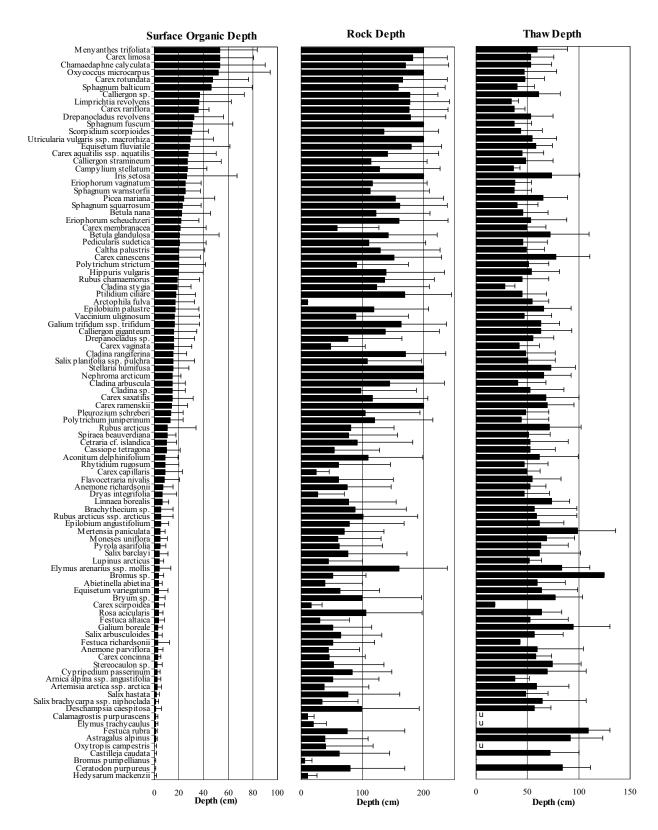



Figure 13. Mean (± SD) thickness of the surface organic layer, depth to rock (>15% coarse fragments) and depth of thaw for plant and cryptogam species in lowland, lacustrine, riverine and coastal ecotypes in the Arctic Network. Outliers have been excluded.

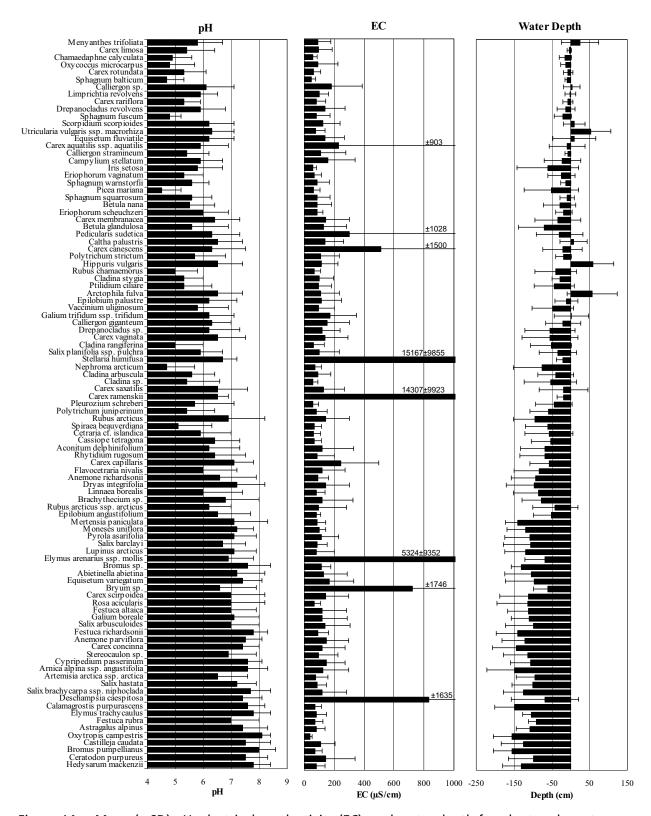



Figure 14. Mean (± SD) pH, electrical conductivity (EC), and water depth for plant and cryptogam species in lowland, lacustrine, riverine and coastal ecotypes in the Arctic Network.

Outliers have been excluded.

Depth to rocks also was highly variable among species and within many species (Figures 11 and 13). Species commonly associated with rocks near the surface include Minuartia arctica, Potentilla uniflora (syn: Dasiphora fruticosa), Salix phlebophylla, Cladina stellaris, and Alectoria ochroleuca. Species commonly found on thick silt or organic deposits include Hippuris vulgaris, Potentilla egedii, Rumex arcticus, Rubus chamaemorus, and Sphagnum fuscum.

Thaw depths varied up to four-fold among species (Figures 11 and 13). Species associated with the greatest thaw depths included Lathyrus maritimus, Epilobium latifolium, Aster sibiricus, Elymus arenarius ssp. mollis (syn: Leymus mollis), and Carex subspathacea. These species typically occur on sandy to loamy soils in early successional ecotypes. Species generally found on sites with shallow thaw depths included Sphagnum fuscum, Rubus chamaemorus, Eriophorum vaginatum, Ledum decumbens, Pyrola grandiflora, and Cladina stygia. These species are characteristic of late successional sites where soils are acidic, ice-rich, and highly organic.

Depth to water above (+) or below (-) the surface varied widely both among and within species (Figures 12 and 14). Species associated with the deepest surface water were Hippuris vulgaris, Caltha palustris, and Carex chordorrhiza, which was not surprising, given that these species typically grow in standing water. Species that occurred mostly on sites where water was near the surface included Carex aquatilis, Carex saxatilis, Pedicularis sudetica, Eriophorum angustifolium, Dupontia fischeri, Salix fuscescens, and Aulacomnium palustre. Species associated with the greatest depths to groundwater included Salix alaxensis, Salix barclayi, Minuartia arctica, Dryas octopetala, and Epilobium latifolium. Many species occurred on sites with a wide range of water depths,

indicating that most tundra plants can tolerate a wide range of moisture conditions. Depth to groundwater was highly variable both spatially and temporally, contributing to high standard deviations both within and among species.

The pH of groundwater or soil (when groundwater was not present) was circumneutral (5.6–7.3) for most species and highly variable within species (Figures 12 and 14). Species associated with strongly acidic sites included Ledum decumbens, Vaccinium vitis-idaea, Eriophorum vaginatum, Rubus chamaemorus, and Sphagnum fuscum. Species associated with alkaline (>7.3) soils included Saxifraga oppositifolia, Minuartia arctica, Rhododendron lapponicum, and Dryas integrifolia. The latter group typically was associated with soils on carbonate bedrock. However, most species occurred on sites with a wide range of pH values, indicating broad ecological tolerances to pH conditions.

EC values were low for most species, indicating non-saline conditions (Figures 12 and 14). Species associated with saline conditions (mean EC >16,000 μS/cm) included *Carex subspathacea*, *Puccinellia phryganodes*, *Chrysanthemum arcticum*, and *Potentilla egedii*. Species associated with brackish conditions (EC 800–16,000 μS/cm) included *Carex ramenskii*, *Deschampsia caespitosa*, *Salix ovalifolia*, *Dupontia fischeri*, *Elymus arenarius* ssp. *mollis*, *Rumex arcticus*, and *Hippuris tetraphylla*. Their high standard deviations indicate they tolerated a broad range of salinity conditions.

#### **Vegetation Composition**

#### Species Summary

There were 69 ecotypes, consisting of 106 AVC vegetation classes at the plot level and 70 plant associations (Table 138). Species diversity varied among ecotypes by a factor of 237, and by plot, it varied by a factor of 31 (Table 139). The

Table 138. Crosswalk of abbreviated ecotypes with original ecotypes, floristic classes and Viereck level IV vegetation classes in the Arctic Network.

| Ecotype<br>(short name)                | Ecotype<br>(long name)                                              | Plant Association                                                                            | Vegetation Class                                                                                                                                                                 |
|----------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alpine Acidic Barrens                  | Alpine Rocky Dry Acidic<br>Barrens                                  | Lichen–Hierochloe alpina                                                                     | Barren  Dry Bryophyte Lichen Partially Vegetated                                                                                                                                 |
| Alpine Acidic Dryas<br>Dwarf Shrub     | Alpine Rocky Dry Acidic<br>Dryas Dwarf Shrub                        | Dryas octopetala-<br>Hierochloe alpina                                                       | Dryas Dwarf Shrub Tundra  Dryas–Lichen Dwarf Shrub Tundra Dryas–Sedge Dwarf ShrubTundra                                                                                          |
| Alpine Alkaline Barrens                | Alpine Rocky Dry Alkaline<br>Barrens                                | Dryas octopetala–Saxifraga<br>oppositifolia<br>Salix arctica–Minuartia<br>arctica            | Barren  Partially Vegetated Barren  Partially Vegetated                                                                                                                          |
| Alpine Alkaline Dryas<br>Dwarf Shrub   | Alpine Rocky Dry Alkaline<br>Dryas Dwarf Shrub                      | Dryas integrifolia–Carex scirpoidea–Silene acaulis  Dryas octopetala–Saxifraga oppositifolia | Dryas Dwarf Shrub Tundra  Dryas–Lichen Dwarf Shrub Tundra Dryas–Sedge Dwarf ShrubTundra Dryas Dwarf Shrub Tundra  Dryas–Lichen Dwarf Shrub Tundra Dryas–Sedge Dwarf Shrub Tundra |
| Alpine Cassiope Dwarf<br>Shrub         | Alpine Rocky Moist<br>Circumneutral Cassiope<br>Dwarf Shrub         | Cassiope tetragona–Dryas<br>octopetala–Polygonum<br>bistorta                                 | Cassiope Dwarf Shrub Tundra  Dryas–Forb Dwarf Shrub Tundra Ericaceous Dwarf Shrub Tundra Open Low Willow Willow Dwarf Shrub Tundra                                               |
| Alpine Ericaceous–Dryas<br>Dwarf Shrub | Alpine Rocky Moist<br>Circumacidic Ericaceous–<br>Dryas Dwarf Shrub | Betula nana–Loiseleuria<br>procumbens                                                        | Crowberry Dwarf Shrub Tundra  Dryas–Lichen Dwarf Shrub Tundra Ericaceous Dwarf Shrub Tundra Ericaceous Dwarf Shrub Lichen Tundra                                                 |

Table 138. Continued.

| Ecotype<br>(short name)             | Ecotype<br>(long name)                                              | Plant Association                                                                          | Vegetation Class                                                                                                                                                                                          |
|-------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                                                                     | Betula nana–Vaccinium<br>vitis-idaea–Dryas                                                 | Open Low Mesic Shrub<br>Birch–Ericaceous Shrub<br>Closed Low Shrub Birch–<br>Ericaceous Shrub                                                                                                             |
|                                     |                                                                     | octopetala                                                                                 | Dryas Dwarf Shrub Tundra Ericaceous Dwarf Shrub Tundra Ericaceous Dwarf Shrub Lichen Tundra Open Low Mesic Shrub Birch–Ericaceous Shrub Open Low Shrub Birch– Willow Vaccinium Dwarf Shrub Tundra         |
|                                     |                                                                     | Dryas octopetala-<br>Vaccinium uliginosum-<br>Festuca altaica                              | Cassiope Dwarf Shrub<br>Tundra                                                                                                                                                                            |
|                                     |                                                                     | restata antarca                                                                            | Dryas Dwarf Shrub Tundra Dryas–Lichen Dwarf Shrub Tundra Dryas–Sedge Dwarf ShrubTundra Ericaceous Dwarf Shrub Tundra Moist Sedge–Shrub Tundra Open Low Mesic Shrub Birch–Ericaceous Shrub Open Low Willow |
| Alpine Lake<br>Alpine Mafic Barrens | Alpine Lake<br>Alpine Rocky Dry Mafic<br>Barrens                    | Water<br>Dryas octopetala–<br>Hierochloe alpina<br>Salix arctica–Minuartia<br>arctica      | Fresh Water Partially Vegetated Barren                                                                                                                                                                    |
| Alpine Wet Sedge<br>Meadow          | Alpine Rocky Circumneutral<br>Wet Sedge Meadow                      | Eriophorum angustifolium–<br>Pedicularis sudetica                                          | Partially Vegetated Mixed Herbs  Wet Sedge Meadow Tundra Wet Sedge–Willow Tundra                                                                                                                          |
| Upland Alder–Willow<br>Tall Shrub   | Upland Rocky–loamy Moist<br>Circumacidic Alder–Willow<br>Tall Shrub | Alnus crispa–Calamagrostis<br>canadensis<br>Alnus crispa–Salix lanata<br>ssp. richardsonii | Closed Tall Alder  Closed Tall Alder–Willow Open Low Alder Open Paper Birch Open Tall Alder Open Tall Alder Open Tall Alder–Willow Open Low Alder–Willow                                                  |

Table 138. Continued.

| Ecotype<br>(short name)              | Ecotype<br>(long name)                                             | Plant Association                                                   | Vegetation Class                                                                                                                                                                  |
|--------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Upland Birch Forest                  | Upland Rocky–loamy Moist<br>Circumacidic Birch Forest              | Betula papyrifera–Picea<br>glauca–Vaccinium vitis-<br>idaea         | Closed Paper Birch                                                                                                                                                                |
|                                      |                                                                    |                                                                     | Open Paper Birch Paper Birch Woodland                                                                                                                                             |
| Upland Birch–Ericaceous<br>Low Shrub | Upland Rocky–loamy Moist<br>Acidic Birch–Ericaceous<br>Low Shrub   | Betula nana–Ledum<br>decumbens                                      | Closed Low Shrub Birch                                                                                                                                                            |
|                                      |                                                                    |                                                                     | Closed Low Shrub Birch– Ericaceous Shrub Open Low Alder–Willow Open Low Mesic Shrub Birch–Ericaceous Shrub Open Low Shrub Birch– Willow Open Tall Scrub, post burn or disturbance |
|                                      |                                                                    |                                                                     | Vaccinium Dwarf Shrub<br>Tundra                                                                                                                                                   |
| Upland Birch–Willow<br>Low Shrub     | Upland Rocky–loamy Moist<br>Circumacidic Birch–Willow<br>Low Shrub | Betula nana–Vaccinium<br>vitis-idaea–Dryas<br>octopetala            | Open Low Shrub Birch–<br>Willow                                                                                                                                                   |
|                                      |                                                                    | Salix planifolia ssp.<br>pulchra–Betula nana–<br>Polygonum bistorta | Closed Low Ericaceous<br>Shrub                                                                                                                                                    |
|                                      |                                                                    |                                                                     | Closed Low Shrub Birch–<br>Ericaceous Shrub<br>Closed Low Willow<br>Closed Tall Shrub Birch<br>Closed Tall Shrub Birch–<br>Willow                                                 |
|                                      |                                                                    |                                                                     | Closed Tall Willow Open Low Mesic Shrub Birch–Ericaceous Shrub Open Low Shrub Birch–                                                                                              |
|                                      |                                                                    |                                                                     | Willow Open Low Willow Open Tall Shrub Birch Willow                                                                                                                               |
| Upland Bluejoint<br>Meadow           | Upland Rocky–loamy Moist<br>Circumacidic Bluejoint<br>Meadow       | Calamagrostis canadensis–<br>Polemonium acutiflorum                 | Bluejoint Meadow                                                                                                                                                                  |
|                                      |                                                                    |                                                                     | Bluejoint–Herb<br>Bluejoint–Shrub                                                                                                                                                 |
| Upland Dwarf Birch–<br>Tussock Shrub | Upland Organic-rich Moist<br>Acidic Dwarf Birch-Tussock<br>Shrub   | •                                                                   | Closed Low Shrub Birch                                                                                                                                                            |
|                                      |                                                                    |                                                                     | Open Low Alder–Willow Open Low Mesic Shrub Birch–Ericaceous Shrub Open Low Shrub Birch– Ericaceous Shrub Bog                                                                      |

Table 138. Continued.

| Ecotype<br>(short name)                   | Ecotype<br>(long name)                                                      | Plant Association                                                 | Vegetation Class                                                                                                                               |
|-------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           |                                                                             |                                                                   | Open Mixed Low Shrub–<br>Sedge Tussock Bog<br>Meadow<br>Open Mixed Low Shrub–<br>Sedge Tussock Tundra<br>Tussock Tundra                        |
| Upland Mafic Barrens                      | Upland Rocky Dry Mafic<br>Barrens                                           | Cladina stellaris-Loiseleuria procumbens                          | Lichen                                                                                                                                         |
| Upland Sandy Barrens                      | Upland Sandy Dry Alkaline<br>Barrens                                        | Calamagrostis<br>purpurascens–Oxytropis<br>kobukensis             | Barren Bluejoint–Herb                                                                                                                          |
|                                           |                                                                             |                                                                   | Open Dwarf Balsam Poplar<br>Partially Vegetated                                                                                                |
| Upland Sedge–Dryas<br>Meadow              | Upland Rocky–loamy Moist<br>Alkaline Sedge–Dryas<br>Meadow                  | Dryas integrifolia–Carex<br>bigelowii–Equisetum<br>arvense        | Moist Sedge–Dryas Tundra                                                                                                                       |
|                                           |                                                                             | Dryas integrifolia–Carex<br>scirpoidea–Rhododendron<br>lapponicum | Moist Sedge–Shrub Tundra<br>Dryas Dwarf Shrub Tundra                                                                                           |
|                                           |                                                                             |                                                                   | Dryas–Forb Dwarf Shrub<br>Tundra<br>Dryas–Sedge Dwarf<br>ShrubTundra<br>Moist Sedge–Dryas Tundra<br>Moist Sedge–Shrub Tundra                   |
| Upland Spiraea Low<br>Shrub               | Upland Rocky Moist Acidic<br>Spiraea Low Shrub                              | Spiraea beauverdiana–<br>Festuca altaica                          | Bluejoint–Shrub  Closed Low Willow Open Low Ericaceous Shrub Open Low Shrub Open Tall Alder Vaccinium Dwarf Shrub Tundra White Spruce Woodland |
| Upland Spruce–Birch<br>Forest             | Upland Rocky–loamy Moist<br>Circumacidic Spruce–Birch<br>Forest             | Betula papyrifera–Picea<br>glauca–Vaccinium vitis-<br>idaea       | Open Spruce–Paper Birch Spruce–Paper Birch                                                                                                     |
| Upland White Spruce-                      | Upland Sandy Dry                                                            | Picea glauca–Dryas                                                | Woodland Dryas Dwarf Shrub Tundra                                                                                                              |
| Dryas Woodland                            | Circumalkaline White<br>Spruce–Dryas Woodland                               | integrifolia                                                      | Dryas–Lichen Dwarf Shrub<br>Tundra<br>Open Low Willow<br>Open White Spruce Forest<br>White Spruce Woodland                                     |
| Upland White Spruce–<br>Ericaceous Forest | Upland Rocky–loamy Moist<br>Circumacidic White Spruce–<br>Ericaceous Forest |                                                                   | Open Dwarf White Spruce                                                                                                                        |

Table 138. Continued.

| Ecotype<br>(short name)                 | Ecotype<br>(long name)                                                   | Plant Association                                             | Vegetation Class                                                             |
|-----------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------|
|                                         |                                                                          |                                                               | Open White Spruce Forest<br>White Spruce Woodland                            |
| Upland White Spruce–<br>Lichen Woodland | Upland Sandy Dry Acidic<br>White Spruce–Lichen<br>Woodland               | Picea glauca–Cladina<br>stellaris                             | Open White Spruce Forest                                                     |
|                                         |                                                                          |                                                               | White Spruce Woodland                                                        |
| Upland White Spruce–<br>Willow Forest   | Upland Rocky–loamy Moist<br>Circumalkaline White<br>Spruce–Willow Forest | Picea glauca–Salix<br>reticulata–Carex scirpoidea             | Dwarf White Spruce<br>Woodland                                               |
|                                         | •                                                                        |                                                               | Open White Spruce Forest<br>White Spruce Woodland                            |
| Upland Willow Low<br>Shrub              | Upland Loamy Moist<br>Circumalkaline Willow Low<br>Shrub                 | Salix lanata ssp.<br>richardsonii–Equisetum<br>arvense        | Closed Low Willow                                                            |
|                                         |                                                                          |                                                               | Open Low Shrub Birch–                                                        |
|                                         |                                                                          |                                                               | Willow<br>Open Low Willow                                                    |
|                                         |                                                                          |                                                               | Open Tall Willow                                                             |
| Lacustrine Barrens                      | Lacustrine Wet<br>Circumalkaline Barrens                                 | Eriophorum angustifolium–<br>Epilobium palustre               | ·                                                                            |
|                                         |                                                                          |                                                               | Bluejoint–Herb                                                               |
|                                         |                                                                          |                                                               | Mixed Herbs<br>Moist Forb Meadow                                             |
|                                         |                                                                          |                                                               | Partially Vegetated                                                          |
| Lacustrine Bluejoint<br>Meadow          | Lacustrine Loamy Wet<br>Circumacidic Bluejoint<br>Meadow                 | Calamagrostis canadensis–<br>Potentilla palustris             | Bluejoint Meadow                                                             |
|                                         |                                                                          |                                                               | Bluejoint–Herb<br>Fresh Sedge Marsh                                          |
| Lacustrine Buckbean Fen                 | Lacustrine Circumacidic<br>Buckbean Fen                                  | Menyanthes trifoliata-<br>Potentilla palustris                | Subarctic Lowland Herb<br>Bog Meadow<br>Subartic Lowland Sedge<br>Wet Meadow |
| Lacustrine Horsetail                    | Lacustrine Circumneutral                                                 | Equisetum fluviatile-                                         | Emergent Horsetail                                                           |
| Marsh                                   | Horsetail Marsh                                                          | Potentilla palustris                                          |                                                                              |
| Lacustrine Marestail<br>Marsh           | Lacustrine Circumneutral<br>Marestail Marsh                              | Hippuris vulgaris–<br>Utricularia vulgaris ssp.<br>macrorhiza | Common Marestail                                                             |
|                                         |                                                                          |                                                               | Fresh Pondweed<br>Fresh Water                                                |
| Lacustrine Pendent Grass<br>Marsh       | Lacustrine Circumneutral<br>Pendent Grass Marsh                          | Arctophila fulva–Hippuris<br>vulgaris                         | Common Marestail                                                             |
|                                         |                                                                          |                                                               | Fresh Grass Marsh<br>Fresh Water                                             |
| Lacustrine Pondlily Lake                | Lacustrine Circumacidic<br>Pondlily Lake                                 | Nuphar polysepalum–<br>Sparganium sp.                         | Fresh Water                                                                  |
| t-i                                     | La sustada a Osa di di L                                                 | C                                                             | Pondlily                                                                     |
| _acustrine Wet Sedge<br>Meadow          | Lacustrine Organic–rich Wet Circumacidic Sedge Meadow                    | Carex aquatilis-Potentilla<br>palustris                       | Aquatic Fresh Herb                                                           |
|                                         |                                                                          |                                                               | Fresh Sedge Marsh<br>Mixed Herbs                                             |
|                                         |                                                                          |                                                               |                                                                              |

Table 138. Continued.

| Ecotype<br>(short name)                | Ecotype<br>(long name)                                             | Plant Association                                                                                              | Vegetation Class                                                                                                                                                                                                           |
|----------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                                                                    |                                                                                                                | Moist Sedge–Grass Meadow Tundra Open Low Willow Subartic Lowland Sedge Bog Meadow Subartic Lowland Sedge– Moss Bog Meadow Wet Sedge Meadow Tundra Wet Sedge–Herb Meadow Tundra                                             |
| Lacustrine Willow Shrub                | Lacustrine Loamy Wet<br>Circumneutral Willow<br>Shrub              | Salix planifolia ssp.<br>pulchra–Potentilla palustris                                                          | Closed Low Willow  Open Low Shrub Birch  Willow  Open Low Willow                                                                                                                                                           |
| Lowland Alder Tall<br>Shrub            | Lowland Organic–rich Wet<br>Circumacidic Alder Tall<br>Shrub       | Alnus crispa–Salix planifolia<br>ssp. pulchra–Hylocomium<br>splendens                                          |                                                                                                                                                                                                                            |
| Lowland Birch–<br>Ericaceous Low Shrub | Lowland Organic–rich Wet<br>Acidic Birch–Ericaceous<br>Low Shrub   | Andromeda polifolia–<br>Sphagnum sp.<br>Ledum decumbens–<br>Vaccinium vitis-idaea–<br>Foliose/fruticose lichen | Subartic Lowland Sedge– Moss Bog Meadow  Closed Low Shrub Birch– Ericaceous Shrub  Open Low Mesic Shrub Birch–Ericaceous Shrub Open Low Shrub Birch– Willow Subartic Lowland Sedge– Moss Bog Meadow Wet Sedge–Birch Tundra |
| Lowland Birch–Willow<br>Low Shrub      | Lowland Organic-rich Wet<br>Circumacidic Birch-Willow<br>Low Shrub | Betula nana–Salix planifolia<br>ssp. pulchra–Eriophorum<br>angustifolium                                       |                                                                                                                                                                                                                            |
| Lowland Black Spruce<br>Forest         | Lowland Organic–rich Wet<br>Acidic Black Spruce Forest             | Picea mariana–Ledum<br>decumbens                                                                               | Black Spruce Woodland  Black Spruce–White Spruce Woodland Open Black Spruce Forest Open Dwarf Black Spruce                                                                                                                 |

Table 138. Continued.

| Ecotype<br>(short name)         | Ecotype<br>(long name)                                       | Plant Association                                   | Vegetation Class                                                                                                                                                                                                       |
|---------------------------------|--------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lowland Ericaceous<br>Shrub Bog | Lowland Acidic Ericaceous<br>Shrub Bog                       | Andromeda polifolia–<br>Sphagnum sp.                | Open Low Ericaceous Shrub Bog Open Low Mesic Shrub Birch–Ericaceous Shrub Open Low Shrub Birch– Ericaceous Shrub Bog Subartic Lowland Sedge Bog Meadow Subartic Lowland Sedge– Moss Bog Meadow Wet Sedge Meadow Tundra |
| Lowland Lake                    | Lowland Lake                                                 | Water-Potamogeton sp.                               | Burreed<br>Fresh Water                                                                                                                                                                                                 |
| Lowland Sedge Fen               | Lowland Circumacidic<br>Sedge Fen                            | Carex chordorrhiza–Carex<br>aquatilis               | Subarctic Lowland Herb Wet Meadow Subartic Lowland Sedge Bog Meadow Subartic Lowland Sedge Wet Meadow Subartic Lowland Sedge Moss Bog Meadow Wet Sedge Meadow Tundra                                                   |
| Lowland Sedge–Willow<br>Fen     | Lowland Circumacidic<br>Sedge–Willow Fen                     | Carex aquatilis–Salix<br>planifolia ssp. pulchra    | Fresh Sedge Marsh  Open Low Willow Subartic Lowland Sedge Bog Meadow Subartic Lowland Sedge Wet Meadow Subartic Lowland Sedge Moss Bog Meadow Wet Sedge Meadow Tundra Wet Sedge-Willow Tundra                          |
| Lowland Willow Low<br>Shrub     | Lowland Organic-rich Wet<br>Circumacidic Willow Low<br>Shrub | Salix planifolia ssp.<br>pulchra–Valeriana capitata | Closed Low Willow  Open Low Willow  Open Tall Willow                                                                                                                                                                   |
| River                           | River                                                        | Water                                               | Fresh Water<br>Water                                                                                                                                                                                                   |
| Riverine Alder Tall Shrub       | Riverine Loamy Moist<br>Circumacidic Alder Tall<br>Shrub     | Alnus crispa–Rubus arcticus                         | Closed Tall Alder  Closed Tall Alder–Willow                                                                                                                                                                            |
| Riverine Barrens                | Riverine Gravelly Moist<br>Circumalkaline Barrens            | Salix alaxensis–Epilobium<br>latifolium             | Open Tall Alder<br>Barren                                                                                                                                                                                              |
|                                 | Circuitatkatitle batteris                                    | iatiiOiiuiii                                        | Elymus                                                                                                                                                                                                                 |

Table 138. Continued.

| Ecotype<br>(short name)             | Ecotype<br>(long name)                                               | Plant Association                                                  | Vegetation Class                                                                                                                                     |
|-------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                                                                      |                                                                    | Mixed Herbs<br>Open Low Willow<br>Partially Vegetated<br>Seral Herbs                                                                                 |
| Riverine Birch–Willow<br>Low Shrub  | Riverine Loamy Moist Circumacidic Birch–Willow Low Shrub             | Betula nana–Salix planifolia<br>ssp. pulchra–Pyrola<br>grandiflora | Closed Low Shrub Birch                                                                                                                               |
|                                     |                                                                      | <i>g.</i> a a                                                      | Closed Low Shrub Birch–<br>Ericaceous Shrub<br>Closed Low Shrub Birch–<br>Willow<br>Closed Low Willow<br>Closed Tall Willow<br>Open Low Shrub Birch– |
| Riverine Bluejoint<br>Meadow        | Riverine Loamy Wet<br>Circumacidic Bluejoint<br>Meadow               | Calamagrostis canadensis–<br>Potentilla palustris                  | Willow<br>Bluejoint Meadow                                                                                                                           |
|                                     | Weadow                                                               |                                                                    | Bluejoint–Herb<br>Open Low Willow–Sedge<br>Shrub Tundra                                                                                              |
| Riverine Dryas Dwarf<br>Shrub       | Riverine Gravelly Dry<br>Alkaline Dryas Dwarf<br>Shrub               | Dryas drummondii–<br>Oxytropis campestris                          | Dryas Dwarf Shrub Tundra                                                                                                                             |
|                                     | Jiiidb                                                               | Dryas integrifolia–Salix<br>brachycarpa ssp.<br>niphoclada         | Dryas Dwarf Shrub Tundra                                                                                                                             |
|                                     |                                                                      |                                                                    | Dryas–Lichen Dwarf Shrub<br>Tundra<br>Moist Sedge–Willow<br>Tundra                                                                                   |
| Riverine Forb Marsh                 | Diversity of Circumstant                                             | Elecelo de estado de                                               | Open Low Willow                                                                                                                                      |
| Riverine Forb Marsh                 | Riverine Circumneutral Aquatic Forb Marsh                            | Eleocharis acicularis-<br>Equisetum fluviatile                     | Emergent Horsetail Fresh Pondweed                                                                                                                    |
| Riverine Lake                       | Riverine Circumalkaline<br>Lake                                      | Potamogeton sp.–<br>Utricularia vulgaris ssp.<br>macrorhiza        | Fresh Pondweed                                                                                                                                       |
|                                     |                                                                      |                                                                    | Fresh Water                                                                                                                                          |
| Riverine Moist Willow<br>Tall Shrub | Riverine Gravelly–loamy<br>Moist Circumalkaline<br>Willow Tall Shrub | Salix alaxensis–Aster<br>sibiricus                                 | Closed Tall Alder–Willow                                                                                                                             |
|                                     |                                                                      |                                                                    | Closed Tall Willow<br>Open Low Willow<br>Open Tall Willow                                                                                            |
| Riverine Poplar Forest              | Riverine Gravelly–loamy<br>Moist Circumalkaline<br>Poplar Forest     | Populus balsamifera–Picea<br>glauca–Salix alaxensis                | Closed Balsam Poplar                                                                                                                                 |
| Divoring Wet Cadas                  | Divoring Loans Mat                                                   | Caray aguatilia Frianka                                            | Open Balsam Poplar Forest                                                                                                                            |
| Riverine Wet Sedge<br>Meadow        | Riverine Loamy Wet<br>Circumacidic Wet Sedge<br>Meadow               | Carex aquatilis–Eriophorum<br>angustifolium                        | Wet Meadow                                                                                                                                           |

Table 138. Continued.

| Ecotype<br>(short name)                 | Ecotype<br>(long name)                                                        | Plant Association                                                  | Vegetation Class                                                                           |
|-----------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                                         |                                                                               |                                                                    | Wet Sedge Meadow<br>Tundra                                                                 |
| Riverine Wet Willow Tall<br>Shrub       | Riverine Loamy Wet<br>Circumacidic Willow Tall<br>Shrub                       | Salix planifolia ssp.<br>pulchra–Potentilla palustris              | Closed Tall Willow                                                                         |
|                                         |                                                                               |                                                                    | Open Tall Alder–Willow<br>Open Tall Willow                                                 |
| Riverine White Spruce–<br>Alder Forest  | Riverine Gravelly-loamy<br>Moist Circumacidic White<br>Spruce-Alder Forest    | Picea glauca–Alnus crispa–<br>Calamagrostis canadensis             | Open White Spruce Forest                                                                   |
|                                         |                                                                               |                                                                    | White Spruce Woodland                                                                      |
| Riverine White Spruce–<br>Poplar Forest | Riverine Gravelly-loamy<br>Moist Circumalkaline White<br>Spruce-Poplar Forest | Populus balsamifera–Picea<br>glauca–Salix alaxensis                | Open Spruce–Balsam Poplar<br>Forest                                                        |
|                                         |                                                                               |                                                                    | Open White Spruce Forest<br>Spruce–Balsam Poplar<br>Woodland                               |
| Riverine White Spruce–<br>Willow Forest | Riverine Gravelly-loamy<br>Moist Circumalkaline White<br>Spruce-Willow Forest | Picea glauca–Salix lanata<br>ssp. richardsonii–Moneses<br>uniflora | Open Tall Alder–Willow                                                                     |
|                                         |                                                                               |                                                                    | Open White Spruce Forest<br>White Spruce Woodland                                          |
| Riverine Willow Low<br>Shrub            | Riverine Gravelly–loamy<br>Moist Circumalkaline<br>Willow Low Shrub           | Salix lanata ssp.<br>richardsonii–Salix reticulata                 | Closed Low Willow                                                                          |
|                                         |                                                                               |                                                                    | Closed Tall Willow<br>Dryas–Forb Dwarf Shrub<br>Tundra<br>Moist Sedge–Dryas Tundra         |
|                                         |                                                                               |                                                                    | Open Low Willow<br>Open Tall Willow                                                        |
| Coastal Brackish<br>Dunegrass Meadow    | Coastal Sandy Dry Brackish<br>Dunegrass Meadow                                | Elymus arenarius ssp.<br>mollis–Lathyrus maritimus                 | Elymus                                                                                     |
|                                         |                                                                               |                                                                    | Partially Vegetated                                                                        |
| Coastal Brackish Sedge–<br>Grass Meadow | Coastal Loamy Wet<br>Brackish Sedge–Grass<br>Meadow                           | Carex ramenskii–Dupontia<br>fischeri                               | Halophytic Sedge Wet<br>Meadow, brackish                                                   |
|                                         |                                                                               |                                                                    | Halophytic Sedge–Grass<br>Wet Meadow, brackish                                             |
| Coastal Brackish Water                  | Coastal Brackish Water                                                        | Water                                                              | Marine Water                                                                               |
| Coastal Brackish Willow<br>Shrub        | Coastal Sandy Wet Brackish<br>Willow Shrub                                    | Salix ovalifolia–<br>Deschampsia caespitosa                        | Halophytic Grass Wet<br>Meadow, brackish<br>Halophytic Sedge–Grass<br>Wet Meadow, brackish |
|                                         |                                                                               |                                                                    | Wet Sedge–Willow Tundra                                                                    |
| Coastal Crowberry<br>Dwarf Shrub        | Coastal Sandy Moist<br>Circumacidic Crowberry<br>Dwarf Shrub                  | Empetrum nigrum–Elymus<br>arenarius ssp. mollis                    | Crowberry Dwarf Shrub<br>Tundra                                                            |
| Coastal Dry Barrens                     | Coastal Sandy Dry Barrens                                                     | Elymus arenarius ssp.<br>mollis–Lathyrus maritimus                 | Barren                                                                                     |
|                                         |                                                                               |                                                                    | Partially Vegetated                                                                        |
| Coastal Nearshore Water                 | Coastal Nearshore Water                                                       | Water                                                              | Marine Water                                                                               |

Table 138. Continued.

| Ecotype<br>(short name)               | Ecotype<br>(long name)                         | Plant Association                          | Vegetation Class                                                                                                                         |
|---------------------------------------|------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Coastal Saline Sedge–<br>Grass Meadow | Coastal Loamy Wet Saline<br>Sedge–Grass Meadow | Carex ramenskii–Puccinellia<br>phryganodes | Halophytic Sedge Wet<br>Meadow, saline<br>Halophytic Sedge–Grass<br>Wet Meadow, brackish<br>Halophytic Sedge–Grass<br>Wet Meadow, saline |
| Coastal Tidal River                   | Coastal Tidal River                            | Water                                      | Marine Water                                                                                                                             |
| Coastal Wet Barrens                   | Coastal Loamy Wet Barrens                      | Carex ramenskii–Puccinellia phryganodes    | Barren                                                                                                                                   |

Table 139. Mean count of species per individual plot and total species occurrences per ecotype, Arctic Network, 2002–2008.

|                                                       | Plot     |         |            |          |
|-------------------------------------------------------|----------|---------|------------|----------|
| Ecotype                                               | Mean     | SD      | Total*     | n        |
| Alpine Acidic Barrens                                 | 26       | 12      | 163        | 15       |
| Alpine Acidic Dryas Dwarf Shrub                       | 40       | 6       | 235        | 19       |
| Alpine Alkaline Barrens                               | 26       | 9       | 201        | 21       |
| Alpine Alkaline Dryas Dwarf Shrub                     | 38       | 12      | 281        | 27       |
| Alpine Cassiope Dwarf Shrub                           | 42       | 10      | 195        | 12       |
| Alpine Ericaceous-Dryas Dwarf Shrub                   | 40       | 12      | 258        | 36       |
| Alpine Lake                                           | 3        | ND      | 3          | 1        |
| Alpine Mafic Barrens                                  | 27       | 13      | 204        | 18       |
| Alpine Wet Sedge Meadow                               | 35       | 14      | 138        | 8        |
| Coastal Brackish Dunegrass Meadow                     | 10       | 3<br>2  | 23         | 4        |
| Coastal Brackish Sedge–Grass Meadow                   | 8        | 2<br>6  | 17<br>25   | 5<br>3   |
| Coastal Brackish Willow Shrub                         | 20<br>32 | 0<br>13 | 35<br>98   | 5<br>6   |
| Coastal Dry Borrons                                   | 32<br>8  | 6       | 96<br>25   | 4        |
| Coastal Dry Barrens Coastal Saline Sedge–Grass Meadow | 7        | 1       | 9          | 6        |
| Coastal Wet Barrens                                   | 6        | ND      | 6          | 1        |
| Lacustrine Barrens                                    | 13       | 7       | 65         | 6        |
| Lacustrine Bluejoint Meadow                           | 13       | 7       | 54         | 8        |
| Lacustrine Buckbean Fen                               | 10       | 4       | 40         | 7        |
| Lacustrine Horsetail Marsh                            | 7        | 5       | 11         | 2        |
| Lacustrine Marestail Marsh                            | 5        | 4       | 24         | 9        |
| Lacustrine Pendent Grass Marsh                        | 7        | 4       | 32         | 8        |
| Lacustrine Pondlily Lake                              | 6        | 2       | 13         | 5        |
| Lacustrine Wet Sedge Meadow                           | 11       | 3       | 62         | 12       |
| Lacustrine Willow Shrub                               | 22       | 10      | 79         | 6        |
| Lowland Alder Tall Shrub                              | 26       | 10      | 97         | 6        |
| Lowland Birch-Ericaceous Low Shrub                    | 22       | 5       | 100        | 12       |
| Lowland Birch-Willow Low Shrub                        | 27       | 8       | 175        | 20       |
| Lowland Black Spruce Forest                           | 22       | 3       | 78         | 14       |
| Lowland Ericaceous Shrub Bog                          | 17       | 6       | 132        | 30       |
| Lowland Lake                                          | 6        | 3       | 30         | 10       |
| Lowland Sedge Fen                                     | 16       | 7       | 136        | 29       |
| Lowland Sedge-Willow Fen                              | 18       | 9       | 133        | 21       |
| Lowland Willow Low Shrub                              | 26       | 11      | 159        | 12       |
| River                                                 | 1        | 0       | 3          | 3        |
| Riverine Alder Tall Shrub                             | 19       | 4       | 66         | 6        |
| Riverine Barrens                                      | 16       | 11      | 197        | 30       |
| Riverine Birch-Willow Low Shrub                       | 24       | 6       | 101        | 9        |
| Riverine Bluejoint Meadow                             | 13       | 2       | 26<br>158  | 3        |
| Riverine Dryas Dwarf Shrub                            | 40       | 18      | 158        | 7        |
| Riverine Lake                                         | 19<br>14 | 9<br>1  | 30<br>23   | 2<br>2   |
| Riverine Lake                                         | 14<br>27 | 1<br>11 | 23<br>223  | 2<br>30  |
| Riverine Moist Willow Tall Shrub                      | 27       | 8       | 223<br>116 | 30<br>13 |
| Riverine Poplar Forest                                | 23       | 5       | 52         | 3        |
| Riverine Wet Sedge Meadow                             | 20       | ,       | 3∠         | 3        |

Table 139. Continued.

|                                       | Plot |    |        |    |
|---------------------------------------|------|----|--------|----|
| Ecotype                               | Mean | SD | Total* | n  |
| Riverine Wet Willow Tall Shrub        | 21   | 4  | 74     | 6  |
| Riverine White Spruce-Alder Forest    | 27   | 7  | 93     | 8  |
| Riverine White Spruce-Poplar Forest   | 34   | 12 | 135    | 11 |
| Riverine White Spruce-Willow Forest   | 34   | 7  | 129    | 8  |
| Riverine Willow Low Shrub             | 37   | 14 | 190    | 14 |
| Upland Alder-Willow Tall Shrub        | 24   | 9  | 172    | 22 |
| Upland Birch Forest                   | 25   | 11 | 59     | 4  |
| Upland Birch-Ericaceous Low Shrub     | 27   | 9  | 163    | 20 |
| Upland Birch-Willow Low Shrub         | 35   | 13 | 227    | 26 |
| Upland Bluejoint Meadow               | 30   | 7  | 90     | 4  |
| Upland Dwarf Birch-Tussock Shrub      | 23   | 6  | 160    | 39 |
| Upland Mafic Barrens                  | 25   | 8  | 58     | 4  |
| Upland Sandy Barrens                  | 15   | 6  | 54     | 12 |
| Upland Sedge-Dryas Meadow             | 46   | 8  | 211    | 16 |
| Upland Spirea Low Shrub               | 28   | 6  | 117    | 10 |
| Upland Spruce-Birch Forest            | 29   | 7  | 117    | 10 |
| Upland White Spruce-Dryas Woodland    | 30   | 6  | 88     | 6  |
| Upland White Spruce-Ericaceous Forest | 29   | 8  | 156    | 17 |
| Upland White Spruce-Lichen Woodland   | 28   | 9  | 58     | 3  |
| Upland White Spruce-Willow Forest     | 40   | 10 | 207    | 17 |
| Upland Willow Low Shrub               | 38   | 11 | 181    | 13 |

<sup>\*</sup>Total number of species documented per ecotype

ecotypes with the highest species richness occurred in alpine or upland physiographies. Alpine Ericaceous–Dryas Dwarf Shrub and Alpine Alkaline Dryas Dwarf Shrub were the ecotypes with the highest species richness. The total species count was, however, slightly influenced by the number of plots sampled per ecotype, and we did not control for this. The least species rich ecotypes were those where the AVC vegetation class was aquatic or where the physiography was coastal. In general, ecotypes where the landscape was young and disturbance events occurred more frequently (such as riverine or coastal ecotypes), were less species rich, and ecotypes with old landscapes that were less frequently disturbed (alpine or upland) were more species rich. Species counts should be considered a point for comparison among ecotypes rather than an absolute number, due to our sampling methods and the fact that we probably overlooked species. This is especially true for aquatic ecotypes since we were not equipped to sample lakes thoroughly. We recorded 572 vascular species (excluding subspecies) compared to 706 species documented during a floristic inventory conducted for the NPS Inventory & Monitoring Program (Parker 2006), but a comprehensive floristic survey was beyond the scope of this project.

#### Ordination of Vegetation

In addition to the single-factor comparisons, nonmetric multidimensional scaling (NMDS) (Shepard 1962a,b; Kruskal 1964a,b) was used to separate plots by species composition. Because of the large number of species, ecotypes, and differing environmental gradients, the ordinations were calculated separately for each physiographic grouping (Figures 15–17). Within each of the physiographic groupings, species occurring in only one plot at less than 5 percent cover were removed, prior to analysis, and the remaining cover values square root transformed. Each physiographic ordination was computed using a

Bray/Curtis dissimilarities matrix calculated for each physiographic group from the transformed abundance data (Bray and Curtis 1957). The combined effects of physiography and various environmental variables were assessed by superimposing the ecotype class for each plot on the ordination. On the ordinations, the central cluster of each ecotype was circled and outliers were occasionally excluded to better differentiate highly central tendencies. The ordinations reveal which ecotypes have very similar species composition and which ones have distinct species assemblages.

Alpine ecotypes had numerous ecotypes with good separation in species assemblages. There was little overlap in species composition, or "species space", among alkaline, mafic, and acidic barren ecotypes (Figure 15a). In contrast, there was substantial overlap in species assemblages among Alpine Acidic Dryas Dwarf Shrub, Alpine Ericaceous–Dryas Dwarf Shrub, and Alpine Cassiope Dwarf Shrub.

Upland ecotypes had few very distinct classes and many classes had substantial overlap among ecotypes (Figure 15b). Distinct ecotypes included Upland Mafic Barrens on lava flows, Upland Sandy Barrens on the Kobuk Dunes, and Upland Sedge–Dryas Meadow on alkaline bedrock. In contrast, upland forest types had a high degree of overlap in species composition.

Lowland ecotypes showed numerous ecotypes with distinct species composition (Figure 16a). Lowland Ericaceous Shrub Bog had little similarity to Lowland Sedge–Willow Fen and Lowland Birch–Ericaceous Low Shrub. The greatest similarity occurred between Lowland Black Spruce Forest and Lowland Birch–Ericaceous Low Shrub.

Lacustrine ecotypes also were fairly distinct (Figure 16b). The highest similarity occurred between Lacustrine

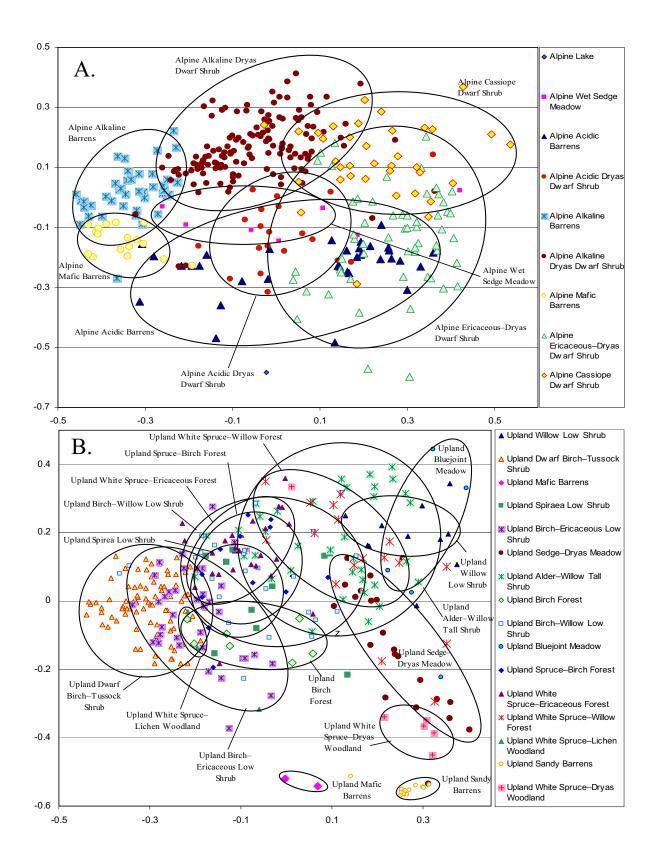



Figure 15. Non-metric multidimensional scaling species composition for alpine (A) and upland (B) ecotypes in the Arctic Network. Outliers have been excluded.

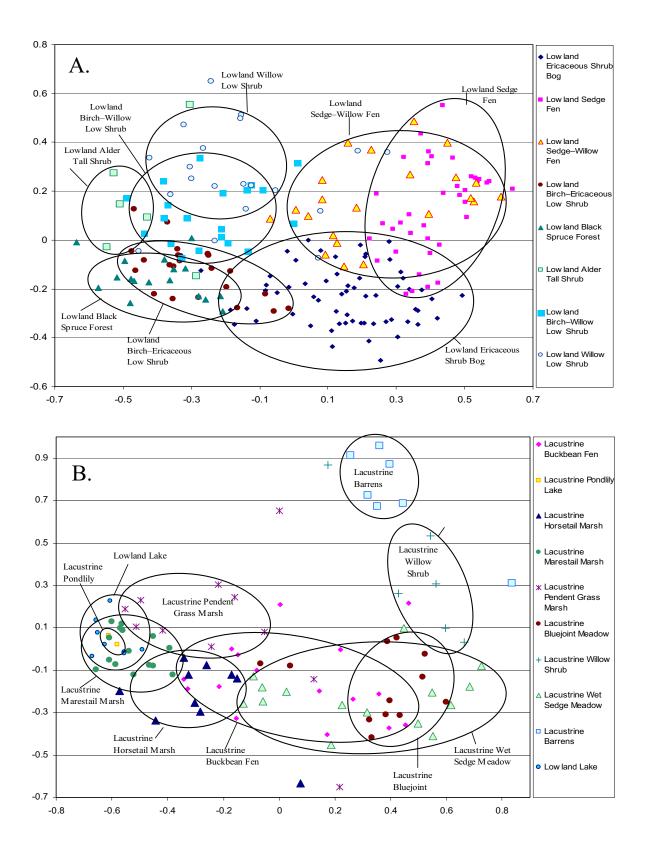



Figure 16. Non-metric multidimensional scaling species composition for lowland (A) and lacustrine (B) ecotypes in the Arctic Network. Outliers have been excluded.

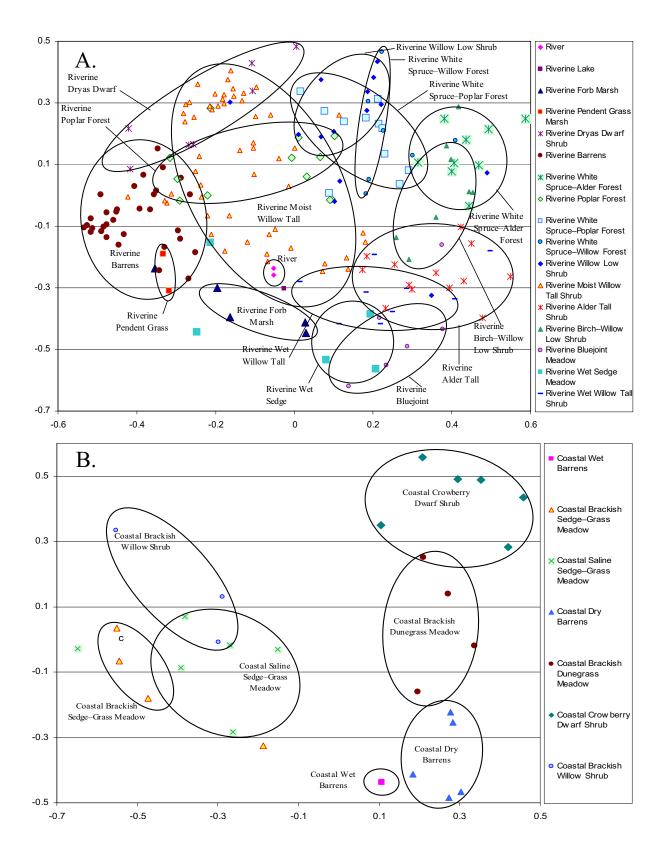



Figure 17. Non-metric multidimensional scaling species composition for riverine (A) and coastal (B) ecotypes in the Arctic Network. Outliers have been excluded.

Table 140. Mean plant cover by alpine ecotypes within the Arctic Network. Numbers with an underline are dominent and differential species; bold indicates species frequency >60%; and zeros have trace values <0.5%.

| Taxon                                            | Alpine Mafic Barrens | Alpine Alkaline<br>Barrens | Alpine Alkaline<br>Dryas Dwarf Shrub | Alpine Cassiope<br>Dwarf Shrub | Alpine Wet Sedge<br>Meadow | Alpine Ericaceous-<br>Dryas Dwarf Shrub | Alpine Acidic Dryas<br>Dwarf Shrub | Alpine Acidic<br>Barrens |
|--------------------------------------------------|----------------------|----------------------------|--------------------------------------|--------------------------------|----------------------------|-----------------------------------------|------------------------------------|--------------------------|
| Claytonia sarmentosa                             | 0                    |                            |                                      | 0                              | 0                          |                                         |                                    |                          |
| Smelowskia calycina                              | 0                    | 0                          | _                                    |                                |                            | •                                       | 0                                  |                          |
| Dryas integrifolia<br>Saxifraga oppositifolia    | 1<br>0               | 1<br><b>7</b>              | <u>3</u><br><u>3</u>                 | 1                              | 1                          | 0<br>0                                  | 1<br>0                             | 0                        |
| Artemisia furcata                                | 0                    | 0                          | <u>3</u><br>0                        | '                              |                            | U                                       | U                                  | U                        |
| Potentilla biflora                               | •                    | Ö                          | Ö                                    | 0                              | 0                          |                                         | 0                                  |                          |
| Oxytropis campestris ssp. jordalii               |                      | 0                          | 0                                    |                                |                            |                                         | 0                                  |                          |
| Rhododendron lapponicum                          | 0                    | 0                          | 0                                    | 0                              |                            | 0                                       |                                    |                          |
| Sanionia uncinata                                |                      | 0                          | 0                                    | 2                              |                            | 0                                       | 0                                  |                          |
| Hedysarum hedysaroides<br>Thamnolia subuliformis | 0                    | 0<br>1                     | 0<br>1                               | 0<br>0                         |                            | 0                                       |                                    | 0                        |
| Hedysarum alpinum                                | U                    | 0                          | 1                                    | 1                              |                            | 0                                       |                                    | U                        |
| Oxyria digyna                                    | 0                    | Ü                          | 0                                    | 0                              |                            | Ü                                       |                                    |                          |
| Anemone drummondii                               | Ö                    | 0                          | Ö                                    | -                              |                            | 0                                       | 0                                  |                          |
| Alectoria nigricans                              | 0                    | 0                          | 0                                    |                                |                            | 0                                       | 0                                  | 0                        |
| Anemone parviflora                               | 0                    | 0                          | 0                                    | 2                              | 0                          | 0                                       | 0                                  | 0                        |
| Carex misandra                                   | 0<br>0               | 0                          | 0                                    | 0                              | 2                          | 0                                       | •                                  | 0                        |
| Bupleurum triradiatum ssp.<br>Carex atrofusca    | U                    | 0<br>0                     | 0<br>0                               | 0                              | 0<br>1                     | 0                                       | 0                                  | 0                        |
| Ochrolechia frigida                              |                      | 0                          | 0                                    | 0                              |                            | 0                                       | 0                                  | 0                        |
| Pertusaria sp.                                   |                      | 0                          | 0                                    | 0                              |                            | 0                                       | 0                                  | 0                        |
| Oxytropis nigrescens                             |                      | 2                          | 0                                    | 0                              |                            | 0                                       | 0                                  |                          |
| Boykinia richardsonii                            |                      | 0                          | 0                                    | <u>12</u>                      |                            | 0                                       |                                    |                          |
| Arctostaphylos rubra                             |                      | 0                          | 2                                    | 0                              |                            | 1                                       | 0                                  |                          |
| Cetraria islandica ssp. islandica                | 0                    | 0<br>0                     | <b>4</b><br>1                        | 3<br>4                         | 1                          | 1                                       | 0<br>4                             | 1                        |
| Dryas octopetala ssp. alaskensis<br>Poa glauca   | 0<br>0               | 0                          | 0                                    | 0                              | ı                          | 1<br>0                                  | 0                                  | 0<br>0                   |
| roa giauca<br>Salix rotundifolia                 | 0                    | <u>0</u>                   | 0                                    | 2                              | 1                          | 0                                       | 1                                  | 1                        |
| Potentilla uniflora                              | Ö                    | 0                          | 0                                    | _                              | •                          | ū                                       | 0                                  | 0                        |
| Saxifraga bronchialis                            | 0                    | 0                          | 0                                    | 0                              | 0                          | 0                                       | 0                                  | 0                        |
| Thalictrum alpinum                               | 0                    | 0                          | 0                                    | 0                              | 0                          | 0                                       |                                    |                          |
| Tomentypnum nitens                               | 0                    | 0                          | 0                                    | 4                              | 5                          | 1                                       | 1                                  |                          |
| Papaver macounii                                 | 0                    | 0                          | 0                                    | 0                              | 0                          | 0                                       | 0                                  |                          |
| Silene acaulis<br>Salix arctica                  | 0<br><u><b>1</b></u> | 0<br><u>0</u>              | <u>1</u><br>0                        | 1<br>1                         | 4                          | 0<br>0                                  | 0                                  |                          |
| Minuartia arctica                                | <u> </u>             | <u>o</u>                   | 0                                    | Ö                              | 0                          | 0                                       | 1                                  | 0                        |
| Dryas octopetala                                 | <u>0</u>             | <u>3</u>                   | <u>35</u>                            | <u>35</u>                      | 2                          | 14                                      | <u>23</u>                          | Ö                        |
| Thamnolia vermicularis                           | 0                    | 0                          | 0                                    | 0                              | 0                          | 0                                       | 1                                  | 0                        |
| Carex scirpoidea                                 | 0                    | 0                          | <u>5</u>                             | 1                              | 1                          | 2                                       | 0                                  |                          |
| Carex rupestris                                  | _                    | 0                          | 5                                    | 0                              |                            | 0                                       |                                    |                          |
| Cassiope tetragona                               | 0                    | 0                          | 2<br>0                               | <u>30</u>                      | 0<br><b>1</b>              | 7                                       | 1                                  | 11                       |
| Polygonum bistorta<br>Rhytidium rugosum          | 0<br>0               | 0                          | 1                                    | 0<br>1                         | 1                          | 0<br>1                                  | 0<br>2                             | 0<br>0                   |
| Salix reticulata                                 | 0                    | 0                          | 2                                    | 9                              | 3                          | 1                                       | 1                                  | 0                        |
| Polygonum viviparum                              | ő                    | Ő                          | 0                                    | 0                              | 1                          | 0                                       | Ö                                  | Ū                        |
| Flavocetraria nivalis                            | 0                    | 1                          | 1                                    | 0                              |                            | 1                                       | 2                                  | 1                        |
| Flavocetraria cucullata                          | 0                    | 0                          | 3                                    | 3                              |                            | 2                                       | 1                                  | 2                        |
| Vaccinium uliginosum                             | 0                    | _                          | 0                                    | 4                              | 1                          | 12                                      | 2                                  | 1                        |
| Cladonia sp.                                     | 0                    | 0                          | 0                                    | 0                              | 4                          | 1                                       | 0                                  | 1                        |
| Carex podocarpa<br>Stereocaulon sp.              | 1<br>0               | 0                          | 0<br>0                               | 1<br>0                         | 1                          | 1<br>1                                  | 0<br>1                             | 1<br>0                   |
| stereocauion sp.<br>Anemone narcissiflora        | 0                    | 0                          | 0                                    | 0                              | 0                          | 1                                       | 0                                  | 1                        |
| Hylocomium splendens                             | U                    | 0                          | 0                                    | 14                             | 2                          | 4                                       | 0                                  | Ó                        |
| Masonhalea richardsonii                          |                      | -                          | Ö                                    | 1                              |                            | 1                                       | Ö                                  | Ö                        |
| Racomitrium lanuginosum                          | 1                    | 0                          | 1                                    | 1                              |                            | 1                                       | 1                                  | 3                        |
| Artemisia arctica ssp. arctica                   | 0                    |                            | 0                                    |                                |                            | 1                                       | 0                                  | 0                        |
| Poa arctica                                      | 0                    | 0                          | 0                                    | 0                              | 2                          | 0                                       | 0                                  | _                        |
| Alectoria ochroleuca                             | 0                    | 0                          | 0                                    | 0                              |                            | 0                                       | 1                                  | 0                        |
| Salix phlebophylla<br>Nephroma arcticum          | 0                    | 0<br>0                     | 0<br>0                               | 0<br>0                         |                            | 1<br>0                                  | <b>3</b><br>0                      | 0<br>0                   |
| Nepriroma arcticum<br>Cladina rangiferina        |                      | U                          | 0                                    | 0                              |                            | 5                                       | 0                                  | 6                        |
|                                                  |                      |                            |                                      |                                |                            |                                         |                                    |                          |

Table 140. Continued.

| Taxon                                                     | Alpine Mafic Barrens | Alpine Alkaline<br>Barrens | Alpine Alkaline<br>Dryas Dwarf Shrub | Alpine Cassiope<br>Dwarf Shrub | Alpine Wet Sedge<br>Meadow | Alpine Ericaceous-<br>Dryas Dwarf Shrub | Alpine Acidic Dryas<br>Dwarf Shrub | Alpine Acidic<br>Barrens |
|-----------------------------------------------------------|----------------------|----------------------------|--------------------------------------|--------------------------------|----------------------------|-----------------------------------------|------------------------------------|--------------------------|
| Dicranum sp.                                              |                      |                            | 0                                    | 1                              | 0                          | 1                                       | 0                                  | 0                        |
| Lupinus arcticus                                          | 0                    |                            | 0                                    | 0                              |                            | 0                                       | 0                                  |                          |
| Cetraria laevigata<br>Carex membranacea                   |                      |                            | 0<br>0                               | 1<br>0                         | 1                          | 0<br>0                                  | 0                                  | 0                        |
| Equisetum arvense                                         |                      |                            | 0                                    | 0                              | 11                         | 0                                       |                                    |                          |
| Salix lanata ssp. richardsonii                            |                      | 0                          | 0                                    | 5                              | 1                          | 0                                       |                                    |                          |
| Pleurozium schreberi                                      |                      | ·                          | Ö                                    | 1                              | -                          | 1                                       | 0                                  |                          |
| Geum glaciale                                             | 0                    |                            | 0                                    | 1                              |                            | 0                                       | 0                                  |                          |
| Pedicularis sudetica                                      |                      |                            | 0                                    | 0                              | <u>1</u>                   | 0                                       |                                    |                          |
| Eriophorum angustifolium                                  | 0                    |                            | 0                                    | 0                              | <u>15</u>                  | 0                                       |                                    |                          |
| Arctagrostis latifolia                                    |                      |                            | 0                                    | 0                              | 4                          | 0                                       | 0                                  |                          |
| Carex bigelowii<br>Thuidium recognitum                    |                      |                            | 0                                    | 0<br>1                         | 13                         | 0<br>1                                  | 0<br>0                             |                          |
| Carex aquatilis                                           |                      |                            |                                      | '                              | 3                          |                                         | U                                  |                          |
| Aulacomnium palustre                                      |                      | 0                          |                                      | 0                              | 11                         | 0                                       | 0                                  |                          |
| Rhizocarpon sp.                                           | 1                    | 0                          | 0                                    |                                |                            |                                         | 1                                  | 1                        |
| Stereocaulon apocalypticum                                | 0                    |                            |                                      |                                |                            | 0                                       | 1                                  | 0                        |
| Festuca altaica                                           | 0                    |                            | 1                                    | <u>2</u><br>0                  | 1                          | <u>5</u>                                | 0                                  | 0                        |
| Ledum decumbens                                           | 0                    |                            |                                      | 0                              | 0                          | 3<br>0                                  | 0                                  | 1                        |
| Umbilicaria sp.<br>Selaginella sibirica                   | 0<br>0               | 0                          | 0                                    |                                |                            | 0                                       | 1<br>1                             | 1<br>0                   |
| Carex microchaeta                                         | 0                    | U                          | U                                    | 1                              |                            | 1                                       | 0                                  | 6                        |
| Sphaerophorus sp.                                         | Ö                    |                            | 0                                    | 0                              |                            | 0                                       | Ö                                  | Ö                        |
| Luzula confusa                                            | 0                    |                            |                                      | 0                              |                            | 0                                       | 0                                  | 0                        |
| Polytrichum sp.                                           | 0                    |                            | 0                                    | 0                              | 0                          | 1                                       | 1                                  | 0                        |
| Hierochloe alpina                                         | <u>0</u>             |                            |                                      | 0                              | 0                          | 1                                       | 1                                  | <u>4</u>                 |
| Vaccinium vitis-idaea                                     | 0<br>0               | 0                          | 0<br>0                               | 0<br>0                         | 0<br>0                     | <u>4</u><br>2                           | 1<br>0                             | 2<br>0                   |
| Empetrum nigrum<br>Betula nana                            | U                    | U                          | U                                    | U                              | 0                          | 2<br><u>5</u>                           | 0                                  | 0                        |
| Salix planifolia ssp. pulchra                             | 0                    | 0                          |                                      | 0                              | 2                          | 1                                       | 0                                  | 0                        |
| Loiseleuria procumbens                                    | 0                    |                            |                                      | 0                              |                            | <u>4</u>                                | Ō                                  | 1                        |
| Cladina mitis                                             | 0                    |                            | 0                                    | 0                              |                            | 1                                       | 0                                  | 0                        |
| Polytrichum piliferum                                     |                      |                            |                                      | 0                              |                            | 1                                       | 0                                  | 0                        |
| Diapensia lapponica                                       | 0                    | •                          | 0                                    | 0                              |                            | 0                                       | 1                                  | 0                        |
| Cladina arbuscula<br>Cladina stygia                       |                      | 0                          | 0                                    | 3                              |                            | 6<br>1                                  | 0<br>0                             | <b>10</b><br>0           |
| Arnica lessingii                                          |                      |                            |                                      | 0                              | 0                          | 0                                       | 0                                  | 0                        |
| Salix polaris                                             |                      |                            |                                      | Ū                              | Ū                          | 1                                       | 1                                  | 0                        |
| Polytrichum juniperinum                                   | 0                    |                            |                                      |                                |                            | 0                                       | 0                                  | 0                        |
| Antennaria friesiana                                      | 0                    |                            | 0                                    |                                |                            | 0                                       | 0                                  | 0                        |
| Bryocaulon divergens                                      | 0                    | 0                          | 0                                    |                                |                            | 0                                       | 1                                  | 0                        |
| Sphaerophorus globosus                                    | 0                    | 0                          | 0                                    | 0                              |                            | 0                                       | 1                                  | 0                        |
| Umbilicaria proboscidea<br>Cladina stellaris              | 0                    | 0                          | 0                                    | 3                              |                            | 0<br>13                                 | 0<br>0                             | 1<br><b>33</b>           |
| Luzula arcuata                                            |                      | U                          | U                                    | 0                              |                            | 0                                       | 0                                  | 0                        |
| Parmelia omphalodes                                       | 0                    |                            |                                      | Ū                              |                            | 0                                       | 3                                  | 1                        |
| Cetraria nigricans                                        | ·                    |                            |                                      |                                |                            | Ö                                       | 1                                  | 1                        |
| Rhizocarpon geographicum                                  |                      |                            | 0                                    |                                |                            | 0                                       | 1                                  | 1                        |
| Racomitrium canescens                                     |                      | 0                          |                                      | 0                              |                            | 0                                       |                                    |                          |
| Salix chamissonis                                         |                      |                            | _                                    |                                |                            | 0                                       | •                                  |                          |
| Bryoria nitidula                                          |                      |                            | 0                                    |                                |                            | 0                                       | 0                                  | 0                        |
| Arnica alpina ssp. angustifolia<br>Pertusaria subobducens |                      |                            | 0<br>0                               |                                |                            | 0                                       | 0<br>1                             | 0                        |
| Umbilicaria caroliniana                                   |                      |                            | U                                    |                                |                            |                                         | 0                                  | 0                        |
| Cladonia uncialis                                         |                      |                            |                                      | 0                              |                            | 0                                       | Ö                                  | 0                        |
| Bare Soil                                                 | 89                   | 75                         | 36                                   | 15                             | 7                          | 13                                      | 30                                 | 28                       |
| Sample Size                                               | 18                   | 43                         | 137                                  | 37                             | 8                          | 60                                      | 19                                 | 35                       |

Table 141. Mean plant cover by upland ecotypes within the Arctic Network. Numbers with an underline are dominent and differential species; bold indicates species frequency >60%; and zeros have trace values <0.5%.

| Taxon                                             | Upland Mafic Barrens | <b>Upland Sandy Barrens</b> | Upland White Spruce-<br>Dryas Woodland | Upland White Spruce-<br>Lichen Woodland | Upland Sedge-Dryas<br>Meadow | Upland Willow Tall Shrub | Upland Willow Low<br>Shrub | Upland White Spruce-<br>Willow Forest | Upland Bluejoint<br>Meadow | Upland Spirea Low Shrub | Upland Alder-Willow Tall<br>Shrub | Upland Birch Forest | Upland Spruce-Birch<br>Forest | Upland White Spruce-<br>Ericaceous Forest | Upland Birch-Ericaceous<br>Low Shrub | Upland Birch-Willow Low<br>Shrub | Upland Dwarf Birch-<br>Tussock Shrub |
|---------------------------------------------------|----------------------|-----------------------------|----------------------------------------|-----------------------------------------|------------------------------|--------------------------|----------------------------|---------------------------------------|----------------------------|-------------------------|-----------------------------------|---------------------|-------------------------------|-------------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|
| Zygadenus elegans                                 |                      | 0                           | 0                                      |                                         | 0                            | 0                        | 0                          | 1                                     | 0                          |                         |                                   |                     | 0                             |                                           |                                      |                                  |                                      |
| Bromus pumpellianus                               |                      | 1                           | 0                                      | 0                                       |                              |                          |                            | 0                                     |                            |                         |                                   |                     |                               |                                           |                                      |                                  |                                      |
| Artemisia furcata                                 |                      | 0                           | 0                                      | 0                                       | 0                            |                          |                            |                                       |                            |                         |                                   |                     |                               |                                           |                                      |                                  |                                      |
| Oxytropis kobukensis                              |                      | 0                           | 0                                      |                                         |                              |                          |                            |                                       |                            |                         |                                   |                     |                               |                                           |                                      |                                  |                                      |
| Calamagrostis purpurascens                        |                      | 3                           | 1                                      | 0                                       | 0                            |                          |                            | 0                                     |                            |                         |                                   |                     | 0                             |                                           | 0                                    | 0                                |                                      |
| Arctostaphylos uva-ursi                           |                      |                             | 10                                     | 1                                       |                              |                          |                            | 0                                     |                            |                         |                                   |                     | 0                             |                                           |                                      |                                  |                                      |
| Solidago multiradiata                             |                      |                             | 1                                      | 0                                       | 0                            | 0                        | 0                          | 0                                     |                            |                         | 0                                 |                     | 0                             | 0                                         |                                      |                                  |                                      |
| Abietinella abietina                              |                      |                             | 11                                     | 0                                       | 1                            |                          | 0                          |                                       |                            |                         | 0                                 |                     |                               |                                           | 0                                    | 0                                | 0                                    |
| Lupinus arcticus                                  |                      |                             | 0                                      | 0                                       | 0                            |                          |                            |                                       |                            | 2                       |                                   |                     |                               | 0                                         | 0                                    | 0                                | 0                                    |
| Shepherdia canadensis                             |                      |                             | 2                                      |                                         | 0                            | 1                        | 0                          | 0                                     |                            |                         | 0                                 |                     | 0                             | 0                                         |                                      |                                  |                                      |
| Dryas integrifolia                                |                      |                             | <u>25</u>                              |                                         | <u>24</u>                    | 0                        | 5                          | 3                                     |                            |                         | 1                                 |                     | 0                             | 0                                         |                                      | 0                                |                                      |
| Rhododendron lapponicum                           |                      |                             |                                        |                                         | 2                            | •                        | 0                          | 0                                     |                            | •                       | 0                                 |                     |                               |                                           |                                      | 0                                |                                      |
| Salix arctica                                     |                      |                             |                                        |                                         | 4                            | 0                        | 0                          | 1                                     |                            | 0                       | _                                 |                     |                               | _                                         | 1                                    | 1                                | _                                    |
| Carex membranacea                                 |                      |                             |                                        |                                         | 3                            | 5                        | 0                          | 1                                     |                            |                         | 0                                 |                     | •                             | 0                                         |                                      | 0                                | 0                                    |
| Carex scirpoidea                                  |                      |                             |                                        |                                         | <u>2</u>                     | 6                        | 1                          | <u>4</u>                              |                            |                         | <u>5</u>                          |                     | 0                             | 1                                         | 0                                    | 0                                |                                      |
| Carex atrofusca                                   |                      |                             | 0                                      | 0                                       | <u>8</u><br>4                | ^                        | 0                          | 4                                     |                            | 0                       |                                   | 4                   | 0                             | 0                                         | 2                                    | 1                                | 1                                    |
| Rhytidium rugosum<br>Tomentypnum nitens           |                      |                             | U                                      | U                                       | 4<br>13                      | 0<br>0                   | 13                         | 4<br>4                                | 2                          | U                       | 1<br>1                            | 1                   | 0                             | 1                                         | 2<br>1                               | 1<br>4                           | 1<br>1                               |
| Salix reticulata                                  |                      |                             | 2                                      |                                         | 7                            | 1 <b>8</b>               | 21                         | <u>9</u>                              | 1                          |                         | 3                                 |                     | U                             | '                                         | 0                                    | 3                                | 0                                    |
| Anemone parviflora                                |                      |                             | 2                                      |                                         | 0                            | 1                        | 3                          | <u>3</u><br>1                         | 4                          |                         | 3                                 |                     |                               | 0                                         | 0                                    | 3<br>1                           | U                                    |
| Arctostaphylos rubra                              |                      |                             | 9                                      |                                         | 2                            | 3                        | 2                          | 4                                     | 7                          |                         | 2                                 |                     | 0                             | 1                                         | 0                                    | 1                                | 0                                    |
| Cassiope tetragona                                | 0                    |                             | •                                      |                                         | 1                            | 1                        | 0                          | 1                                     |                            | 0                       | 5                                 |                     | 0                             | 0                                         | 2                                    | 2                                | 0                                    |
| Hylocomium splendens                              | Ū                    |                             | 1                                      |                                         | 4                            | 9                        | 14                         | 22                                    |                            | 3                       | 10                                | 2                   | 8                             | 27                                        | 11                                   | 14                               | 6                                    |
| Festuca altaica                                   |                      |                             | 0                                      | 1                                       | 0                            | 7                        | 5                          | 2                                     | 1                          | 8                       | 3                                 | 0                   | 0                             | 1                                         | 2                                    | 2                                | _                                    |
| Potentilla fruticosa                              | 0                    |                             |                                        |                                         | 1                            | 1                        | 1                          | 5                                     |                            | _                       | 1                                 |                     | 1                             | 0                                         | 0                                    | 0                                | 0                                    |
| Thamnolia vermicularis                            | 1                    | 0                           | 0                                      |                                         | 1                            |                          | 0                          | 0                                     |                            |                         |                                   |                     |                               |                                           | 0                                    | 0                                | 1                                    |
| Hedysarum alpinum                                 |                      |                             |                                        |                                         | 1                            | 2                        | 2                          | 1                                     |                            |                         | 0                                 |                     | 0                             |                                           |                                      |                                  |                                      |
| Saussurea angustifolia                            |                      |                             |                                        |                                         | 0                            | 0                        | 0                          | 1                                     |                            |                         | 0                                 |                     |                               | 0                                         | 0                                    | 0                                | 0                                    |
| Dryas octopetala                                  |                      |                             |                                        |                                         | <u>3</u>                     | 14                       | 0                          | 6                                     |                            |                         | 3                                 |                     |                               |                                           | 1                                    | <u>2</u>                         |                                      |
| Andromeda polifolia                               |                      |                             |                                        |                                         | 1                            | 0                        | 1                          | 1                                     |                            | 0                       | 0                                 |                     |                               | 0                                         | 0                                    | 0                                | 0                                    |
| Senecio lugens                                    | 0                    |                             |                                        |                                         | 0                            | <u>1</u>                 | 0                          | 0                                     | 0                          |                         | 0                                 |                     |                               |                                           |                                      | 0                                |                                      |
| Dodecatheon frigidum                              |                      |                             |                                        |                                         | 0                            | 4                        | 1                          | 0                                     | 2                          |                         | 1                                 |                     | 0                             | 0                                         |                                      | 1                                |                                      |
| Salix alaxensis                                   |                      | 0                           | 0                                      |                                         | 0                            | <u>22</u>                | 1                          | 1                                     |                            |                         | 2                                 |                     | 0                             |                                           |                                      |                                  |                                      |
| Sanionia uncinata                                 |                      |                             |                                        |                                         | 1                            | 5                        | 1                          | 1                                     | 2                          | 0                       | 3                                 |                     |                               | 0                                         | 1                                    | 1                                | 0                                    |
| Rubus arcticus                                    |                      |                             |                                        |                                         |                              | 0                        | •                          | 0<br>0                                | 5                          | 3<br>6                  | 0<br>0                            |                     |                               | 0                                         | 0                                    | 2                                |                                      |
| Arctagrastic latifolia                            |                      |                             |                                        | 1                                       | 1                            | 2                        | 0<br>1                     | 0                                     | 3                          | 0                       | 0                                 |                     | 0                             | 0<br>1                                    | 0                                    | 2                                | 0                                    |
| Arctagrostis latifolia<br>Aconitum delphinifolium |                      |                             |                                        |                                         | 0                            | 0                        | 0                          | 0                                     | 3<br><b>4</b>              | 0                       | 0                                 |                     | U                             | 0                                         | U                                    | 0                                | U                                    |
| Valeriana capitata                                |                      |                             |                                        |                                         | U                            | 1                        | 2                          | 0                                     | 3                          | 0                       | 0                                 |                     |                               | 0                                         |                                      | 0                                | 0                                    |
| Carex bigelowii                                   |                      |                             |                                        |                                         | <u>3</u>                     | 1                        | 4                          | 0                                     | 0                          | 2                       | 1                                 |                     | 0                             | 1                                         | 2                                    | 4                                | 3                                    |
| Polemonium acutiflorum                            |                      |                             |                                        |                                         | 0                            | 0                        | 3                          | 0                                     | 2                          | 0                       | 0                                 |                     | 0                             | 0                                         | _                                    | 0                                | 0                                    |
| Calamagrostis canadensis                          |                      |                             |                                        |                                         |                              |                          | 0                          | 0                                     | 36                         | 13                      | <u>8</u>                          | 0                   | 1                             | 4                                         | 0                                    | 0                                | 0                                    |
| Carex podocarpa                                   |                      |                             |                                        |                                         | 0                            | 0                        | 1                          | 0                                     | 11                         | 2                       | 1                                 |                     |                               | 0                                         | 0                                    | 1                                |                                      |
| Salix glauca                                      | 0                    | 0                           | 12                                     |                                         | 0                            |                          | 4                          | 4                                     |                            |                         | 1                                 | 0                   | 2                             | 2                                         | 2                                    | 6                                | 0                                    |
| Equisetum arvense                                 |                      |                             |                                        |                                         | <u>7</u>                     | <u>24</u>                | <u>31</u>                  | 6                                     | 5                          |                         | 2                                 | 0                   | 0                             | 1                                         |                                      | 8                                |                                      |
| Salix lanata ssp. richardsonii                    |                      |                             |                                        |                                         | 1                            | <u>39</u>                | 29                         | 5                                     |                            |                         | <u>8</u>                          |                     |                               | 1                                         | 0                                    | 1                                | 0                                    |
| Picea glauca                                      |                      | 0                           | <u>10</u>                              | <u>20</u>                               |                              | 0                        |                            | <u>23</u>                             |                            | 1                       | 0                                 | <u>1</u>            | <u>20</u>                     | <u>21</u>                                 | 0                                    | 0                                | 0                                    |
| Alnus crispa                                      | 1                    |                             |                                        |                                         |                              |                          | 0                          | 9                                     |                            | 6                       | <u>54</u>                         | 2                   | 7                             | 9                                         | 2                                    | 1                                | 1                                    |
| Salix planifolia ssp. pulchra                     | 0                    |                             | _                                      |                                         | 0                            | 1                        | 3                          | 1                                     | 3                          | 9                       | 5                                 | 0                   | 0                             | 4                                         | 3                                    | <u>27</u>                        | 2                                    |
| Vaccinium uliginosum                              | 1                    |                             | 2                                      | 8                                       | 1                            | 1                        | 4                          | 9                                     | •                          | 15                      | 10                                | 3                   | 9                             | 22                                        | 18                                   | 10                               | 7                                    |
| Vaccinium vitis-idaea                             | 0                    |                             |                                        | 1                                       |                              | 0                        | 0                          | 1                                     | 0                          | 8                       | 3                                 | <u>5</u>            | <u>6</u>                      | 6                                         | 12                                   | 4                                | 10                                   |
| Ledum decumbens                                   | 0                    |                             | 4                                      | _                                       | 0                            | 0                        | 0                          | 0                                     |                            | 2                       | 3                                 | 2                   | 4                             | <u>5</u>                                  | <u>13</u>                            | 3                                | 13                                   |
| Empetrum nigrum                                   | 1                    |                             | 1                                      | 6                                       | 0                            | 0                        | 0                          | 3                                     |                            | 3                       | 1                                 | 1<br><b>4</b>       | 3                             | 9                                         | 6                                    | 2                                | 3                                    |
| Cladonia sp.                                      | 2                    |                             | 2                                      | 3<br>5                                  | 0                            | 0                        | 0                          | <b>1</b><br>5                         |                            | 1                       | 0                                 |                     | 3                             | 2                                         | 3                                    | 0                                | 0<br>1E                              |
| Betula nana<br>Flavocetraria cucullata            | 2<br><b>1</b>        |                             | 1                                      | 9                                       | 2                            | 0<br>1                   | 1<br>0                     | 0                                     |                            | 2<br>0                  | 2<br>1                            | 1<br>1              | 1                             | 6<br>1                                    | <u>29</u><br>3                       | <u>13</u><br>1                   | <u>15</u><br>2                       |
| Cetraria cf. islandica                            | 1                    |                             | '                                      | 0                                       | 0                            | 1                        | 0                          | 0                                     |                            | 1                       | 0                                 | •                   | 1                             | 1                                         | <b>3</b>                             | 0                                | 0                                    |
| Cladina stellaris                                 | 1                    |                             |                                        | 28                                      | J                            | 0                        | 0                          | 0                                     |                            | 1                       | 2                                 | 0                   | 1                             | 4                                         | 6                                    | 0                                | 0                                    |
| Flavocetraria nivalis                             | 2                    | 0                           | 1                                      | 2                                       | 0                            | 0                        | Ü                          | 0                                     |                            | 0                       | -                                 | J                   | •                             | -                                         | 0                                    | 0                                | 0                                    |
| Cladina rangiferina                               | -                    |                             | 2                                      | 5                                       | 0                            | 0                        | 0                          | 0                                     |                            | 0                       | 1                                 | 1                   | 3                             | 2                                         | 4                                    | 1                                | 2                                    |
|                                                   |                      |                             | -                                      | 2                                       | -                            | -                        | 1                          | 0                                     |                            | -                       | 2                                 | 1                   | 3                             | 9                                         | -                                    |                                  | -                                    |

Table 141. Continued.

|                                                                                                                                                                                            |                      |                             |                                        |                                         |                              | 9                        |                            |                                       |                            | 9                           | =                                    |                                      |                               |                                           |                                      | >                                                |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|----------------------------------------|-----------------------------------------|------------------------------|--------------------------|----------------------------|---------------------------------------|----------------------------|-----------------------------|--------------------------------------|--------------------------------------|-------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------------------|--------------------------------------|
| Taxon                                                                                                                                                                                      | Upland Mafic Barrens | <b>Upland Sandy Barrens</b> | Upland White Spruce-<br>Dryas Woodland | Upland White Spruce-<br>Lichen Woodland | Upland Sedge-Dryas<br>Meadow | Upland Willow Tall Shrub | Upland Willow Low<br>Shrub | Upland White Spruce-<br>Willow Forest | Upland Bluejoint<br>Meadow | Upland Spirea Low Shrub     | Upland Alder-Willow Tall<br>Shrub    | <b>Upland Birch Forest</b>           | Upland Spruce-Birch<br>Forest | Upland White Spruce-<br>Ericaceous Forest | Upland Birch-Ericaceous<br>Low Shrub | Upland Birch-Willow Low<br>Shrub                 | Upland Dwarf Birch-<br>Tussock Shrub |
|                                                                                                                                                                                            | 0                    |                             |                                        |                                         |                              |                          |                            |                                       |                            |                             |                                      |                                      | 1                             |                                           | 0                                    |                                                  |                                      |
| Spiraea beauverdiana Peltigera aphthosa Petasites frigidus Polygonum bistorta Poa arctica Aulacomnium palustre Betula glandulosa Stereocaulon sp. Unknown crustose lichen Peltigera canina | 0                    | 0                           | 1<br><b>6</b><br>2                     | 1 1 0                                   | 0 0 0 0                      | 0<br>3<br>0<br>2<br>1    | 0<br>1<br>0<br>0<br>4<br>2 | 0<br>0<br>0<br>1<br>0                 | 1<br>0<br><b>6</b><br>0    | 24<br>0<br>0<br>0<br>0<br>0 | 7<br>1<br>0<br>0<br>0<br>1<br>5<br>0 | 0<br>0<br>1<br>1<br>0<br>0           | 0<br>2<br>2<br>0              | 8<br>0<br>1<br>0<br>1<br>13<br>0          | 0<br>1<br>0<br>0<br>1<br>11<br>1     | 1<br>0<br>1<br><b>0</b><br>0<br>2<br>5<br>0<br>0 | 0<br>1<br>1<br>0<br>0<br>2<br>0<br>0 |
| Cetraria islandica<br>Mertensia paniculata<br>Artemisia tilesii<br>Equisetum pratense<br>Viburnum edule<br>Rubus arcticus ssp. arcticus                                                    |                      |                             | 1                                      |                                         | 1                            | 3                        | 0 1                        | 1<br>0                                | 0<br>1<br>1<br>4           | 1 0                         | 0<br>0<br>0<br>1<br>0                |                                      | 0<br>0<br>0                   | 0<br>0<br>0<br>4<br>0                     | 0                                    | 0 0                                              | 0                                    |
| Gymnocarpium dryopteris<br>Polytrichum juniperinum<br>Lycopodium annotinum<br>Linnaea borealis<br>Epilobium angustifolium                                                                  |                      |                             |                                        | 0                                       | 0                            | 2                        | 0                          | 0<br>0<br>0<br>1                      | 6                          | 1<br>5<br>1<br>3            | 1<br>0<br>0<br>0                     | 0<br><b>19</b><br>0<br>1<br><b>0</b> | 0<br>0<br>0<br>1              | 0<br>0<br>0<br>2<br>0                     | 0<br>0<br>0                          | 0<br>0<br>1<br>0                                 | 0                                    |
| Ribes triste<br>Betula papyrifera<br>Salix bebbiana<br>Geocaulon lividum<br>Rosa acicularis                                                                                                |                      |                             |                                        | 0<br><b>1</b>                           |                              |                          |                            | 0 0 2                                 | 1                          | 1                           | 1                                    | 0<br><u>52</u><br>1<br>0             | 1<br><b>20</b><br>3<br>2<br>2 | 0<br>0<br>0<br>0                          | 0                                    | 0                                                |                                      |
| Ledum groenlandicum Polytrichum commune Populus tremuloides Equisetum sylvaticum Loiseleuria procumbens                                                                                    | <u>2</u>             |                             |                                        | 0                                       |                              |                          |                            | 0                                     |                            | 0                           | 0                                    | 1<br>0                               | 2<br>0<br>3<br>0              | 0<br>1<br>0<br>0                          | 1<br>0<br>0<br>1                     | 0                                                |                                      |
| Polytrichum piliferum<br>Cladina mitis<br>Arctostaphylos alpina<br>Pedicularis labradorica                                                                                                 | 0                    |                             | 0                                      | 2<br>3<br>0                             |                              | 0                        | 0<br>1<br>0                | 0<br>1<br>0                           |                            | 0                           | 0<br>0<br>0                          | 0                                    | 1<br>1<br>0                   | 0<br>0<br>0                               | 2<br>0<br>1<br>0                     | 0 0 0                                            | 0<br>1<br>0<br>0                     |
| Nephroma arcticum<br>Cladina stygia                                                                                                                                                        | 0<br>1               |                             |                                        |                                         |                              |                          | 0                          | 0                                     |                            | 0<br>0                      | 0<br>0                               | 1                                    | 0<br>0                        | 0<br>1                                    | 0<br>1                               | 0                                                | 0<br>1                               |
| Picea mariana Cladina arbuscula Sphagnum sp. Rubus chamaemorus Aulacomnium turgidum Eriophorum vaginatum Eriophorum angustifolium Salix phlebophylla                                       | 0                    |                             |                                        | 3                                       | 0<br>0<br>1<br>0             | 0                        | 0<br>0<br>0<br>0           | 2<br>0<br>0                           | 1                          | 1<br>1<br>0                 | 1<br>0<br>1<br>0                     | 1                                    | 2<br>1<br>0                   | 1<br>4<br>2<br>0<br>0                     | 0<br>3<br>2<br>1<br>2<br>1<br>1<br>1 | 0<br>3<br>0<br>2<br>0<br>0                       | 0<br>1<br>13<br>5<br>3<br>15<br>0    |
| Carex rotundata Polytrichum strictum Sphagnum fuscum Dicranum elongatum                                                                                                                    |                      |                             |                                        |                                         | 0                            |                          | 4                          |                                       | 4                          |                             | 0                                    |                                      |                               | 0                                         | 1 0                                  | 0<br>1<br>1                                      | 1<br>1<br>3<br>1                     |
| Carex aquatilis Cetraria laevigata Sphagnum angustifolium Sphagnum girgensohnii Icmadophila ericetorum                                                                                     |                      |                             |                                        |                                         | 0                            | 1                        | 1                          |                                       | 4                          |                             | 0                                    | 0                                    | 0                             | 0                                         | 0 0                                  | 0 2 0                                            | 1<br>0<br>0<br>0<br>0                |
| Oxycoccus microcarpus<br>Chamaedaphne calyculata<br>Sphagnum lenense<br>Eriophorum brachyantherum                                                                                          |                      |                             |                                        |                                         |                              |                          | 0                          |                                       |                            |                             |                                      |                                      |                               |                                           | 1                                    |                                                  | 0<br>1<br>3<br>5                     |
| Sphagnum balticum<br>Bare Soil<br>Sample Size                                                                                                                                              | <b>12</b><br>4       | <b>87</b> 13                | <b>28</b><br>6                         | 0                                       | <b>18</b> 22                 | <b>18</b><br>38          | <b>1</b><br>13             | 2<br>16                               | <b>4</b><br>4              | <b>4</b><br>10              | 3<br>30                              | <b>4</b><br>4                        | <b>0</b><br>10                | 0<br>17                                   | <b>7</b><br>23                       | <b>4</b><br>25                                   | 5<br><b>1</b><br>39                  |

Table 142. Mean plant cover by lowland ecotypes within the Arctic Network. Numbers with an underline are dominent and differential species; bold indicates species frequency >60%; and zeros have trace values <0.5%.

| Taxon                                                       | Lowland<br>Sedge Fen | Lowland<br>Sedge-Willow<br>Fen | Lowland<br>Ericaceous<br>Shrub Bog | Birch-<br>Ericaceous<br>Low Shrub | Lowland Black<br>Spruce Forest | Lowland<br>Birch-Willow<br>Low Shrub | Lowland Alder<br>Tall Shrub | Lowland<br>Willow Low<br>Shrub |
|-------------------------------------------------------------|----------------------|--------------------------------|------------------------------------|-----------------------------------|--------------------------------|--------------------------------------|-----------------------------|--------------------------------|
| Water                                                       | 32                   | 21                             | 4                                  | 0                                 | 0                              | 0                                    |                             | 5                              |
| Utricularia vulgaris ssp. macrorhiza                        | 1                    |                                |                                    |                                   |                                |                                      |                             |                                |
| Carex chordorrhiza                                          | <u>16</u>            |                                | 1                                  |                                   |                                | 0                                    |                             | 0                              |
| Sphagnum orientale                                          | 4<br>1               |                                | 0<br>0                             |                                   |                                |                                      | 0                           | 2                              |
| Equisetum fluviatile<br>Limprichtia revolvens               | 6                    | 0                              | 0                                  |                                   |                                |                                      | U                           | 0                              |
| Carex livida                                                | 1                    | Ū                              | 0                                  |                                   |                                |                                      |                             | U                              |
| Pedicularis parviflora ssp. parviflora                      | 0                    |                                | 0                                  |                                   |                                |                                      |                             |                                |
| Utricularia intermedia                                      | 0                    | 0                              |                                    |                                   |                                |                                      |                             |                                |
| Trichophorum caespitosum                                    | 0                    |                                | 1                                  |                                   |                                |                                      |                             |                                |
| Calliergon sp.                                              | 0                    | 2                              |                                    |                                   |                                |                                      |                             | 2                              |
| Caltha palustris                                            | 0<br>0               | 1<br>0                         |                                    |                                   |                                | 0                                    |                             | 0                              |
| Saxifraga hirculus<br>Myrica gale                           | 0                    | 0                              | 0                                  |                                   |                                | U                                    | 2                           | 2                              |
| Drosera rotundifolia                                        | 0                    | U                              | 0                                  |                                   |                                |                                      | 2                           | 2                              |
| Campylium stellatum                                         | Ö                    | 1                              | Ö                                  |                                   | 1                              | 0                                    |                             | 0                              |
| Tofieldia pusilla                                           | 0                    |                                | 0                                  |                                   |                                |                                      |                             |                                |
| Carex capillaris                                            | 0                    | 0                              |                                    |                                   |                                |                                      | 0                           |                                |
| Carex saxatilis                                             | 1                    | 1                              | 0                                  |                                   |                                | 0                                    |                             | 0                              |
| Menyanthes trifoliata                                       | 1                    | 1                              | 1                                  |                                   |                                |                                      |                             |                                |
| Carex rariflora                                             | 0                    | 0                              | 0                                  | 1                                 |                                |                                      |                             | •                              |
| Carex canescens                                             | 0<br>1               | 0                              | 0<br>2                             |                                   |                                |                                      |                             | 0                              |
| Sphagnum steerei<br>Carex limosa                            | 1                    | 0                              | 2                                  |                                   |                                | 0                                    |                             |                                |
| Utricularia minor                                           | Ö                    | 0                              | _                                  |                                   |                                | v                                    |                             |                                |
| Pedicularis sudetica                                        | 0                    | 0                              | 0                                  |                                   |                                | 0                                    |                             |                                |
| Potentilla palustris                                        | 1                    | 2                              | 0                                  |                                   |                                | 0                                    | 0                           | 1                              |
| Eriophorum russeolum                                        | 1                    | 1                              | 7                                  | 0                                 | 0                              |                                      |                             |                                |
| Carex rotundata                                             | 3                    | 0                              | 9                                  |                                   |                                | 0                                    |                             |                                |
| Scorpidium scorpioides                                      | 9                    | 0                              | 0                                  |                                   |                                | •                                    |                             | •                              |
| Polygonum viviparum                                         | 0                    | 0<br>0                         |                                    |                                   |                                | 0                                    |                             | 0                              |
| Pedicularis parviflora ssp. pennellii<br>Epilobium palustre | 0<br>0               | 0                              |                                    |                                   |                                | 0                                    |                             | 0                              |
| Sphagnum capillifolium                                      | 0                    | 1                              |                                    | 3                                 |                                | 1                                    |                             | U                              |
| Mnium sp.                                                   | Ö                    | Ö                              | 0                                  | ,                                 |                                | 0                                    |                             | 2                              |
| Carex membranacea                                           | 1                    | 0                              | 0                                  |                                   |                                | 0                                    |                             | 0                              |
| Sphagnum squarrosum                                         | 2                    | 5                              | 2                                  | 3                                 |                                | 3                                    |                             | 0                              |
| Drepanocladus revolvens                                     | 3                    | 1                              | 1                                  |                                   |                                | 0                                    |                             |                                |
| Eriophorum scheuchzeri                                      | 0                    | 0                              | 0                                  |                                   |                                | 0                                    |                             | 0                              |
| Paludella squarrosa                                         | 0                    | 3                              | 0                                  |                                   |                                | 1                                    |                             | 2                              |
| Sphagnum lenense<br>Aulacomnium acuminatum                  | 0<br>0               | 2<br>0                         | 5<br>0                             |                                   |                                | 0<br>0                               |                             |                                |
| Calliergon stramineum                                       | U                    | 0                              | 0                                  |                                   |                                | U                                    |                             | 4                              |
| Warnstorfia exannulata                                      |                      | 1                              | 1                                  |                                   |                                |                                      |                             | 0                              |
| Sphagnum warnstorfii                                        |                      | 3                              | 2                                  | 0                                 |                                | 1                                    |                             | 2                              |
| Sphagnum imbricatum                                         |                      | 1                              | 1                                  |                                   |                                |                                      |                             |                                |
| Sphagnum balticum                                           | 0                    | 1                              | 12                                 | 7                                 |                                |                                      |                             |                                |
| Chamaedaphne calyculata                                     | 0                    |                                | 3                                  | 0                                 | 1                              | 0                                    | 2                           | 0                              |
| Sphagnum compactum                                          | 0                    |                                | 2                                  |                                   |                                | •                                    |                             |                                |
| Sphagnum lindbergii                                         |                      |                                | 3                                  |                                   |                                | 0                                    |                             |                                |
| Sphagnum jensnii<br>Icmadophila ericetorum                  |                      |                                | 4<br>0                             | 0                                 |                                | 0                                    |                             |                                |
| Iris setosa                                                 | 0                    |                                | 0                                  | J                                 |                                | 0                                    | 0                           |                                |
| Sphagnum riparium                                           | J                    |                                | 9                                  |                                   |                                | J                                    | J                           | 0                              |
| Sphagnum magellanicum                                       |                      |                                | 2                                  |                                   |                                |                                      |                             | -                              |
| Pedicularis langsdorffii ssp. arctica                       | 0                    | 0                              | 0                                  |                                   |                                | 0                                    |                             |                                |
| Pedicularis labradorica                                     |                      |                                | 0                                  | 0                                 | 0                              | 0                                    |                             | 0                              |
| Sphagnum rubellum                                           | _                    |                                | 0                                  | 1                                 |                                |                                      | _                           | -                              |
| Potentilla fruticosa                                        | 0                    | ^                              |                                    | 0                                 |                                | 0                                    | 0                           | 0                              |
| Carey yaginata                                              |                      | 0<br>0                         |                                    | 0                                 |                                | 0<br>0                               | 0<br>1                      |                                |
| Carex vaginata                                              |                      | U                              |                                    | U                                 |                                | U                                    | ı                           |                                |

Table 142. Continued.

|                                                  | Lowland<br>Sedge Fen | Lowland<br>Sedge-Willow<br>Fen | Lowland<br>Ericaceous<br>Shrub Bog | Birch-<br>Ericaceous<br>Low Shrub | Lowland Black<br>Spruce Forest | Lowland<br>Birch-Willow<br>Low Shrub | Lowland Alder<br>Tall Shrub | Lowland<br>Willow Low<br>Shrub |
|--------------------------------------------------|----------------------|--------------------------------|------------------------------------|-----------------------------------|--------------------------------|--------------------------------------|-----------------------------|--------------------------------|
| Taxon                                            | Lov                  | Low<br>Sed                     | Lov<br>Eric                        | Birch-<br>Ericace<br>Low SI       | Low                            | Lov<br>Lov                           | Low                         | Lowla<br>Willov<br>Shrub       |
| Salix lanata ssp. richardsonii                   | 0                    | 0                              | •                                  | 0                                 |                                | 1                                    | 3                           | 2                              |
| Rhytidium rugosum                                | 0                    | 0                              | 0<br>0                             | 2<br>0                            | 1                              | 0                                    | 2                           |                                |
| Eriophorum brachyantherum<br>Sphagnum fuscum     | 1                    |                                | 1                                  | 9                                 | 4                              | 1                                    |                             | 0                              |
| Oxycoccus microcarpus                            | '                    | 0                              | Ö                                  | 0                                 | 0                              | Ö                                    |                             | U                              |
| Aulacomnium turgidum                             | 1                    | 1                              | 2                                  | 3                                 | Ū                              | 2                                    |                             | 1                              |
| Salix fuscescens                                 | 2                    | 1                              | 1                                  | 0                                 |                                | 0                                    |                             | 3                              |
| Eriophorum angustifolium                         | 5                    | 11                             | 2                                  | 0                                 | 0                              | <u>3</u>                             |                             | 0                              |
| Carex aquatilis                                  | <u>11</u>            | <u>19</u>                      | 6                                  | 6                                 |                                | 3                                    |                             | 3                              |
| Andromeda polifolia                              | 1                    | 0                              | <u>6</u>                           |                                   | 0                              | 0                                    | 3                           | 0                              |
| Sphagnum sp.                                     | 3                    | 4                              | <u>7</u>                           | <u>5</u>                          | 6                              | 2                                    | 1                           |                                |
| Betula nana                                      | 1                    | 2                              | 4                                  | 21                                | 16                             | <u>24</u>                            | 5                           | 1                              |
| Aulacomnium palustre                             | 0                    | 5                              | 2                                  | 7                                 | 1                              | 9                                    | 1                           | 10                             |
| Salix planifolia ssp. pulchra                    | 0                    | <u>4</u>                       | 1                                  | 1                                 | 1                              | <u>22</u>                            | <u>9</u>                    | <u>56</u>                      |
| Calamagrostis canadensis<br>Eriophorum vaginatum | 0<br>0               | 1<br>0                         | 0<br>1                             | 0                                 | 0<br>1                         | 1<br>2                               | <b>2</b><br>3               | 5<br>0                         |
| Vaccinium uliginosum                             | 0                    | 2                              | 1<br>5                             | 9                                 | 24                             | 9                                    | 20                          | 4                              |
| Ledum decumbens                                  | 0                    | 0                              | 2                                  | <u>18</u>                         | 15                             | 3                                    | 20                          | 0                              |
| Vaccinium vitis-idaea                            | 0                    | 0                              | 1                                  | 10<br>10                          | <u>15</u><br>6                 | 2                                    | 1                           | 0                              |
| Empetrum nigrum                                  | _                    | 0                              | 1                                  | 8                                 | 7                              | 1                                    | 2                           | 0                              |
| Carex bigelowii                                  | 0                    | 0                              | 0                                  | 3                                 | 9                              | 4                                    | 0                           | 3                              |
| Hylocomium splendens                             |                      | 1                              | 0                                  | 11                                | 11                             | 12                                   | <u>21</u>                   | 15                             |
| Flavocetraria cucullata                          |                      | 0                              | 0                                  | 2                                 | 0                              | 0                                    | 1                           | 0                              |
| Dicranum sp.                                     | 0                    | 0                              | 0                                  | 3                                 | 2                              | 2                                    | 0                           | 2                              |
| Polytrichum sp.                                  | 0                    |                                | 0                                  | 1                                 | 2                              | 0                                    |                             | 1                              |
| Polytrichum juniperinum                          | •                    | 0                              | 0                                  | 1                                 | 2                              | 1                                    |                             | 0                              |
| Drepanocladus sp.                                | 0                    | 0                              | 0                                  | •                                 | 0                              | 1                                    |                             | 2                              |
| Thamnolia vermicularis                           |                      | 0                              | 0<br>0                             | 0<br>1                            | 0<br>0                         | 0<br>0                               | 0                           | 0                              |
| Cladina stygia<br>Cladina sp.                    |                      |                                | 0                                  | 1                                 | 1                              | 0                                    | 0<br>1                      | 0<br>0                         |
| Salix reticulata                                 | 0                    | 0                              | U                                  | 0                                 | 1                              | 1                                    | 1                           | 3                              |
| Polytrichum strictum                             | 0                    | 0                              | 0                                  | U                                 | 2                              | 1                                    | į                           | 1                              |
| Picea glauca                                     | Ö                    | Ö                              | Ö                                  | 0                                 | 2                              | 0                                    | 1                           | •                              |
| Alnus crispa                                     | 0                    | 0                              | 0                                  | _                                 | 2                              | 0                                    | 42                          | 0                              |
| Ptilidium ciliare                                | 0                    | 0                              | 0                                  | 2                                 | 0                              | 0                                    | _                           |                                |
| Cladina arbuscula                                |                      | 0                              |                                    | 2                                 | 0                              | 0                                    | 0                           |                                |
| Sphagnum angustifolium                           |                      |                                | 1                                  | 1                                 | 1                              |                                      |                             |                                |
| Cladina stellaris                                |                      |                                |                                    | 0                                 | 1                              |                                      |                             |                                |
| Nephroma arcticum                                |                      |                                |                                    | 0                                 | 1                              | 0                                    |                             |                                |
| Cladina rangiferina                              |                      | _                              | 0                                  | 1                                 | 2                              | 0                                    | 0                           |                                |
| Cladonia sp.                                     |                      | 0<br>0                         | 1                                  | 1                                 | 0                              | 0                                    | 0                           | •                              |
| Picea mariana                                    |                      | U                              | 0                                  | 1                                 | <u>27</u>                      | 0                                    | 1<br>0                      | 0                              |
| Spiraea beauverdiana<br>Pleurozium schreberi     |                      |                                | 0                                  | 0<br>3                            | 4<br>11                        | 0<br>1                               | 2                           | 0<br>1                         |
| Rubus chamaemorus                                |                      |                                | 0                                  | 1                                 | 5                              | 2                                    | 6                           | 1                              |
| Polemonium acutiflorum                           | 0                    | 0                              | U                                  | '                                 | ,                              | 0                                    | 0                           | Ö                              |
| Salix glauca                                     | Ū                    | Ö                              |                                    | 0                                 |                                | 1                                    | 1                           | 1                              |
| Arctagrostis latifolia                           |                      | 0                              |                                    | 0                                 | 0                              | 1                                    | 1                           | 1                              |
| Tomentypnum nitens                               | 0                    | 3                              | 1                                  | 0                                 | 0                              | 5                                    | 7                           | 3                              |
| Petasites frigidus                               |                      | 0                              |                                    | 0                                 | 1                              | 2                                    | 0                           | 16                             |
| Poa arctica                                      |                      | 0                              |                                    | 0                                 |                                | 0                                    |                             | 1                              |
| Valeriana capitata                               | 0                    | 0                              |                                    |                                   |                                | 0                                    | 1                           | <u>2</u>                       |
| Equisetum arvense                                | _                    | 0                              |                                    | 0                                 | 2                              | 5                                    | 5                           | 11                             |
| Arctostaphylos rubra                             | 0                    |                                |                                    | 0                                 | 0                              | 0                                    | 4                           | 0                              |
| Dactylina arctica                                |                      |                                |                                    |                                   | -                              | 0                                    |                             | ^                              |
| Sphagnum girgensohnii                            |                      |                                |                                    |                                   | 3                              | 0                                    | ^                           | 0<br>0                         |
| Aconitum delphinifolium                          |                      | 0                              |                                    | 6                                 | 3                              | U                                    | 0<br>11                     | 0                              |
| Betula glandulosa<br>Bare Soil                   | 4                    | 1                              | 1                                  | 0                                 | 3<br><b>1</b>                  | 1                                    | 3                           | 0                              |
| Dui C JUII                                       | 29                   | 21                             | 30                                 | 12                                | 14                             | 20                                   | 6                           | 12                             |

Table 143. Mean plant cover by lacustrine ecotypes within the Arctic Network. Numbers with an underline are dominent and differential species; bold indicates species frequency >60%; and zeros have trace values <0.5%.

|                                                            | Lake         | e<br>Lake                   | Lake          | Forb                   | e<br>Marsh                    | e<br>Marsh                    | Grass                           | e<br>ı Fen                 | e<br>hrub                  | e Wet<br>eadow                 | Wet                          | a                                 | a                    |
|------------------------------------------------------------|--------------|-----------------------------|---------------|------------------------|-------------------------------|-------------------------------|---------------------------------|----------------------------|----------------------------|--------------------------------|------------------------------|-----------------------------------|----------------------|
| Taxon                                                      | Lowland Lake | Lacustrine<br>Pondlily Lake | Riverine Lake | Riverine Forb<br>Marsh | Lacustrine<br>Marestail Marsh | Lacustrine<br>Horsetail Marsh | Lacustrin<br>Pendent (<br>Marsh | Lacustrine<br>Buckbean Fen | Lacustrine<br>Willow Shrub | Lacustrine Wet<br>Sedge Meadow | Riverine Wet<br>Sedge Meadow | Lacustrine<br>Bluejoint<br>Meadow | Lacustrin<br>Barrens |
| Water                                                      | 99           | 96                          | 98            | 42                     | 97                            | 72                            | <u></u>                         | 34                         | 1                          | 10                             | 8                            | <u> </u>                          | 0                    |
| Potamogeton zosterifolius                                  | <u> </u>     | 30                          | 5             | 72                     | ,                             | 12                            | 1                               | <b>J</b> 4                 | ,                          | 10                             | ·                            | o                                 | U                    |
| Potamogeton perfoliatus ssp. richardsonii                  | 1            |                             |               |                        |                               |                               |                                 |                            |                            |                                |                              |                                   |                      |
| Myriophyllum spicatum ssp. exalbescens                     | 0            |                             |               |                        |                               |                               |                                 |                            |                            |                                |                              |                                   |                      |
| Potamogeton friesii<br>Lemna trisulca                      | 0            |                             |               |                        |                               |                               |                                 |                            |                            |                                |                              |                                   |                      |
| Utricularia intermedia                                     | ·            | 0                           | 1             |                        |                               |                               |                                 |                            |                            |                                |                              |                                   |                      |
| Potamogeton berchtoldii                                    | 0            | 0                           |               |                        | 0                             |                               | 0                               |                            |                            |                                |                              |                                   |                      |
| Utricularia minor                                          | 0            | 0                           | 0             |                        | 0                             |                               |                                 | 0                          |                            |                                |                              |                                   |                      |
| Potamogeton alpinus ssp. tenuifolius<br>Nuphar polysepalum | 0            | 0                           | 6             |                        | 0                             |                               |                                 |                            |                            |                                |                              |                                   |                      |
| Sparganium sp.                                             | 1            | <u>5</u><br>1               | 0             | 0                      | 2                             |                               |                                 |                            |                            |                                |                              |                                   |                      |
| Utricularia vulgaris ssp. macrorhiza                       | Ó            | <u> </u>                    | <u>3</u>      | U                      | 2                             | 16                            | 0                               |                            |                            | 0                              |                              |                                   |                      |
| Potamogeton sp.                                            | <u>1</u>     |                             | _             | 22                     | 0                             |                               | 0                               |                            |                            |                                |                              |                                   |                      |
| Myriophyllum spicatum                                      | 0            |                             |               |                        | 1                             |                               | 0                               | 1                          |                            |                                | _                            |                                   |                      |
| Sparganium hyperboreum                                     |              |                             |               |                        | 2                             |                               | 2                               |                            |                            |                                | 0                            |                                   |                      |
| Caltha natans<br>Eleocharis acicularis                     | 1            |                             |               | 28                     | 0                             |                               | 2                               |                            |                            |                                |                              |                                   |                      |
| Rorippa islandica ssp. fernaldiana                         | •            |                             |               | 20                     |                               |                               |                                 |                            |                            |                                | 0                            |                                   | 2                    |
| Scorpidium scorpioides                                     |              |                             | 2             | 4                      |                               |                               | 4                               |                            |                            | 0                              | 8                            |                                   |                      |
| Ranunculus gmelini                                         |              |                             |               |                        | 0                             |                               | 0                               |                            |                            |                                |                              |                                   | 6                    |
| Limprichtia revolvens                                      |              |                             |               |                        |                               |                               | 1                               | 4                          |                            |                                |                              |                                   |                      |
| Sphagnum riparium<br>Sphagnum obtusum                      |              |                             |               |                        |                               |                               |                                 | 4<br>26                    |                            | 1                              |                              |                                   |                      |
| Carex rostrata                                             |              | 0                           |               |                        |                               |                               |                                 | 1                          |                            | 0                              | 17                           |                                   |                      |
| Warnstorfia exannulata                                     |              | Ū                           |               |                        | 1                             |                               |                                 | 3                          | 0                          | •                              | • •                          | 1                                 |                      |
| Carex utriculata                                           | 0            |                             |               |                        |                               | 0                             |                                 | 5                          |                            | 0                              |                              | 0                                 |                      |
| Galium trifidum ssp. trifidum                              |              |                             | 0             | 0                      |                               |                               | 0                               |                            |                            | 0                              | 3                            | 0                                 | _                    |
| Eriophorum scheuchzeri<br>Hippuris vulgaris                | 0            | 1                           | 3             | 2                      | <u>11</u>                     |                               | <u>4</u>                        | 0                          |                            | 0<br>0                         |                              |                                   | 2                    |
| Equisetum fluviatile                                       | 0            | '                           | 1             | <u>12</u>              | -11                           | <u> 26</u>                    | 4                               | 2                          |                            | 1                              |                              | 3                                 | 0                    |
| Arctophila fulva                                           | Ö            |                             | •             | 1                      | 0                             | 0                             | <u>17</u>                       | 0                          |                            | 0                              |                              | _                                 | Ö                    |
| Menyanthes trifoliata                                      | 1            | 0                           | 0             |                        | 1                             |                               | 0                               | <u>34</u>                  |                            | 0                              |                              |                                   |                      |
| Potentilla palustris                                       | 0            |                             | 0             |                        | 0                             | 0                             | 3                               | <u>2</u>                   | <u>0</u>                   | <u>17</u>                      | 1                            | <u>2</u>                          |                      |
| Eriophorum angustifolium<br>Carex aquatilis                | 0<br>1       |                             | 0             | 4                      | 0<br>0                        | 0<br>2                        | 1<br>0                          | 0<br>3                     | 7<br><b>5</b>              | 8<br><u>14</u>                 | <u>20</u>                    | 6<br>2                            | <u>4</u><br>0        |
| Caltha palustris                                           | '            |                             | 0             | 1                      | 0                             | 2                             | 3                               | 3                          | 0                          | 1                              | <u>6</u><br>0                | 2                                 | 0                    |
| Calliergon giganteum                                       |              |                             | Ŭ             | •                      | 1                             |                               | 4                               | 3                          | Ü                          | 3                              | Ü                            | 1                                 | Ö                    |
| Calliergon sp.                                             |              |                             |               | 30                     | 1                             |                               | 0                               | 3                          |                            | 2                              |                              |                                   |                      |
| Carex chordorrhiza                                         |              |                             |               | _                      |                               | 1                             |                                 | 1                          | _                          | 2                              | _                            | _                                 | _                    |
| Epilobium palustre<br>Carex saxatilis                      |              |                             |               | 0<br><b>12</b>         |                               | 0                             | 1                               | 0<br>1                     | 0<br>1                     | 0<br>2                         | 0<br><b>10</b>               | 0                                 | <u>0</u><br>0        |
| Ranunculus pallasii                                        |              |                             |               | 12                     |                               | U                             | 1                               | 0                          | Ó                          | 1                              | 10                           |                                   | U                    |
| Eriophorum russeolum                                       |              |                             |               |                        |                               |                               | -                               | 1                          | Ū                          | 1                              |                              |                                   |                      |
| Andromeda polifolia                                        | 0            |                             |               |                        |                               |                               |                                 | 0                          | 0                          | 0                              | 0                            |                                   |                      |
| Drepanocladus revolvens                                    |              |                             |               |                        |                               |                               |                                 | 3                          |                            | 1                              |                              |                                   | 1                    |
| Sphagnum sp.<br>Calamagrostis canadensis                   |              |                             |               |                        |                               |                               |                                 |                            | 2                          | 7<br>1                         | 0                            | 21                                |                      |
| Polemonium acutiflorum                                     |              |                             |               |                        |                               |                               |                                 |                            | 1                          | 0                              | 0                            | <u>31</u><br>2                    | 0                    |
| Betula nana                                                |              |                             |               |                        |                               |                               |                                 | 0                          | 3                          | Ö                              | •                            | 0                                 | Ö                    |
| Salix planifolia ssp. pulchra                              | 0            |                             |               |                        |                               |                               |                                 | 0                          | <u>32</u>                  | 3                              | 0                            | 0                                 | 0                    |
| Sphagnum squarrosum                                        |              |                             |               |                        |                               |                               | _                               |                            | 1                          | 2                              | _                            | 0                                 |                      |
| Petasites frigidus                                         |              |                             |               |                        |                               |                               | 0<br>2                          |                            | 1<br>2                     | 0                              | 2                            | 3                                 |                      |
| Drepanocladus sp.<br>Equisetum arvense                     |              |                             |               | 0                      |                               |                               | 2                               |                            | 2<br>1                     |                                | 0                            | 2<br>2                            | 0                    |
| Vaccinium uliginosum                                       |              |                             |               | Ū                      |                               |                               |                                 |                            | 2                          | 0                              | Ö                            | _                                 | Ū                    |
| Salix lanata ssp. richardsonii                             |              |                             | 0             | 0                      |                               |                               |                                 | 0                          | 11                         | -                              | Ō                            | 0                                 |                      |
| Calliergon stramineum                                      |              |                             |               |                        |                               |                               |                                 | 0                          | 0                          |                                |                              | 1                                 | _                    |
| Senecio congestus                                          |              |                             |               | 0                      |                               |                               |                                 |                            | 4                          | ^                              |                              |                                   | 2                    |
| Arctagrostis latifolia<br>Epilobium latifolium             |              |                             |               | 0                      |                               |                               |                                 |                            | <b>1</b><br>0              | 0                              |                              |                                   | 1<br>0               |
| Sample Size                                                | 21           | 5                           | 2             | 2                      | 9                             | 2                             | 8                               | 7                          | 6                          | 12                             | 3                            | 8                                 | 6                    |
| ·                                                          |              |                             |               |                        |                               |                               | -                               |                            |                            |                                | _                            |                                   |                      |

Table 144. Mean plant cover by riverine ecotypes within the Arctic Network. Numbers with an underline are dominent and differential species; bold indicates species frequency >60%; and zeros have trace values <0.5%.

|                                              |                  | Ţ                             |                                     | >                            |                           |                                        | t                                      |                                                                       | 3                                  | >                                 |                              |       |
|----------------------------------------------|------------------|-------------------------------|-------------------------------------|------------------------------|---------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------------------------------|------------------------------------|-----------------------------------|------------------------------|-------|
|                                              | v                | Dwa                           | 욮                                   | Ŋ                            |                           | ore                                    | Fore                                   | rest                                                                  | ΝĬ                                 | é                                 | ij                           |       |
|                                              | řen              | /as                           | Shr                                 | <u>  </u>                    | olar                      | ite<br>ar F                            | ite<br>V                               | r Fo                                                                  | <del>-</del> 6                     | ¥ .                               | ejo                          |       |
|                                              | Bai              | 7                             | ے ق                                 | ⋛                            | ₽                         | ഉ                                      | ĕĕ                                     | Me Alc                                                                | 흁                                  | § <u>a</u>                        | ₩ _                          |       |
|                                              | ine              | ji e                          | ine<br>M                            | ine<br>b                     | i,<br>i,                  | ine<br>ce-P                            | ine<br>ce-V                            | ine<br>ce- <i>f</i><br>ine                                            | ine<br>Shr                         | ine                               | ine<br>dow                   |       |
| Taxon                                        | Riverine Barrens | Riverine Dryas Dwarf<br>Shrub | Riverine Moist<br>Willow Tall Shrub | Riverine Willow Low<br>Shrub | Riverine Poplar<br>Forest | Riverine White<br>Spruce-Poplar Forest | Riverine White<br>Spruce-Willow Forest | Riverine White<br>Spruce-Alder Forest<br>Riverine Alder Tall<br>Shrub | Riverine Birch-Willow<br>Low Shrub | Riverine Wet Willow<br>Tall Shrub | Riverine Bluejoint<br>Meadow | River |
|                                              |                  |                               |                                     |                              |                           | <b>— V</b> ,                           |                                        | <u> </u>                                                              |                                    |                                   |                              |       |
| Eleocharis acicularis Oxytropis borealis     | 0<br>0           | 0                             |                                     | 0                            |                           |                                        |                                        |                                                                       |                                    |                                   |                              |       |
| Poa glauca                                   | 0                | 0                             |                                     | 0                            |                           |                                        |                                        |                                                                       |                                    |                                   |                              |       |
| Castilleja elegans                           | J                | 0                             | 0                                   | o                            |                           |                                        |                                        |                                                                       |                                    |                                   |                              |       |
| Cnidium cnidiifolium                         | 0                | 1                             | 0                                   |                              |                           | 0                                      |                                        |                                                                       |                                    |                                   |                              |       |
| Saxifraga bronchialis                        | 0                | 0                             | 0                                   |                              |                           |                                        |                                        |                                                                       |                                    |                                   |                              |       |
| Aster yukonensis                             | 0                | 0                             |                                     |                              |                           |                                        |                                        |                                                                       |                                    |                                   |                              |       |
| Dryas drummondii                             | 0                | <u>7</u>                      |                                     |                              |                           |                                        |                                        |                                                                       |                                    |                                   |                              |       |
| Elymus arenarius ssp. mollis                 | 2                |                               | 0                                   |                              |                           |                                        | 0                                      |                                                                       |                                    |                                   |                              |       |
| Elymus innovatus                             |                  | 0                             | 5                                   |                              |                           |                                        |                                        |                                                                       |                                    |                                   |                              |       |
| Wilhelmsia physodes                          | 0                |                               | 0                                   | 0                            |                           |                                        | 0                                      |                                                                       | 0                                  |                                   |                              |       |
| Astragalus eucosmus ssp. sealei              | _                | 0                             | 0                                   | 0                            |                           |                                        |                                        |                                                                       |                                    |                                   |                              |       |
| Bupleurum triradiatum ssp. arcticum          | 0                | 0                             | _                                   | 0                            |                           |                                        |                                        |                                                                       |                                    |                                   |                              |       |
| Allium schoenoprasum                         | 0                | 0                             | 0                                   | 0                            | 0                         |                                        |                                        |                                                                       |                                    |                                   |                              |       |
| Stellaria longipes                           | 0                | 0                             | 0                                   | 0                            |                           |                                        |                                        |                                                                       | •                                  |                                   |                              |       |
| Festuca rubra<br>Juncus arcticus             | 0<br>0           | 0                             | 0<br>0                              | 0<br>0                       | 0                         |                                        | 0                                      |                                                                       | 0                                  |                                   |                              |       |
| Oxytropis campestris ssp. jordalii           | 0                | 1                             | 0                                   | 0                            | U                         |                                        | U                                      |                                                                       |                                    |                                   |                              |       |
| Racomitrium lanuginosum                      | 0                | 7                             | 0                                   | U                            |                           |                                        |                                        |                                                                       | 0                                  |                                   |                              |       |
| Rhododendron lapponicum                      | ŭ                | 0                             | Ü                                   | 0                            |                           |                                        |                                        |                                                                       | Ü                                  |                                   |                              |       |
| Eriophorum angustifolium                     |                  | -                             |                                     | 0                            |                           |                                        | 0                                      |                                                                       | 1                                  | 0                                 | 0                            |       |
| Moehringia lateriflora                       |                  |                               | 0                                   |                              | 0                         |                                        | 0                                      |                                                                       | 0                                  |                                   |                              |       |
| Saussurea angustifolia                       |                  | 0                             | 0                                   |                              |                           |                                        | 1                                      |                                                                       | 0                                  |                                   |                              |       |
| Elymus alaskanus                             | 0                |                               | 0                                   |                              | 0                         |                                        |                                        |                                                                       |                                    |                                   |                              |       |
| Deschampsia caespitosa                       | 0                | 0                             | 0                                   |                              |                           |                                        |                                        |                                                                       |                                    |                                   |                              |       |
| Artemisia borealis                           | 0                | 0                             | 0                                   | 0                            |                           |                                        |                                        |                                                                       |                                    |                                   |                              |       |
| Artemisia glomerata                          | 0                |                               | 0                                   |                              |                           |                                        |                                        |                                                                       |                                    |                                   |                              |       |
| Carex scirpoidea                             | 0                | 1                             | 8                                   | 1                            |                           |                                        | 1                                      |                                                                       |                                    |                                   |                              |       |
| Tofieldia pusilla                            | 0                | 0                             | 0                                   | 0                            |                           |                                        | 0                                      |                                                                       | _                                  |                                   |                              |       |
| Artemisia arctica ssp. arctica               | 0                | •                             | 0                                   | 0                            |                           |                                        |                                        |                                                                       | 0                                  |                                   |                              |       |
| Calamagrostis lapponica<br>Rhytidium rugosum | 0<br>0           | 0<br>8                        | 0<br>0                              | 3                            |                           | 2                                      |                                        |                                                                       | 0                                  |                                   |                              |       |
| Stereocaulon sp.                             | 0                | 1                             | 0                                   | 0                            |                           | 2                                      | 0                                      |                                                                       | 0                                  |                                   |                              |       |
| Erigeron purpuratus                          | 0                | 0                             | 0                                   | 0                            |                           |                                        | U                                      |                                                                       | U                                  |                                   |                              |       |
| Parnassia kotzebuei                          | ŭ                | Ü                             | 0                                   | 0                            |                           |                                        |                                        |                                                                       |                                    |                                   |                              |       |
| Arnica lessingii                             |                  |                               | 0                                   | 0                            |                           |                                        |                                        |                                                                       |                                    |                                   |                              |       |
| Climacium dendroides                         |                  |                               | 0                                   | 0                            |                           |                                        |                                        | 4                                                                     | 1                                  | 0                                 |                              |       |
| Dodecatheon frigidum                         |                  |                               | 0                                   | 0                            |                           |                                        | 0                                      |                                                                       |                                    |                                   |                              |       |
| Cardamine pratensis ssp. angustifolia        |                  |                               | 0                                   | 0                            |                           |                                        |                                        | 0                                                                     | 0                                  |                                   | 0                            |       |
| Thalictrum alpinum                           |                  |                               | 0                                   | 0                            |                           |                                        | 0                                      |                                                                       |                                    |                                   |                              |       |
| Astragalus umbellatus                        |                  |                               | 0                                   | 0                            |                           | 0                                      |                                        |                                                                       |                                    |                                   |                              |       |
| Carex membranacea                            |                  |                               | 0                                   | 3                            |                           |                                        | 0                                      |                                                                       |                                    |                                   | 0                            |       |
| Aulacomnium palustre                         |                  |                               | 0                                   | 3                            |                           | 0                                      | 2                                      | 2                                                                     | 3                                  |                                   |                              |       |
| Solidago multiradiata var. multiradiata      | _                |                               | 1                                   | 0                            |                           | 0                                      | 1                                      |                                                                       |                                    |                                   |                              |       |
| Carex capillaris                             | 0                | 0                             | 0                                   | 1                            |                           | •                                      | 0                                      |                                                                       |                                    |                                   |                              |       |
| Gentiana propingua                           | 0<br>0           | 1<br>1                        | 0<br>0                              | 0<br>0                       | 0<br>0                    | 0<br>0                                 | 0                                      |                                                                       |                                    |                                   |                              |       |
| Bromus pumpellianus<br>Lupinus arcticus      | 0                | 2                             | 0                                   | 1                            | 1                         | 1                                      | 2                                      | 0                                                                     | 0                                  |                                   |                              |       |
| Abietinella abietina                         | U                | 10                            | 0                                   | 1                            | 1                         | 0                                      | 2                                      | v                                                                     | U                                  |                                   |                              |       |
| Solidago multiradiata                        | 0                | 0                             | 0                                   | 0                            | 0                         | 0                                      | 0                                      |                                                                       |                                    |                                   |                              |       |
| Festuca richardsonii                         | 0                | 0                             | 0                                   | 0                            | 1                         | 0                                      | Ü                                      |                                                                       |                                    |                                   |                              |       |
| Poa alpigena                                 | 0                | Ū                             | 0                                   | Ü                            | 0                         | 0                                      |                                        |                                                                       |                                    | 0                                 |                              |       |
| Hypnum lindbergii                            | •                |                               | 0                                   | 0                            | 0                         | 0                                      |                                        |                                                                       |                                    | •                                 |                              |       |
| Juniperus communis                           |                  | 1                             | 0                                   | -                            | 0                         | 2                                      |                                        |                                                                       |                                    |                                   |                              |       |
| Equisetum scirpoides                         |                  |                               | 0                                   |                              |                           | 0                                      | 0                                      |                                                                       |                                    |                                   |                              |       |
| Equisetum pratense                           |                  |                               | 0                                   |                              | 0                         | 11                                     |                                        | 7 1                                                                   |                                    |                                   |                              |       |
| Salix monticola                              |                  |                               | 0                                   |                              | 1                         | 1                                      | 0                                      |                                                                       |                                    |                                   |                              |       |
| Stereocaulon alpinum                         |                  |                               | 0                                   |                              |                           | 3                                      |                                        |                                                                       |                                    |                                   |                              |       |

Table 144. Continued.

|                                                      | Riverine Barrens     | ine Dryas Dwarf   | Riverine Moist<br>Willow Tall Shrub | Riverine Willow Low<br>Shrub | ine Poplar<br>t    | Riverine White<br>Spruce-Poplar Forest | Riverine White<br>Spruce-Willow Forest | Riverine White<br>Spruce-Alder Forest | Riverine Alder Tall<br>Shrub | Riverine Birch-Willow<br>Low Shrub | Riverine Wet Willow<br>Tall Shrub | Riverine Bluejoint<br>Meadow |       |
|------------------------------------------------------|----------------------|-------------------|-------------------------------------|------------------------------|--------------------|----------------------------------------|----------------------------------------|---------------------------------------|------------------------------|------------------------------------|-----------------------------------|------------------------------|-------|
| Taxon                                                | Riveri               | Riverine<br>Shrub | Riveri<br>Willo                     | Riverir<br>Shrub             | Riverine<br>Forest | Riveri<br>Spruc                        | Riveri<br>Spruc                        | Riveri<br>Spruc                       | Riverir<br>Shrub             | Riveri<br>Low S                    | Riveri<br>Tall S                  | Riveri<br>Mead               | River |
| Chrysanthemum bipinnatum                             | 0                    |                   | 0                                   |                              | 0                  | 0                                      |                                        |                                       |                              |                                    |                                   |                              |       |
| Pedicularis sudetica                                 | 0                    | 0                 | 0                                   | 0                            | 0                  | 0                                      |                                        |                                       |                              |                                    |                                   |                              |       |
| Elymus trachycaulus                                  | 0                    |                   | 0                                   |                              | 0                  | 0                                      |                                        |                                       |                              |                                    |                                   |                              |       |
| Carex krausei                                        | 0                    | 0                 | 0                                   | 0                            | 0                  |                                        |                                        |                                       |                              |                                    | •                                 |                              |       |
| Calamagrostis inexpansa<br>Silene acaulis            | 0<br>0               | 0<br>0            | 0<br>1                              | 0<br>0                       | 0                  |                                        |                                        |                                       |                              |                                    | 0                                 |                              |       |
| Castilleja caudata                                   | 0                    | 0                 | 0                                   | 0                            | 0                  | 0                                      |                                        |                                       |                              | 0                                  |                                   |                              |       |
| Flavocetraria cucullata                              | 0                    | 1                 | 0                                   | 0                            | Ū                  | 0                                      |                                        |                                       |                              | 0                                  |                                   |                              |       |
| Platanthera obtusata                                 | _                    | 0                 | 0                                   | 0                            | 0                  | 0                                      | 0                                      | 0                                     |                              | -                                  |                                   |                              |       |
| Agropyron macrourum                                  | 0                    | 0                 | 0                                   |                              | 0                  | 0                                      |                                        |                                       |                              |                                    |                                   |                              |       |
| Calamagrostis purpurascens                           | 1                    | 1                 | 0                                   | 0                            | 0                  | 0                                      |                                        |                                       |                              |                                    |                                   |                              |       |
| Oxytropis campestris                                 | 0                    | <u>0</u>          | 0                                   | 0                            | 0                  | 0                                      |                                        |                                       |                              |                                    |                                   |                              |       |
| Hedysarum mackenzii                                  | 1                    | 0                 | 1                                   |                              | 1                  | 0                                      | 0                                      |                                       |                              |                                    |                                   |                              |       |
| Eriophorum angustifolium ssp. triste                 |                      |                   | •                                   |                              | _                  |                                        | •                                      |                                       |                              |                                    |                                   |                              |       |
| Cypripedium passerinum                               | 0                    | 0                 | 0                                   | 0                            | 1                  | 1<br>0                                 | 0<br>0                                 |                                       |                              |                                    |                                   |                              |       |
| Oxytropis viscida<br>Epilobium latifolium            | 0<br><u><b>2</b></u> | 0<br><b>1</b>     | 0<br>1                              | 1<br>1                       | 0                  | U                                      | U                                      |                                       |                              |                                    |                                   |                              |       |
| Astragalus alpinus                                   | 0                    | 0                 | 0                                   | 0                            | 0                  | 0                                      |                                        | 0                                     |                              | 0                                  |                                   |                              |       |
| Salix brachycarpa ssp. niphoclada                    | 1                    | 9                 | 3                                   | 5                            | 1                  | 1                                      |                                        | •                                     | 1                            | 1                                  |                                   |                              |       |
| Dryas integrifolia                                   | 0                    | <u>17</u>         | 2                                   | 12                           |                    | 0                                      | 1                                      |                                       |                              |                                    |                                   |                              |       |
| Arnica alpina ssp. angustifolia                      | 0                    | 0                 | 0                                   | 0                            | 0                  | 0                                      |                                        |                                       |                              |                                    |                                   |                              |       |
| Tomentypnum nitens                                   | 0                    |                   | 0                                   | 14                           |                    | 1                                      | 10                                     |                                       |                              | 7                                  |                                   |                              |       |
| Pedicularis verticillata                             | 0                    | 0                 | 0                                   | 0                            | 0                  | 0                                      |                                        |                                       |                              |                                    |                                   |                              |       |
| Zygadenus elegans                                    | 0                    | 0                 | 1                                   | 0                            | 0                  | 0                                      | 0                                      |                                       |                              |                                    |                                   |                              |       |
| Poa alpina                                           | 0                    | 0                 | 0                                   | •                            | 0                  | 0                                      | 0                                      |                                       |                              |                                    |                                   |                              |       |
| Senecio lugens<br>Empetrum nigrum                    | 0<br>0               | 0                 | 0<br>0                              | 0<br>1                       | 0                  | 0<br>1                                 | 0<br><b>4</b>                          | 2                                     |                              |                                    |                                   |                              |       |
| Polygonum viviparum                                  | 0                    | 0                 | 0                                   | 0                            | 0                  | 0                                      | 0                                      | 2                                     |                              |                                    |                                   |                              |       |
| Peltigera aphthosa                                   | Ū                    | Ü                 | 0                                   | 0                            | 0                  | 0                                      | 0                                      | 0                                     |                              | 1                                  | 0                                 |                              |       |
| Carex concinna                                       |                      | 1                 |                                     | 0                            | 0                  | 0                                      | 0                                      | 0                                     |                              |                                    |                                   |                              |       |
| Bromus sp.                                           |                      |                   | 0                                   |                              | 1                  | 1                                      | 0                                      |                                       |                              |                                    |                                   |                              |       |
| Pyrola secunda                                       |                      | 0                 | 0                                   | 0                            | 0                  | 1                                      | 0                                      | 0                                     |                              |                                    |                                   |                              |       |
| Anemone richardsonii                                 |                      | 0                 | 0                                   | 0                            | 1                  | 1                                      | 0                                      | 1                                     | 0                            |                                    | 1                                 |                              |       |
| Campylium polygamum                                  | 0                    |                   | 1                                   | 0                            | 0                  | _                                      | 0                                      |                                       |                              |                                    |                                   |                              |       |
| Ceratodon purpureus                                  | 1                    | 0                 | 2                                   | 1                            | 0                  | 0                                      | 4                                      | 0                                     |                              |                                    |                                   |                              |       |
| Trisetum spicatum ssp. spicatum<br>Brachythecium sp. | 0<br>0               | 0                 | 0<br>1                              | 1                            | 0<br>0             | 0<br>0                                 | 0                                      | 0                                     | 0                            | 0                                  |                                   |                              |       |
| Salix hastata                                        | 0                    | 1                 | 1                                   | 1                            | 0                  | 0                                      | 0                                      | 0                                     | U                            | 0                                  | 2                                 |                              |       |
| Arctagrostis latifolia                               | 0                    | 0                 | 1                                   | 0                            | 1                  | 0                                      | 0                                      | Ŭ                                     | 13                           | 2                                  | 2                                 |                              |       |
| Galium boreale                                       | 0                    | 0                 | 2                                   | 0                            | 0                  | 0                                      | 1                                      | 0                                     | 0                            | 0                                  |                                   |                              |       |
| Parnassia palustris                                  | 0                    | 0                 | 0                                   | 0                            | 0                  | 0                                      | 0                                      |                                       |                              |                                    | 0                                 |                              |       |
| Artemisia tilesii                                    | 0                    | 0                 | 1                                   | 0                            | 1                  | 0                                      | 0                                      | 0                                     | 1                            | 0                                  |                                   |                              | 0     |
| Equisetum arvense                                    | 1                    |                   | 6                                   | 3                            | 4                  | 11                                     | 4                                      | 2                                     | 4                            | 1                                  | 3                                 | 2                            |       |
| Salix alaxensis                                      | <u>4</u>             | 2                 | 29                                  | 10                           | 14                 | <u>6</u>                               | 6                                      | 1                                     | 7                            | 7                                  | 6                                 | 0                            | 0     |
| Aster sibiricus                                      | 0                    | 1                 | 1                                   | 0                            | 4                  | 0                                      | 0                                      | 0                                     | 0                            |                                    |                                   |                              |       |
| Equisetum variegatum                                 | 0<br>0               | 0<br>1            | 1<br>3                              | 3<br><b>2</b>                | 0<br>0             | 0<br>0                                 | 0                                      |                                       |                              | 1                                  |                                   |                              |       |
| Festuca altaica<br>Anemone parviflora                | 0                    | 0                 | 3<br>1                              | 1                            | 0                  | 0                                      | 1<br>0                                 |                                       |                              | 0                                  |                                   |                              |       |
| Potentilla fruticosa                                 | 0                    | Ŏ                 | 1                                   | 3                            | 0                  | 0                                      | 4                                      | 0                                     | 0                            | 1                                  | 1                                 |                              |       |
| Salix glauca                                         | 0                    | 2                 | 1                                   | 6                            | 2                  | 3                                      | 7                                      | 1                                     | ·                            | 4                                  | 0                                 |                              |       |
| Salix lanata ssp. richardsonii                       |                      |                   | 1                                   | <u>32</u>                    |                    | 0                                      | <u>8</u>                               |                                       | 4                            | 9                                  | 4                                 | 2                            |       |
| Salix reticulata                                     | 0                    | 0                 | 6                                   | 8                            | 0                  | 0                                      | 6                                      | 0                                     |                              | 0                                  |                                   |                              |       |
| Arctostaphylos rubra                                 | 0                    | 1                 | 3                                   | 8                            | 1                  | 4                                      | 6                                      | 4                                     | 0                            | 1                                  |                                   |                              |       |
| Hedysarum alpinum                                    | 0                    | 0                 | 3                                   | 1                            | 4                  | 4                                      | 2                                      | 0                                     |                              |                                    |                                   |                              |       |
| Populus balsamifera                                  | 0                    | 1                 | 1                                   |                              | <u>47</u>          | <u>19</u>                              | 0                                      | 1                                     |                              |                                    |                                   |                              |       |
| Shepherdia canadensis                                | 0                    | 1                 | 2                                   | 0                            | 13                 | 4                                      | 2                                      | 0                                     |                              |                                    | _                                 |                              |       |
| Pyrola asarifolia                                    | 0                    | 0                 | 0                                   | 0                            | 1                  | 1                                      | 0                                      | 6                                     |                              | _                                  | 0                                 | _                            |       |
| Salix arbusculoides                                  | 0                    | 0                 | 1                                   | 1                            | 0                  | 1                                      | 2                                      | 0                                     | 1                            | 5                                  | 2                                 | 0                            |       |
| Sanionia uncinata<br>Hylocomium splendens            | 0                    | 0                 | 1                                   | 3<br>6                       | 2                  | 9<br>28                                | 2<br><b>35</b>                         | 2<br><b>52</b>                        | 1                            | 1<br>13                            | 6                                 |                              |       |
| Hylocomium splendens                                 | 0                    | 1                 | 2                                   | 6                            | 3                  | 28                                     | 35                                     | 52                                    |                              | 13                                 |                                   |                              |       |

Table 144. Continued.

| Taxon                            | Riverine Barrens | Riverine Dryas Dwarf<br>Shrub | Riverine Moist<br>Willow Tall Shrub | Riverine Willow Low<br>Shrub | Riverine Poplar<br>Forest | Riverine White<br>Spruce-Poplar Forest | Riverine White<br>Spruce-Willow Forest | Riverine White<br>Spruce-Alder Forest | Riverine Alder Tall<br>Shrub | Riverine Birch-Willow<br>Low Shrub | Riverine Wet Willow<br>Tall Shrub | Riverine Bluejoint<br>Meadow | River |
|----------------------------------|------------------|-------------------------------|-------------------------------------|------------------------------|---------------------------|----------------------------------------|----------------------------------------|---------------------------------------|------------------------------|------------------------------------|-----------------------------------|------------------------------|-------|
| Picea glauca                     | 0                | 0                             | 0                                   | 0                            | 1                         | 23                                     | <u>24</u>                              | <u>27</u>                             |                              | 0                                  | 0                                 |                              |       |
| Alnus crispa                     | 0                |                               | 0                                   | 0                            | 5                         | 16                                     | 13                                     | 39                                    | 68                           | 0                                  | 2                                 |                              |       |
| Calamagrostis canadensis         | 0                | 0                             | 1                                   | 0                            | 0                         | 0                                      | 1                                      | 3                                     | 10                           | 6                                  | 5                                 | 45                           |       |
| Vaccinium vitis-idaea            |                  |                               | 0                                   | 0                            |                           | 0                                      | 1                                      | 3                                     | 0                            | 1                                  | 0                                 |                              |       |
| Salix barclayi                   | 0                |                               | 1                                   |                              |                           |                                        | 2                                      | 4                                     | 0                            | 1                                  |                                   |                              |       |
| Rosa acicularis                  | 0                |                               | 0                                   |                              | 0                         | 0                                      | 2                                      | 8                                     | 0                            | 0                                  |                                   |                              |       |
| Cladonia sp.                     |                  | 2                             | 0                                   | 0                            | 0                         | 0                                      | 0                                      | 0                                     |                              | 0                                  | 0                                 |                              |       |
| Alnus tenuifolia                 |                  |                               | 0                                   |                              | 0                         | 0                                      | 1                                      | 0                                     |                              |                                    |                                   |                              |       |
| Moneses uniflora                 |                  |                               |                                     |                              | 0                         | 0                                      | <u>0</u>                               | 0                                     |                              |                                    |                                   |                              |       |
| Rhytidiadelphus triquetrus       |                  |                               |                                     |                              |                           | 1                                      | 5                                      | 3                                     |                              |                                    |                                   |                              |       |
| Hypogymnia physodes              |                  |                               |                                     |                              |                           | 0                                      | 0                                      | 0                                     |                              |                                    |                                   |                              |       |
| Linnaea borealis                 |                  |                               |                                     |                              | 0                         | 0                                      |                                        | 5                                     | 1                            |                                    |                                   |                              |       |
| Boschniakia rossica              |                  |                               |                                     |                              | 0                         | 0                                      | 0                                      | 0                                     |                              |                                    |                                   |                              |       |
| Pleurozium schreberi             | 0                |                               | 0                                   |                              | -                         | 2                                      | -                                      | 2                                     |                              | 2                                  | 1                                 |                              |       |
| Ribes triste                     | -                |                               | -                                   |                              |                           |                                        |                                        | 1                                     | 1                            |                                    |                                   |                              |       |
| Viburnum edule                   |                  |                               |                                     |                              |                           | 0                                      | 0                                      | 2                                     | 0                            |                                    |                                   |                              |       |
| Trientalis europaea ssp. arctica |                  |                               |                                     |                              | 0                         |                                        |                                        | 0                                     | 1                            |                                    |                                   |                              |       |
| Rubus arcticus                   |                  |                               | 1                                   | 1                            | 2                         | 2                                      | 1                                      | 0                                     | 1                            |                                    | 2                                 |                              |       |
| Mertensia paniculata             | 0                |                               | 0                                   |                              | 1                         | 1                                      | 2                                      | 0                                     | 1                            |                                    |                                   |                              |       |
| Epilobium angustifolium          | 0                |                               | 0                                   |                              | 0                         | 0                                      | 0                                      | 0                                     | 0                            |                                    | 0                                 |                              |       |
| Aconitum delphinifolium          | ŭ                |                               | 0                                   | 0                            | 0                         | •                                      | 0                                      | Ö                                     | Ö                            | 0                                  |                                   |                              |       |
| Poa arctica                      | 0                |                               | 0                                   | 0                            | _                         |                                        | 0                                      | _                                     | _                            | 1                                  |                                   |                              |       |
| Rubus arcticus ssp. arcticus     | 0                |                               | 0                                   | 0                            |                           |                                        | _                                      | 1                                     | 2                            | 1                                  | 1                                 | 15                           |       |
| Valeriana capitata               |                  |                               | 0                                   | 1                            |                           | 0                                      | 0                                      |                                       | 1                            | 1                                  |                                   |                              |       |
| Vaccinium uliginosum             | 0                | 1                             | 0                                   | 4                            | 0                         | 0                                      | 9                                      | 13                                    | 1                            | 15                                 | 4                                 | 0                            |       |
| Salix planifolia ssp. pulchra    | 0                |                               | 1                                   | 4                            |                           |                                        | 2                                      | 0                                     | 0                            | 29                                 | <u>51</u>                         | 9                            |       |
| Betula nana                      | 0                |                               | 0                                   | 1                            | 0                         |                                        |                                        |                                       | 0                            | 23                                 | 1                                 |                              |       |
| Petasites frigidus               | 0                |                               | 0                                   | 0                            |                           |                                        | 0                                      | 0                                     | 5                            | 4                                  |                                   |                              |       |
| Pyrola grandiflora               |                  | 0                             |                                     | 0                            | 0                         | 0                                      | 0                                      | 0                                     |                              | 1                                  |                                   |                              |       |
| Polemonium acutiflorum           | 0                |                               | 0                                   | 0                            | 0                         | 0                                      | 0                                      |                                       | 1                            | 0                                  |                                   |                              |       |
| Ledum decumbens                  |                  | 0                             | 0                                   | 0                            |                           | 0                                      | 0                                      | 4                                     | 0                            | 1                                  |                                   |                              |       |
| Aulacomnium turgidum             |                  |                               |                                     | 0                            |                           |                                        | 0                                      |                                       |                              | 1                                  |                                   |                              |       |
| Carex bigelowii                  | 0                |                               |                                     | 1                            |                           |                                        | 0                                      |                                       |                              | 1                                  |                                   | 0                            |       |
| Spiraea beauverdiana             | 0                |                               | 0                                   | -                            |                           |                                        | _                                      | 6                                     | 5                            | 1                                  | 0                                 | -                            |       |
| Salix bebbiana                   |                  |                               |                                     |                              |                           |                                        | 2                                      | 1                                     | 0                            |                                    | 0                                 |                              |       |
| Betula glandulosa                |                  |                               | 0                                   |                              |                           |                                        | 3                                      | 2                                     |                              | 1                                  | 0                                 | 2                            |       |
| Sphagnum sp.                     |                  |                               |                                     |                              |                           |                                        |                                        | 1                                     |                              | 3                                  | 1                                 |                              |       |
| Rubus chamaemorus                |                  |                               |                                     |                              |                           |                                        |                                        | 1                                     | 1                            | 1                                  | 0                                 |                              |       |
| Iris setosa                      |                  |                               | 0                                   |                              |                           |                                        | 0                                      | 0                                     |                              | 1                                  |                                   | 1                            |       |
| Potentilla palustris             | 0                |                               |                                     |                              |                           |                                        |                                        |                                       | 0                            | 1                                  | <u>11</u>                         | 3                            |       |
| Carex canescens                  | -                |                               |                                     |                              |                           |                                        |                                        |                                       | -                            | 0                                  | 1                                 | _                            |       |
| Carex aquatilis ssp. aquatilis   | 0                | 0                             | 0                                   | 1                            |                           |                                        |                                        |                                       |                              | 0                                  | 3                                 | 0                            |       |
| Calliergon sp.                   |                  |                               |                                     | 0                            |                           |                                        |                                        |                                       |                              |                                    | 11                                |                              |       |
| Epilobium palustre               | 0                |                               |                                     |                              |                           |                                        |                                        |                                       |                              |                                    | 1                                 | 0                            |       |
| Equisetum fluviatile             |                  |                               |                                     |                              |                           |                                        |                                        |                                       |                              |                                    | 2                                 | 0                            |       |
| Galium trifidum ssp. trifidum    |                  |                               | 0                                   |                              |                           |                                        |                                        |                                       | 0                            | 0                                  | 0                                 | 1                            |       |
| Carex saxatilis                  |                  | 0                             | 0                                   | 0                            |                           |                                        |                                        |                                       |                              | 1                                  | 3                                 | 25                           |       |
| Scorpidium scorpioides           |                  |                               |                                     |                              |                           |                                        |                                        |                                       | 0                            |                                    |                                   |                              |       |
| Hippuris vulgaris                | 0                |                               |                                     |                              |                           |                                        |                                        |                                       | -                            |                                    |                                   |                              |       |
| Water                            | 0                |                               | 0                                   | 0                            |                           |                                        |                                        |                                       |                              |                                    | 2                                 |                              | 99    |
| Bare Soil                        | 84               | 26                            | 28                                  | 2                            | 18                        | 1                                      | 1                                      | 0                                     |                              | 0                                  | 1                                 | 0                            | 1     |
| Sample Size                      | 33               | 7                             | 48                                  | 14                           | 13                        | 11                                     | 8                                      | 8                                     | 6                            | 9                                  | 6                                 | 3                            | 27    |

Table 145. Mean plant cover by coastal ecotypes within the Arctic Network. Numbers with an underline are dominent and differential species; bold indicates species frequency >60%; and zeros have trace values <0.5%.

| Taxon                                                        | Coastal<br>Nearshore Water | Coastal Tidal<br>River | Coastal Brackish<br>Water | Coastal Wet<br>Barrens | Coastal Saline<br>Sedge-Grass<br>Meadow | Coastal Brackish<br>Sedge-Grass<br>Meadow | Coastal Brackish<br>Willow Shrub | Coastal Dry<br>Barrens | Coastal Brackish<br>Dunegrass<br>Meadow | Coastal<br>Crowberry<br>Dwarf Shrub |
|--------------------------------------------------------------|----------------------------|------------------------|---------------------------|------------------------|-----------------------------------------|-------------------------------------------|----------------------------------|------------------------|-----------------------------------------|-------------------------------------|
| Water                                                        | 100                        | 100                    | 100                       | 1                      | 1                                       | 0                                         | 2                                | 1                      |                                         |                                     |
| Puccinellia phryganodes                                      |                            |                        |                           | _                      | <u>8</u>                                | -                                         | _                                | -                      |                                         |                                     |
| Carex subspathacea                                           |                            |                        |                           | 1                      | 6                                       |                                           |                                  |                        |                                         |                                     |
| Chrysanthemum ssp. arcticum                                  |                            |                        |                           | 0                      | 7                                       | 26                                        | 1                                |                        | 0                                       |                                     |
| Carex ramenskii<br>Potentilla egedii                         |                            |                        |                           | 0                      | <u>19</u><br>8                          | <b>26</b><br>2                            | 5                                | 0                      |                                         |                                     |
| Stellaria humifusa                                           |                            |                        |                           | 0                      | 0                                       | 4                                         |                                  | U                      |                                         |                                     |
| Calamagrostis deschampsioides                                |                            |                        |                           | •                      | 2                                       | 3                                         | 5                                |                        |                                         |                                     |
| Calamagrostis holmii                                         |                            |                        |                           |                        |                                         | 2                                         |                                  |                        |                                         |                                     |
| Cochlearia officinalis                                       |                            |                        |                           |                        |                                         | 2                                         |                                  | 0                      |                                         |                                     |
| Rumex arcticus                                               |                            |                        |                           |                        |                                         | 0                                         | 0                                |                        |                                         |                                     |
| Dupontia fischeri                                            |                            |                        |                           |                        |                                         | <u>2</u>                                  | 3                                | 0                      |                                         | 0                                   |
| Salix ovalifolia<br>Deschampsia caespitosa                   |                            |                        |                           |                        |                                         | 2<br>1                                    | <u>12</u><br>6                   | 0                      | 0                                       | 0                                   |
| Pedicularis sudetica                                         |                            |                        |                           |                        |                                         | '                                         | 2                                | 0                      | U                                       |                                     |
| Eriophorum angustifolium                                     |                            |                        |                           |                        |                                         |                                           | 2                                | _                      |                                         |                                     |
| Cochlearia officinalis ssp. arctica                          |                            |                        |                           |                        |                                         |                                           | 1                                |                        |                                         |                                     |
| Campylium sp.                                                |                            |                        |                           |                        |                                         |                                           | 2                                |                        |                                         |                                     |
| Carex canescens                                              |                            |                        |                           |                        |                                         |                                           | 1                                |                        |                                         |                                     |
| Campylium polygamum<br>Saxifraga exilis                      |                            |                        |                           |                        |                                         |                                           | 7<br>2                           |                        |                                         |                                     |
| Puccinellia borealis                                         |                            |                        |                           |                        |                                         |                                           | 1                                |                        |                                         |                                     |
| Elymus arenarius ssp. mollis                                 |                            |                        |                           | 0                      | 4                                       |                                           | Ò                                | <u>2</u>               | <u>25</u>                               | <u>2</u>                            |
| Lathyrus maritimus ssp. maritimus                            |                            |                        |                           | _                      | -                                       |                                           | 0                                | 0                      | 18                                      | 1                                   |
| Honckenya peploides                                          |                            |                        |                           |                        |                                         |                                           |                                  | 1                      | 1                                       |                                     |
| Artemisia tilesii                                            |                            |                        |                           |                        |                                         |                                           |                                  | 0                      | 1                                       | 0                                   |
| Senecio pseudoarnica                                         |                            |                        |                           |                        |                                         |                                           |                                  | 0                      | 3                                       |                                     |
| Mertensia maritima<br>Conioselinum chinense                  |                            |                        |                           |                        |                                         |                                           |                                  | 0                      | 0<br>1                                  |                                     |
| Bromus sp.                                                   |                            |                        |                           |                        |                                         |                                           |                                  |                        | 1                                       |                                     |
| Cnidium cnidiifolium                                         |                            |                        |                           |                        |                                         |                                           |                                  |                        | 2                                       |                                     |
| Saussurea nuda                                               |                            |                        |                           |                        | 0                                       |                                           |                                  |                        | 0                                       |                                     |
| Bryum sp.                                                    |                            |                        |                           |                        |                                         |                                           | 2                                |                        | 0                                       | 2                                   |
| Festuca rubra                                                |                            |                        |                           |                        |                                         |                                           |                                  | 0                      | 1                                       | 1                                   |
| Bupleurum triradiatum ssp. arcticum Chrysanthemum bipinnatum |                            |                        |                           |                        |                                         | 0                                         |                                  |                        | 0<br>0                                  | 0<br>0                              |
| Empetrum nigrum                                              |                            |                        |                           |                        |                                         | U                                         | 0                                |                        | U                                       | 34                                  |
| Armeria maritima                                             |                            |                        |                           |                        |                                         |                                           | J                                |                        |                                         | 0                                   |
| Flavocetraria cucullata                                      |                            |                        |                           |                        |                                         |                                           |                                  |                        |                                         | 6                                   |
| Vaccinium uliginosum                                         |                            |                        |                           |                        |                                         |                                           |                                  |                        |                                         | 2                                   |
| Betula nana                                                  |                            |                        |                           |                        |                                         |                                           |                                  |                        |                                         | 3                                   |
| Rhytidium rugosum                                            |                            |                        |                           |                        |                                         |                                           |                                  |                        |                                         | 2                                   |
| Thamnolia vermicularis<br>Sphaerophorus globosus             |                            |                        |                           |                        |                                         |                                           |                                  |                        |                                         | 1<br>1                              |
| Flavocetraria nivalis                                        |                            |                        |                           |                        |                                         |                                           |                                  |                        |                                         | 3                                   |
| Vaccinium vitis-idaea                                        |                            |                        |                           |                        |                                         |                                           |                                  |                        |                                         | 2                                   |
| Trisetum spicatum ssp. spicatum                              |                            |                        |                           |                        |                                         |                                           |                                  |                        |                                         | 0                                   |
| Salix planifolia ssp. pulchra<br>Epilobium latifolium        |                            |                        |                           |                        |                                         |                                           |                                  | 0                      |                                         | <b>1</b><br>2                       |
| Stereocaulon sp.                                             |                            |                        |                           |                        |                                         |                                           |                                  |                        |                                         | 2                                   |
| Cladina arbuscula                                            |                            |                        |                           |                        |                                         |                                           |                                  |                        |                                         | 2                                   |
| Bryocaulon divergens                                         |                            |                        |                           |                        |                                         |                                           |                                  |                        |                                         | 3                                   |
| Alectoria nigricans<br>Hierochloe alpina                     |                            |                        |                           |                        |                                         |                                           |                                  |                        |                                         | 1<br>1                              |
| Hierocnioe aipina<br>Salix reticulata                        |                            |                        |                           |                        |                                         |                                           |                                  |                        |                                         | 1                                   |
| Ledum decumbens                                              |                            |                        |                           |                        |                                         |                                           |                                  |                        |                                         | 1                                   |
| Arctostaphylos alpina                                        |                            |                        |                           |                        |                                         |                                           |                                  |                        |                                         | 1                                   |
| Poa arctica                                                  |                            |                        |                           |                        |                                         | 0                                         |                                  |                        | 1                                       | 0                                   |
| Artemisia arctica ssp. arctica                               |                            |                        |                           |                        | _                                       |                                           | _                                |                        | _                                       | 0                                   |
| Bare Soil                                                    | 2                          | 2                      | 2                         | 98<br>1                | <b>4</b><br>6                           | 11                                        | <b>1</b><br>3                    | <b>92</b>              | <b>6</b>                                | 4                                   |
| Sample Size                                                  | 2                          | 2                      | 3                         | 1                      | 6                                       | 5                                         | 3                                | 7                      | 4                                       | 6                                   |

Wet Sedge Meadow and Lacustrine Bluejoint Meadow, and between Lacustrine Marestail Marsh and Lowland Lake.

Riverine ecotypes were diverse because of differences in fluvial regime, climate (mountain vs. lowland), and successional stage. The most distinct ecotypes include Riverine Barrens, Riverine Dryas Dwarf Shrub, Riverine White Spruce–Alder Forest, and Riverine Forb Marsh (Figure 17a). High similarity occurred between Riverine Poplar Forest and Riverine Moist Tall Willow Shrub and between late-successional spruce forest ecotypes.

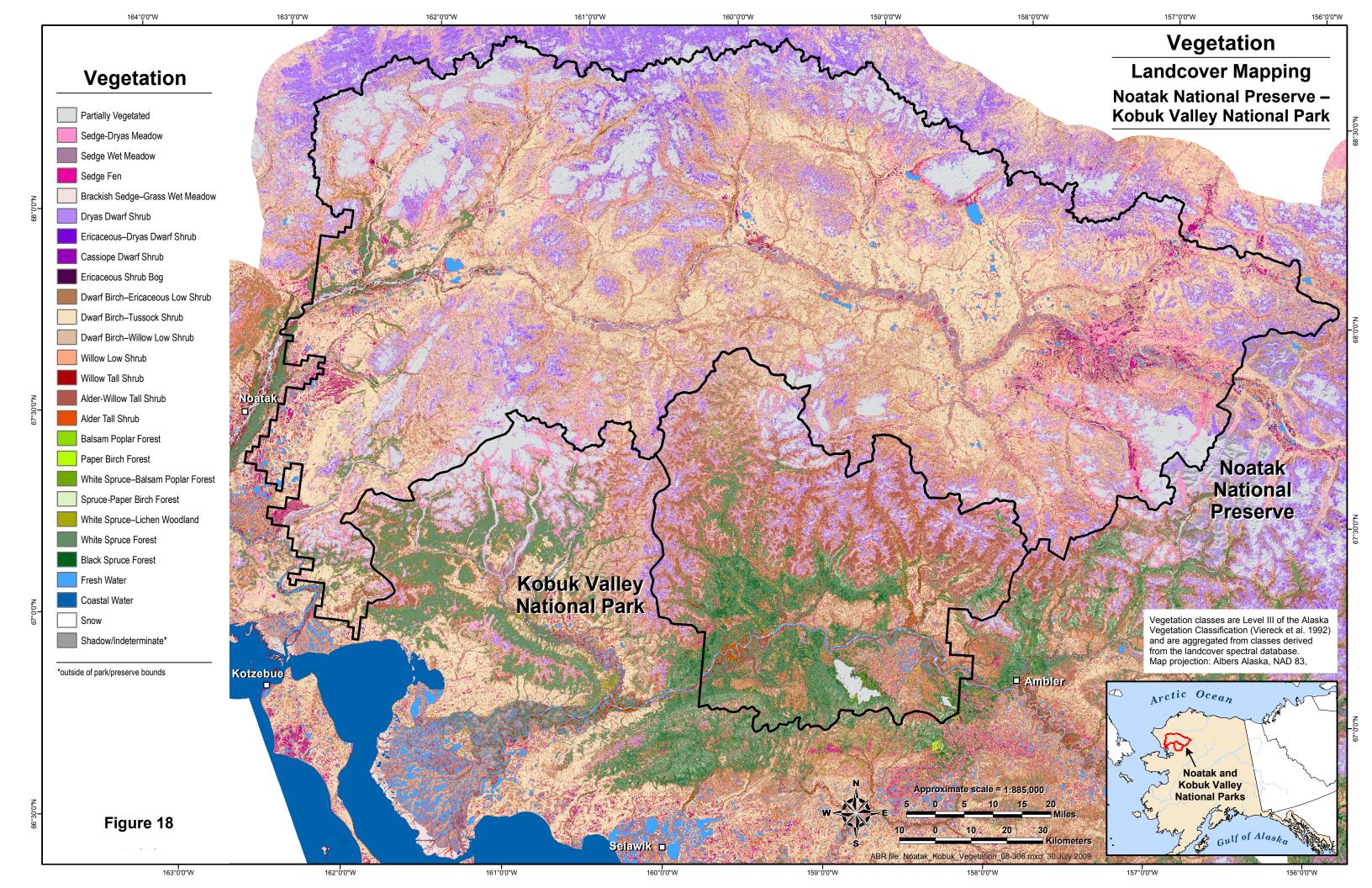
Coastal ecotypes had a few ecotypes with distinct separation in species assemblages (Figure 17b). There was little overlap among any of the ecotypes. The highest similarity occurred between Coastal Saline Sedge–Grass Meadow and Coastal Brackish Sedge–Grass Meadow.

#### Sorted Tables

Sorted vegetation tables (Tables 140–145) were constructed to provide a more direct means of comparing similarities and differences in the floristic composition of closely associated ecotypes (horizontal order) and for evaluating the association of species along environmental gradients (vertical order). The tables, however, only include species that are abundant or of relatively high frequency within each ecotype. These tables associate common species within an ecotype. Similarities and differences in species composition on the sorted tables are consistent with the NMDS results.

# **Landcover Mapping**

Three sets of map products were developed by the mapping effort: (1) a new set of landcover maps for NOAT and KOVA developed through spectral analysis and processing; (2) a region-wide landcover map across all five parks in ARCN that integrates the existing BELA, CAKR, and GAAR maps with the


new NOAT-KOVA map; and (3) soil landscape maps of NOAT and KOVA and for the entire ARCN based on analysis of vegetation-soil relationships. The first two map sets are described separately below, while the soil landscapes are described in a later section.

### Noatak and Kobuk Landcover Maps Abundance and Distribution

The landcover mapping differentiated 24 vegetation types and 41 ecotypes (Figures 18 and 19), based on a supervised classification of spectral characteristics of Landsat TM images and modeling and image segmentation using the physiography and bedrock associated with ecosubsection maps and digital elevation models. In the final map, eight ecotypes identified by the ground data were combined with other classes because they could not be mapped separately. The most abundant ecotypes within the park boundaries include Alpine Alkaline Barrens (4% of area), Alpine Acidic Dryas Dwarf Shrub (8%), Upland Birch-Willow Low Shrub (9%), Upland Dwarf Birch-Tussock Shrub (27%), Upland Sedge-Dryas Meadow (7%), and Upland Alder–Willow Tall Shrub (6%) (Table 146). On the vegetation map, which was derived from the ecotype map and differentiates only AVC classes independent of landscape associations, the most abundant vegetation types were Partially Vegetated (13% of area), Dryas Dwarf Shrub (10%), Dwarf Birch-Ericaceous Low Shrub (7%), Dwarf Birch-Willow Low Shrub (10%), Dwarf Birch-Tussock Shrub (27%), Willow Low Shrub (6%), Sedge-Dryas Meadow (7%), and Alder-Willow Tall Shrub (6%) (Table 147).

## ARCN Region-wide Landcover Maps Abundance and Distribution

Landcover mapping for the entire group of arctic parks covered 81,462 square kilometers. The pre-existing mapping for GAAR did not allow us to apply the



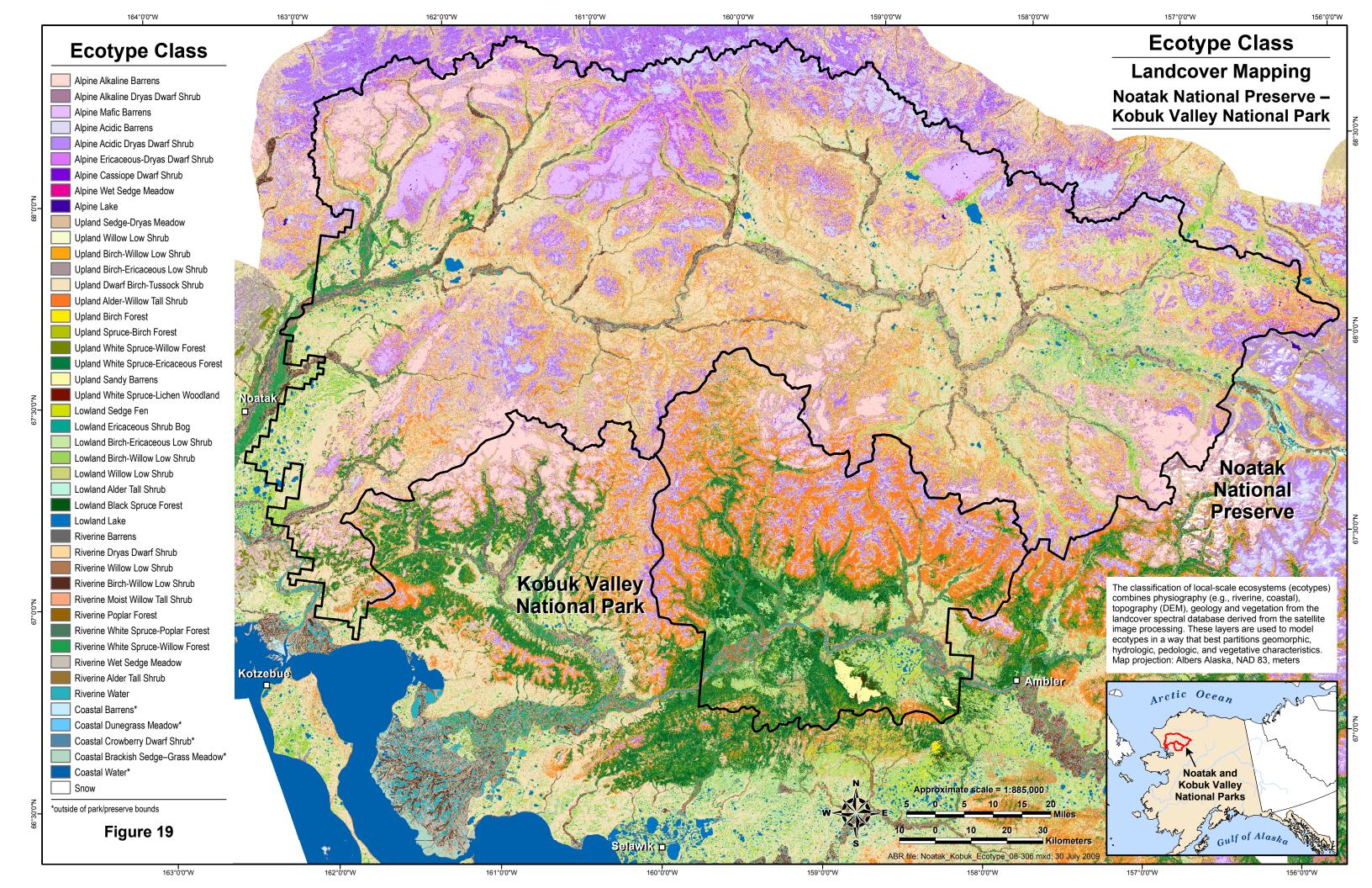



Table 146. Areal extent of ecotypes within Kobuk Valley National Park and Noatak National Preserve.

|                                       | KOVA   | 1    | NOAT    |      | Total   |      |
|---------------------------------------|--------|------|---------|------|---------|------|
| Ecotype                               | ha     | %    | ha      | %    | ha      | %    |
| Alpine Acidic Barrens                 | 21966  | 3.1  | 187557  | 7.1  | 209524  | 6.2  |
| Alpine Acidic Dryas Dwarf Shrub       | 36733  | 5.2  | 229676  | 8.6  | 266409  | 7.9  |
| Alpine Alkaline Barrens               | 7990   | 1.1  | 114883  | 4.3  | 122873  | 3.7  |
| Alpine Alkaline Dryas Dwarf Shrub     | 2740   | 0.4  | 34167   | 1.3  | 36907   | 1.1  |
| Alpine Cassiope Dwarf Shrub           | 6362   | 0.9  | 32815   | 1.2  | 39177   | 1.2  |
| Alpine Ericaceous–Dryas Dwarf Shrub   | 4444   | 0.6  | 27993   | 1.1  | 32437   | 1.0  |
| Alpine Lake                           | 14     | <0.1 | 162     | <0.1 | 176     | <0.1 |
| Alpine Mafic Barrens                  | 0      | <0.1 | 35596   | 1.3  | 35596   | 1.1  |
| Alpine Wet Sedge Meadow               | 6026   | 0.9  | 31234   | 1.2  | 37259   | 1.1  |
| Lacustrine Wet Sedge Meadow           | 231    | <0.1 | 1190    | <0.1 | 1421    | <0.1 |
| Lowland Alder Tall Shrub              | 9102   | 1.3  | 11400   | 0.4  | 20502   | 0.6  |
| Lowland Birch-Ericaceous Low Shrub    | 11755  | 1.7  | 27703   | 1.0  | 39458   | 1.2  |
| Lowland Birch–Willow Low Shrub        | 7438   | 1.0  | 21632   | 0.8  | 29070   | 0.9  |
| Lowland Black Spruce Forest           | 21557  | 3.0  | 511     | <0.1 | 22069   | 0.7  |
| Lowland Ericaceous Shrub Bog          | 755    | 0.1  | 17883   | 0.7  | 18638   | 0.6  |
| Lowland Lake                          | 2734   | 0.4  | 22262   | 0.8  | 24996   | 0.7  |
| Lowland Sedge Fen                     | 4719   | 0.7  | 35324   | 1.3  | 40043   | 1.2  |
| Lowland Willow Low Shrub              | 881    | 0.1  | 7047    | 0.3  | 7928    | 0.2  |
| River                                 | 1005   | 0.1  | 1263    | <0.1 | 2268    | 0.1  |
| Riverine Alder Tall Shrub             | 3783   | 0.5  | 597     | <0.1 | 4380    | 0.1  |
| Riverine Barrens                      | 3267   | 0.5  | 25996   | 1.0  | 29263   | 0.9  |
| Riverine Birch–Willow Low Shrub       | 2366   | 0.3  | 15824   | 0.6  | 18190   | 0.5  |
| Riverine Dryas Dwarf Shrub            | 348    | <0.1 | 15094   | 0.6  | 15442   | 0.5  |
| Riverine Lake                         | 2759   | 0.4  | 2319    | 0.1  | 5078    | 0.2  |
| Riverine Moist Willow Tall Shrub      | 12703  | 1.8  | 14886   | 0.6  | 27589   | 8.0  |
| Riverine Poplar Forest                | 4185   | 0.6  | 697     | <0.1 | 4883    | 0.1  |
| Riverine Wet Sedge Meadow             | 749    | 0.1  | 9230    | 0.3  | 9979    | 0.3  |
| Riverine White Spruce–Poplar Forest   | 1857   | 0.3  | 724     | <0.1 | 2581    | 0.1  |
| Riverine White Spruce–Willow Forest   | 22209  | 3.1  | 13165   | 0.5  | 35374   | 1.1  |
| Riverine Willow Low Shrub             | 1403   | 0.2  | 27724   | 1.0  | 29127   | 0.9  |
| Snow                                  | 146    | <0.1 | 977     | <0.1 | 1123    | <0.1 |
| Upland Alder-Willow Tall Shrub        | 117731 | 16.6 | 88409   | 3.3  | 206139  | 6.1  |
| Upland Birch Forest                   | 4751   | 0.7  | 1605    | 0.1  | 6355    | 0.2  |
| Upland Birch-Ericaceous Low Shrub     | 48389  | 6.8  | 146868  | 5.5  | 195257  | 5.8  |
| Upland Birch–Willow Low Shrub         | 68788  | 9.7  | 227934  | 8.6  | 296722  | 8.8  |
| Upland Dwarf Birch–Tussock Shrub      | 57789  | 8.2  | 857912  | 32.3 | 915701  | 27.2 |
| Upland Sandy Barrens                  | 8003   | 1.1  | 13910   | 0.5  | 21913   | 0.7  |
| Upland Sedge-Dryas Meadow             | 24841  | 3.5  | 195178  | 7.3  | 220019  | 6.5  |
| Upland Spruce–Aspen Forest            | 1449   | 0.2  | 100     | <0.1 | 1549    | <0.1 |
| Upland Spruce–Birch Forest            | 13552  | 1.9  | 1300    | <0.1 | 14852   | 0.4  |
| Upland White Spruce–Ericaceous Forest | 94747  | 13.4 | 15293   | 0.6  | 110040  | 3.3  |
| Upland White Spruce–Lichen Woodland   | 4884   | 0.7  | 1765    | 0.1  | 6650    | 0.2  |
| Upland White Spruce–Willow Forest     | 33967  | 4.8  | 9777    | 0.4  | 43744   | 1.3  |
| Upland Willow Low Shrub               | 27577  | 3.9  | 129553  | 4.9  | 157130  | 4.7  |
| Total                                 | 708698 | 100  | 2657134 | 100  | 3365831 | 100  |

Table 147. Areal extent of mapped vegetation types within Kobuk Valley National Park and Noatak National Preserve.

|                                   | KOVA   |       | NOAT    |       | Total   |       |  |
|-----------------------------------|--------|-------|---------|-------|---------|-------|--|
| Vegetation Class                  | ha     | %     | ha      | %     | ha      | %     |  |
| Dwarf Birch-Tussock Shrub         | 57789  | 8.2   | 857912  | 32.3  | 915701  | 27.2  |  |
| Partially Vegetated               | 41227  | 5.8   | 377942  | 14.2  | 419169  | 12.5  |  |
| Dwarf Birch-Willow Low Shrub      | 78592  | 11.1  | 265390  | 10.0  | 343982  | 10.2  |  |
| Dryas Dwarf Shrub                 | 39821  | 5.6   | 278937  | 10.5  | 318758  | 9.5   |  |
| Dwarf Birch-Ericaceous Low Shrub  | 60144  | 8.5   | 174571  | 6.6   | 234715  | 7.0   |  |
| Sedge-Dryas Meadow                | 24841  | 3.5   | 195178  | 7.3   | 220019  | 6.5   |  |
| Alder-Willow Tall Shrub           | 117731 | 16.6  | 88409   | 3.3   | 206139  | 6.1   |  |
| Willow Low Shrub                  | 29861  | 4.2   | 164324  | 6.2   | 194185  | 5.8   |  |
| White Spruce Forest               | 150923 | 21.3  | 38235   | 1.4   | 189158  | 5.6   |  |
| Sedge Wet Meadow                  | 7006   | 1.0   | 41654   | 1.6   | 48659   | 1.4   |  |
| Sedge Fen                         | 4719   | 0.7   | 35324   | 1.3   | 40043   | 1.2   |  |
| Cassiope Dwarf Shrub              | 6362   | 0.9   | 32815   | 1.2   | 39177   | 1.2   |  |
| Fresh Water                       | 6513   | 0.9   | 26006   | 1.0   | 32519   | 1.0   |  |
| Ericaceous-Dryas Dwarf Shrub      | 4444   | 0.6   | 27993   | 1.1   | 32437   | 1.0   |  |
| Willow Tall Shrub                 | 12703  | 1.8   | 14886   | 0.6   | 27589   | 0.8   |  |
| Alder Tall Shrub                  | 12885  | 1.8   | 11996   | 0.5   | 24882   | 0.7   |  |
| Black Spruce Forest               | 21557  | 3.0   | 511     | 0.0   | 22069   | 0.7   |  |
| Ericaceous Shrub Bog              | 755    | 0.1   | 17883   | 0.7   | 18638   | 0.6   |  |
| Spruce-Paper Birch Forest         | 13552  | 1.9   | 1300    | 0.0   | 14852   | 0.4   |  |
| White Spruce-Lichen Woodland      | 4884   | 0.7   | 1765    | 0.1   | 6650    | 0.2   |  |
| Paper Birch Forest                | 4751   | 0.7   | 1605    | 0.1   | 6355    | 0.2   |  |
| Balsam Poplar Forest              | 4185   | 0.6   | 697     | 0.0   | 4883    | 0.1   |  |
| White Spruce-Balsam Poplar Forest | 1857   | 0.3   | 724     | 0.0   | 2581    | 0.1   |  |
| Spruce-Quaking Aspen Forest       | 1449   | 0.2   | 100     | 0.0   | 1549    | 0.0   |  |
| Snow                              | 146    | 0.0   | 977     | 0.0   | 1123    | 0.0   |  |
| Total                             | 708698 | 100.0 | 2657134 | 100.0 | 3365831 | 100.0 |  |

ecotype classification developed for NOAT and KOVA for all classes, therefore some consolidation of ecotypes was necessary for region-wide mapping (Appendix 8). Forty-four ecotypes were mapped, the most common of which were Alpine Acidic Barrens (9% of area), Alpine Dryas Dwarf Shrub (14%), Upland Birch–Ericaceous–Willow Low Shrub (11%), Upland Dwarf

Birch–Tussock Shrub (20%), Upland Sedge–Dryas Meadow (6%), and Upland White Spruce Forest (6%) (Figure 20, Table 148). The region-wide mapping added 5 coastal ecotypes in BELA and CAKR as well as Lowland Sedge–Dryas Meadow, (most common on the coastal plain of BELA), Upland Mafic Barrens (BELA), and Human Modified Barrens (CAKR).

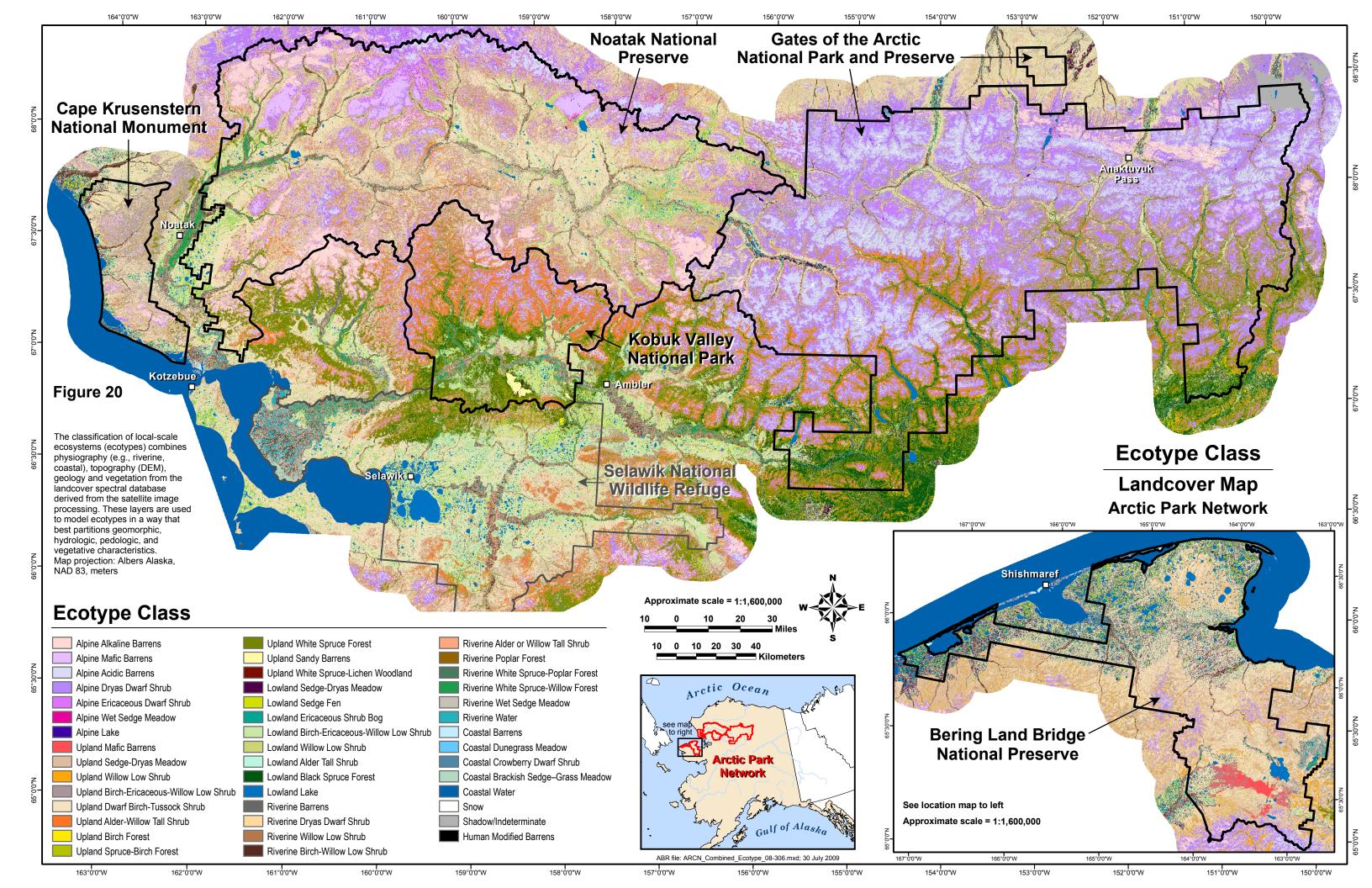



Table 148. Areal extent of ecotypes within the Arctic Network.

|                                        | Area (ha) |         |         |         |        |         |        |
|----------------------------------------|-----------|---------|---------|---------|--------|---------|--------|
| Ecotype                                | KOVA      | GAAR    | NOAT    | BELA    | CAKR   | Total   | % Area |
| Alpine Acidic Barrens                  | 17349     | 580748  | 117689  | 5900    | 730    | 722416  | 8.9    |
| Alpine Alkaline Barrens                | 15561     | 89623   | 179398  | 6732    | 9039   | 300354  | 3.7    |
| Alpine Dryas Dwarf Shrub               | 36118     | 878675  | 217081  | 33522   | 8857   | 1174254 | 14.4   |
| Alpine Ericaceous Dwarf Shrub          | 9353      | 96028   | 57437   | 0       | 0      | 162818  | 2.0    |
| Alpine Lake                            | 102       | 2104    | 870     | 0       | 0      | 3076    | 0.0    |
| Alpine Mafic Barrens                   | 0         | 16750   | 85647   | 0       | 0      | 102398  | 1.3    |
| Alpine Wet Sedge Meadow                | 7347      | 7985    | 40384   | 0       | 0      | 55716   | 0.7    |
| Coastal Barrens                        | 0         | 0       | 0       | 3017    | 645    | 3662    | 0.0    |
| Coastal Brackish Sedge-Grass           | 0         | 0       | 0       | 2651    | 887    | 3538    | 0.0    |
| Coastal Crowberry Dwarf Shrub          | 0         | 0       | 0       | 2179    | 1352   | 3531    | 0.0    |
| Coastal Dunegrass Meadow               | 0         | 0       | 0       | 390     | 311    | 701     | 0.0    |
| Coastal Water                          | 0         | 0       | 0       | 10460   | 11234  | 21693   | 0.3    |
| Human Modified Barrens                 | 0         | 0       | 0       | 0       | 174    | 174     | 0.0    |
| Lowland Alder Tall Shrub               | 13471     | 15031   | 21813   | 2242    | 2267   | 54825   | 0.7    |
| Lowland Birch-Ericaceous-Willow Low    |           |         |         |         |        |         |        |
| Shrub                                  | 43121     | 55434   | 94677   | 57561   | 16338  | 267131  | 3.3    |
| Lowland Black Spruce Forest            | 28013     | 91650   | 0       | 0       | 0      | 119663  | 1.5    |
| Lowland Ericaceous Shrub Bog           | 656       | 3672    | 25244   | 51759   | 3706   | 85036   | 1.0    |
| Lowland Lake                           | 2563      | 17156   | 21539   | 58580   | 2126   | 101963  | 1.3    |
| Lowland Sedge Fen                      | 8208      | 4660    | 52343   | 33874   | 3657   | 102743  | 1.3    |
| Lowland Sedge-Dryas Meadow             | 0         | 20653   | 0       | 84440   | 7414   | 112507  | 1.4    |
| Lowland Willow Low Shrub               | 2312      | 2202    | 19451   | 39477   | 9761   | 73203   | 0.9    |
| Riverine Alder or Willow Tall Shrub    | 14259     | 9231    | 14184   | 7443    | 2183   | 47301   | 0.6    |
| Riverine Barrens                       | 3260      | 15153   | 25917   | 5200    | 1417   | 50948   | 0.6    |
| Riverine Birch-Willow Low Shrub        | 2941      | 10600   | 23880   | 5907    | 3553   | 46880   | 0.6    |
| Riverine Dryas Dwarf Shrub             | 202       | 4862    | 6326    | 0       | 0      | 11389   | 0.1    |
| Riverine Poplar Forest                 | 3630      | 1522    | 1095    | 0       | 0      | 6247    | 0.1    |
| Riverine Water                         | 3780      | 11217   | 3701    | 3662    | 200    | 22560   | 0.3    |
| Riverine Wet Sedge Meadow              | 6856      | 2097    | 25598   | 0       | 16     | 34568   | 0.4    |
| Riverine White Spruce-Poplar Forest    | 1952      | 1625    | 907     | 0       | 0      | 4484    | 0.1    |
| Riverine White Spruce-Willow Forest    | 19091     | 7879    | 10562   | 0       | 2      | 37533   | 0.5    |
| Riverine Willow Low Shrub              | 708       | 1706    | 10922   | 0       | 29     | 13366   | 0.2    |
| Shadow/Indeterminate                   | 0         | 163541  | 0       | 0       | 0      | 163541  | 2.0    |
| Snow                                   | 149       | 19773   | 978     | 0       | 0      | 20900   | 0.3    |
| Upland Alder-Willow Tall Shrub         | 115273    | 202875  | 81955   | 0       | 5      | 400108  | 4.9    |
| Upland Birch Forest                    | 5977      | 20793   | 2161    | 0       | 0      | 28931   | 0.4    |
| Upland Birch-Ericaceous-Willow Low     | 404000    |         | 22622   |         |        |         | 44.5   |
| Shrub                                  | 101980    | 373802  | 326033  | 64033   | 56137  | 921985  | 11.3   |
| Upland Dwarf Birch-Tussock Shrub       | 60206     | 226656  | 886139  | 394573  | 78974  | 1646548 | 20.2   |
| Upland Mafic Barrens                   | 0         | 0       | 0       | 22439   | 0      | 22439   | 0.3    |
| Upland Sandy Barrens                   | 6600      | 0       | 0       | 0       | 0      | 6600    | 0.1    |
| Upland Sedge-Dryas Meadow              | 21410     | 126863  | 168109  | 151054  | 28557  | 495994  | 6.1    |
| Upland Spruce-Birch Forest             | 13250     | 17599   | 1001    | 0       | 0      | 31850   | 0.4    |
| Upland White Spruce Forest             | 109189    | 321481  | 23716   | 0       | 1018   | 455404  | 5.6    |
| Upland White Spruce-Lichen<br>Woodland | 3102      | 0       | 3202    | 0       | 0      | 6304    | 0.1    |
| Upland Willow Low Shrub                | 28580     | 6630    | 109499  | 43313   | 10889  | 198911  | 2.4    |
| Total                                  | 706572    | 3428278 | 2659458 | 1090406 | 261479 | 8146193 | 100    |
|                                        | 100312    | J7202/0 | 2003400 | 1050400 | 2014/3 | 0170193 | 100    |

### **Accuracy Assessment**

No independent accuracy assessment was done of the overall mapping (including BELA, GAAR, CAKR, and SELA) so we developed three proxies that provide approximate guidance as to the accuracy of the map based on the spectral classification for NOAT, KOVA and SELA. First we quantified the fidelity of the signatures to themselves during supervised classification. Second, the clustering of spectral characteristics and cross-tabulation of clusters of similar signatures with ecotypes were used to assess how variable the spectral characteristics are of an ecotype. Third, we cross-tabulated the ecotypes of pixels within training polygons with their mapped ecotypes.

Signature evaluation prior to supervised classification showed the fidelity of signatures to themselves (percentage of pixels within signature areas correctly classified to themselves) was very high  $(\ge 90\%)$  for 49%, high (80–89%) for 27%, moderately high (60-79%) for 17%, and low (<60%) for 7% of signatures. Overall, 76% of the signatures selfclassify (80% of pixels within signatures) and are therefore distinct and separable. The ability of the signatures to classify to the correct signature ecotype (percentage of pixels within a signature area classifying to the correct vegetation type) was very high ( $\geq 90\%$ ) for 80%, high (80–89%) for 18%, and moderately high (70–79%) for 2% of the training areas. This indicates that the 879 signatures used in the supervised classification were highly reliable; the signature ecotype was classified correctly (≥80% of pixels within signature) in 98% of the training signatures.

Spectral characteristics of ecotypes were evaluated by cross-tabulating spectral clusters and ecotype determinations from ground data (Appendix 9). The spectral clusters were created by calculating means of band reflectance for

every band for each training polygon and then clustering the 6 band means. This helps evaluates how variable the spectral characteristics are for each ecotype and how well individual spectral clusters associate with individual ecotypes. Ecotypes with distinct spectral characteristics include alpine barren types, dryas dwarf shrub types, Upland Dwarf Birch-Tussock Shrub, alder types, white spruce forest types, and water. Ecotypes where unique spectral characteristics were not evident include Upland Sedge-Dryas Meadow, dwarf birch-ericaceous and dwarf birch-willow types, deciduous and mixed forest types, and wet meadow types. Overall, for 65% of observations there was a strong association of spectral characteristics and ecotypes.

We evaluated map accuracy of individual ecotypes by comparing the mapping results within training polygons with the original ground data. The crosstabulation revealed that 86% of pixels in 879 training polygons were mapped to the correct ecotype (Appendix 10). These training polygons represented the ground points used to create map signatures for which good vegetation assessments and locations were available. After weighting the calculation to reflect the relative abundance of ecotypes in the region from which training polygons primarily were derived, NOAT, KOVA and SELA, map accuracy was 80%. The cross-tabulation of 25 mapped vegetation types reveals that 94% of training polygon pixels were mapped correctly (Appendix 11). After removing 2 water classes and weighting remaining classes for abundance, accuracy was 86%. Three vegetation classes had map accuracies below 65%, Alder Tall Shrub, Sedge Fen, and Sedge-Dryas Meadow. This resulted from confusion among Alder Tall Shrub, Alder-Willow Tall Shrub and Balsam Poplar and Sedge Fen, dwarf shrub classes, and Sedge-Dryas Meadow. Inconsistencies for ecotypes

were due to similar errors, plus prevalent problems with differentiating physiography based on model rules. For example, alpine elevation definitions caused errors in alpine versus lowland lake designations and alpine versus lowland sedge meadows and there was confusion among riverine, lowland, and upland low willow classes based on rules defining those physiographic units. An unknown portion of this error also was due to spatial registration where the ground plot did not correspond to the respective map pixel because of both GPS and satellite positional error. The cross-tabulations of agreement between the map and ground classification provide an approximate upper limit of the accuracy of the map, while the evaluation of the spectral

uniqueness of the mapped ecotypes provides an approximate lower limit of map accuracy. We also recognize that there are potential misclassifications associated with physiographic distinctions generated by the classification strata. Chemistry of bedrock, elevation models, and features differentiating upland and lowland classes are not homogenous and are prone to some errors of scale that are not readily determined without a full accuracy assessment. However, based on the proxy methods we have evaluated the accuracy of the 44 mapped ecotypes, which were derived from both spectral characteristics and modeling to reduce error, accuracy is probably between 65% and 80%.

# **Soil Landscapes**

# Classification and Description of Soil Types

#### **GELISOLS**

#### Histels

Typic Fibristels (n=37)

### **General Site Characteristics**

The Typic Fibristels subgroup is a common soil type in ARCN, and was found in all of the parks except KOVA. This soil subgroup is located on sites ranging from sea level to approximately 900 m elevation (avg. 200 m). Sites were typically low gradient, ranging in slope between 0–9°, with an average gradient of <1°.

## Geomorphology

Typic Fibristels occurred most frequently in lowland environments, such as bogs, fens, and abandoned overbank deposits along meandering rivers. They also occasionally occurred in upland and lacustrine environments.

### Vegetation

Wet Sedge Meadow Tundra is a common vegetation type associated with Typic Fibristels in fens and abandoned overbank deposits. Characteristic species include Carex aquatilis, C. chordorrhiza, Eriophorum angustifolium, and Limprichtia revolvens. Surface water commonly is present. Subarctic Lowland Sedge-Moss Bog Meadow is associated with this soil type in bogs. Common species include Betula nana, Vaccinium uliginosum, Salix fuscescens, Carex aquatilis, and Sphagnum sp. Surface water also is commonly present in this vegetation type, although the coverage is less than that found in Wet Sedge Meadow Tundra.

#### Soils

Typic Fibristels are characterized by permafrost in the upper meter of soil, a thick (typically >40 cm) organic mat consisting of slightly decomposed sedge or moss fibers overlying mineral soil, and soil saturation for 30 or more cumulative

days. The mineral horizons are typically loamy with no coarse fragments in the upper meter of soil. Frost boils, surface fragments, and loess caps are typically absent. Soil pH is acidic to circumneutral. Electrical conductivity is generally low (<ca. 200  $\mu$ S/cm). The soils are typically poorly to very poorly drained, and feature a very shallow water table.

# Typical Pedon

NOAT\_T08\_02\_2005

Oi1—0 to 10 cm: slightly decomposed sphagnum peat; acidic; clear wavy boundary.

Oi2—10 to 36 cm: slightly decomposed mixed sedge and sphagnum peat; acidic; clear, wavy boundary.

Oi3—36 to 52 cm: slightly decomposed sedge peat, acidic.

Oif—52+ cm: permafrost.

# Typic Hemistels (n=13)

### **General Site Characteristics**

The Typic Hemistels subgroup was sampled most frequently in BELA and CAKR, and rarely in KOVA and GAAR. The soil subgroup is located on sites ranging between 2–900 m elevation (avg. 100 m). Slope gradient was typically <3°.

## Geomorphology

Typic Hemistels occurred most frequently in lowland environments, including fens, abandoned riverine overbank deposits, and glacial till. When occasionally found in uplands, Typic Hemistels occurred in bogs.

### Vegetation

Open Low Shrub Birch–Willow is a vegetation type commonly associated with Typic Hemistels. Characteristic species include *Betula nana*, *Salix planifolia* ssp. *pulchra* (syn: *S. pulchra*), *Ledum decumbens*, *Eriophorum vaginatum*, *Eriophorum angustifolium*, *Carex aquatilis*, and *Sphagnum* sp. Tussock Tundra often co-occurs with this soil type in bogs. A typical species assemblage includes *Eriophorum* 

vaginatum, Betula nana, Ledum decumbens, Rubus chamaemorus, Carex bigelowii, Sphagnum sp., Cladina mitis, and Flavocetraria cucullata.

#### Soils

Typic Hemistels are characterized by permafrost in the upper meter of soil, a thick (>40 cm) surface organic horizon dominated by moderately decomposed plant material, and semi-permanent to permanent saturation. Cryoturbation or other signs of frost action are uncommon. Soils are dominated by organic soil in the upper 50 cm. Frost boils, surface fragments, and loess caps are generally absent. Soil pH is acidic to circumneutral. Electrical conductivity is generally low (<200  $\mu$ S/cm). The soils are typically very poorly drained to somewhat poorly, and feature a shallow water table.

# Typical Pedon

KOVA\_T61\_01\_2007

Oi—0 to 10 cm: slightly decomposed sphagnum peat; strongly acid; clear wavy boundary.

*Oe—10 to 48 cm:* moderately decomposed sphagnum peat.

*Oef—48+ cm:* permafrost.

### **TURBELS**

Typic Histoturbels (n=14)

## **General Site Characteristics**

The Typic Histoturbels subgroup was found most often in GAAR, KOVA, and NOAT, and less often in BELA and CAKR. This soil subgroup was located on sites ranging between 20–900 m elevation (avg. 400 m). In upland environments, average slope gradient was 10°, and ranged as high as 30°. In lowland environments, average slope gradient was 3°, and ranged as high as 8°. Across all environments, sites encompassed a wide range of aspects.

## Geomorphology

Typic Histoturbels were common in both lowland and upland environments. In lowlands, Typic Histoturbels occurred

most commonly on retransported deposits on lower backslopes and toeslopes, and abandoned overbank deposits along meandering rivers. In upland environments, this soil type occurred most commonly on hillside colluvium and glacial till.

### Vegetation

Open Low Shrub Birch-Willow is a common vegetation type associated with Typic Histoturbels in both upland and lowland environments. Characteristic species include Betula nana, Vaccinium uliginosum, Carex bigelowii, Salix planifolia ssp. pulchra (syn: S. pulchra), Eriophorum vaginatum, Flavocetraria cucullata, and Cladina arbuscula. Open Low Mixed Shrub-Sedge Tussock Tundra is often associated with this soil type in uplands. Eriophorum vaginatum, Carex bigelowii, Ledum decumbens, Betula nana, and Sphagnum sp. typically dominate the site. Less abundant, but still common species include Rubus chamaemorus, Cladina rangiferina, Aulacomnium palustre, and Flavocetraria cucullata.

### Soils

Typic Histoturbels are characterized by permafrost in the upper 2 m of the soil, cryoturbation or other indicators of frost related disturbance in one or more horizons, and a thick organic mat above the mineral horizon. Mineral soils are typically loamy, and occasionally sandy. Frost boils and coarse fragments are uncommon and loess caps are rare. Soil pH is generally acidic to circumneutral. Electrical conductivity is generally low (<200  $\mu$ S/cm). The soils are typically moderately well drained to somewhat poorly drained, with a shallow water table.

# Typical Pedon

NOAT\_T04\_07\_2005

Oi—0 to 8 cm: very dark brown (10YR 2/2) moderately decomposed wood; abrupt wavy boundary.

Oe—8 to 24 cm: very dark brown (10YR 2/2) moderately decomposed plant material; acidic; clear wavy boundary.

Bw—24 to 40 cm: very dark gray (10YR 3/1) silt loam; acidic; abrupt wavy boundary; weak, very fine, granular structure; firm, slightly sticky, slightly plastic; common, coarse, prominent oxidized iron accumulations.

*Oeb—40 to 42 cm:* moderately decomposed plant material.

Bf—42+ cm: permafrost.

# Typic Aquiturbels (n=30)

# **General Site Characteristics**

The Typic Aquiturbels subgroup is a common soil type in ARCN, occurring in all parks with the exception of KOVA. This soil subgroup was located on sites ranging between 5–900 m elevation (avg. 400 m). Slope gradient was typically low to moderate, and ranged between 0° and 17° (avg. 3.4°). Across all environments, sites encompassed a wide range of slope aspects.

# Geomorphology

Typic Aquiturbels occurred most frequently in lowland and upland environments, and less frequently in alpine environments. In alpine and upland environments, this soil type occurred most commonly on hillside colluvium, glacial till, and loess over hillside colluvium or glacial till. In lowlands, Typic Aquiturbels occurred most commonly on loess over glacial till, abandoned overbank deposits along meandering rivers, drained lake basins, and thaw basins.

### Vegetation

Open Low Mixed Shrub–Sedge Tussock Tundra is a common vegetation type associated with Typic Aquiturbels in uplands and lowlands. Characteristic species include *Betula nana*, *Ledum decumbens*, *Eriophorum vaginatum*, *Carex bigelowii*, and *Flavocetraria cucullata*. In uplands, Moist

Sedge-Shrub Tundra often co-occurs with this soil subgroup. Common species include Dryas integrifolia, Salix arctica, Salix reticulata, Arctostaphylos rubra (syn: Arctous rubra), Carex bigelowii, Carex membranacea, and Tomentypnum nitens. Open Low Mesic Shrub Birch-Ericaceous Shrub is another common vegetation type associated with Typic Aquiturbels. This vegetation type is dominated by Betula nana, Ledum decumbens, and Vaccinium vitis-idaea. Frequent understory species include Rubus chamaemorus, Arctagrostis latifolia, Carex bigelowii, Eriophorum vaginatum, Dicranum sp., Cladina rangiferina, and Peltigera aphthosa.

#### Soils

Typic Aguiturbels are characterized by permafrost in the upper 2 m of the soil, cryoturbation or other indicators of frost related disturbance in one or more horizons, a thin to moderately thick organic mat overlying mineral soil, and semi-permanent to permanent saturation. Mineral soils are typically loamy. Coarse fragments are generally rare in the upper meter of the soil profile, with the exception of some soils derived from hillside colluvium or glacial till. Frost boils and loess caps are common, while surface fragments, with the exception of some soils formed from colluvium or glacial till, are rare. Soil pH is acidic to circumneutral. Electrical conductivity is generally low ( $<200 \mu S/cm$ ). The soils are typically somewhat poorly to poorly drained, and feature a shallow water table.

# Typical Pedon

NOAT\_T17\_05\_2005

Oi1—0 to 15 cm: slightly decomposed sphagnum peat; circumneutral; abrupt wavy boundary.

*Oi2—15 to 25 cm:* slightly decomposed sedge peat; abrupt wavy boundary.

Bw/Oi—25 to 27 cm: dark grayish brown (2.5Y 4/2) silt

loam with discontinuous bodies of slightly decomposed sedge peat; abrupt broken boundary; weak, fine, granular structure; firm, non-sticky, moderately plastic; common, medium, prominent oxidized iron accumulations.

Oib—27 to 33 cm: slightly decomposed sedge peat; circumneutral; abrupt wavy boundary.

Bw—33 to 38 cm: dark gray (2.5Y 4/1) silt loam; weak, fine, granular structure; very firm, non-sticky, moderately plastic; common, medium, prominent oxidized iron accumulations.

Bf—38+ cm: permafrost.

# Typic Haploturbels (n=23)

### **General Site Characteristics**

The Typic Haploturbels subgroup is a common soil type in ARCN, and was sampled in all parks except NOAT. This soil subgroup was located on sites ranging between 50–1,100 m elevation (avg. 600 m). Sites were typically low to moderately steep, ranging between 0–35°, with an average slope gradient of 8°.

### Geomorphology

Typic Haploturbels occurred most frequently in alpine and upland environments, and less frequently in lowland environments. This soil occurred on hillside colluvium, older glacial moraines, and loess.

### Vegetation

Open Low Shrub Birch–Willow is a common vegetation type associated with Typic Haploturbels. Characteristic species include Betula nana, Vaccinium uliginosum, Carex bigelowii, Arctagrostis latifolia, Polygonum bistorta (syn: Bistorta plumosa), Hylocomium splendens, and Aulacomnium palustre. Open Low Mesic Shrub Birch–Ericaceous Shrub is another vegetation type associated with this soil. Species distinctive of this type include Betula nana, Vaccinium uliginosum, Vaccinium vitis-idaea, Hylocomium

splendens, Tomentypnum nitens, and Flavocetraria cucullata. Dryas–Sedge Dwarf Shrub Tundra often co-occurs with this soil type. Species frequently occurring in this vegetation type include Dryas octopetala or D. integrifolia, Cassiope tetragona, Salix planifolia ssp. pulchra (syn: S. pulchra), Hierochloe alpina, Polygonum viviparum (syn: Bistorta vivipara), Thamnolia vermicularis, and Flavocetraria cucullata. Bare soil and surface fragments are common.

#### Soils

Typic Haploturbels are characterized by permafrost in the upper 2 m of soil, cryoturbation or other indicators of frost related disturbance in one or more horizons, and a thin organic mat above the mineral horizon. Mineral horizons are typically loamy. Coarse fragments are common in the upper meter of the soil profile. Frost boils and surface fragments also are common, while loess caps are rare. Soil pH is acidic to circumneutral. Electrical conductivity is generally low (<200 µS/cm). The soils are typically well drained to somewhat poorly drained, and feature a moderately deep to deep water table.

## Typical Pedon

NOAT T13 08 2005

Oe—0 to 6 cm: black (10YR 2/1); moderately decomposed plant material; abrupt smooth boundary.

AB—6 to 20 cm: very dark grayish brown (10YR 3/2) silt loam; circumneutral; abrupt broken boundary; weak, medium, granular structure; 25 percent subangular gravels.

Bw—20 to 30 cm: very dark grayish brown (10YR 4/2) silt loam; circumneutral; gradual smooth boundary; weak, medium, granular structure; 15 percent subangular gravels.

C—30 to 46+ cm: very dark grayish brown (10YR 4/2) silt

loam; common, fine, prominent oxidized iron accumulations; 40 percent subangular gravels.

### **ORTHELS**

# Typic Historthels (n=45)

# **General Site Characteristics**

The Typic Historthels subgroup was one of the most commonly sampled soils in ARCN, and was found in all 5 parks. This soil subgroup was located on sites ranging between 1–900 m elevation (avg. 200 m). Sites included a wide range of slope gradients, ranging between 0–18°, but were typically low gradient (avg. 3°), and included a wide range of aspects.

# Geomorphology

Typic Historthels occurred most frequently in lowland and upland environments, and less frequently in coastal and lacustrine environments. Hillside colluvium and glacial till were the most common geomorphic units on sites with slope gradients greater than 5°. Thaw basins, drained lake basins, bogs, and fens were most common at low gradient sites. In coastal environments, this soil subgroup was associated with inactive tidal flats.

### Vegetation

Wet Sedge Meadow Tundra is a common vegetation type associated with Typic Historthels in drained lake basins and fens. This vegetation type is characterized by Carex aquatilis, C. chordorrhiza, Eriophorum angustifolium, and Sphagnum sp. Surface water is commonly present, at least in portions of the area. Open Low Mixed Shrub-Sedge Tussock Tundra is associated with Typic Historthels on a variety of geomorphic units, including drained lake basins, thaw basins, glacial till, and hillside colluvium. Common species in this vegetation type include Betula nana, Ledum decumbens, Eriophorum vaginatum, Carex bigelowii, and Sphagnum sp. In lowland environments, on glacial till and hillside colluvium, Open Black Spruce Forest is a common forested vegetation type associated with Typic Historthels. This

vegetation type is characterized by *Picea* mariana, *Rubus chamaemorus*, *Ledum* decumbens, *Carex bigelowii*, and *Cladina* rangiferina.

### Soils

Typic Historthels are characterized by permafrost in the upper meter of soil, and a moderately thick (18–30 cm) organic horizon above mineral soil. Mineral horizons are typically loamy with few coarse fragments in the upper meter of soil. Frost boils, surface fragments, and loess caps are typically absent. Soil pH is acidic to circumneutral. Electrical conductivity is generally low (<500 µS/cm), except in coastal environments where it ranges between  $8,000-9,000 \mu S/cm$ . Soils are typically somewhat poorly to very poorly drained, and feature a shallow water table.

# Typical Pedon

KOVA\_T79\_07\_2007

Oi1—0 to 23 cm: dark reddish brown (5YR 3/3) slightly decomposed sphagnum peat; strongly acid; abrupt wavy boundary.

Oi2—23 to 31 cm: very dark brown (7.5YR 2.5/3) slightly decomposed sedge peat; strongly acid; abrupt smooth boundary.

Bg—31 to 49 cm: dark grayish brown (2.5Y 4/2) silt loam; moderate, very fine, granular structure; firm, slightly sticky, slightly plastic; 2–75-mm unspecified fragments (3%).

Bf—49+ cm: permafrost.

## Fluvaquentic Aquorthels (n=15)

## **General Site Characteristics**

The Fluvaquentic Aquorthels subgroup was sampled most frequently in BELA, and less frequently in KOVA, NOAT, GAAR, and CAKR. This soil subgroup was located on sites ranging between 0–300 m elevation (avg. 50 m). Slope gradient was always <1°.

### Geomorphology

Fluvaquentic Aquorthels occurred in coastal and riverine environments. In coastal environments, this soil type occurred on active and inactive tidal flats. In riverine environments, Fluvaquentic Aquorthels occurred on inactive overbank and fine inactive channel deposits along meandering rivers, and on moderately steep headwater floodplains.

# Vegetation

Halophytic Sedge-Grass Wet Meadow is commonly associated with Fluvaquentic Aquorthels in coastal environments. Carex ramenskii, Chrysanthemum arcticum, and Puccinellia phryganodes are the dominant species typical of this vegetation type. Other important species include Elymus arenarius var. mollis (syn: Leymus mollis), Calamagrostis deschampsioides, and Stellaria humifusa. In riverine environments, Open Tall Alder Shrub-Willow Shrub frequently co-occurs with this soil type. Characteristic species include Salix planifolia ssp. pulchra (syn: S. pulchra), Alnus crispa (syn: A. viridis ssp. fruticosa), Rubus acrticus, Carex aquatilis, and Calliergon sp.

#### Soils

Fluvaquentic Aquorthels are characterized by permafrost in the upper meter of soil, a thin organic horizon overlying mineral soil, at least one buried organic horizon, redox depletions within the upper 50 cm of the soil profile, and saturated conditions for a significant time period during the growing season. Mineral horizons are loamy or sandy, with little to no coarse fragments in the upper meter of soil. Frost boils, surface fragments, and loess caps never occur in this soil type. Soil pH is acidic to circumneutral. In riverine environments, electrical conductivity is generally low to moderately low (60–1,100 µS/cm, avg. 335). In coastal environments, electrical conductivity is generally high to very high  $(590-30,700 \mu S/cm, avg. 12,247)$ . The soils are typically somewhat poorly to very poorly drained, and feature a shallow water table.

# Typical Pedon

NOAT\_T48\_04\_2006

Oi—0 to 2 cm: slightly decomposed plant material; abrupt wavy boundary.

C1—2 to 3 cm: silt loam; abrupt wavy boundary; structureless, massive.

Oib—3 to 5 cm: slightly decomposed plant material; abrupt wavy boundary.

C2—5 to 20 cm: silt loam with pockets of very fine sand; circumneutral; clear wavy boundary; structureless, massive; common, coarse, distinct oxidized iron accumulations.

C3/Oeb—20 to 27 cm: very fine sand with many thin (<0.5 cm) interbeds of moderately decomposed organic material; clear wavy boundary; structureless, single-grained; common, coarse, distinct oxidized iron accumulations.

C4—27 to 46 cm: loamy very fine sand with pockets of very fine sand; structureless, massive; common, coarse, distinct oxidized iron accumulations.

Cf—42+ cm: permafrost.

### Typic Aquorthels (n=45)

### **General Site Characteristics**

The Typic Aquorthels subgroup was one of the most commonly sampled soils in the study area, including all 5 parks. This soil subgroup occurred between 10–900 m elevation (avg. 250 m). In alpine and upland environments, average slope gradient was 8°. In lowland and lacustrine environments, average slope gradient was 1°. Across all environments, sites encompassed a wide range of aspects.

## Geomorphology

Typic Aquorthels occurred most frequently in lowland, upland, and lacustrine environments, and less frequently in alpine and riverine environments. In alpine and upland environments, and on lower hillside positions in lowland environments, this soil occurred most commonly on hillside colluvium, loess over glacial till, and glacial till. In lowland and riverine environments, Typic Aquorthels occurred commonly on inactive and abandoned overbank and channel deposits along meandering and braided rivers. In lacustrine environments, this soil type occurred in drained lake basins and thaw basins.

## Vegetation

Open Low Willow Shrub is a common vegetation type that co-occurs with Typic Aquorthels. Characteristic species included Salix planifolia ssp. pulchra (syn: S. pulchra), Salix lanata ssp. richardsonii (syn: S. richardsonii), Carex aquatilis, Vaccinium uliginosum, and Hylocomium splendens. Wet Sedge Meadow Tundra is another vegetation type often associated with this soil subgroup. Common species include Eriophorum vaginatum, Carex aquatilis, Arctagrostis latifolia, Salix planifolia ssp. pulchra (syn: S. pulchra), and Aulacomnium palustre. Surface water and bare soil are common, although the coverage is low. In ice-poor thaw basin centers, Bluejoint-Herb Meadow is commonly associated with Typic Aquorthels. Frequently occurring species include Calamagrostis canadensis, Petasites frigidus, Polemonium acutiflorum, Rumex arcticus, Valeriana capitata, and Aulacomnium palustre.

# Soils

Typic Aquorthels are characterized by permafrost in the upper meter of soil, a thin to moderately thick organic horizon overlying mineral soil, redox depletions within the upper 50 cm of the soil profile, and saturated conditions for a significant time period during the growing season. Mineral horizons are typically loamy, with few coarse fragments in the upper meter. Frost boils never occur in this soil type. Surface fragments and loess caps are uncommon, but when loess caps

occur they tend to be thick (approx. 40 cm). Soil pH is acidic to circumneutral, and rarely basic. Electrical conductivity is generally low (<200  $\mu$ S/cm). The soils are typically somewhat poorly to very poorly drained, and feature a shallow water table.

# Typical Pedon

NOAT\_T17\_07\_2005

Oi—0 to 3 cm: slightly decomposed brown fen mosses.

*Oe—8 to 13 cm:* moderately decomposed sedge peat.

Bw—13 to 18 cm: very dark grayish brown (10YR 3/2) silt; moderate, fine, platy structure; very firm, slightly-sticky, non-plastic.

Bg—18 to 67 cm: very dark gray (2.5Y 3/1) silt; weak, fine, angular block structure; firm, slightly-sticky, non-plastic.

Bf-67 cm: permafrost.

# Fluaquentic Haplorthels (n=9)

## **General Site Characteristics**

The Fluvaquentic Haplorthels subgroup was sampled most frequently in BELA, but was also occasionally encountered in CAKR. This soil subgroup was located on sites ranging between 0–40 m elevation (avg. 10 m). Slope gradient was always <1°.

# Geomorphology

Fluvaquentic Haplorthels occurred in riverine environments on active and inactive overbank deposits along meandering rivers.

### Vegetation

Closed Low Shrub Birch–Willow was frequently associated with Fluvaquentic Haplorthels on inactive overbank deposits along meandering rivers. Frequently occurring species include Salix planifolia ssp. pulchra (syn: S. pulchra), Betula nana, Vaccinium uliginosum, Petasites frigidus, Arctagrostis latifolia, Carex bigelowii, Sphagnum sp., and Hylocomium splendens.

### Soils

Fluvaquentic Haplorthels are characterized by permafrost in the upper meter of soil, a thin organic horizon overlying mineral soil, at least one buried organic horizon, redox depletions within the upper 75 cm of the soil profile, and saturated conditions for a significant time period during the growing season. Mineral horizons are loamy or sandy, with little to no coarse fragments in the upper meter of soil. Frost boils, surface fragments, and loess caps never occur in this soil type. Soil pH is circumneutral. Electrical conductivity is generally low  $(<200 \mu S/cm)$ . The soils are typically moderately well to somewhat poorly drained, and feature a shallow to moderately deep water table.

# Typical Pedon

NA

Typic Haplorthels (n=21)

## **General Site Characteristics**

The Typic Haplorthels subgroup is a common soil type in ARCN, occurring in all 5 parks. This soil subgroup was located on sites ranging in elevation between 50–900 m. In alpine and upland environments, the average gradient was 12°, but ranged as high as 30°. In lowland and riverine environments, the average slope gradient was 2°, ranging up to 5°. Across all environments, sites encompassed a wide range of aspects.

## Geomorphology

Typic Haplorthels occurred most frequently in alpine and upland environments, and less frequently in lowland and riverine environments. In alpine and upland environments this soil type occurred on hillside colluvium, glacial till, and solufluction deposits. In lowlands, this type occurred in glacial till along lower backslopes and toeslopes. In riverine environments, Typic Haplorthels occurred on inactive overbank deposits along meandering rivers.

### **Vegetation**

Open Low Willow Shrub is a commonly associated with Typic Haplorthels in

upland environments. Salix planifolia ssp. pulchra (syn: S. pulchra) and Vaccinium *uliginosum* form an open to moderately closed low shrub layer. Common understory species include Salix reticulata, Petasites frigidus, Equisetum arvense, and Hylocomium splendens. Open Black Spruce Forest is often associated with this soil type in lowlands. Characteristic species include Picea mariana, Ledum decumbens, Vaccinium uliginosum, Carex bigelowii, Cladina rangiferina, and Pleurozium schreberi. In alpine environments, Dryas–Lichen Dwarf Shrub Tundra often occurs on Typic Haplorthels. Typical species include Dryas octopetala, Cassiope tetragona, Pedicularis capitata, Silene acaulis, Alectoria sp., Bryoria nitidula, and Flavocetraria cucullata.

### Soils

Typic Haplorthels are characterized by permafrost in the upper 1 m of soil, a lack of cryoturbation, and a thin organic mat overlying mineral soil. The mineral horizons are typically loamy, and coarse fragments are common in the upper meter of the soil profile. Frost boils and surface fragments are absent, and loess caps are uncommon. Soil pH is primarily acidic to circumneutral. Electrical conductivity is generally low (<100  $\mu$ S/cm). The soils are typically somewhat excessively to moderately well drained, and feature a deep to moderately deep water table.

# Typical Pedon

NOAT\_T12\_08\_2005

Oi—0 to 8 cm: slightly decomposed plant material; acidic; clear wavy boundary.

*Oe—8 to 13 cm:* moderately decomposed plant material; clear smooth boundary.

*Bw—13 to 52 cm:* dark grayish brown (10YR 3/2) silt loam; acidic; common, medium, faint oxidized iron accumulations.

Bf—52+ cm: permafrost.

### **HISTOSOLS**

### **Fibrists**

Typic Cryofibrists (n=12)

## **General Site Characteristics**

The Typic Cryofibrists subgroup occurred in GAAR and KOVA. This soil subgroup was located on sites ranging between 15–300 m elevation (avg. 170 m). Slope gradient was always <1%.

# Geomorphology

Typic Cryofibrists occurred exclusively in lacustrine environments, in fens, and occasionally, in bogs.

### Vegetation

Typic Cryofibrists are often associated with Subarctic Lowland Sedge Wet Meadow in swales and along lake margins. This fen type is characterized by Carex limosa, Menyanthes trifoliata, Carex aquatilis, C. chordorrhiza, Andromeda polifolia, and Limprichtia revolvens. Surface water is almost always present. Subarctic Lowland Herb Bog Meadow is another vegetation type that is frequently associated with this soil type. Typical species include *Menyanthes* trifoliata, Potentilla palustris (syn: Comarum palustre), Utricularia minor, Equisetum fluviatile, Warnstorfia exannulata, and Sphagnum riparium. Surface water is always present.

### Soils

Typic Cryofibrists are characterized by a thick to very thick surface organic horizon (>40 cm), semi-permanent to permanent saturation, a lack of permafrost in the upper meter of the soil profile, an average annual soil temperature >0° C, and an average summer soil temperature of <8° C. Soils comprise a surface organic horizon at least 40 cm thick; thus, the underlying mineral horizon was rarely sampled. Frost boils, surface fragments, and loess caps are absent. Soil pH is typically circumneutral, and occasionally acidic. Electrical conductivity is generally low  $(<200 \,\mu\text{S/cm})$ . The soils are poorly to very poorly drained, and the water table is very shallow to above ground.

# Typical Pedon

GAAR\_T113\_09\_2008

Oi1—0 to 16 cm: slightly decomposed moss fibers; circumneutral; clear smooth boundary.

*Oi2—16 to 33 cm:* slightly decomposed moss and graminoid fibers; clear smooth boundary.

Oi3—33 to 55 cm: slightly decomposed moss and graminoid fibers.

*Oi4*—55 to 130+ cm: slightly decomposed plant material.

### **INCEPTISOLS**

# **Gelepts**

Typic Eutrogelepts (n=63)

### **General Site Characteristics**

The Typic Eutrogelepts subgroup was one of the most commonly sampled soils in the study area, including all 5 parks. This soil subgroup occurred between 9–900 m elevation (avg. 400 m). Sites were typically moderately steep to steep, ranging between 0–34°, with an average slope gradient of 10°, and included a wide range of aspects.

### Geomorphology

Typic Eutrogelepts occurred most frequently in alpine and upland environments, and less frequently in lowland, riverine, and lacustrine environments. On upper slope positions, with gradients greater than approximately 3°, this soil subgroup occurred on hillside colluvium, talus, loess over colluvium or bedrock, and solufluction deposits. On lower gradient sites, geomorphic units were typically weathered bedrock on crests, and abandoned alluvial fan deposits, abandoned riverine deposits, and glacial till on lower slope positions.

# Vegetation

Dryas Dwarf Shrub Tundra is a common vegetation type associated with Typic

Eutrogelepts on upper slope positions in hillside colluvium, talus, and weathered bedrock. Characteristic species include Dryas octopetala, Carex scirpoidea, Polygonum viviparum (syn: Bistorta vivipara), Minuartia arctica, and Saxifraga oppositifolia. Bare soil and surface fragments are always present. Barrens (0-5% vegetation) and Partially Vegetated Barrens (5-30% vegetation) are two additional vegetation types that also occur on upper slope positions and correspond with this soil type. Common species include Dryas octopetala, Saxifraga oppositifolia, Minuartia arctica, Lesquerella arctica, and Potentilla uniflora. Coarse surface fragments are abundant. Cassiope Dwarf Shrub Tundra often occurs on hillside colluvium associated with Typic Eutrogelepts. Common species include Cassiope tetragona, Dryas octopetala, Carex scirpoidea, Papaver macounii, and Dactylina arctica. At late snowbed sites, Boykinia richardsonii and Salix rotundifolia often occur at low to moderately high abundance. Open White Spruce Forest is associated with this soil subgroup in upland environments on backslopes and footslopes in colluvium and loess over colluvium. Common species include Picea glauca, Alnus crispa (syn: A. viridis ssp. fruticosa), Salix lanata ssp. richardsonii (syn: S. richardsonii), Arctostaphylos rubra (syn: Arctous rubra), and Hylocomium splendens.

# Soils

Typic Eutrogelepts are characterized by a thin surface organic horizon, weak to moderate soil structure, a lack of permafrost in the upper meter of the soil profile, a pH greater than approximately 5.5, and a mean annual soil temperature of 0° C or colder. The mineral horizons are typically loamy with many coarse fragments in the upper meter of soil. Frost boils, surface fragments, and loess caps are common. Soil chemistry is typically circumneutral to alkaline. Electrical conductivity is generally low (<200 μS/cm). The soils are excessively to moderately well drained, and the water table is deep to very deep.

# *Typical Pedon*NOAT T19 04 2005

Oe—0 to 4 cm: black (10YR 2/1) moderately decomposed plant material; 70 percent angular gravels.

Bw—4 to 30 cm: dark brown (10YR 3/3) silt loam; alkaline; weak, very fine, granular structure; friable, slightly-sticky, slightly-plastic; 70 percent angular gravels.

BC—30 to 50 cm: dark brown (10YR 3/3) silt loam; alkaline; weak, very fine, granular structure; friable, slightly-sticky, slightly-plastic; 90 percent angular gravels.

# Typic Dystrogelepts (n=46)

# **General Site Characteristics**

The Typic Dystrogelepts subgroup was one of the most commonly sampled soils in the study area, including all 5 parks. This soil subgroup occurred between 4–800 m elevation (avg. 500 m). Sites were typically moderately steep to steep, ranging between 0–35°, with an average slope gradient of 10°, and included a wide range of aspects.

## Geomorphology

Typic Dystrogelepts occurred most frequently in alpine and upland environments, on upper slope positions in hillside colluvium, talus, or glacial till. This subgroup was less frequently associated with lowland and riverine environments.

### Vegetation

In alpine environments, Dryas–Lichen Dwarf Shrub Tundra is a common vegetation type associated with Typic Dystrogelepts. Characteristic species include *Dryas octopetala*, *Salix phlebophylla*, *Minuartia arctica*, *Hierochloe alpina*, *Antennaria friesiana*, *Alectoria ochroleuca*, and *Sphaerophorus* sp. Cover by bare soil and surface fragments is commonly >50%. In upland environments, Open Low Mesic Shrub Birch–Ericaceous Shrub is often

supported by this soil type. Common species include *Betula nana*, *Empetrum nigrum*, *Vaccinium vitis-idaea*, *Flavocetraria cucullata*, and *Masonhalea richardsonii*.

### Soils

Typic Dystrogelepts are characterized by a thin surface organic horizon, weak to moderate soil structure, a lack of permafrost in the upper meter of the soil profile, a pH <5.5, and a mean annual soil temperature of 0° C or colder. Mineral soil horizons are typically loamy with many coarse fragments in the upper meter of soil. Frost boils and loess caps are rare, while surface fragments are common and abundant. Soil chemistry is typically circumneutral to acidic. Electrical conductivity is generally low (<ca. 200 µS/cm). The soils are excessively to moderately well drained, and the water table is very deep.

# Typical Pedon

KOVA\_T81\_04\_2007

*Oi—0 to 4 cm:* black (10YR 2/1) slightly decomposed wood; irregular clear boundary.

Bw—2 to 7 cm: very dark grayish brown (10YR 3/2) sandy loam; acidic; moderate, fine, subangular blocky structure; friable, slightly-sticky, non-plastic; 60 percent angular flagstones.

C—7 to 35+ cm: dark gray (2.5Y 4/1) sandy loam; weak, fine, subangular blocky structure; friable, slightly-sticky, non-plastic; 96 percent angular flagstones.

# Cryepts

Typic Dystrocryepts (n=20)

### **General Site Characteristics**

The Typic Dystrocryepts subgroup was limited in ARCN to KOVA and GAAR. This soil subgroup occurred between 40–600 m elevation (avg. 250 m). Sites were typically moderately steep to steep,

with a slope ranging between 3–34° (avg. 18°), and included a wide range of aspects.

# Geomorphology

Typic Dystrocryepts occurred exclusively in upland environments and occurred most commonly on upper slope positions in hillside colluvium, loess over colluvium, glacial till, and inactive sand dunes.

# Vegetation

White Spruce Woodland is commonly associated with Typic Dystrocryepts on loess, sand dunes, and hillside colluvium. *Picea glauca* forms the overstory beneath which Spiraea beauverdiana (syn: S. stevenii), Vaccinium uliginosum, and Alnus crispa (syn: A. viridis ssp. fruticosa) form a moderately dense shrub layer. Common understory species include Calamagrostis canadensis, Lycopodium annotinum, Hylocomium splendens, Pleurozium schreberi, and Cladina rangiferina. Open Spruce-Paper Birch Forest is often associated with this soil subgroup on hillside colluvium, glacial till, and sand dunes. Betula papyrifera (syn: B. neoalaskana) and Picea glauca form a mixed deciduous and needleleaf canopy. Characteristic understory species include Spiraea beauverdiana (syn: S. stevenii), Vaccinium vitis-idaea, Empetrum nigrum, Linnaea borealis, Equisetum sylvaticum, and Cladina rangiferina. Open Tall Alder Shrub also commonly occurs in conjunction with Typic Dystrocryepts on hillside colluvium and loess. *Alnus crispa* (syn: A. viridis ssp. fruticosa) and Spiraea beauverdiana (syn: S. stevenii) form a moderately dense shrub layer. Typical understory species include Artemisia arctica, Calamagrostis canadensis, Linnaea borealis, Lycopodium alpinum (syn: *Diphasiastrum alpinum*), *Trientalis* europaea var. arctica, Festuca altaica, Carex podocarpa, and Stereocaulon sp.

### Soils

Typic Dystrocryepts are characterized by a thin surface organic horizon, weak to moderate soil structure, a lack of

permafrost in the upper meter of the soil profile, a pH <5.5, an average annual soil temperature >0° C, and an average summer soil temperature of <8° C. Mineral soil materials are loamy or sandy. Coarse fragments are common and abundant in the upper meter of soil, with the exception of soils formed in loess or Eolian sand deposits. Frost boils and surface fragments are rare. Loess caps are uncommon, however when they are present they tend to be thick (avg. 22 cm). Soil chemistry is acidic, and electrical conductivity is generally low (<ca. 100 μS/cm). The soils are excessively to well drained, and the water table is very deep.

# Typical Pedon

KOVA\_T79\_05\_2007

*Oe—0 to 3 cm:* very dark brown (7.5YR 2.5/3) moderately decomposed wood; abrupt wavy boundary.

*Oa—3 to 5 cm:* very dark brown (7.5YR 2.5/2) highly decomposed wood; clear wavy boundary.

A—5 to 13 cm: black (10YR 2/1) silt loam; acidic; gradual, wavy boundary; moderate, medium, granular structure; friable, non-sticky, non-plastic.

Bw—13 to 20 cm: very dark grayish brown (10YR 3/2) loamy sand; abrupt wavy boundary; moderate, medium, granular structure; friable, slightly-sticky, slightly-plastic; 50 percent angular channers.

BC—20 to 35 cm: dark reddish brown (5YR 3/2) loamy sand; acidic; gradual wavy boundary; moderate, medium, granular structure; friable, slightly-sticky, slightly-plastic; 60 percent angular channers.

C—35 to 70+ cm: loamy sand; structureless; 80 percent angular channers.

# Typic Haplocryepts (n=12)

## **General Site Characteristics**

The Typic Haplocryepts subgroup was found only in KOVA and GAAR. This soil subgroup occurred between 36–900 m elevation (avg. 200 m). Sites were typically moderately steep to steep, ranging between 0–38° slope, with an average slope gradient of 15°. Slopes were typically south- or west-facing.

# Geomorphology

Typic Dystrocryepts occurred in alpine and upland environments. This soil type occurred most commonly at steep upper and lower slope positions on hillside colluvium and inactive sand deposits, and at flatter sites on active and inactive sand dunes.

### **Vegetation**

Open Spruce-Paper Birch Forest is commonly associated with Typic Haplocryepts. Betula papyrifera (syn: B. neoalaskana) and Picea glauca form an open, mixed deciduous and needleleaf tree canopy. Salix bebbiana commonly occurs in the tall shrub layer. Typical understory species include Vaccinium vitis-idaea, Ledum decumbens, Geocaulon lividum, Cladina rangiferana, Hylocomium splendens, and Pleurozium schreberi. Open White Spruce Forest is another vegetation type that often co-occurs with this soil type. Characteristic species include Picea glauca, Juniperus communis, Salix reticulata, Empetrum nigrum, Vaccinium uliginosum, Solidago multiradiata, and Hylocomium splendens.

### Soils

Typic Haplocryepts are characterized by a thin surface organic horizon, weak to moderate soil structure, a lack of permafrost in the upper meter of the soil profile, a pH >5.5, an average annual soil temperature > 0° C, and an average summer soil temperature of <8° C. Mineral soil materials are typically sandy. Coarse fragments are common and abundant in the upper meter of soil, except those soils formed in sand dunes

and eolian sand deposits. Frost boils and loess caps are absent. Surface fragments are common on soils formed from hillside colluvium. Soil chemistry is circumneutral to alkaline. Electrical conductivity is generally low (<ca. 100  $\mu$ S/cm). The soils are excessively to moderately well drained, and the water table is very deep.

# *Typical Pedon*GAAR T92 06 2008

Oi—0 to 1 cm: black (5YR 2.5/1) slightly decomposed plant material; abrupt wavy boundary.

Oe—3 to 5 cm: very dark brown (7.5YR 2.5/2) moderately decomposed plant material; abrupt smooth boundary.

*BC*—5 to 16 cm: dark gray (2.5Y 4/1) loamy fine sand; circumneutral; clear smooth boundary; 40 percent angular channers.

C—16 to 40+ cm: dark gray (2.5Y 4/1) loamy fine sand; 50 percent angular channers.

### **ENTISOLS**

### **Psamments**

Oxyaquic Cryopsamments (n=9)

# **General Site Characteristics**

The Oxyaquic Cryopsamments subgroup was found most often in BELA and CAKR and less often in KOVA and GAAR. This soil subgroup was located on sites ranging between 0–900 m elevation (avg. 100 m). The slope is typically low gradient, ranging between 0–4°.

### Geomorphology

Oxyaquic Cryopsamments occurred most frequently in riverine and coastal environments, and less frequently in lowland environments. In coastal environments, this soil type occurred on active marine beaches. In riverine environments, this soil type occurred most commonly on active overbank deposits, and coarse and fine active channel deposits along meandering

rivers, and less commonly on inactive fine channel deposits. In lowland environments, this soil type was located on glacial till.

## Vegetation

Oxyaquic Cryopsamments are often associated with unvegetated sandy beaches in coastal environments, and riverine barrens on active sand bars. Open Tall Willow Shrub is a common vegetation type that occurs with this soil type on active overbank deposits along meandering rivers. Characteristic species include Salix alaxensis, Galium boreale, Aster sibiricus (syn: Eurybia sibirica), Equisetum arvense, Equisetum variegatum, Parnassia palustris, and Pohlia sp. Sand is often exposed at the soil surface.

### Soils

Oxyaquic Cryopsamments are characterized by little to no surface organics, a lack of soil structure, <35% coarse fragments, a lack of permafrost in the upper meter of the soil profile, soil saturation within the upper meter of soil for 20 or more consecutive days or 30 or more cumulative days during the growing season, an average annual soil temperature >0° C, and an average summer soil temperature of <15° C. The soil texture is always sandy with few coarse fragments in the upper meter of soil. Frost boils, surface fragments, and loess caps are always absent. Soil pH is most often alkaline to circumneutral. Electrical conductivity is generally low (<100 μS/cm), except at coastal sites influenced by sea water where it is moderately high to high (avg. 4,741 μS/cm). The soils are excessively to well drained, and feature a shallow to moderately deep water table.

## Typical Pedon

BELA T21 03 2002

C—0 to 40+ cm: variegated sands; circumneutral; structureless, single-grained; loose, non-sticky, non-plastic.

### Typic Cryopsamments (n=35)

# **General Site Characteristics**

The Typic Cryopsamments subgroup is a common soil type in ARCN. This soil class was found most often in KOVA, and less often in GAAR, NOAT, CAKR, and BELA. This soil subgroup was located on sites ranging between 0–500 m elevation (avg. 100 m). Sites were typically low to moderate gradient, ranging between 0–24°, with an average slope gradient of 4°, and included a wide range of slope aspects.

### Geomorphology

Typic Cryopsamments occurred most frequently in upland and riverine environments, and less frequently in coastal environments. In the areas surrounding the Greater Kobuk Sand Dunes and Little Kobuk Sand Dunes, this soil type occurred in moderately steep to steep upland environments on active and inactive sand dunes. In riverine environments, Typic Cryopsamments were common on active and inactive channel and overbank deposits along meandering and braided rivers, and on active and inactive riverine sand dunes. In coastal environments, this soil type occurred on active marine beaches and active coastal dunes.

### Vegetation

Barrens and Partially Vegetated Barrens are common vegetation types associated with Typic Cryopsamments on active sand dunes in the Greater Kobuk Sand Dunes, Little Kobuk Sand Dunes, and other, smaller active dune fields in ARCN. Although bare sand is the predominant cover (90%), species include Bromus pumpellianus, Calamagrostis purpurascens, Cnidium cnidiifolium, Oxytropis kobukensis, Senecio ogotorukensis (syn: Packera ogotorukensis), and Artemisia furcata. White Spruce Woodland is a forested vegetation type is associated with this soil subgroup on inactive sand dunes in areas surrounding active sand Dunes. Picea glauca forms a sparse tree canopy above a lichen dominated understory, including Stereocaulon sp., Cladonia sp., Abietinella abietina, and Flavocetraria nivalis. Common vascular species include Arctostaphylos uva-ursi, Solidago multiradiata, and Astragalus aboriginum. Bare sand is almost always present. In riverine environments, Open and Closed Tall Willow Shrub are common vegetation types associated with Typic Cryopsamments. These vegetation types are typically dominated by Salix alaxensis, with an understory of Equisetum arvense, Aster sibiricus (syn: Eurybia sibirica), Artemisia tilesii, and Calamagrostis canadensis. Bare riverine silts and sands also are present. In coastal environments, Elymus Meadow grows on this soil type on coastal sand dunes. Characteristic species include Elymus arenarius var. mollis (syn: Leymus mollis), Lathyrus maritimus var. maritimus, Cnidium cnidiifolium, and Honckenya peploides. Bare sand is always present.

### Soils

Typic Cryopsamments are characterized by little to no surface organics, a lack of soil structure, <35% coarse fragments, a lack of permafrost in the upper meter of the soil profile, an average annual soil temperature >0° C, and an average summer soil temperature of <15° C. The soil is always sandy with few coarse fragments in the upper meter of soil. Frost boils, surface fragments, and loess caps are generally absent. Soil pH is most often alkaline to circumneutral. Electrical conductivity is generally low (<300 μS/cm). The soils are excessively to well drained, and feature a deep to very deep water table.

# *Typical Pedon*KOVA T66 02 2007

C—0 to 50+ cm: pale yellow (2.5Y 7/4) fine sand; alkaline; massive, single-grained structure; loose, non-sticky, non-plastic.

### **Orthents**

Oxyaquic Gelorthents (n=15)

### **General Site Characteristics**

The Oxyaquic Gelorthents subgroup was found in NOAT, CAKR, and KOVA. This soil subgroup was located on sites ranging between 10–600 m elevation (avg. 200 m). Sites were typically low gradient, ranging between 0–2°.

## Geomorphology

Oxyaquic Gelorthents occurred almost exclusively in riverine environments, but occasionally also occurred in lacustrine environments in ice-poor thaw basins. In riverine environments, this soil occurred most commonly on active overbank and coarse active channel deposits along braided and meandering rivers, and moderately steep headwater floodplains and channel deposits.

# Vegetation

Oxyaquic Gelorthents are often associated with Barrens or Partially Vegetated Barrens on sand and gravel bars. Open Low Willow Shrub is commonly associated with this soil type on braided coarse active channel deposits, moderately steep headwater floodplains, and braided active overbank deposits. Characteristic species include Salix alaxensis, Epilobium latifolium, Aster sibiricus (syn: Eurybia sibirica), Astragalus alpinus, and seedlings of Populus balsamifera. Bare sand and silt are always present. Open Tall Willow Shrub is often associated with Oxyaquic Gelorthents on active overbank deposits along braided and meandering rivers, and moderately steep headwater floodplains and channel deposits. Salix alaxensis and Salix lanata ssp. richardsonii (syn: S. richardsonii) form a moderately dense tall shrub layer. Typical understory species include Salix reticulata, Aster sibiricus (syn: Eurybia sibirica), Artemisia tilesii, Hedysarum alpinum (syn: Hedysarum hedysaroides), Anemone parviflora, and Equisetum arvense. Bare sand and silt are always present.

### Soils

Oxyaquic Cryorthents are characterized by little to no surface organics, a lack of soil structure, >35% coarse fragments, soil saturation within the upper meter of soil for 20 or more consecutive days or 30 or more cumulative days during the growing season, a lack of permafrost in the upper meter of the soil profile, and a mean annual soil temperature of 0° C or colder. Soils are typically loamy or sandy with many coarse fragments in the upper meter of soil. Frost boils and loess caps are absent, and surface fragments are common. Soil pH is most often alkaline to circumneutral. Electrical conductivity is generally low ( $<200 \,\mu\text{S/cm}$ ). The soils are excessively to well drained, and feature a shallow to moderately deep water table.

# Typical Pedon

NOAT\_T10\_03\_2005

C1—0 to 25 cm: olive brown (5Y 2.5/2) silt loam; alkaline; structureless, single-grained; loose, non-sticky, non-plastic.

C2—25 to 40+ cm: very dark gray (2.5YR 3/1) fine sand; structureless, single-grained; 50 percent subrounded cobbles; loose, non-sticky, non-plastic.

Typic Gelorthents (n=74)

### **General Site Characteristics**

The Typic Gelorthents subgroup was one of the most commonly sampled soils in the study area. This soil class was found most often in NOAT, and less often in CAKR, GAAR, and KOVA. This soil subgroup occurred between 4–1,300 m elevation (avg. 397 m). In alpine environments, sites encompassed a wide range of slope aspects. Sites were typically moderately steep to very steep, with slope gradients ranging between 2–55° (avg. 20°). In riverine and lacustrine environments, slope gradients were almost always <1°.

# Geomorphology

Typic Gelorthents occurred most frequently in alpine and riverine

environments, and less frequently in lacustrine environments. In alpine environments this soil occurred on talus and hillside colluvium. In riverine environments this soil occurred on active and inactive overbank and channel deposits along braided and meandering rivers, and on moderately steep headwater floodplains.

### Vegetation

In alpine environments, Dryas Dwarf Shrub Tundra is a common vegetation type associated with Typic Gelorthents. Characteristic species include Dryas octopetala, Salix phlebophylla, Geum glaciale, Silene acaulis, Pedicularis capitata, Lycopodium selago (syn: Huperzia selago), and Dactylina arctica. Bare soil and surface fragments are always present with an average cover of 33%. Barrens and Partially Vegetated Barrens were also commonly associated with this soil type in alpine environments, and were characterized by Salix arctica, Saxifraga oppositifolia, Minuartia arctica, Androsace chamaejasme, Racomitrium sp.. Bare soil and surface fragments are always present with an average cover of 89%. In riverine environments, Open Tall Willow Shrub is commonly associated with Typic Gelorthents. This vegetation type is dominated by Salix alaxensis. Characteristic understory species include Aster sibiricus (syn: Eurybia sibirica), Artemisia tilesii, and Equisetum arvense. Bare soil and surface fragments are almost always exposed with an average cover of 24%. Open Balsam Poplar Forest is another vegetation type associated with Typic Gelorthents in riverine environments. Populus balsamifera forms an open deciduous canopy, with *Picea* glauca often found in the understory. Shepherdia canadensis and Salix alaxensis are commonly found in the shrub layer. Characteristic herbaceous species include Aster sibiricus (syn: Eurybia sibirica), Artemisia tilesii, and Hedysarum alpinum (syn: Hedysarum hedysaroides).

### Soils

Typic Gelorthents are characterized by a very thin surface organic horizon, little to no soil structure, a lack of permafrost in the upper meter of the soil profile, and a mean annual soil temperature of  $0^{\circ}$  C or colder. The mineral horizons are typically loamy or sandy with many coarse fragments in the upper meter of soil. Frost boils and surface fragments are common, while loess caps are rare. Soil pH was circumneutral to basic. Electrical conductivity is generally low (<100  $\mu$ S/cm). The soils are excessively to moderately well drained, and the water table is deep to very deep.

# *Typical Pedon—Riverine* NOAT\_T10\_07\_2005

Oi—0 to 3 cm: black (10YR 2/1) slightly decomposed feather moss; abrupt smooth boundary.

*Oe—3 to 8 cm:* black (10YR 2/1) moderately decomposed wood; abrupt smooth boundary.

Bw—8 to 15 cm: very dark grayish brown (10YR 3/2) silt loam; circumneutral; moderate, very fine, granular structure; friable, non-sticky, non-plastic; few, fine, distinct oxidized iron accumulations.

C1—15 to 26 cm: olive brown (2.5YR 4/3) silt loam; structureless.

C2—26 to 35 cm: olive brown (2.5YR 4/3) fine sand; alkaline; structureless.

C3—35 to 50+ cm: very dark grayish brown (2.5YR 3/2) fine sand; structureless; 30 percent 2-to 75-millimeter subrounded fragments.

# *Typical Pedon— Alpine* NOAT\_G03\_02\_2005

C1—0 to 12 cm: pale yellow (2.5Y 7/4) fine sand; circumneutral; structureless; 80 percent 2- to 75-millimeter angular fragments.

C2—12 to 40+ cm: olive brown (2.5YR 4/3) fine sand; circumneutral; structureless; 80 percent 2- to 75-millimeter angular fragments.

# Oxyaquic Cryorthents (n=29)

### **General Site Characteristics**

The Oxyaquic Cryorthents subgroup is a common soil type in ARCN, and was sampled in all parks, with the exception of CAKR. This soil subgroup was located on sites ranging 23–500 m in elevation (avg. 200 m). Sites were typically low gradient, ranging between 0–7° (avg 1°).

# Geomorphology

With one exception, Oxyaquic Cryorthents occurred almost exclusively in riverine environments, most commonly on active overbank deposits along braided rivers, and coarse active channel deposits along braided and meandering rivers. Less frequently, we found it associated with inactive channel and overbank deposits along braided and meandering rivers and old alluvial fans. The one non-riverine site occurred in a lowland environment on a recently burned glacial moraine.

### Vegetation

Oxyaquic Cryorthents are often associated with Barrens on unvegetated sand and gravel bars. Some sites also included Partially Vegetated Barrens, featuring bare alluvium along with scattered Salix alaxensis, Populus balsamifera, Epilobium latifolium, Aster sibiricus (syn: Eurybia sibirica), and Hedysarum alpinum (syn: Hedysarum hedysaroides). Seral Herbs is another vegetation type commonly associated with Oxyaquic Cryorthents. Characteristic species include Salix alaxensis, Epilobium latifolium, Artemisia borealis, Bromus pumpellianus, and *Oxytropis campestris*. Similar to the other vegetation types, cover by bare sand is prominent.

### Soils

Oxyaquic Cryorthents are characterized by little to no surface organics, a lack of

soil structure, >35% coarse fragments, soil saturation within the upper meter of soil for 20 or more consecutive days or 30 or more cumulative days during the growing season, a lack of permafrost in the upper meter of the soil profile, an average annual soil temperature  $>0^{\circ}$  C, and an average summer soil temperature of <15° C. Mineral horizons are typically sandy or loamy with many coarse fragments in the upper meter of soil. Frost boils and loess caps are absent, and surface fragments are common and abundant. Soil pH is most often alkaline to circumneutral. Electrical conductivity is generally low (<300 µS/cm). The soils were excessively to well drained, and featured a shallow to moderately deep water table.

# Typical Pedon

NOAT\_T02\_02\_2005

C—0 to 43+ cm: variegated sands; alkaline; structureless, single-grained; loose, non-sticky, non-plastic; 65 percent rounded gravels.

# Typic Cryorthents (n=17)

## **General Site Characteristics**

The Typic Cryorthents subgroup was found only in KOVA and GAAR. This soil subgroup occurred between 29–800 m elevation (avg. 350 m). In alpine and upland environments, this soil type typically occurred on south- and west-facing slopes. Sites were typically moderately steep to very steep, with slope gradient ranging between 0–32° (avg. 20°). In riverine and lowland environments, slope gradient was almost always <1°.

### Geomorphology

Typic Cryorthents occurred most frequently in alpine and riverine environments, and less frequently in upland and lacustrine environments. In alpine and upland environments this soil occurred on talus, hillside colluvium, and glacial till. In riverine environments, Typic Cryorthents occurred on active and inactive overbank and channel

deposits along braided and meandering rivers. The one occurrence of this soil in a lacustrine environment occurred in an ice-poor thaw basin.

### Vegetation

In riverine environments, Open Balsam Poplar Forest is a common vegetation type associated with Typic Cryorthents, primarily on active fluvial surfaces. *Populus balsamifera* was the dominant species in these stands, with Salix alaxensis and Alnus crispa (syn: A. viridis ssp. *fruticosa*) forming the tall shrub layer beneath. Picea glauca seedlings and saplings often occurred in the understory at low abundance. Characteristic understory species include Shepherdia canadensis, Equisetum arvense, Hedysarum alpinum (syn: Hedysarum hedysaroides), Pyrola asarifolia, Artemisia tilesii, and Cypripedium passerinum. Bare alluvium is almost always present. Open Spruce–Balsam Poplar Forest is associated with this soil type on inactive fluvial surfaces. Picea glauca and Populus balsamifera form the overstory in these mid-successional stands. Salix alaxensis and Alnus crispa (syn: A. viridis ssp. fruticosa) always occurred in the tall shrub layer beneath. Frequent understory species include Rosa acicularis, Shepherdia canadensis, Equisetum arvense, Pyrola secunda (syn: Orthilia secunda), Artemisia tilesii, Aster sibiricus (syn: Eurybia sibirica), Calamagrostis canadensis, Platanthera obtusata, and Hylocomium splendens. In alpine environments, on hillside colluvium and talus, Dryas Dwarf Shrub Tundra occurs in conjunction with Typic Cryorthents. Either Dryas integrifolia or Dryas octopetala dominated these sites. Other characteristic species include Saxifraga oppositifolia, Carex scirpoidea, Senecio resedifolius (syn: Packera cymbalaria), and Trisetum spicatum. Bare soil and surface fragments are always present.

#### Soils

Typic Cryorthents are characterized by a very thin surface organic horizon, little to

no soil structure, a lack of permafrost in the upper meter of the soil profile, an average annual soil temperature  $>0^{\circ}$  C, and an average summer soil temperature of  $<15^{\circ}$  C. Mineral horizons are typically loamy or sandy with many coarse fragments in the upper meter of soil. Frost boils and loess caps are always absent, while surface fragments are rare. Site pH is either alkaline or acidic. Electrical conductivity is generally low ( $<100~\mu$ S/cm). The soils are excessively to well drained, and the water table is deep to very deep.

# *Typical Pedon—Riverine* GAAR T114 04 2008

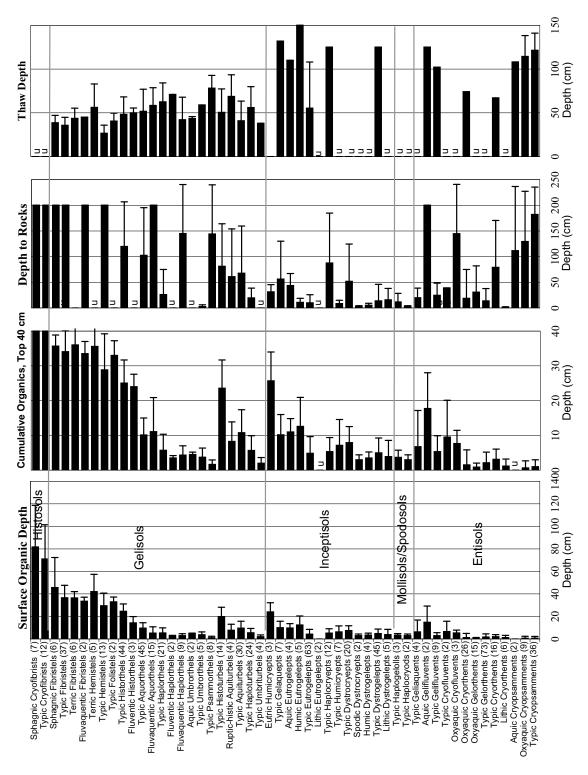
C1—0 to 60 cm: dark gray (2.5YR 4/1) silt loam with inclusions of fine sand; alkaline; structureless, massive.

C2—60 to 70+ cm: variegated sands; structureless, single-grained; 60 percent rounded gravels.

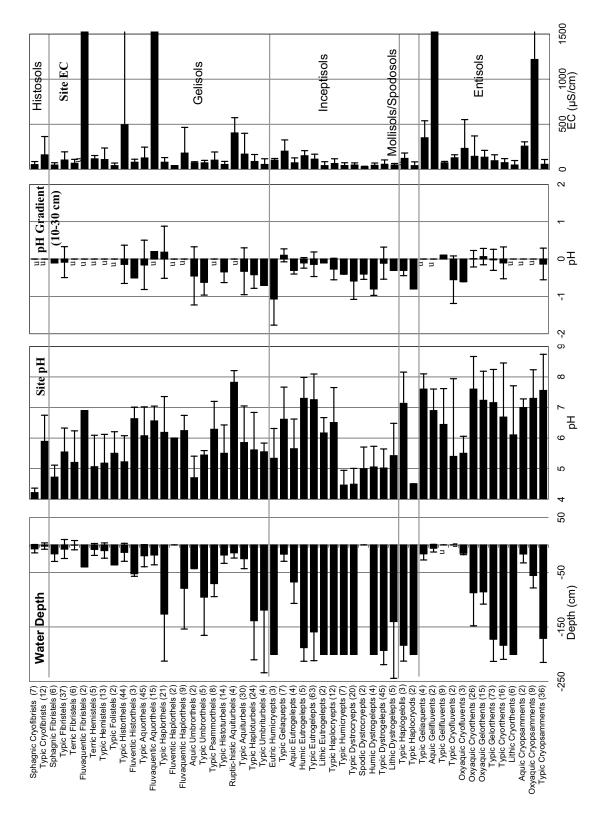
# **Summary of Soil Characteristics**

Soils from six orders of soil taxonomy were encountered during field sampling, including Entisols, Inceptisols, Gelisols, Histosols, Mollisols, and Spodosols. Entisols (poorly developed soils) included 15 observed subgroups and comprised 28% of observations. They occurred most frequently in rocky alpine and rocky to loamy early successional riverine environments. Inceptisols (weakly developed soils) occurred primarily in alpine and upland environments. Inceptisols accounted for 16 observed subgroups and comprised 25% of observations, with 9 of the 16 subgroups having permafrost below 1 m. Gelisols (permafrost affected soils) included 27 observed subgroups and comprised 42% of observations. They were widely distributed across all physiographic environments from the alpine to the coast. Histosols (thick peats) included 7 subgroups and comprised 4% of

observations. These non-permafrost soils occurred most frequently in bogs and fens formed after permafrost degradation. Mollisols (well developed soils with thick A horizons) were rare and included only 2 soil subgroups that were observed at 4 sites (<1% of observations). Spodosols (well developed soils with strong leaching) included only 1 soil subgroup that was observed at 2 locations (<1% of observations).


Overall, 68 soil subgroups were identified during field sampling (n = 730), although 30 soil subgroups were rare (≤3 observations) and therefore were excluded from the analysis and mapping. The ten most common subgroups were Typic Cryorthents (10%), Typic Eutrogelepts (9%), Typic Dystrogelepts (7%), Typic Aquorthels (6%), Typic Historthels (6%), Typic Fibristels (5%), Typic Cryopsamments (5%), Typic Aquiturbels (4%), Oxyaquic Cryorthents (4%), and Typic Haploturbels (3%). Together these ten soil types comprised 59% of observations.

The soil classification was effective at partitioning the variability of numerous soil properties because the classification is based in large part on thaw depths, depth to water, organic thickness, and base saturation status as inferred from pH (Figures 21 and 22). For example, soils with measurable thaw depths were associated with the Gelisols, while non-permafrost soils with organic horizons >40 cm thick were associated with the Histosols. Rock depths < 20 cm were commonly associated with the great groups Cryorthents and Gelorthents (within the Entisol order), and Eutrocryepts, Eutrogelepts, and Dystrogelepts (within the Inceptisol order). Water depths within 30 cm of the surface were associated with the great groups Cryohemists and Cryofibrists (Histosols), and Cryaquepts (Inceptisols). Soil pH values < 5.5 were


associated with the Dystrocryepts great group of the Inceptisol order. Electrical conductivity values >200  $\mu S/cm$  were associated with the Cryofluvents great group of the Entisols order, and with the wet soils of the Cryaquepts and Cryohemists great groups. Finally, the pH gradients from 10–30 cm depths were steepest for the Dystrocryepts and Haplocryods great groups (Inceptisols and Spodosols, respectively), indicating substantial leaching and translocation of cations.

In a few instances, the use of the newly revised Gelisols order failed to separate soils with distinctly different characteristics. For example, both alkaline (eutric) and acidic (dystric) soils were included in the Typic Haploturbels subgroup, despite important differences in A-horizon development and species composition. In contrast, few differences in soil properties and vegetation relationships were evident between Typic Haplorthels and Typic Haploturbels. Properties also were similar among Typic Historthels, Typic Aquiturbels, and Typic Aquorthels.

Soil chemistry and lithology were strongly influenced by bedrock type, as was evident in soils collected from the C horizon in barren to partially vegetated alpine ecosystems (Table 149). Limestone had lower sand content, and higher pH, C%, Ca, and CaCO<sub>3</sub>% equivalent than other soils. Shale had lower pH, electrical conductivity, NO<sub>3</sub> and extractable K and Zn than other soils, but substantially higher weakly extractable P. Mafic rocks (i.e., basalt, gabbro) had relatively low P, but high Cu, Mn, Cr, and B. Ultramafic rocks (i.e., serpentine, dunite) had extremely low total P and Ca, but unusually high concentrations of Mg, Ni, Cr, and Se. We suspect that the almost total lack of plant growth on ultramafic soils was due to the lack of P, rather than to toxicity of trace elements such as Se. Comparison of



Mean ( $\pm$  SD) thickness of the surface organic layer, cumulative organic thickness within the top 40 cm, depth to rock (>15% coarse fragments) and depth of thaw for common soil subgroups in the Arctic Network. Sample size in parenthesis after name. Figure 21.



Mean (± SD) water depth above or below the ground surface, site pH (soil water or saturated paste), electrical conductivity (EC) and pH gradient (pH at 10cm minus pH at 30 cm, positive indicates leaching) for common soil subgroups in the Arctic Network. Sample size in parenthesis after name. Figure 22.

Table 149. Mean properties of surface soils (C horizon) from bedrock types within Noatak National Preserve, Gates of the Arctic National Park, and Kobuk Valley National Park, 2005–2008. Unusually high or low values in bold.

| Eolian<br>Sand<br>Glacial<br>Giamicton | Limestone | Shale | Phyllite | Sandstone | Schist | Granite | Mafic | Ultramafic |
|----------------------------------------|-----------|-------|----------|-----------|--------|---------|-------|------------|
| Sample Size 2 2                        | 7         | 9     | 1        | 2         | 6      | 1       | 3     | 6          |
| Particle Size (%)                      |           |       |          |           |        |         |       |            |
| Sand % 89.0 89.5                       | 45.7      | 65.7  | 79.0     | 66.0      | 59.3   | 71.0    | 53.7  | 60.8       |
| Silt % 5.0 2.0                         | 36.7      | 18.6  | 13.0     | 20.0      | 31.7   | 20.0    | 21.0  | 27.0       |
| Clay % 6.0 8.5                         | 17.6      | 15.8  | 8.0      | 14.0      | 9.0    | 9.0     | 25.3  | 12.2       |
| pH <b>7.8</b> 4.3                      | 7.4       | 5.5   | 5.6      | 4.1       | 4.9    | 3.6     | 6.2   | 6.8        |
| EC (µmhos/cm) 318 78                   | 1267      | 318   | 648      | 108       | 256    | 120     | 463   | 632        |
| Exchangeable (AB-DTPA)(ppm)            |           |       |          |           |        |         |       |            |
| NO3-N 0.7 0.4                          | 7.1       | 0.8   | 1.0      | 0.2       | 1.2    | 2.5     | 2.9   | 2.8        |
| P 2.3 2.9                              | 1.4       | 2.4   | 1.8      | 5.0       | 2.4    | 1.5     | 0.5   | 0.9        |
| K 10.0 14.2                            | 53.5      | 41.0  | 15.2     | 16.6      | 22.3   | 12.3    | 41.4  | 20.8       |
| Zn 0.1 0.2                             | 1.6       | 0.8   | 0.2      | 0.3       | 0.6    | 0.1     | 1.5   | 0.5        |
| Fe 16.3 92.3                           | 40.6      | 79.5  | 98.1     | 83.9      | 186.6  | 369.8   | 46.5  | 64.5       |
| Mn 2.2 1.9                             | 5.6       | 5.5   | 1.2      | 1.6       | 5.3    | 0.4     | 2.1   | 3.8        |
| Cu 2.4 2.2                             | 3.2       | 2.8   | 2.8      | 2.1       | 4.3    | 0.4     | 4.3   | 2.5        |
| Organic Mat. % 0.1 0.9                 | 9.3       | 5.6   | 1.0      | 1.6       | 4.1    | 3.7     | 6.2   | 8.8        |
| Total C % 0.9 0.4                      | 6.0       | 1.5   | 0.5      | 0.6       | 1.6    | 1.9     | 1.0   | 0.8        |
| Total N % 0.02 0.06                    | 0.19      | 0.15  | 0.11     | 0.11      | 0.16   | 0.15    | 0.09  | 0.08       |
| Total Extractable (ppm)                | 0.15      | 0.15  | 0        | 0         | 0.10   | 0.15    | 0.03  | 0.00       |
| P 0.06 0.05                            | 34.9      | 15.96 | 0.12     | 0.04      | 0.07   | 0.02    | 0.03  | 28.91      |
| K 1.22 1.00                            | 500.9     | 451.3 | 3.76     | 1.00      | 2.07   | 1.85    | 0.51  | 540.4      |
| Ca 5.5 0.5                             | 12387     | 150.8 | 0.5      | 0.0       | 0.9    | 0.2     | 4.3   | 3427       |
| Mg 0.2 0.2                             | 271.4     | 427   | 3.9      | 0.1       | 1.6    | 0.1     | 6.2   | 13396      |
| Na 1.6 1.1                             | 310.6     | 205.3 | 1.6      | 0.4       | 2.0    | 1.1     | 0.9   | 932.3      |
| Al 4.7 3.8                             | 1649      | 1752  | 16.4     | 3.0       | 8.9    | 3.1     | 6.2   | 4863       |
| Fe 3.3 2.6                             | 1031      | 1491  | 8.6      | 3.4       | 6.3    | 2.0     | 4.1   | 6331       |
| Mn 0.09 0.04                           | 26.19     | 36.83 | 0.19     | 0.03      | 0.12   | 0.02    | 0.11  | 124.2      |
| Ti 0.49 0.22                           | 68.62     | 75.52 | 0.87     | 0.30      | 0.53   | 0.13    | 0.30  | 188.6      |
| Cu 18.2 44.9                           | 14.8      | 44.6  | 112.1    | 51.2      | 68.1   | 23.3    | 67.6  | 16.6       |
| Zn 44.9 59.2                           | 46.5      | 83.2  | 239.2    | 83.4      | 132.8  | 38.1    | 36.0  | 31.4       |
| Ni 10.0 19.1                           | 24.1      | 33.0  | 126.6    | 24.6      | 39.8   | 6.6     | 57.6  | 496.4      |
| Mo 0.43 0.58                           | 1.09      | 1.42  | 1.35     | 0.65      | 0.85   | 0.82    | 0.15  | 0.18       |
| Cd 3.37 1.81                           | 2.09      | 3.06  | 13.26    | 2.41      | 7.58   | 1.27    | 3.85  | 3.30       |
| Cr 20.6 35.8                           | 33.4      | 43.5  | 202.7    | 58.9      | 82.3   | 26.2    | 155.6 | 789.2      |
| Sr 175.4 102.0                         | 272.0     | 39.4  | 144.3    | 53.4      | 79.3   | 40.8    | 67.7  | 19.7       |
| В 0.0 0.0                              | 121       | 509   | 0.0      | 0.0       | 0.0    | 0.0     | 1524  | 74.2       |
| Ba 255.9 424.6                         | 152.7     | 393.7 | 1014     | 361.6     | 758.0  | 292.6   | 112.3 | 73.3       |
| Be 0.01 0.15                           | 0.12      | 0.01  | 0.01     | 0.01      | 0.03   | 0.20    | 0.00  | 0.00       |
| Pb 0.01 2.08                           | 1.47      | 2.00  | 0.11     | 7.31      | 1.50   | 9.51    | 0.01  | 0.29       |
| V 0.0 0.0                              | 14.9      | 76.1  | 0.0      | 0.0       | 0.0    | 0.0     | 115.1 | 4.1        |
| Se 0.00 13.52                          | 0.26      | 71.76 | 0.00     | 216.80    | 11.20  | 40.06   | 0.01  | 0.80       |
| S 7.20 0.00                            | 238.25    | 0.00  | 24.42    | 0.00      | 116.92 | 0.00    | 0.00  | 0.00       |
| Si Total % 32.6 0.0                    | 20.2      | 20.4  | 16.1     | 0.0       | 15.6   | 0.00    | 26.8  | 20.9       |
|                                        |           |       |          |           |        |         |       |            |
| CaCO3 % equiv. 7.4 0.1                 | 30.6      | 0.1   | 2.0      | 0.1       | 0.8    | 0.1     | 0.0   | 0.2        |

chemistry of residual soils, however, is complicated by analytical techniques requiring some caution in interpreting results. Laboratory analyses using a weak extractant (AB-DTPA appropriate for circumneutral-alkaline soils), to approximate plant available elements, versus a strong extractant (HNO3), to approximate long-term availability of elements from weathering, generated some unusual results. For example, the single granite sample had relatively high exchangeable Fe, but low total digestable Fe. Limestone had relatively high values for many elements, presumable because the strong acidic digestion solubilized most of the soil material.

# Classification and Description of Soil Landscapes

# Alpine Lakes

This soil landscape occurs in mountain cirques, and in depressions in bedrock or glacial moraines. It is found in mountainous regions throughout our study area and includes shallow (<1.5 m) to deep (≥1.5 m) lakes, usually above 400 m elevation. Soils are permanently flooded. Alpine Lake is typically unvegetated. However, aquatic species occasionally occur, including *Ranunculus hyperboreus*, *Warnstorfia sarmentosa*, and *Warnstorfia exannulata*.

# Alpine Rocky Wet Meadow

The Alpine Rocky Wet Meadow soil landscape comprises a single ecotype: Alpine Wet Sedge Meadow. The terrain includes hillside colluvium over non-carbonate sedimentary, mafic, and ultra-mafic bedrock on moderately steep (avg. 7°) slopes between 500-800 m elevation (avg. 600 m). Soils are predominantly rubbly, gravelly, or blocky, circumneutral, and very poorly to somewhat poorly drained. Permafrost is often difficult to determine in the rocky soils. Common soils include Typic Aquorthels and Typic Aquiturbels. Wet Sedge Meadow Tundra is the most common vegetation type in this soil landscape. Typical species include *Carex* 

bigelowii, Eriophorum angustifolium, Arctagrostis latifolia, Carex capillaris, Juncus biglumis, and Pedicularis sudetica. Bare soil and surface fragments are always present with low to moderate cover.

# Alpine Rocky Acidic Barrens and Shrub

This soil landscape comprises three ecotypes: Alpine Acidic Barrens, Alpine Acidic Dryas Dwarf Shrub, and Alpine Ericaceous-Dryas Dwarf Shrub. The terrain includes hillside colluvium, talus, older glacial moraines, and residual soils on moderately steep to very steep (avg. 13°) slopes between 250–1200 m elevation (avg. 660 m). Bedrock geology tends to be igneous intrusive or noncarbonate sedimentary. Soils are predominantly rubbly or blocky; circumneutral to acidic; and excessively to moderately well drained. Permafrost is often difficult to determine in the rocky soils. Common soil types associated with this soil landscape include Typic Dystrogelepts, Typic Haploturbels, Typic Gelorthents, Typic Eutrogelepts, and Lithic Cryorthents. Uncommon soil types include: Typic Haplorthels, Typic Umbriturbels, Humic Dystrogelepts, and Lithic Dystrogelepts. Dryas-Lichen Dwarf Shrub Tundra was often associated with this soil landscape. Characteristic species include Dryas octopetala, Hierochloe alpina, Antennaria friesiana, Minuartia arctica, Flavocetraria nivalis, Flavocetraria cucullata, Thamnolia vermicularis, Bryocaulon divergens, and Racomitrium lanuginosum. Bare soil and surface fragments always occurred with low to moderate cover. Dryas Dwarf Shrub Tundra is another common vegetation type that occurs in the alpine rocky acidic barrens and shrub soil landscape. Frequently occurring species include Dryas octopetala, Salix phlebophylla, Vaccinium uliginosum, Hierochloe alpina, Saxifraga bronchialis, Flavocetraria nivalis, and Rhytidium rugosum. Bare soil and surface fragments occur in low to moderate abundance.

# Alpine Rocky Alkaline Barrens and Shrub

This soil landscape comprises four ecotypes: Alpine Alkaline Dryas Dwarf Shrub, Alpine Alkaline Barrens, Alpine Cassiope Dwarf Shrub, Alpine Mafic Barrens. The terrain includes hillside colluvium, talus, and residual soils on moderately steep to very steep (avg. 19°) slopes between 100–1400 m elevation (avg. 600 m). Bedrock geology is maficand ultramafic-igneous intrusive or carbonate sedimentary. Soils are predominantly rubbly or blocky; circumneutral to alkaline; and well to excessively well drained. Permafrost is often difficult to determine in the rocky soils. Common soil types include Typic Gelorthents, Typic Eutrogelepts, Typic Haplorthels, and Typic Cryorthents. Uncommon soils include Typic Haploturbels, Humic Eutrogelepts, Lithic Eutrogelepts, and Typic Haplogelolls. Dryas Dwarf Shrub Tundra is a common vegetation type that occurs in the alpine rocky alkaline barrens and shrub soil landscape. Typical species include Drvas octopetala, Saxifraga oppositifolia, Androsace chamaejasme, Carex scirpoidea, Silene acaulis, Dactylina arctica, and Thamnolia vermicularis. Bare soil and surface fragments have low to moderate cover. Barrens is another vegetation type that commonly occurs in this soil landscape. Bare soil and surface fragments dominate this vegetation type, but a low cover of a rich assemblage of vascular and nonvascular species also occur, including Dryas octopetala, Salix arctica, Saxifraga oppositifolia, Androsace chamaejasme, Minuartia arctica, Potentilla uniflora, Androsace chamaejasme, Lesquerella arctica, Vulpicida tilesii, Thamnolia vermicularis, and Racomitrium lanuginosum. The lichens Flavocetraria nivalis, and Flavocetraria cucullata also are commonly present.

## **Upland Sandy Barrens**

This soil landscape comprises a single ecotype, Upland Sandy Barrens, and is

limited in its spatial extent to the Greater Kobuk Sand Dunes, Little Kobuk Sand Dunes, and other small dune fields within ARCN. The upland sandy barrens soil landscape occur on low to moderate gradient (avg. 3°) active sand dunes between 50–100 m elevation (avg. 80 m). Soils are predominantly sandy with very few to no coarse fragments in the upper meter of soil; circumneutral to alkaline; and excessively drained. Permafrost is always >1 m below the soil surface. This soil landscape was affiliated with only one soil type, Typic Cryopsamments. Barrens and Partially Vegetated Barrens were common vegetation types associated with this soil landscape and include the species Bromus pumpellianus, Calamagrostis purpurascens, Cnidium cnidiifolium, Oxytropis kobukensis, Senecio ogotorukensis, and Artemisia furcata. Bare sand provided 70–100% cover.

# **Upland Sandy Forest**

This soil landscape comprises two ecotypes, Upland White Spruce-Dryas Woodland, and Upland White Spruce-Lichen Woodland. The upland sandy forest soil landscape occurred on low gradient (avg. 3°) inactive and active sand dunes between 50-100 m elevation (avg. 70 m). Soils are predominantly sandy with very few to no coarse fragments in the upper meter of soil; acidic to alkaline; and excessively to somewhat excessively drained. Soils on inactive sand dunes were more developed, including Typic Haplocryepts and Typic Dystrocryepts, than those on active dunes, which included Typic Cryopsamments. Open White Spruce Forest and White Spruce Woodland are common vegetation types associated with this soil landscape. Picea glauca forms an open needleleaf canopy. On alkaline sites, characteristic understory species include Dryas integrifolia, Arctostaphylos rubra (syn: Arctous rubra), Arctostaphylos uva-ursi, Shepherdia canadensis, Juniperus communis, Solidago multiradiata, Oxytropis kobukensis, Stereocaulon sp., and Abietinella abietina. On acidic sites,

frequent understory species include *Vaccinium uliginosum*, *Empetrum nigrum*, *Geocaulon lividum*, *Betula nana*, *Cladina stellaris*, and *Stereocaulon* sp. At all sites, bare sand was commonly present with low to moderate cover.

# Upland Rocky-Loamy Circumalkaline Low Shrublands and Forests

This soil landscape comprises three ecotypes: Upland Willow Low Shrub, Upland Sedge-Dryas Meadow, and Upland White Spruce-Willow Forest. The terrain includes low to moderately steep (avg. 9° slope) hillside colluvium, old glacial moraines, retransported deposits, and alluvial fan deposits between 75-800 m elevation (avg. 290 m). Bedrock geology tends to be carbonate sedimentary. Soils are predominantly loamy, rubbly, or blocky; circumneutral to alkaline; and well drained to somewhat poorly drained. Permafrost is often difficult to determine in soils with high rock fragment content. At well and moderately well drained sites, soils were Typic Eutrogelepts, Typic Haplorthels, and Typic Histoturbels. Soils at somewhat poorly drained sites include Typic Aquorthels, Typic Aquiturbels, and Ruptic-histic Aguiturbels. Uncommon soils include Humic Eutrogelepts, Typic Historthels, Typic Gelaquepts, Typic Haploturbels, and Typic Haplogelolls. Open White Spruce Forest frequently occurs in this soil landscape on well drained sites. This vegetation type is characterized by an open canopy of *Picea glauca* overtopping Salix lanata ssp. richardsonii (syn: S. richardsonii), Alnus crispa (syn: A. viridis ssp. fruticosa), Vaccinium uliginosum, Arctostaphylos rubra (syn: Arctous rubra), Salix reticulata, Festuca altaica, Saussurea angustifolia, and Hylocomium splendens. Open Low Willow Shrub also commonly occurs on well drained sites in this soil landscape. Dominant species include Salix lanata ssp. richardsonii (syn: S. richardsonii), Salix reticulata, Vaccinium uliginosum, Cassiope tetragona, Equisetum arvense, Festuca altaica,

Valeriana capitata, and Tomentypnum nitens. Moist Sedge–Dryas Tundra is often associated with this soil landscape at poorly drained sites. Typical species include Dryas integrifolia, Salix lanata ssp. richardsonii (syn: S. richardsonii), Salix arctica, Lagotis glauca, Saxifraga hirculus, Thalictrum alpinum, Carex bigelowii, Carex scirpoidea, Arctagrostis latifolia, Flavocetraria cucullata, and Tomentypnum nitens.

# Upland Rocky–Loamy Circumacidic Tall Shrublands and Forests

This soil landscape comprises six ecotypes: Upland Alder-Willow Tall Shrub, Upland Bluejoint Meadow, Upland Willow Tall Shrub, Upland White Spruce-Ericaceous Forest, Upland Birch Forest, and Upland Spruce-Birch Forest. The terrain includes moderately steep to steep (avg. 17° slope) hillside colluvium, inactive sand dunes, loess, old glacial moraines, and retransported deposits between 30-800 m elevation (avg. 300 m). Bedrock geology tends to be non-carbonate metamorphic, non-carbonate sedimentary, and igneous intrusive. Soils are predominantly loamy, rubbly, or blocky; circumneutral to acidic; and somewhat excessively to moderately well drained. Permafrost is often difficult to determine in the rocky soils. Common soil types include Typic Dystrocryepts, Typic Eutrogelepts, Typic Haplocryepts, Typic Haplorthels, and Eutric Humicryepts. Uncommon soils include Typic Aquorthels, Typic Historthels, Typic Cryopsamments, Typic Haplocryods, and Typic Haplocryolls. Open White Spruce Forest and White Spruce Woodland are common vegetation types associated with this soil landscape. Characteristic species include Picea glauca, Alnus crispa (syn: A. viridis ssp. fruticosa), Vaccinium uliginosum, Vaccinium vitis-idaea, Empetrum nigrum, Calamagrostis canadensis, Ledum decumbens, Hylocomium splendens, and Pleurozium schreberi. Open Tall Alder Shrub and Closed Tall Alder Shrub often occur in

this soil landscape. Typical species include Alnus crispa (syn: A. viridis ssp. fruticosa), Spiraea beauverdiana (syn: S. stevenii), Salix planifolia ssp. pulchra (syn: S. pulchra), Vaccinium uliginosum, Calamagrostis canadensis, Epilobium angustifolium (syn: Chamerion angustifolium), Polemonium acutiflorum, and Aconitum delphinifolium. Open Paper Birch Forest frequently occurs in this soil landscape on old glacial moraines and loess. A typical stand features an open canopy of Betula papyrifera (syn: B. neoalaskana) with Picea glauca seedlings below. The understory typically includes Alnus crispa (syn: A. viridis ssp. fruticosa), Vaccinium vitis-idaea, Spiraea beauverdiana (syn: S. stevenii), Calamagrostis canadensis, and Poytrichum juniperinum.

# Upland Rocky–Loamy Acidic Low Shrublands

This soil landscape comprises three ecotypes: Upland Birch-Willow Low Shrub, Upland Birch-Ericaceous Low Shrub, Upland Spiraea Low Shrub. The terrain includes moderately steep to steep (avg. 11°) hillside colluvium, loess, old glacial moraines, and solifluction deposits between 30-1100 m elevation (avg. 450 m). Bedrock geology tends to be non-carbonate metamorphic, non-carbonate sedimentary, and igneous intrusive. Soils are predominantly loamy, blocky, or rubbly; circumneutral to acidic; and well to somewhat poorly drained. Permafrost is often difficult to determine in the rocky soils. At well drained sites, common soil types include Typic Dystrogelepts, Typic Haplorthels, Typic Haploturbels, and Typic Dystrocryepts. At poorly drained sites, common soils include Typic Historthels, Typic Aquorthels, and Typic Aquiturbels. Both Open and Closed Low Mesic Shrub Birch-Ericaceous Shrub communities commonly occur in this soil landscape on well-drained sites. Characteristic species include Betula nana, Vaccinium uliginosum, Vaccinium vitis-idaea, Ledum decumbens, Salix planifolia ssp. pulchra

(syn: *S. pulchra*), *Empetrum nigrum*, and *Carex bigelowii*. Open Low Willow Shrub is a common vegetation type on poorly drained sites in this soil landscape. Frequently occurring species include *Salix planifolia* ssp. *pulchra* (syn: *S. pulchra*), *Salix reticulata*, *Vaccinium uliginosum*, *Arctagrostis latifolia*, *Carex bigelowii*, *Poa arctica*, and *Aulacomnium palustre*.

# **Upland Loamy Wet Tussock Shrublands**

This soil landscape comprises one ecotype: Upland Dwarf Birch-Tussock Shrub. This soil landscape encompasses an array of terrain units. The most common include bogs, old glacial moraines, hillside colluvium, loess, thaw basins, drained lake basins, and abandoned riverine overbank deposits. This soil landscape occurs between 5–100 m elevation (avg. 260 m). Slope gradient in this soil landscape is generally low to very low (avg. <2°). Soils typically feature a thick, organic-rich surface layer above loamy mineral soils. The soils are poorly to somewhat poorly drained largely due to the shallow depth to permafrost. Major soils include Typic Aquiturbels, Typic Historthels, Typic Fibristels, and Typic Hemistels. Minor soils include Typic Histoturbels, Typic Haploturbels, Terric Fibristels, and Terric Hemistels. Open Low Mixed Shrub-Sedge Tussock tundra is the most common vegetation type associated with this soil landscape. This vegetation type is characterized by Betula nana, Eriophorum vaginatum, Ledum decumbens, Vaccinium vitis-idaea, Carex bigelowii, and Sphagnum spp. Tussock Tundra is another common vegetation type is this soil landscape. The species composition is similar to the above vegetation type with <25% cover of shrubs. Typical species include Eriophorum vaginatum, Betula nana, Ledum decumbens, Rubus chamaemorus, Vaccinium uliginosum, and Sphagnum spp.

### Lowland Bogs and Fens

This soil landscape comprises three ecotypes: Lowland Sedge–Willow Fen,

Lowland Sedge Fen, and Lowland Ericaceous Shrub Bog. This soil landscape includes a wide range of terrain units, the most common are fens, bogs, abandoned riverine overbank deposits, drained lake basins, and thaw basins. This soil landscape occurs between sea level and 1000 m elevation (avg. 200 m). Slope gradient in this soil landscape is generally flat (avg. <1°), but may range as high as 4°. Soils typically feature thick peat above loamy or sandy mineral soil. The soils are very poorly to somewhat poorly drained, the water table is very shallow to above ground, and permafrost often occurs within one meter of the soil surface. Major soils include Typic Fibristels and Typic Historthels. Minor soils include Terric Fibristels, Sphagnic Cryofibrists, Sphagnic Fibristels, and Typic Aquorthels. Subarctic Lowland Sedge-Moss Bog Meadow is the most common vegetation type that occurs in this soil landscape. Characteristic species include Carex aquatilis, Betula nana, Andromeda polifolia, Eriophorum russeolum, and Sphagnum sp. Wet Sedge Meadow Tundra is another vegetation type that frequently occurs in this soil landscape. Typical species include Carex aquatilis, Eriophorum angustifolium, Carex chordorrhiza, Carex rotundata, Betula nana, and Salix fuscescens. Cover by surface water often occurs at moderately high levels in both vegetation types.

# Lowland Organic-rich Shrub and Forests

This soil landscape comprises five ecotypes: Lowland Birch–Ericaceous Low Shrub, Lowland Birch–Willow Low Shrub, Lowland Alder Tall Shrub, Lowland Willow Low Shrub, and Lowland Black Spruce Forest. The terrain includes low to very low gradient (avg. 3°) landforms, including hillside colluvium, old glacial moraines, abandoned riverine overbank deposits, loess over glacial till, thaw basins, and drained lake basins between sea level and

1000 m elevation (avg. 230 m). Soils are very poorly to moderately well drained and composed of predominantly organic-rich loams and silt loams with a moderately thick to thick organic cap. Permafrost commonly occurs within one meter of the soil surface. Common soils include Typic Aquorthels, Typic Historthels, Typic Aquiturbels, Typic Hemistels, and Typic Histoturbels. Uncommon soils include Typic Gelaquepts, Typic Dystrogelepts, Typic Haplorthels, and Typic Haploturbels. Open Low Shrub Birch-Willow Shrub commonly occurs in this soil landscape on poorly drained sites. Characteristic species include Betula nana, Salix planifolia ssp. pulchra (syn: S. pulchra), Vaccinium uliginosum, Ledum decumbens, Carex bigelowii, Eriophorum vaginatum, Petasites frigidus, Cladina arbuscula, Hylocomium splendens, and *Aulacomnium palustre*. On sites with better drainage, Open Black Spruce Forest is common. Typical species include Picea mariana, Ledum decumbens, Empetrum nigrum, Vaccinium uliginosum, Betula nana, Rubus chamaemorus, Carex bigelowii, and Cladina rangiferina.

## Riverine Gravelly-Loamy Forests

This soil landscape comprises four ecotypes: Riverine Poplar Forest, Riverine White Spruce-Poplar Forest, Riverine White Spruce-Alder Forest. Riverine White Spruce-Willow Forest. This soil landscape typically occurs on very low gradient sites (avg. <1°) on fluvial surfaces, including active and inactive overbank deposits along braided and meandering rivers, inactive coarse channels deposits along braided rivers and on fluvial fans, and inactive fine channel deposits along meandering rivers. This soil landscape ranges in elevation between 15-500 m. The soils are sandy, loamy, or gravelly with many thin buried horizons and a thin organic surficial horizon. The soils are somewhat excessively to moderately well drained, and circumneutral to alkaline.

Permafrost rarely occurs in the upper meter of the soil profile. Common soil types include Typic Gelorthents, Typic Cryorthents, Typic Gelifluvents, Typic Cryopsamments, and Typic Cryofluvents. Uncommon soils include Typic Haplorthels, Aquic Haplorthels, and Typic Aquorthels. Open White Spruce Forest is a common vegetation type in this soil landscape. Characteristic species include Picea glauca, Alnus crispa (syn: A. viridis ssp. fruticosa), Arctostaphylos rubra (syn: Arctous rubra), Rosa acicularis, Mertensia paniculata, Equisetum arvense, Calamagrostis canadensis, and Peltigera aphthosa. Open Balsam Poplar Forest is another common vegetation type that occurs in the riverine gravelly-loamy forest soil landscape. Typical species include Populus balsamifera, Salix alaxensis, Shepherdia canadensis, Aster sibiricus, Artemisia tilesii, Hedysarum alpinum, and Cypripedium passerinum. Riverine sands and silts often are exposed at the soil surface in moderately high abundance.

# Riverine Gravelly Barrens and Shrublands

This soil landscape comprises four ecotypes: Riverine Barrens, Riverine Moist Willow Tall Shrub Riverine, Willow Low Shrub, and Riverine Dryas Dwarf Shrub. It occurs on very low gradient (avg. <1°) fluvial terrain, including active coarse and fine channel deposits, and active overbank deposits along braided and meandering rivers between sea level and 600 m elevation (avg. 170 m). The soils are sandy, gravelly, or bouldery, and typically lack a surficial organic horizon. The soils are excessively to moderately well drained, and circumneutral to alkaline. Depth to permafrost, if present, was difficult to determine given the rocky soils. Common soil subgroups include Oxyaquic Cryorthents, Typic Gelorthents, Oxyaquic Gelorthents, Typic Cryopsamments, and Oxyaquic Cryopsamments. Less common soils include Fluvaquentic Haplorthels, Typic Eutrogelepts, Typic Gelaquents, and Typic

Cryorthents. Barrens and Partially Vegetated Barrens were common vegetation types in this soil landscape. These sites are dominated by riverine sands and gravels at the soil surface. Vegetation includes scattered individuals of Salix alaxensis, Epilobium latifolium, Aster sibiricus, Artemisia tilesii, Hedysarum alpinum, Astragalus alpinus, Wilhelmsia physodes, and Populus balsamifera seedlings. Open Tall Willow Shrub also commonly occurs in this soil landscape. The species composition is similar to the above vegetation type with a higher abundance of shrubs and herbaceous species, and less bare ground. Additional species include Shepherdia canadensis, Arctostaphylos rubra (syn: Arctous rubra), Equisetum arvense, and Galium boreale. Dryas Dwarf Shrub Tundra is a less common vegetation type in the riverine gravel barrens and shrublands soil landscape. Characteristic species include Dryas drummondii, Aster yukonensis, Artemisia borealis, Bromus pumpellianus, Oxytropis campestris, and Senecio ogotorukensis (syn: Packera ogotorukensis).

# Riverine Loamy Meadows and Shrublands

This soil landscape comprises four ecotypes: Riverine Birch–Willow Low Shrub, Riverine Alder Tall Shrub, Riverine Wet Willow Tall Shrub, and Riverine Bluejoint Meadow. This soil landscape occurs on very low gradient (avg. <1°) fluvial sites, including inactive overbank deposits along braided and meandering rivers, inactive fine channel deposits along meandering rivers and fluvial fans, and on floodplains along headwater streams. Elevation ranges from sea level to approximately 600 m (avg. 90 m). The soils are loamy, with a thin surficial organic horizon. The soils are somewhat poorly to well drained, and circumalkaline to acidic. We assume permafrost occurs in the upper 1–2 m of the soil profile. Common soils at poorly drained sites in this soil landscape include Fluvaquentic Haplorthels and

Fluvaquentic Aquorthels. At sites with better drainage, Typic Dystrogelepts, Typic Gelifluvents, and Typic Gelorthents are common. Open Tall Willow Shrub and Closed Tall Willow Shrub are common vegetation types in this soil landscape. Picea glauca seedlings are commonly found beneath a tall shrub layer composed of Salix planifolia ssp. pulchra (syn: S. pulchra) and Salix alaxensis. Additional understory species include Vaccinium uliginosum, Rubus arcticus, and Calamagrostis canadensis. Closed Tall Alder Shrub is another common vegetation type in the Riverine Loamy Meadows and Shrublands soil landscape. Characteristic species include Alnus crispa (syn: A. viridis ssp. fruticosa), Salix alaxensis, Spiraea beauverdiana (syn: S. stevenii), Rubus arcticus, Calamagrostis canadensis, Polemonium acutiflorum, and Aconitum delphinifolium.

# Riverine Loamy Wet Meadows and Marshes

This soil landscape comprises two ecotypes: Riverine Wet Sedge Meadow and Riverine Forb Marsh. This soil landscape occurs on flat and concave fluvial surfaces, including inactive overbank deposits along meandering rivers, inactive coarse channel deposits along braided streams, and shallow riverine lakes between sea level and 250 m elevation (avg. 80 m). The soils are loamy, and occasionally sandy with a thin organic horizon at the surface. The soils range from flooded to moderately well drained, and from alkaline to brackish closer to the coast. Permafrost often occurred below the maximum depth sampled (1 m), and we assumed in these cases it occurred between one and two meters below the soil surface. The most common soil subgroups are Typic Gelaquents. A less common subgroup is Fluvaquentic Aquorthels. Wet Sedge Meadow Tundra is a frequently occurring vegetation type in this soil landscape. Common species include Carex aquatilis, Carex saxatilis, Carex

capitata, Eriophorum angustifolium, Polemonium acutiflorum, Saxifraga hirculus, and Scorpidium scorpioides.
Other common vegetation types in this soil landscape are Emergent Horsetail and Fresh Pondweed. Characteristic species include Equisetum fluvatile, Potamogeton pectinatus, Potamogeton vaginatus, Hippuris vulgaris, Eleocharis acicularis, Caltha palustris, and Scorpidium scorpioides. Cover by surface water and mineral soil always occurs at moderately high levels.

# Rivers

Rivers, including non-glacial upper and lower perennial rivers and mountain headwater streams, are common throughout ARCN. Examples of perennial rivers include the Kobuk R., Noatak R., Koyukuk R., and Kilikmak Cr., while examples of mountain headwater streams include Tobuk and Kanaktok Creeks. Slope gradient of upper and lower perennial rivers averaged <1°, while mountain headwater streams had an average slope of 3.0°. Hydrology is strongly linked to annual snow pack, with peak discharge occurring in June when snow-melt is occurring most rapidly. Precipitation plays a secondary role in the hydrology of these streams and rivers later in the summer when peak rain fall occurs in August. Water chemistry is circumneutral to alkaline, and electrical conductivity is low.

# Riverine Lakes

Riverine lakes occur on floodplains along meandering non-glacial lower perennial rivers in the study area. The hydrology of these lakes is intimately linked to the hydrology of the associated rivers as they receive fresh river water inputs each year during flood events. Riverine lakes occur in the deeper portions of inactive channels and in oxbows cut off from the main channel. Water chemistry is circumneutral to alkaline, and electrical conductivity is low. Aquatic vegetation commonly occurs along the edges of

these lakes, and may include Equisetum fluvatile, Utricularia vulgaris, Sparganium sp., Myriophyllum verticillatum, Potamogeton alpinus ssp. tenuifolius, Potamogeton zosterifolius, Hippuris vulgaris, Scorpidium scorpioides.

### Lowland Lakes

Lowland lakes are abundant throughout the study area and occupy both deep and shallow kettle and thermokarst depressions. Dune lakes are a unique type of lowland lake that occur in depressions in the Kobuk Sand Dunes and on sand dunes near the coast. Water chemistry is circumneutral to alkaline, and electrical conductivity is low. Aquatic vegetation may occur in the shallower sections of lowland lakes, and may include Sparganium sp., Menyanthes trifoliata, Hippuris vulgaris, Utricularia minor, Potamogeton alpinus ssp. tenuifolius (syn: P. alpinus), Potamogeton perfoliatus ssp. richardsonii (syn: P. richardsonii), Potamogeton filiformis (syn: Stuckenia filiformis), Lemna trisulca, and Eleocharis acicularis.

### Lacustrine Marshes

This soil landscape comprises four ecotypes: Lacustrine Pendent Grass Marsh, Lacustrine Marestail Marsh, Lacustrine Pondlily Lake, and Lacustrine Horsetail Marsh. This soil landscape occurs in shallow and deep thaw lakes and kettle lakes between 5-1000 m elevation (avg. 200 m). Soils are permanently flooded, and permafrost is typically greater than one meter below the soil surface. Water chemistry is circumneutral, and electrical conductivity is low. The vegetation type Common Marestail frequently occurs in this soil landscape. Typical species include Hippuris vulgaris, Utricularia vulgaris, Menyanthes trifoliata, Potentilla palustris (syn: Comarum palustris), and Arctophila fulva. Another common vegetation type in the lacustrine marshes soil landscape is Fresh Grass Marsh. Characteristic species include Arctophila fulva, Hippuris vulgaris, and Caltha palustris.

# Lacustrine Loamy Barrens, Meadows, and Shrublands

This soil landscape comprises three ecotypes: Lacustrine Bluejoint Meadow, Lacustrine Willow Shrub, and Lacustrine Barrens. It occurs on low gradient sites (avg. 1°) in drained lake basins and thaw basins between 10-900 m elevation (avg. 200 m). Soils are loamy with a thin organic horizon at the surface. Permafrost often occurs within the upper meter of the soil profile. Common soil types include Typic Aquorthels, Typic Umbrorthels, and Aguic Umbrorthels. Barrens and Partially Vegetated Barrens are common vegetation types in recently drained lake basins in this soil landscape. These sites are dominated by exposed mineral soil, but scattered plants are present. Typical species include Epilobium latifolium, Epilobium palustre, Eriophorum angustifolium, Carex aquatilis, Arctophila fulva, and Caltha palustris. Bluejoint Meadow is another common vegetation type older drained lake basins and thaw basins. Characteristic species include Calamagrostis canadensis, Equisetum arvense, Polemonium acutiflorum, Potentilla palustris (syn: Comarum palustris), and Stellaria longipes.

# Lacustrine Organic-rich Wet Meadows

This soil landscape comprises two ecotypes: Lacustrine Wet Sedge Meadow and Lacustrine Buckbean Fen. This soil landscape occurs in fens, drained lake basins, and along the margins of thaw lakes between 5-450 m elevation (avg. 100 m). Soils feature thick peat over loam, are very poorly to somewhat poorly drained, and are acidic to circumneutral. Permafrost sometimes occurs in the upper meter of the soil profile. Common soil types include Typic Aquorthels, Typic Historthels, and Typic Cryofibrists. Subarctic Lowland Herb Bog Meadow is a common vegetation type is this soil landscape. Characteristic species include Menyanthes trifoliata, Potentilla palustris (syn: Comarum palustris), Carex limosa, Carex chordorrhiza, Cicuta mackenzieana (syn: C. virosa), and Sphagnum obtusum.

Wet Sedge Meadow Tundra is another vegetation type that frequently occurs in this soil landscape. Typical species include Carex chordorrhiza, Eriophorum angustifolium, Carex aquatilis, Potentilla palustris (syn: Comarum palustris), Sphagnum sp., and Calliergon giganteum.

# Coastal Loamy Barrens, Meadows, and Shrub

This soil landscape comprises four ecotypes: Coastal Wet Barrens, Coastal Saline Sedge-Grass Meadow, Coastal Brackish Willow Shrub, and Coastal Brackish Sedge-Grass Meadow. This soil landscape occurs on active and inactive tidal flats along the ocean waters of Bering Strait, Kotzebue Sound, and the Chukchi Sea. In ARCN, this soil landscape is restricted to coastal areas in BELA and CAKR. Soils are loamy and occasionally sandy with a thin to moderately thick surficial organic horizons, very poorly to somewhat poorly drained, and brackish to saline. Permafrost is commonly found in the upper meter of the soil profile. Common soil types include Typic Aquorthels, Fluvaquentic Fibristels, and Typic Historthels. Halophytic Sedge-Grass Wet Meadow is a common vegetation type in this soil landscape. Characteristic species include Carex ramenskii, Stellaria humifusa, Potentilla egedii, *Chrysanthemum arcticum* (syn: Hulteniella integrifolia), and Puccinellia phryganodes. Barrens is another common vegetation type in this soil landscape.

# Coastal Sandy Barrens, Meadow, and Shrub

This soil landscape comprises three ecotypes: Coastal Dry Barrens, Coastal Crowberry Dwarf Shrub, and Coastal Brackish Dunegrass Meadow. This soil landscape occurs on inactive and active marine beaches and coastal sand dunes along the Bering Strait, Kotzebue Sound, and the Chukchi Sea. In ARCN, this soil landscape is restricted to coastal areas in

BELA and CAKR. The soils are sandy with little to no surface organics, circumneutral to alkaline, and excessively to somewhat excessively well drained. Electrical conductivity ranges from low to moderately high. Permafrost is commonly found in the upper 2 m of the soil profile in this soil landscape. Common soil types include Typic Psammorthels, Typic Cryopsamments, and Oxyaquic Cryopsamments. Barrens and Partially Vegetated Barrens are two common vegetation types is this soil landscape. These sites are dominated by exposed sand with sparse vegetation cover. A typical community includes scattered individuals or colonies of Elymus arenarius ssp. mollis (syn: Leymus mollis), Artemisia tilesii, Honckenya peploides, Lathyrus maritimus ssp. maritimus, Salix ovalifolia, and Ceratodon purpureus. Crowberry Dwarf Shrub Tundra is another vegetation type typical of older, stabilized sand dunes in this soil landscape. Characteristic species include Empetrum nigrum, Vaccinium vitis-idaea, Betula nana, Elymus arenarius ssp. mollis (syn: Leymus mollis), Armeria maritima, and Flavocetraria cucullata.

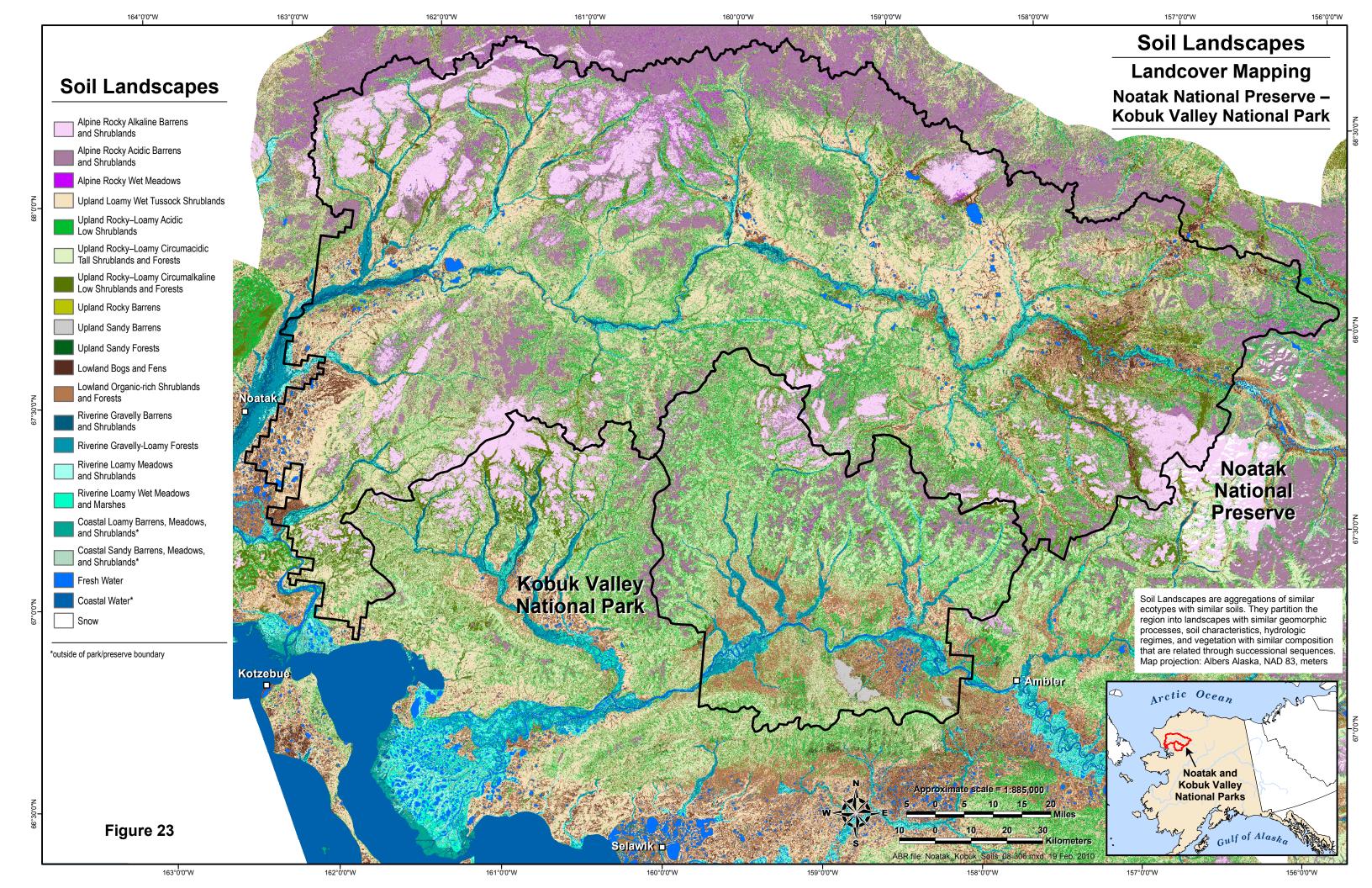
# Coastal Brackish Water

Coastal Brackish Water comprises estuarine waters and lakes on the coast that are influenced by both fresh and nearshore brackish water. In ARCN, this soil landscape is restricted to coastal areas in BELA and CAKR. These waters are flooded periodically with saltwater during high tides or storm surges, subsequently resulting in fluctuations in salinity levels. Some lakes have distinct outlets or have been tapped and partially drained through erosional processes. Shallow lakes (<1.5 m deep) freeze to the bottom during winter. This soil landscape is predominantly non-vegetated, however shallow coastal ponds are occasionally occupied by Hippurus tetraphylla.

### Coastal Nearshore Water

This soil landscape includes the ocean waters of Bering Strait, Kotzebue Sound and Chukchi Sea. This soil landscape is unvegetated, the soils are perennially flooded, and the water chemistry is circumneutral and highly saline.

### Coastal Tidal River


This soil landscape occurs infrequently at the outlets of rivers to the ocean in BELA and CAKR. These rivers and tidal guts are a mixing zone between saline and fresh waters. Waters are brackish but the actual salinity fluctuates with the tide. This soil landscape is unvegetated and the soils are permanently flooded.

# **Soil Landscapes Mapping**

The maps of soil landscapes were developed by aggregating and recoding the ecotypes into a reduced set of 24 closely related soil subgroups and ecotypes (Figure 23; Tables 150–151). The soil landscapes are named by their physiography, soil texture, and dominant vegetation structure. This layer is intended for users who require a reduced set of classes with relatively high map accuracy, that are particularly relevant to the management of a wide range of natural resources. Accuracy is presumed to be high because closely related classes within physiographic regions, which tend to be highly interspersed spatially, are grouped.

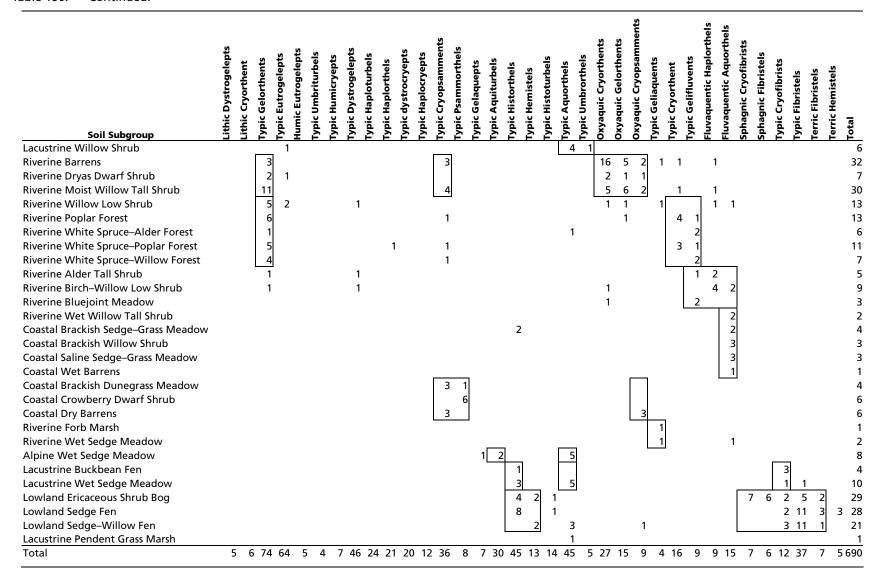
Seventeen soil landscapes were mapped in NOAT and KOVA; commonly occurring classes were Upland Loamy Wet Tussock Shrublands (28% of total area), Alpine Rocky Acidic Barrens and Shrublands (12%), Upland Rocky–Loamy Acidic Low Shrublands (13%), Upland Rocky–Loamy Circumalkaline Low Shrublands and Forests (11%), Upland Rocky–Loamy Circumacidic Tall Shrublands and Forests (9%), and Alpine Rocky Alkaline Barrens and Shrublands (10%) (Table 152). Together, the four riverine soil landscapes covered 5% of the area.

The region-wide mapping identified 24 soil landscapes (Figure 24, Table 152). The common classes were similar to those for NOAT and KOVA alone, although the relative areas covered were somewhat different. GAAR contains much more mountainous terrain than the other arctic parks, resulting in a higher proportion of Alpine Rocky Acidic Barrens and Shrublands on the region-wide map (22%) than for NOAT and KOVA alone (12%). Conversely, Upland Loamy Wet Tussock Shrublands occupied only 20% of the total area on the region-wide map, compared to 28% for NOAT and KOVA alone. Additional soil landscapes found only on the region-wide map included five coastal types in CAKR and BELA, Upland Rocky Barrens in BELA and undetermined areas mapped as shadow in GAAR.



Lacustrine Bluejoint Meadow

Table 150.


Soil Landscapes Mapping

5

ecotypes. Bolded values indicate the soil subgroups most closely associated with each ecotype. uvaquentic Haplorthels **luvaquentic Aquorthels** ypic Cryopsamments **Oxyaquic Cryorthents** xyaquic Gelorthents ypic Psammorthels xyaquic Cryopsam umic Eutrogelepts lypic dystrocryepts phagnic Fibristels ypic Eutrogelepts ypic Umbriturbels ypic Haploturbels ypic Haplocryepts ypic Dystrogelept ypic Humicryepts ypic Umbrorthels ypic Gelifluvents ypic Haplorthels ypic Histoturbels ypic Geliaquents ypic Gelaquepts ypic Aquiturbels ithic Cryorthent ypic Aquorthels ypic Historthels ypic Hemistels **Total** Soil Subaroup **Upland Mafic Barrens** 15 Alpine Mafic Barrens 18 2 8 8 20 Alpine Alkaline Barrens 1 2 2 Alpine Alkaline Dryas Dwarf Shrub 2 15 2 26 8 Alpine Cassiope Dwarf Shrub 2 12 9 Alpine Acidic Barrens 1 4 Alpine Acidic Dryas Dwarf Shrub 3 10 1 18 13 Alpine Ericaceous-Dryas Dwarf Shrub 3 33 Upland Birch-Ericaceous Low Shrub 4 3 17 1 3 Upland Birch-Willow Low Shrub 2 6 6 1 2 1 26 Upland Spiraea Low Shrub 2 10 Upland White Spruce-Ericaceous Forest 16 3 Upland Spruce–Birch Forest 9 2 3 **Upland Birch Forest** Upland Alder-Willow Tall Shrub 3 2 4 1 2 2 21 Upland Bluejoint Meadow 3 Upland Sedge-Dryas Meadow 1 16 Upland White Spruce-Willow Forest 3 15 **Upland Willow Low Shrub** 3 13 13 **Upland Sandy Barrens** Upland White Spruce-Dryas Woodland 3 6 Upland White Spruce-Lichen Woodland 3 **Lowland Black Spruce Forest** 2 2 1 13 5 Lowland Alder Tall Shrub 2 Lowland Birch-Ericaceous Low Shrub 1 2 3 1 11 Lowland Birch-Willow Low Shrub 4 1 2 2 2 19 **Lowland Willow Low Shrub** 11 2 39 Upland Dwarf Birch-Tussock Shrub Lacustrine Barrens

3

Soil landscapes (highlighted in boxes) identified by cross-tabulation of similar soil subgroups (soil associations) with closely associated



Jpland Rocky-loamy Acidic acustrine Organic-rich We pland Loamy Wet Tussocl Ipine Rocky Wet Meado Loamy Meadows verine Gravelly Barrens verine Gravelly-Loamy Shrublands and Forests rublands and Forests owland Bogs and Fens eadows and Marshes rcumalkaline Barrens oastal Loamy Barrens **Ipland Sandy Barrens** Alpine Rocky Alkaline Lowland Organic-rich Shrub and Forests **Ipland Sandy Forest** oastal Sandy Barrer Jeadow, and Shrub Jpland Rocky-loamy eadow, and Shrub Ipland Rocky-loamy verine Loamy Wet rcumalkaline Low **Alpine Rocky Acidi** and Shrub. rcumacidic Tall nd Shrublands **Upland Rocky** Shrublands **Grand Total** Soil Subgroup Lithic Dystrogelepts Typic Umbriturbels Typic Cryorthent Lithic Cryorthent Typic Eutrogelepts Typic Gelorthents Typic Dystrogelepts Typic Haploturbels Typic Haplorthels Typic dystrocryepts Typic Haplocryepts **Humic Eutrogelepts** Humic Dystrogelepts Typic Humicryepts Aquic Eutrogelepts Spodic dystrocryepts Typic Haplocryods 7 3 Typic Cryopsamments Ruptic-histic Aquiturbels Typic Aquiturbels Typic Aquorthels Typic Umbrorthels Aquic Umbrorthels Oxyaquic Cryofluvent Fluventic Haplorthels Typic Psammorthels Oxyaquic Cryopsamments Oxyaquic Cryorthents Oxyaquic Gelorthents Typic Cryofluvent Typic Gelifluvents Fluvaquentic Haplorthels Fluvaquentic Aquorthels Fluvaquentic Fibristels Fluvaquentic Historthels Aquic Cryopsamments Typic Geliaquents Aquic Gelifluvents Typic Folistels Typic Gelaquepts Typic Histoturbels Typic Hemistels Typic Fibristels Typic Historthels Typic Cryofibrists Terric Fibristels Sphagnic Cryofibrists Sphagnic Fibristels Terric Hemistels

59 54

**Grand Total** 

13 10 17 84 37 22 15 17

Table 151. Crosswalk of soil subgroups and their equivalent soil landscape in the Arctic Network.

14 39

79 702

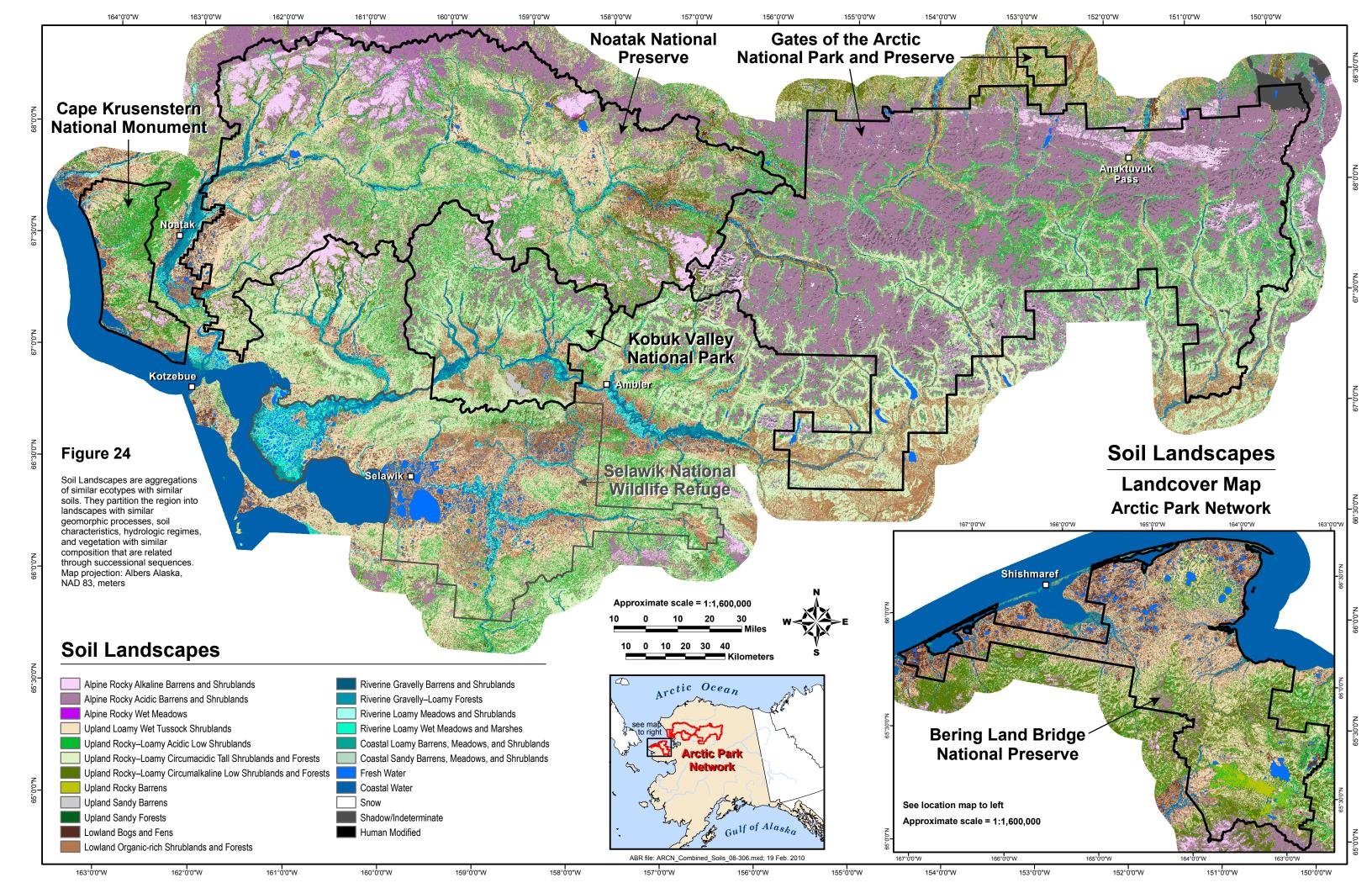



Table 152. Areal extent of soil landscapes within the Arctic Network.

|                                                                 | Area (ha) |         |         |        |         |         |        |
|-----------------------------------------------------------------|-----------|---------|---------|--------|---------|---------|--------|
| Soil Landscape                                                  | KOVA      | NOAT    | BELA    | CAKR   | GAAR    | Total   | % Area |
| Coastal Water                                                   | 0         | 0       | 10460   | 11234  | 0       | 21693   | 0.3    |
| Fresh Water                                                     | 6445      | 26110   | 62241   | 2326   | 30477   | 127599  | 1.6    |
| Alpine Rocky Acidic Barrens and<br>Shrublands                   | 56996     | 355021  | 20828   | 2377   | 1397199 | 1832421 | 22.5   |
| Alpine Rocky Alkaline Barrens and Shrublands                    | 21386     | 302232  | 25327   | 16249  | 264625  | 629819  | 7.7    |
| Alpine Rocky Wet Meadows                                        | 7347      | 40384   | 0       | 0      | 7985    | 55716   | 0.7    |
| Coastal Loamy Barrens, Meadows, and Shrublands                  | 0         | 0       | 5669    | 1531   | 0       | 7200    | 0.1    |
| Coastal Sandy Barrens, Meadows, and Shrublands                  | 0         | 0       | 2569    | 1663   | 0       | 4232    | 0.1    |
| Human Modified                                                  | 0         | 0       |         | 174    | 0       | 174     | 0.0    |
| Lowland Bogs and Fens                                           | 8864      | 77586   | 85634   | 7363   | 8331    | 187778  | 2.3    |
| Lowland Organic-rich Shrublands and Forests                     | 86918     | 135941  | 183719  | 35781  | 184970  | 627330  | 7.7    |
| Riverine Gravelly Barrens and Shrublands                        | 13991     | 55767   | 12643   | 3629   | 26308   | 112338  | 1.4    |
| Riverine Gravelly-Loamy Forests                                 | 24673     | 12563   |         | 2      | 11027   | 48264   | 0.6    |
| Riverine Loamy Meadows and Shrublands                           | 7379      | 25462   | 5907    | 3554   | 15244   | 57546   | 0.7    |
| Riverine Loamy Wet Meadows and<br>Marshes                       | 6856      | 25598   | 0       | 16     | 2097    | 34568   | 0.4    |
| Shadow/Indeterminate                                            |           |         | 0       | 0      | 163541  | 163541  | 2.0    |
| Snow                                                            | 149       | 978     | 0       | 0      | 19773   | 20900   | 0.3    |
| Upland Loamy Wet Tussock Shrublands                             | 60206     | 886139  | 394573  | 78974  | 226656  | 1646548 | 20.2   |
| Upland Rocky Barrens                                            |           |         | 22439   | 0      | 0       | 22439   | 0.3    |
| Upland Rocky-Loamy Acidic Low<br>Shrublands                     | 101980    | 326033  | 64033   | 56137  | 373802  | 921985  | 11.3   |
| Upland Rocky-Loamy Circumacidic Tall<br>Shrublands and Forests  | 214902    | 101047  |         | 5      | 560568  | 876522  | 10.8   |
| Upland Rocky-Loamy Circumalkaline Low<br>Shrublands and Forests | 78778     | 285394  | 194367  | 40464  | 135673  | 734676  | 9.0    |
| Upland Sandy Barrens                                            | 6600      | 0       | 0       | 0      | 0       | 6600    | 0.1    |
| Upland Sandy Forests                                            | 3102      | 3202    | 0       | 0      | 0       | 6304    | 0.1    |
| Total                                                           | 706572    | 2659458 | 1090406 | 261479 | 3428278 | 8146193 | 100.0  |

# Factors Affecting Landscape Evolution and Ecosystem Development

The structure and function of ecosystems are regulated largely along gradients of energy, moisture, nutrients, and disturbance. These gradients are affected by climate, tectonic effects on physiography, and parent material as controlled by bedrock geology and geomorphology (Swanson et al. 1988, ECOMAP 1993, Bailey 1996). Thus, these large-scale ecosystem components can be viewed as state factors that affect ecological organization (Jenny 1941, Van Cleve et al. 1990, Vitousek 1994, Bailey 1996). Information on how these landscape components have affected ecosystem patterns and processes in ARCN were synthesized from our results and relevant literature.

### **Climate**

Climate is a dominant factor affecting ecosystem distribution (Walter 1979). Long-term weather stations surrounding ARCN reveal strong gradients in temperature and precipitation. Mean annual air temperature (MAAT) ranged from -3.2°C at Nome (1949–1999) in the south, to -6.0°C at Wales (1949–1999) −5.8°C at Kotzebue, −5.8°C at Kobuk, -8.1°C at Cape Lisburne, and -11.8°C at Umiat in the north (WRCC 2001). When the modeled effects of elevation are included, the coldest MAATS is -13°C in the high mountains of northeast GAAR (Figure 25). Mean annual precipitation (MAP) ranged from 408 mm at Nome in the south, to 240 mm at Kotzebue, 241 mm at Kobuk, and 139 mm at Umiat (north). In addition, there was a west to east precipitation gradient, with 288 mm occurring at Cape Lisburne and 291 mm at Wales in the west, to 424 mm at Kobuk in the east. When the modeled effects of elevation are included, the highest MAP at approx. 800 mm is in the high mountains of northeast GAAR (Figure 26). Note, however, that precipitation

can be underestimated as a result of problems with measuring blowing snow in the Arctic. All stations follow similar seasonal patterns: summers are short (June through August), winters are long, and most of the precipitation falls during July, August, and September. Additionally, there is an elevational gradient in temperature, with cooler summers and generally warmer and windier winters at higher elevations, the latter due to the pooling of cold air in valleys. Hammond and Yarie (1996) estimate that growing season temperatures at high elevations in the western Brooks Range average 2 to 3° C cooler than in adjacent valley bottoms. Limited data from Racine (1979) also indicate that air temperatures during the summer are colder in coastal areas compared to inland areas.

These strong climatic gradients have resulted in a wide range of ecological responses evident on the ecotype maps. Most of the area is in the polar domain, while some portions are included in the boreal domain (Nowacki et al. 2002). Because of low summer temperatures, vegetation over most of the area (polar domain), is dominated by graminoids, low and dwarf shrubs, mosses, and lichens. At intermediate elevations in the eastern margins of ARCN, relatively high summer temperatures (12–13°C July mean) allow for the growth of the northwestern-most needleleaf trees in North America. Consequently, spruce forests occur only in the eastern portions of the parks. At higher elevations, summer temperatures are lower and winds are stronger; as a result alpine areas frequently are barren or support only a sparse cover of lichens, mosses, and a few vascular species.

Climatic conditions also have varied considerably over time. Stable isotope analysis of ice cores from Greenland and Antarctica reveal numerous large, rapid shifts in climate during the Pleistocene (Bradley 1999). These changes have

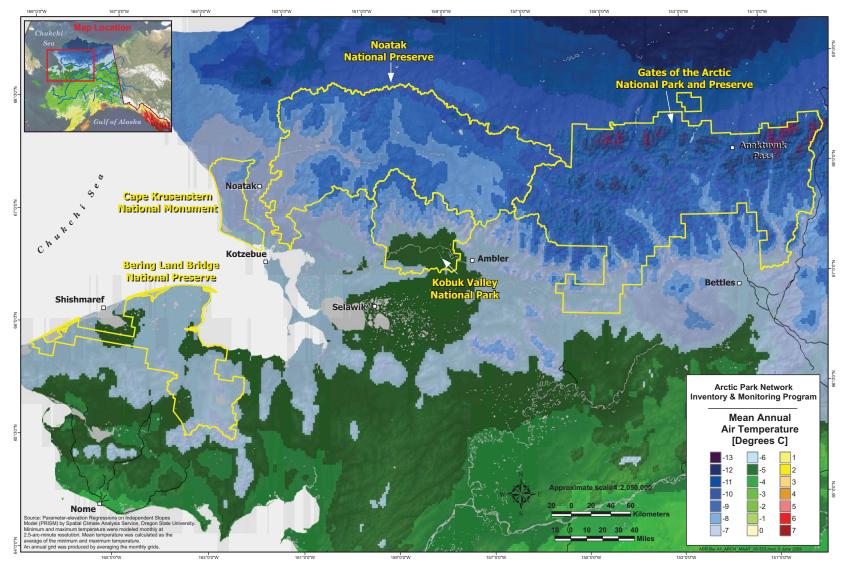



Figure 25. Mean annual air temperatures across the Arctic Network from the Parameter-elevation Regressions on Independent Slopes Model (PRISM), by Spatial Climate Analysis Service, Oregon State University.

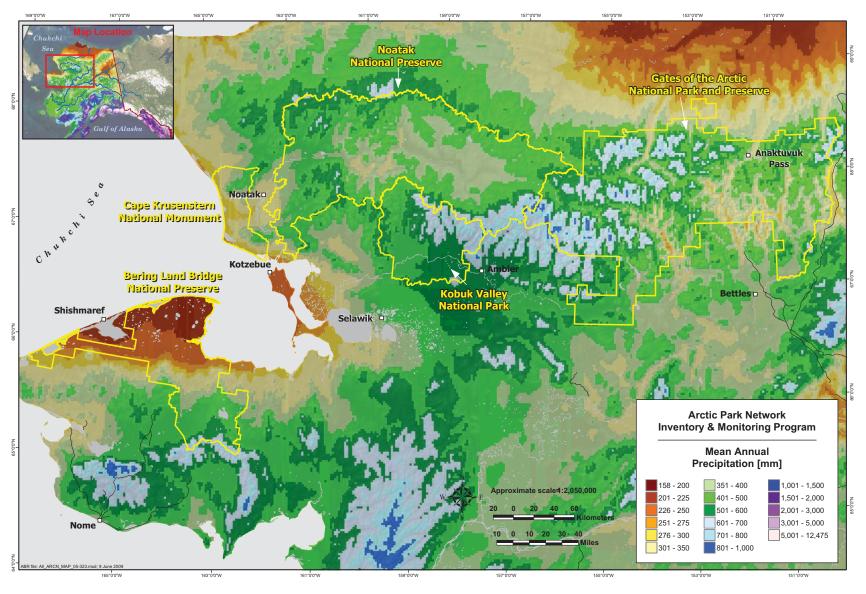



Figure 26. Mean annual precipitation values across the Arctic Network from the Parameter-elevation Regressions on Independent Slopes Model (PRISM), by Spatial Climate Analysis Service, Oregon State University.

resulted in multiple episodes of glaciation, associated loess deposition, and sea-level fluctuations (Hopkins 1982), and have been documented in numerous geomorphic and paleoecological studies in the Bering Land Bridge area (Smith 1933, Matthews 1974, McCulloch and Hopkins 1966, Hopkins 1967, Hopkins 1982, Hamilton and Brigham-Grette 1991, Mann and Hamilton 1995). During the late Pleistocene, buried calcareous paleosols in northern BELA indicate that the climate was cold and dry around 16,000-19,000 years ago and loess deposition was heavy (Höfle and Ping 1996). During the early Holocene, white spruce macrofossils, ice-wedge casts, and buried soils indicate that the climate was much warmer 8,300-10,000 years before present (ybp) (McCulloch and Hopkins 1966).

Fossil insect and pollen records (Elias et al. 1999) indicate that during the last interglacial period (about 130,000 ybp), the climate in the Noatak Valley was similar to, or slightly warmer than it is today. This interglacial was followed by a prolonged period of lower temperatures, when the vegetation was dominated by herbaceous plants. About 13,000-14,000 ybp the climate warmed, probably to conditions similar to those at present, allowing colonization of the Noatak Valley by shrubs (and localized trees) over the next few thousand years (Anderson 1988, Eisner and Colinvaux 1992, Anderson and Brubaker 1994). On the basis of beetle fossils assemblages, Elias et al. (1999) estimated that mean summer temperatures were approx. 2° C below and above current temperatures during glacial and interglacial periods, respectively. White spruce fossil remains, ice-wedge casts, and buried soils indicate that the climate in northwestern Alaska 8,300–10,000 ybp was warmer than at present (McCulloch and Hopkins 1966).

More recently, historical records and analyses of proxy indicators indicate that mean annual temperatures were substantially (approx. 1° C) lower during the Little Ice Age (ending around 1850) than at present, and that temperatures during the last decade (1990–2000) were the warmest in the last 400 years (Overpeck et al. 1997). This recent warming has enhanced tree growth in the Noatak Valley and allowed some expansion of spruce forest into the tundra (Suarez et al. 1999). Future temperature increases expected as a result of global warming likely will lead to further expansion of the forest, but the change is likely to be very slow because of the topographic barrier presented by the Brooks Range (Rupp et al. 2001).

# Oceanography

The western coast of ARCN abuts the Bering Strait and the southern margin of the Chukchi Sea, a rectangular embayment of the Arctic Ocean. At Shishmaref, mean high tides reach 0.8 m, and the highest tidal drift line is only 1.0 m above mean sea level (amsl) (Naidu and Gardner 1988). At Cape Espenberg, storm debris extends to 2.3 m amsl (Mason et al. 1997). Current direction and thus, sediment transport, is northward along the coast. Drifting pack and shorefast ice covers the entire Chukchi Sea for 7–8 months. Sea depths extend to only approx. 80 m in the Bering Strait.

Large fluctuations in sea level, however, have accompanied the climatic changes described above. During maximum glaciation in the late Pleistocene (approx. 18,000 ybp), sea level fell to approx. 100 m below current sea level. This drop exposed a broad land bridge across the Bering continental shelf (Hopkins 1967). By approx. 11,000 ybp the land bridge was again inundated and the migration corridor for plants and animals, including humans, closed (Elias et al. 1992). Sea level reached nearly its present level (within 2–3 m) around 5,000 ybp (Mason et al. 1995), and sediment transport and storm events have contributed to the development of extensive barrier islands, spits, and beach ridge complexes along

the Bering Strait (McCullough 1967, Jordan 1988, Mason and Jordan 1991, Mason et al. 1997).

Sea level also has been much higher in the past, and marine transgressions during the Pleistocene have created the broad coastal plain across the northern portion of the Seward Peninsula. The Pelukian transgression during the last interglacial (isotope stage 5e) occurred approx. 125,000 ybp and left beach ridge deposits that outcrop at elevations of 8–10 m above mean sea level (Sainsbury 1967, Hamilton and Brigham-Grette 1991, Brigham-Grette and Hopkins 1995). The Pelukian transgression is recorded by a well-defined wave-cut scarp and marine terrace that can be traced along much of the coast of the northern Bering Sea and southern Chukchi Sea (Sainsbury 1967, Hopkins 1973). During the middle Pleistocene, two marine transgressions, the Kotzebuan (approx. 175,000 ybp) and Einahnuhtan (approx. 225,000 ybp) have been described, although their sea-level history has been difficult to reconstruct (Hopkins 1967, Hopkins 1973). Sea level during the later transgression reached a maximum elevation of approx. 35 m amsl. Marine transgressions during the Pliocene may have been as high as 70 m (Brigham-Grette and Carter 1992). These transgressions left marine beach and coastal deposits of silt, sand, and gravel across the coastal plain. Ancient barrier bars are occasionally evident, comprised of well-sorted sand forming linear ridges (Till et al. 1986).

# Tectonic Setting and Physiography

ARCN is within a moderately active seismic zone connected to the Brooks Range and is characterized as having a relatively thin crust, scattered Quaternary volcanism, and relatively high heat flow (Thenhaus et al. 1982). The coastal plain on the northern portion of the Seward Peninsula is a subsiding basin comprised of Cenozoic

sediments several thousand meters thick that are crosscut by several east/west faults just south of Cape Espenberg (Tolson 1987). The geologic structure and physiography of the region is dominated by thrust faulting of two different ages. Probably beginning in the mid-Cretaceous, Precambrian and Paleozoic rocks were thrust eastward creating north-trending folds (Sainsbury 1972). Later in the Cretaceous, unmetamorphosed rocks in the York Mountains moved northward into their present position. At the end of the Cretaceous, isolated blocks of granite intruded the thrust sheets and several normal faults developed. Tertiary tectonism is responsible for prominent, high-angle faulting and the volcanic activity in the Imaruk Basin. Little uplift or subsidence has occurred during the Holocene, however, and isostatic rebound is unlikely because the northern coastal plain was not glaciated during the Pleistocene.

ARCN has been affected by the tectonic uplifting that produced the Brooks Range. Uplifting probably began in the mid-Jurassic and was active into the Cretaceous within the area (Moore et al. 1994). This uplifting occurred when a thick piece of the earth's crust that now composes most of the Brooks Range, known as the Arctic Alaska Terrane, collided with and then fused with other terranes to the south (Mull 1982, Box 1985, Mayfield et al. 1983, Karl and Long 1990, Moore 1992). The quiet-water, marine sedimentary rocks of the Arctic Alaska Terrane were initially forced southward (subducted) beneath a section of oceanic crust known as the Angayucham Terrane, then uplifted and eroded. As a result, bedrock in ARCN consists mostly of sedimentary rock, including a substantial amount of carbonate rock.

These tectonic forces and the resulting physiography in the parks have exerted strong influences on ecosystem

distribution and successional development through their effects on regional climate (Hammon and Yarie 1996, Van Cleve et al. 1990), microclimate and drainage (Bailey 1996), and plant migration and life-history patterns (Suarez et al. 1999, Rupp et al. 2001). In addition, lower temperatures at higher elevations create conditions for glacier expansion into low-lying areas (Péwé 1975), resulting in substantial alteration of surficial materials that form the substrate for supporting plant growth.

# **Bedrock Geology**

The bedrock geology within ARCN is highly complex and includes a wide variety of sedimentary, metamorphic, volcanic, and intrusive rocks (Sainsbury 1972, Hudson 1977, Beikman 1980, Nelson and Nelson 1982, Curtis et al. 1984, Ellersieck et al. 1984, Mayfield et al. 1984, Till et al. 1986, Karl et al. 1989, Till and Dumoulin 1994, Moore et al. 1994). This complexity and interspersion of rock types greatly influenced the diverse range of high-elevation ecotypes identified in this study. In addition, vegetation composition varies greatly among areas with different bedrock types, due to differences in soil pH and potential phytotoxic effects of soluble metals (described below). Acidic soils, typically associated with noncarbonate sedimentary and metamorphic rocks, usually are dominated by acid tolerant plants such as Betula nana, Dryas octopetala, Empetrum nigrum, Eriophorum vaginatum, Ledum decumbens, Rubus chamaemorus, Salix planifolia ssp. pulchra (syn: S. pulchra), Sphagnum spp., and Vaccinium uliginosum (Hanson 1953, Young 1974, Walker et al. 1994). In contrast, plants commonly associated with alkaline soils include Dryas integrifolia, Equisetum scirpoides, Lupinus arcticus, Parrya nudicaulis, Salix arctica, S. lanata ssp. richardsonii (syn: S. richardsonii), and S. reticulata (Young 1974, Walker et al. 1994). Some of the principal differences among carbonate, noncarbonate, felsic-intrusive, and mafic

extrusive (volcanic) rocks, and their influence on soil and vegetation, are described below.

Carbonate or calcareous rocks, such as limestone, dolostone, marble, and calcareous schists are common in the Baird and Delong Mountains (Dumoulin and Harris 1987, Moore et al. 1994). The relatively high pH and abundance of calcium in the alkaline soils formed by these rocks result in reduced availability of phosphorus and poor absorption and utilization of phosphorus by plants (Bohn et al. 1985). These nutrient availability problems may explain the lower plant cover apparent on satellite imagery for carbonate rock regions in ARCN. Alkaline soils also tend to be rich in humus, are often associated with more active cryoturbation, and tend to have deeper active layers (Ping et al. 1998).

Noncarbonate sedimentary (mostly shale, chert, sandstone, and conglomerate) and metamorphic (mostly schist) rocks are the most common rock types throughout the Brooks Range and the study area (Moore et al. 1994, Brosgé et al. 1983). Topography generally is gentler on shales than other rock types in ARCN. Because of reduced carbonate and calcium concentrations in the soil, the soils tend to be strongly acidic. Vegetation cover is distinctly greater on these rocks than either carbonate sedimentary rocks or ultramafic igneous rocks.

Felsic intrusive igneous rocks occur in the Bendeleben and Darby Mountains and in other isolated locations, such as the Arrigetch Peaks. These granitic rocks are dominated by light-colored minerals, such as quartz, alkali feldspars (orthoclase), and muscovite mica, and are rich in aluminum silicates, with little to no calcium, magnesium, and iron. The high aluminum and low calcium– magnesium content contributes to development of strongly acidic soils and high soluble aluminum concentrations. The elevated aluminum, in turn, can lead to plant

growth problems because root growth can be stopped by Al concentrations as low as 1 mg/l (Bohn et al. 1985). Phosphorus predominantly is fixed as aluminum and iron phosphates in the acid soils, but is still more available than in alkaline soils. To reduce aluminum toxicity, many plants generate organic acids, such as tannins, that act as chelating agents in the rhizosphere for protection (Rendig and Taylor 1989). Thus, ericaceous plants, which are better adapted to these conditions, tend to dominate.

Mafic volcanic rocks are prevalent in the Imuruk Plateau and around the Devil Mountain Lakes. The Imuruk Plateau basically was formed from basaltic lava flows of Tertiary and Quaternary age (Till et al. 1986). While the Tertiary flows are mostly covered by eolian silt and colluvium, the Lost Jim and Gosling lava flows of Quaternary age are mostly barren. Farther north, the shield volcanoes that form Devil Mountain occur at the northern limit of late Cenozoic volcanism in Alaska (Hopkins 1988). Explosive eruptions during the last 200,000 years have created a large region of basaltic ash, massive pyroclastic flows, and explosion breccia (Begét et al. 1996). These barren areas tend to be dominated by fruticose and crustose lichens.

# Geomorphology

Pleistocene glaciations have affected the geomorphology of ARCN. Glaciers extended from source areas in high mountainous areas during the early and middle Pleistocene. They extended to the eastern portion of ARCN, and covered some of the Noatak basin entirely during the latest (Wisconsin) glacial period (Smith 1912, Péwé 1975, Hamilton 1994, Hamilton, 2001). Glacial moraines deposited in pre-Wisconsin glaciations have been modified greatly by subsequent thermokarst and gelifluction, so that the moraine morphology is now

indistinct. Glaciations during the middle to late Pleistocene also covered the Bendeleben, Darby, western York, and Kiwalik mountains, but effects within BELA are limited (Matthews 1974, Hopkins et al. 1983, Kaufman and Hopkins 1986, Kaufman et al. 1991). The Nome River glaciation (approx. 280,000–580,000 ybp) extended into the Bendeleben Northern Foothills, but little can be found in the fossil record regarding ecosystem development on the glacial deposits. The many cirque lakes present in the Bendeleben Mountains originated from this glacial activity.

Eolian activity during dry, full glacial periods has deposited thick beds of eolian silt (loess) over much of the northern Seward Peninsula (Mathews 1974, Hopkins 1982). Near Imuruk Lake, eolian deposits up to 6-m thick have been observed (Holowaychuk and Smeck 1979). In contrast, late Pleistocene eolian deposits that occur on top of volcanic ash deposited approx.17,500 ybp are only approx.0.5 m thick (Holowaychuk and Smeck 1979). Much of the silt probably blew off glaciofluvial outwash plains associated with the Illinoian glaciation, which extended as far west as the terminal moraine now forming the Baldwin Peninsula (Matthews 1974). Loess accumulation during the Wisconsin glaciation (maximum at approx. 18,000 ybp) probably was much less because outwash streams were blocked by the Baldwin Peninsula. Chemical analysis of loess in northern BELA buried during the late Pleistocene (approx. 16,000–19,000 ybp) indicates it remained calcareous throughout the profile because the climate was cold and dry (Höfle and Ping 1996). While the frozen loess beneath the active layer of modern soils tends to remain alkaline, surface organic horizons usually are strongly acidic on the Imuruk Plateau and northern BELA (Holowaychuk and Smeck 1979, Höfle and Ping 1996),

presumably due to leaching and paludification under a wetter climatic regime.

The long, gentle slopes of the hills and low mountains in the parks probably were formed, and continue to be modified, by gelifluction. This is the movement of saturated soil material downslope over permafrost (Washburn 1973). Gelifluction lobes are even visible on many rather steep, vegetated mountain slopes.

Alluvial processes in narrow mountain and broad lowland valleys in the parks have created a dynamic landscape characterized by active erosion and deposition. Channel migration erodes and recycles surficial deposits, while deposition follows a predictable sequence from gravelly deposits in active channels, to sandy active floodplains adjacent to the active channel, to peat-covered loamy soils on inactive floodplains (Ugolini and Walters 1974, Binkley et al. 1997, Jorgenson et al. 1998). In the latter stages of this sequence, ice-rich permafrost aggrades in the silty cover alluvium and greatly modifies the surface with ice-wedge polygons. In higher gradient streams in the mountains, bedrock control and heavy bedload result in confined headwaters and gravelly braided floodplains. On lower gradient streams in the lowlands, sandy deposits with meandering morphology are common. The floodplains provide connectivity between regions, because water is a conduit for the movement of sediments and nutrients, as well as fish, invertebrates, and plant materials.

Permafrost distribution is nearly continuous throughout the region because of low air temperatures (Jorgenson et al. 2008b). Permafrost in the lowlands generally is extremely ice-rich due to the thick loess deposits and long period of development, whereas upland areas underlain by bedrock have little ground ice as indicated by the lack of

thermokarst features. Most of the massive ice that has accumulated in the lowlands appears to have developed during the mid-late Pleistocene and is in the form of massive ice wedges similar to the "yedoma" described in Russia (Yuri Shur, pers. comm.). Ice-wedge development, which occurs in areas where mean annual air temperatures have been < -6°C (Péwé 1975) during the Holocene, also has contributed to the ice-rich permafrost. With the onset of a warmer and moister climate during the early Holocene, thermokarst of the ice-rich terrain has resulted in an abundance of thaw lakes (Heiser and Hopkins 1995). On the coastal plain, thaw basins are up to 25 m deep, indicating the ground ice volume is extremely high (Hopkins and Kidd 1988, Kidd 1990). Collapse of permafrost into thaw lakes, and subsequent aggradation of ground ice in exposed lacustrine sediments has lead to a "thaw-lake cycle" and occasional development of ice-cored mounds or "pingos" (Hopkins 1949).

Permafrost also greatly affects ecosystem development by altering soil processes. First, permafrost forms an impermeable layer beneath the active layer, causing the surface soils to become saturated in low-lying areas and on gentle slopes (Ford and Bedford 1987). Soil saturation, in turn, reduces soil oxygen and microbial decomposition and thereby increases organic matter accumulation (Höfle et al. 1998). Second, the impermeable layer eliminates subsurface leaching, so that solute removal is slowed down and occurs laterally. This lateral movement through the active layer creates distinct branching pattern of "water-tracks" on slopes and enhances plant growth in the drainages (Walker et al. 1989, Kane et al. 1992). Finally, freezing and thawing processes associated with permafrost contribute to cryoturbation (mixing of soil horizons) and development of patterned ground features, such as frost boils and ice-wedge polygons, which provide a range of wet and moist microsites. These processes all alter the

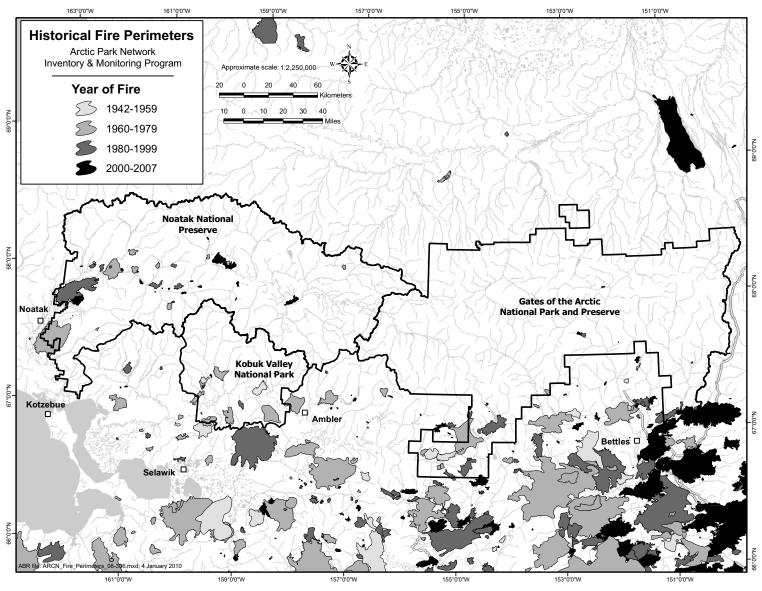



Figure 27. Map of historical fire perimeters in the Arctic Network from 1942–2007.

composition of vegetation that can grow on the cold, saturated soils.

#### Fire

Fire is not considered to be an important disturbance factor in tundra ecosystems due to the lack of fuel (Patterson and Dennis 1981), but periodic summer droughts and thunderstorms have produced several major fires in BELA and NOAT during the last several decades (Melchior 1979, Wein 1976, Racine 1981, Racine et al. 1983). Small fires have also occurred in black spruce forests in KOVA and GAAR (Figure 27). Fires are uncommon in the coastal plain region. While the effects of fire are variable in this landscape, they can be locally important since they increase the depth of the active layer and initiate permafrost degradation (Racine 1981, Racine et al. 1983).

# Summary and Conclusions

This report presents the results of an ecological land survey (ELS) that inventoried and classified ecosystems in the Arctic Network. By analyzing the dynamic physical processes associated with coastal, riverine, lowland, upland and mountainous environments, and the abundance and distribution of their diverse ecological resources, this study contributes to ecosystem management in national parklands in Alaska.

Through field surveys at 763 intensive plots during 2005–2008, we collected information on the geomorphic, topographic, hydrologic, pedologic, and vegetative characteristics of ecosystems across the entire range of environmental gradients across the parks. Individual ecological components (e.g., geomorphic unit, AVC vegetation type) were determined using standard classification schemes for Alaska, but modified when necessary to differentiate unique characteristics of the study area. We

developed 64 plant associations through multivariate classification techniques. We used the hierarchical relationships among ecological components to develop 70 ecotypes (local-scale ecosystems) that best partition the variation in ecological characteristics across the entire range of aquatic and terrestrial environments.

Soils described at 881 plots were classified into 73 soil types (subgroup level), of which 32 were rare occurrences and were not used in the analysis of soil-vegetation relationships. The most commonly observed types were Typic Eutrogelepts (10% of 881 observations), Typic Gelorthents (9%), Typic Dystrogelepts (7%), Typic Aquorthels (7%), and Typic Historthels (6%). The classification was effective at partitioning the variability of numerous soil properties, including organic-layer thickness, depth to rocks, thaw depths, depth to water, pH, and EC. Soil landscapes were developed by cross-tabulating soil types with the ecotypes assigned for each plot. The cross-tabulation revealed that 2–5 closely related soil types usually were associated with 2–3 ecotypes. These groupings were used to identify 24 soil landscape classes with broad application for resource management.

Multiple environmental site factors contributed to the distribution of ecotypes and their associated plant species. Mean surface organic-horizon thickness, an indicator of land surface age, anaerobic soil conditions and disturbance, ranged from 0 cm in alpine, coastal and riverine barrens to 130 cm in Lacustrine Wet Sedge Meadow, Lowland Ericaceous Shrub Bog and Lowland Sedge-Willow Fen. Mean depth to rock, an indicator of surficial deposit depth and drainage, ranged from 0 cm in alpine barrens to >200 cm in numerous ecotypes that occurred on thick, eolian surficial deposits. Areas where permafrost occurred at >1.5 m depth or was absent included in alpine areas, uplands, coastal dry barrens, younger riverine ecotypes,

and lacustrine fens. In other areas, particularly lowland areas and upland tussock communities, permafrost was usually present at 20–130 cm depth, with a minimum depth of 13 cm. Mean water depth (negative when below ground) for terrestrial ecotypes ranged from >-2 m in many upland and riverine ecotypes to 80 cm in Lacustrine Pendent Grass Marsh. Mean pH, which affects nutrient availability and ion exchange, ranged from 3.3 in Lowland Black Spruce Forest to 9.4 in Coastal Brackish Water. Mean electrical conductivity (EC), important for osmotic regulation in plants, ranged from 10 µS/cm in several upland ecotypes to 46,400 μS/cm in Coastal Nearshore Water (the highest mean EC value for a terrestrial ecotype was 1,220 μS/cm in Upland Alder–Willow Tall Shrub).

Ecotype distribution was greatly affected by numerous landscape-level factors. Climatic gradients in temperature and precipitation resulted in strong differences among ecotypes distributed across the arctic and boreal climatic domains. Oceanographic conditions and Quaternary sea-level changes have resulted in the occurrence of salt-affected ecotypes along the coast and the prevalence of lowland ecotypes on the coastal plain. Soil pH and nutrient status are strongly affected by underlying bedrock types and geomorphology, particularly carbonate sedimentary, intrusive felsic, and ultramafic bedrock. Geomorphic environments associated with sediment erosion and deposition create a wide range of soil conditions and disturbance regimes. Areas underlain by permafrost have impeded subsurface drainage, and the varying volumes of ground ice affect the magnitude of permafrost degradation. Fires modify the dynamics of some ecosystems, particularly in boreal areas primarily vegetated by black spruce, and less frequently in tundra.

Three landcover map products were developed based on spectral classification of Landsat imagery: ecotypes, vegetation, and soil landscapes. The process involved: (1) compiling and preprocessing (including terrain correction, resampling, radiometric normalization, edge masking, radiometric calibration and mosaicking) Landsat ETM+ scenes from a nearly cloud-free period in late July and early August 2002; (2) developing an unsupervised classification of the scenes to guide development of the supervised training set; (3) developing training areas by digitizing polygons on IKONOS imagery according to specific criteria; (4) developing a spectral database that included both spectral, vegetation and geological characteristics; (5) evaluating signature fidelity and separability, and performing spectral cluster analysis; (6) stratifying the classification area based on physiography, geology, topographic metrics, and treeline layers; (7) performing a supervised classification of all the scenes using the classified signatures; (8) and reducing errors in the resulting scenes through rule-based modeling.

We developed landcover maps from rule-based modeling. First, a map of ecotypes for NOAT and KOVA was developed. The region was partitioned by climatic subregions, physiography (floodplains, alpine, coastal, etc), elevation (alpine and subalpine), treeline, and slope (to differentiate a subset of upland and lowland). These variables were used to generate a matrix defining the conditions under which each ecotype could occur. Pixels that were not classified at 99% confidence level or higher were re-classified using the entire signature set and ecotypes were assigned based on a matrix. Second, we used the ecotype classification to produce a map of vegetation classes. Third, we developed a soil landscapes map with 17 classes derived from aggregating

similar ecotypes with similar soils, based on relationships developed from the landscape-relationships analysis using field plot data. We then applied these map classifications to pre-existing mapping for BELA, CAKR, and GAAR, using crosswalks and simple strata definitions to produce region-wide ecotype and soil landscape maps for ARCN. Ecotypes were simplified for some classes where pre-existing mapping was less detailed than mapping for NOAT and KOVA. These maps were limited in extent to a 10-mile buffer created around the boundary of ARCN and the Selawik National Wildlife Refuge.

The most abundant ecotypes in NOAT and KOVA were Alpine Acidic Dryas Dwarf Shrub, Upland Birch—Willow Low Shrub, and Upland Dwarf Birch—Tussock Shrub. In ARCN the corresponding simplified ecotypes were most abundant: Alpine Dryas Dwarf Shrub, Upland Birch—Ericaceous—Willow Low Shrub, and Upland Dwarf Birch—Tussock Shrub. Both for the region-wide mapping and for NOAT and KOVA alone, the most abundant soil landscapes were Upland Loamy Wet Tussock Shrublands, Alpine Rocky Acidic Barrens and Shrublands, and Upland Rocky—Loamy Acidic Low

Shrublands, though the alpine class is more prevalent on the ARCN map.

The ecological land survey approach to understanding landscape processes and their influence on ecosystem functions provides three main benefits. First, landscapes are analyzed as ecological systems with functionally related parts, recognizing the importance of geomorphic and hydrologic processes to disturbance regimes, the flow of energy and material, and ecosystem development. This hierarchical approach, which incorporates numerous ecological components into ecotypes with co-varying properties, allows users to partition the variability of a wide range of ecological characteristics. Second, the analysis of vegetation distribution across the landscape is facilitated by developing a spectral database that integrates spectral and field vegetation information for use in satellite image processing. Finally, the linkage of landcover maps to climatic, physiographic, and topographic variables to develop ecosystem maps improves our ability to predict the response of ecosystems to human impacts and facilitates the production of thematic maps for resource management applications and analyses.

# **Literature Cited**

- Adler, D. and D. Murdoch. 2008. rgl: 3D visualization device system (OpenGL). R package version 0.81. http://rgl.neoscientists.org
- Alaska Division of Geological and Geophysical Surveys (ADGGS). 1983. Engineering geology mapping classification system. Fairbanks, AK. Alaska Division of Geology and Geophysical Surveys. 76 pp.
- Alaska Natural Heritage Program (AKNHP). 2007. Rare vascular plant tracking list, April 2007. Alaska Natural Heritage Program, University of Alaska Anchorage, Anchorage, AK. (http://aknhp.uaa.alaska.edu)
- Allen, T. E. H., and T. B. Starr. 1982. Hierarchy: perspectives for ecological complexity. University of Chicago; Chicago, IL.
- Anderson, P. M. 1988. Late Quaternary pollen records from the Kobuk and Noatak river drainages, northwestern Alaska. Quaternary Research 29(3): 263–276.
- Anderson, P. M., and L. B. Brubaker. 1994. Vegetation history of north-central Alaska: A mapped summary of Late-Quaternary pollen data. Quaternary Science Reviews 13:71–92.
- Austin, M. P., and P. C. Heyligers. 1989. Vegetation survey design for conservation: gradsect sampling of forests in northeastern New South Wales. Biological Conservation 50:13–32.
- Bailey, R. G. 1996. Ecosystem geography. Springer-Verlag, New York. 199 pp.
- ——. 1998. Ecoregions: the ecosystem geography of the oceans and continents. Springer, New York.
- Barnes, B.V., K. S. Pregitzer, T. A. Spies, and V. H. Spooner. 1982. Ecological forest site classification. Journal of Forestry 80:493–498.
- Begét, J. E., D. M. Hopkins, and S. D. Charron. 1996. The largest known maars on Earth, Seward Peninsula, Northwest Alaska. Arctic 49:62–69.
- Beikman, H. M. 1980. Geologic map of Alaska. U.S. Geological Survey, Reston, VA.
- Binkley, D., F. Suarez, R. Stottlemyer, and B. Caldwell. 1997. Ecosystem development on terraces along the Kugururok River, northwest Alaska. Ecoscience 4: 311–318.
- Boggs, K., A. Garibaldi, J. L. Stevens, and T. Helt. 1999. Landsat derived map and landcover descriptions for Gates of the Arctic National Park and Preserve. Natural Resource Technical Report NPS/GAAR/NRTR—1999/001. National Park Service, Fort Collins, Colorado. D-48.
- Bohn, H. L., B. L. McNeal, and G. A. O'Connor. 1985. Soil chemistry. Wiley & Sons, New York, NY. 341 pp.
- Box, S. E. 1985. Early Cretaceous orogenic belt in northeastern Alaska: internal organization, lateral extent, and tectonic interpretation. Pages 137–145 *in* D. G. Howell, ed., Tectonostratigraphic terranes of the circum-Pacific region. Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series no. 11.
- Bradley, R. S. 1999. Paleoclimatology (International Geophysics Series vol . 64). Academic Press, Ltd., New York. 612 pp.
- Bray, J. R., and J. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27:325 015–349.
- Bret-Harte, M. S., M. Sommerkon, G. R. Goldsmith, P. M. Ray, K. D. Tape, L. Sufke, L. S. Brosius, A. W. Balser, K. Rattenbury, A. McCarthy, J. M. Potts, and D. Sanzone. 2007. Obtaining baseline data to assess the potential for tree-line and shrub advance in Gates of the Arctic National Park and Preserve and Noatak National Preserve. Project report to the ARCN, US NPS.
- Brigham-Grette, J., and L. D. Carter. 1992. Pliocene marine transgressions of northern Alaska: circumarctic correlations and paleoclimatic interpretations. Arctic 45:78–89.
- Brigham-Grette, J., and D. M. Hopkins. 1995. Emergent marine record and paleoclimate of the last Interglaciation along the northwest Alaskan coast. Quaternary Research 43:159–173.

- Brosgé, W. P., T. H. Nilsen, T. E. Moore, and T. J. Dutro, Jr. 1988. Geology of the upper Devonian and lower Mississippian (?) Kanayut conglomerate in the central and eastern Brooks Range. Pages 299–316 *in* Geology and exploration of the National Petroleum Reserve in Alaska. U.S. Geological Survey, Washington, DC. Prof. Pap. 1399.
- Brown, J., O. J. Ferrians Jr., J. A. Heginbottom, and E. S. Melnikov. 1997. Circum-arctic map of permafrost and ground-ice conditions. U.S. Geological Survey, Washington, DC. Map CP-45.
- Chander, G., B. L. Markham, and D. L. Helder. 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment 113: 893–903.
- Cleland, D. T., P. E. Avers, W. H. McNab, M. E. Jensen, R. G. Bailey, T. King, W. E. Russell. 1997. National hierarchical framework of ecological units. Published in, M. S. Boyce and A. Haney, ed. 1997. Ecosystem management applications for sustainable forest and wildlife resources. Yale UniversityPress, New Haven, CT. 181–200 pp.
- Colby, Jeffrey D. 1991. Topographic normalization in rugged terrain. Photogrammetric Engineering & Remote Sensing 57 (5): 531–537.
- Cooper, D. J., 1983. Arctic-alpine tundra ecosystems of the Arrigetch Creek valley, central Brooks Range, Alaska. Ph.D. thesis. University of Colorado, 2 vols.
- Curtis, S. M., I. Ellersieck, C. F. Mayfield, and I. L. Tailleur. 1984. Reconnaissance geologic map of southwestern Micheguk Mountain quadrangle, Alaska. U.S. Geological Survey, Reston, VA. Miscellaneous Investigations Series Map I-1502.
- Delcourt, H. R., and P. A. Delcourt. 1988. Quaternary landscape ecology: relevant scales in space and time. Landscape Ecology 2:23–44.
- Driscoll, R. S., D. L. Merkel, D. L. Radloff, D. E. Snyder, and J. S. Hagihara. 1984. An ecological land classification framework for the United States. U.S. Dept. of Agriculture, Washington, DC. Misc. Publ. 1439. 56 pp.
- Dumoulin, J. A., and A. G. Harris. 1987. Lower Paleozoic carbonate rocks of the Baird Mountains quadrangel, western Brooks Range, Alaska. Pages 311–329 *in* I. Tailleur, and P. Weimer, eds., Alaskan North Slope Geology. Alaska Geological Society, Anchorage, Ak.
- Eisner, W. R., and P. A. Colinvaux. 1992. Late Quaternary pollen records from Oil Lake and Feniak Lake, Alaska, USA. Arctic and Alpine Research 24: 56–63.
- Elias, S. A., T. D. Hamilton, M. E. Edwards. 1999. Late Pleistocene environments of the western Noatak Basin, northwestern Alaska. Geological Society of America Bulletin 111: 769–789.
- Elias, S. E., S. R. Short, and R. L. Phillips. 1992. Paleoecology of late glacial peats from the Bering Land Bridge, Chukchi Shelf region, northwest Alaska. Quaternary Research 38:371–378.
- Ellersieck, I., S. M. Curtis, C. F. Mayfield, and I. L. Tailleur. 1984. Reconnaissance geologic map of south-central Misheguk Mountain quadrangle, Alaska. U.S. Geological Survey, Reston, VA. Miscellaneous Investigations Series Map I-1504.
- Ellert, B. H., M. J. Clapperton, and D. W. Anderson. 1997. An ecosystem perspective of soil quality. Pages 115–141 *in* E. G. Gregorich, and M. R. Carter, Soil quality for crop production and ecosystem health. Developments in Soil Science, Elsevier Science Publ B V, Sara Burgerhartstraat 25/PO Box 211/1000 AE Amsterdam/Netherlands.
- Everett, K. R. 1978. Some effects of oil on the physical and chemical characteristics of wet tundra soils. Arctic 31:260–276.
- Fitter, A. H., and R. K. M. Hay. 1987. Environmental physiology of plants. Academic Press, San Diego, CA. 423 pp.
- Ford, J., and B. L. Bedford. 1987. The hydrology of Alaskan wetlands, U.S.A.: a review. Arctic and Alpine Research 19:209–229.
- Forman, R. T. 1995. Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge, UK.
- Hall, D. K., G. A. Riggs and V. V. Salomonson. 1995. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment 54:127–140.

- Hamilton, T. D. 2001. Quaternary glacial, lacustrine, and fluvial interactions in the western Noatak Basin, northwest Alaska. Quaternary Science Reviews 20: 371–391.
- ——. 1994. Late Cenozoic glaciation in Alaska. Pages 813–844 *in* G. Plafker, and H. C. Berg, eds., The geology of Alaska. The Geological Society of America, Denver, CO. The Geology of North America, Vol. G-1.
- Hamilton, T. D., and J. Brigham-Grette. 1991. The last interglaciation in Alaska: stratigraphy and paleoecology of potential sites. Quaternary International 10-12:49–71.
- Hammond, T., and J. Yarie. 1996. Spatial prediction of climatic state factor regions in Alaska. Ecoscience 3: 490–501.
- Hanson, H. C. 1953. Vegetation types in northwestern Alaska and comparisons with communities in other arctic regions. Ecology 34:111–140.
- Heiser, P. A., and D. M. Hopkins. 1995. Landscape development on the coastal plain of the Bering Land Bridge National Park, northwest Alaska. Pages 23 *in* Program and Abstracts, 46th Arctic Division Science Conference, 19–22 Sept. 1995. University of Alaska, Fairbanks, AK.
- Höfle. C., and C. L. Ping. 1996. Properties and soil development of late-Pleistocene paleosols from Seward Peninsula, northwest Alaska. Geoderma 71:219–243.
- Höfle, C., M. E. Edwards, D. M. Hopkins, D. H. Mann, and C. L. Ping. 1998. The full-glacial environment of the Bering Land Bridge reconstructed from a 18,000 yr old soil on Seward Peninsula, northwest Alaska. Quaternary Research.
- Holowaychuk, N., and N. E. Smeck. 1979b. Soils of the Chucki-Imuruk area. Pages 114-192 *in* H. R. Melchior, ed., Biological survey of the Bering Land Bridge National Monument. Alaska Cooperative Park Studies Unit, Univ. of Alaska, Fairbanks, AK. 283 pp.
- Hopkins, D. M. 1988. The Espenberg Maars: a record of explosive volcanic activity in the Devil Mtn.-Cape Espenberg, Seward Peninsula, Alaska. Pages 262-321 *in* J. Schaff, ed., The Bering Land National Preserve: an archeological survey. National Park Service, Anchorage, AK.
- ——. 1982. Aspects of the paleogeography of Beringia during the late Pleistocene. Pages 3–28 *in* D. M. Hopkins, J. V. Matthews Jr., C. E. Schweger, and S. B. Yount, eds., Paleoecology of Beringia. Academic Press, New York.
- ——. 1973. Sea level history in Beringia during the last 250,000 years. Quaternary Research 3:520–540.
- ——. 1967. The Bering Land Bridge. Stanford University Press, Stanford, CA.
- ——. 1949. Thaw lakes and thaw sinks in the Imuruk Lake area, Seward Peninsula, Alaska. Journal of Geology 57:119–131.
- Hopkins, D. M., and J. G. Kidd. 1988. Thaw lake sediments and sedimentary environments. Pages 790–795 *in* Proc. Fifth Intern. Conf. on Permafrost. TAPIR Publishers, Trondheim, Norway.
- Hopkins, D. M., R. Pratt, R. E. Nelson, and C. L. Powell II. 1983. Glacial sequence, southwestern Seward Peninsula. Pages 45–50 *in* R. M. Thorson, and T. D. Hamilton, eds., Glaciation in Alaska, extended abstracts. Univ. of Alaska Museum, Fairbanks, AK.
- Hudson, T. 1977. Geology map of Seward Peninsula, Alaska. U.S. Geological Survey, Washington, DC. Open File Rep. 77-796A.
- Hultén, E. 1968. Flora of Alaska and neighboring territories. Stanford University Press, Stanford, CA. 1,008 pp.
- Jennings, M. D., D. Faber-Langendoen, O. L. Loucks, R. K. Peet, and D. Roberts. 2009. Standards for associations and alliances of the U.S. national vegetation classification. Ecological Monographs 79: 173–199.
- Jenny, H. 1941. Factors of soil formation. McGraw-Hill Book Co., New York. 281 pp.
- Jordan, J. W. 1988. Erosion characteristics and retreat rates along the north coast of Seward Peninsula. Pages 322–362 *in* J. Schaff, ed., The Bering Land National Preserve: an archeological survey. National Park Service, Anchorage, AK.
- Jorgenson, M. T. 2001. Landscape-level mapping of ecological units for the Bering Land Bridge National Preserve. Final Rep. Produced for National Park Service, Anchorage, AK by ABR, Inc., Fairbanks, AK. 45 pp.

- ——. 2000. Hierarchical organization of ecosystems at multiple spatial scales on the Yukon-Kuskokwim Delta, Alaska. Arctic, Antarctic, and Alpine Research 32: 221–239.
- Jorgenson, M. T., and M. Heiner. 2003. Ecosystems of northern Alaska. Unpublished map by The Nature Conservancy, Anchorage, AK.
- Jorgenson, M. T., Y. Shur, and H. J. Walker. 1998. Factors affecting evolution of a permafrost dominated landscape on the Colville River Delta, northern Alaska. Pages 523–530 *in* A. G. Lewkowicz, and M. Allard, eds., Proceedings of seventh international permafrost conference. Universite Laval, Sainte- Foy, Quebec.
- Jorgenson, M. T., D. K. Swanson, and M. Macander. 2002. Landscape-level mapping of ecological units for the Noatak National Preserve, Alaska. Final Rep. prepared for National Park Service, Anchorage, AK, by ABR, Inc., Fairbanks, AK. 54 pp.
- Jorgenson, M. T., J. E. Roth, M. Emers, W. Davis, S. F. Schlentner, and M. J. Macander. 2004. Landcover mapping for Bering Land Bridge National Preserve and Cape Krusenstern National Monument, northwestern Alaska. Natural Resource Technical Report NPS/ARCN/NRTR—2004/001. National Park Service, Fort Collins, Colorado. D-41. 129 pp.
- Jorgenson, M. T., J. E. Roth, S. F. Schlentner, E. R. Pullman, M. Macander, and C. H. Racine. 2003a. An ecological land survey for Fort Richardson, Alaska. Hanover, NH, U.S. Army Cold Regions.
- Jorgenson, M. T., J. Roth, M. Raynolds, M. D. Smith, W. Lentz, A. Zusi-Cobb, and C. H. Racine. 1999. An ecological land survey for Fort Wainwright, Alaska. U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH. CRREL Report 99-9. 83 pp.
- Jorgenson, M. T., J. E. Roth, M. D. Smith, S. Schlentner, W. Lentz, E. R. Pullman, and C. H. Racine. 2001. An ecological land survey for Fort Greely, Alaska. U.S. Army Cold Regions Research and Engineering Laboratory. Tech. Rep. 01-4. 85 pp.
- Jorgenson, M. T., J. E. Roth, M. Emers, S. Schlentner, D. K. Swanson, E. Pullman, J. Mitchell, and A. A. Stickney. 2003b. An ecological land survey for the northeast planning area of the National Petroleum Reserve Alaska, 2002. Final Report prepared for ConocoPhillips, Anchorage, AK, by ABR, Inc., Fairbanks, AK. 128 pp.
- Jorgenson, M. T., J. E. Roth, E. R. Pullman, R. M. Burgess, M. Raynolds, A. A. Stickney, M. D. Smith, and T. Zimmer. 1997. An ecological land survey for the Colville River Delta, Alaska, 1996. Unpubl. Rep. prepared for ARCO Alaska, Inc., Anchorage, AK, by ABR, Inc., Fairbanks, AK. 160 pp.
- Jorgenson, M. T., J. E. Roth, P. F. Loomis, E. R. Pullman, T. C. Cater, M. S. Duffy, W. A. Davis, M. J. Macander, and J. Grunblatt. 2008. An ecological land survey for landcover mapping of Wrangell-St. Elias National Park and Preserve. Natural Resource Technical Report NPS/WRST/NRTR—2008/094. National Park Service, Fort Collins, Colorado. D-100.
- Jorgenson, M.T., K. Yoshikawa, M. Kaveskiy, Y. L. Shur, V. Romanovsky, S. Marchenko, G. Grosse, J. Brown, and B. Jones. Permafrost characteristics of Alaska. Kane, D. and Hinkel K. 2008b. Proceedings Ninth International Conference on Permafrost, Fairbanks, AK. Fairbanks, AK, University of Alaska. 121–122 pp.
- Jorgenson, M. T., J. E. Roth, P. F. Miller, M. J. Macander, M. S. Duffy, E. R. Pullman, E. A. Miller, L.B. Attanas, A. F. Wells, and S. Talbot. 2009. An ecological land survey and landcover map of the Selawik National Wildlife Refuge. In prep. for U.S. Fish and Wildlife Service, Kotzebue, AK, by ABR, Inc., Fairbanks, AK.
- Kane, D. L., L. D. Hinzman, M. Woo, and K. R. Everett. 1992. Arctic hydrology and climate change. Pages 35–58 *in* Arctic ecosystems in a changing climate. Academic Press, San Diego, CA. 469 pp.
- Karl, S. M., and C. L. Long. 1990. Folded Brookian thrust faults: implications of three geologic/geophysical transects in the western Brooks Range, Alaska. Journal of Geophysical Research 95:8581–8592.
- Karl, S. M., J. A. Dumoulin, I. Ellersieck, A. G. Harris, and J. M. Schmidt. 1989. Preliminary geologic map of the Baird Mountains quadrangle, Alaska. Open-File Report 89-551, U.S. Geological Survey, Menlo Park, CA.
- Kaufman, D. S., and D. M. Hopkins. 1986. Glacial history of the Seward Peninsula. Pages 51–77 *in* T. D. Hamilton, K. M. Reed and R. M. Thorson, eds., Glaciation in Alaska: the geologic record. Alaska Geological Society, Anchorage, AK.

- Kaufman, D. S., R. C. Walter, J. Brigham-Grette, and D. M. Kopkins. 1991. Middle Pleistocene age of the Nome River glaciation, northwestern Alaska. Quaternary Research 36:277–293.
- Kidd, J. G. 1990. The effect of thaw-lake development on the deposition and preservation of plant macrofossils–a comparison with the local vegetation. Univ. of Alaska, Fairbanks. M.S. Thesis. 48 pp.
- Klijn, F., and H. A. Udo de Haes. 1994. A hierarchical approach to ecosystem and its implication for ecological land classification. Landscape Ecology 9:89–104.
- Kreig, R. A., and Reger, R. D. 1982. Air-photo analysis and summary of landform soil properties along the route of the trans-Alaska pipeline system. Alaska Div. of Geological and Geophysical Surveys.
- Kruskal, J. B. 1964a. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika. 29:1–27.
- ——. 1964b. Nonmetric multidimensional scaling: a numerical method. Psychometrika. 29: 115–129.
- Lee, C., and E. Choi. 2000. Bayes error of the Gaussian ML classifier. IEEE Transactions on Geoscience and Remote Sensing 38 (3):1471–1475.
- Lu, Dengsheng, Hongli Ge, Shizhen He, Aijun Xu, Guomo Zhou, and Huaqiang Du. 2008. Pixel-based Minnaert correction method for reducing topographic effects on a Landsat ETM+ Image. Photogrammetric Engineering & Remote Sensing 74 (11):1343–1350.
- Mann, D. H., and T. D. Hamilton. 1995. Late-Pleistocene and Holocene paleoenvironments of the North Pacific coast. Quaternary Science Review 14:449–471.
- Mason, O. K., and J. W. Jordan. 1991. A proxy late Holocene climate record deduced from NW Alaska beach ridges. Pages 649–657 *in* G.Weller et al., eds., Proceedings, international conference on the role of the polar regions in global change. Geophysical Institute, University of Alaska, Fairbanks, AK.
- Mason, O. K., D. M. Hopkins, and L. Plug. 1997. Chronology and paleoclimate of storm-induced erosion and episodic dune growth across Cape Espenberg Spit, Alaska, U.S.A. Journal of Coastal Research 13:770–797.
- Mason, O. K., J. W. Jordan, and L. Plug. 1995. Late Holocene storm and sea-level history in the Chukchi Sea. Journal of Coastal Research Special Issue No. 17:173–180.
- Matthews Jr., J. V. 1974. Quaternary environments at Cape Deceit (Seward Peninsula, Alaska): Evolution of a tundra ecosystem. Geol. Soc. Amer. Bull. 85:1353–1384.
- Mayfield, C. F., I. L. Tailleur, and I. Ellersieck. 1983. Stratigraphy, structure, and palispastic synthesis of the western Brooks Range, northwestern Alaska. Pages 143–186 *in* Geology and exploration of the national petroleum reserve in Alaska. U.S. Geological Survey, Washington, DC. Prof. Pap. 1399.
- Mayfield, C. F., S. M. Curtis, I. Ellersieck, and I. L. Tailleur. 1984. Reconnaissance geologic map of southeastern Misheguk Mountain quadrangle, Alaska. U.S. Geological Survey, Denver, CO. Miscellaneous Investigations Series Map I-1503.
- McCullough, D. S. 1967. Quaternary geology of the Alaskan shore of Chuckchi Sea. Pages 91–120 *in* D. M. Hopkins, ed., The Bering land bridge. Stanford University Press, Stanford, CA.
- McCulloch, D. S., and D. M. Hopkins. 1966. Evidence for a warm interval 10,000 to 8,300 years ago in northwestern Alaska. Geol. Soc. Amer. Bull. 77:1089–1108.
- Melchior, H. R. 1979. Mining, reindeer, climate, and fire: major historical factors affecting the Chucki-Imuruk environment. Pages 10–23 *in* H. R. Melchior, ed., Biological survey of the Bering Land Bridge National Monument. Alaska Cooperative Park Studies Unit, University of Alaska Fairbanks, Fairbanks, AK. 283 pp.
- Moore, T. E. 1992. The Arctic Alaska superterrane. U.S. Geological Survey Bulletin 2041:238–244.
- Moore, T. E., W. K. Wallace, K. J. Bird, S. M. Karl, C. G. Mull, and J. T. Dillon. 1994. Geology of northern Alaska. Pages 49–140 *in* G. Plafker, and H. C. Berg, eds., The geology of Alaska. The Geological Society of America, Denver, CO. The Geology of North America, Vol. G-1.
- Mueller-Dombois, D., and H. Ellenberg. 1974. Aims and methods of vegetation ecology. John Wiley and Sons, New York, NY. 547 pp.

- Mull, C. G. 1982. The tectonic evolution and structural style of the Brooks Range, Alaska: an illustrated summary. Pages 1–45 in R. B. Powers, ed., Geological studies of the Cordilleran thrust belt. Rocky Mountain Association of Geologists, Denver, CO. Vol. 1.
- Naidu, A. S., and G. Gardner. 1988. Marine geology. Pages 11–28 *in* M. J. Hameedi, and A. S. Naidu, eds., The environment and resources of the southeastern Chukchi Sea. Mineral Management Service Service, Anchorage, AK. OCSEAP Study 87-0113.
- National Park Service (NPS). 2005. Alaska region National Park Service FirePro vegetation dataset. Alaska Regional Office, Anchorage, Alaska.
- Natural Resource Conservation Service (NRCS). 2003. Keys to soil taxonomy. Ninth Edition. Washington, D.C., U.S. Department of Agriculture.
- Nelson, S. W., and W. H. Nelson. 1982. Geology of the Siniktanneyak Mountain ophiolite, Howard Pass quadrangle, Alaska. Reston, VA: U.S. Geological Survey. Misc. Field Studies Map MF-1441.
- Nowacki, G., P. Spencer, T. Brock, M. Fleming, and T. Jorgenson. 2002. Ecoregions of Alaska and neighboring territories. U.S. Geological Survey, Washington, D.C. Open File Rep. 02-297 (map)
- Oberbauer, S. F., S. J. Hastings, J. L. Beyers, and W. C. Oechel. 1989. Comparative effects of downslope water and nutrient movement of plant nutrition, photosynthesis, and growth in Alaskan tundra. Holarctic Ecology 12:324–334.
- Oksanen, J., R. Kindt, P. Legendre, B. O'Hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens, and H. Wagner. 2008. Vegan: community ecology package. R package version 1.15-0. http://cran.r-project.org/, http://vegan.r-forge.r-project.org/
- O'Neil, R. V., D. L. DeAngelis, J. B. Waide, and T. F. H. Allen. 1986. A hierarchical concept of ecosystems. Princeton Univ. Press, Princeton, NJ.
- Overpeck, J., K. Hughen, D. Hardy, R. Bradley, R. Case, M. Douglas, B. Finney, K. Gajewski, G. Jacoby, and others. 1997. Arctic environmental change of the last four centuries. Science 278:1251–1256.
- Parker, C. L. 2006. Vascular plant inventory of Alaska's arctic national parklands; Bering Land Bridge NP, Cape Krusenstern NM, Gates of the Arctic NPP, Kobuk Valley NP, and Noatak NP. Tech. Rep. NPS/AKRARCN/NRTR-2006/01. 142 pp.
- Patterson III, W. A., and J. G. Dennis. 1981. Tussock replacement as a means of stabilizing fire breaks in tundra vegetation. Arctic 34:188–189.
- Péwé, T. L. 1975. Quaternary geology of Alaska. U.S. Geological Survey, Geol. Surv. Prof. Pap. 835. 145 pp.
- Pickett, S.T., J. Kolasa, J. J. Armesto, and S. L. Collins. 1989. The ecological concept of disturbance and its expression at various hierarchical levels. Oikos 54:129–136.
- Ping, C. L., J. G. Bockheim, J. M. Kimble, and G. J. Walker D. A. Michaelson. 1998. Characteristics of cryogenic soils along a latitudinal transect in arctic Alaska. Journal of Geophysical Research. 103(D22): 28,917–28,928.
- R Development Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
- Racine, C. H. 1981. Tundra fire effects on soils and three plant communities along a hill-slope gradient in the Seward Peninsula, Alaska. Arctic 34:71–84.
- ——. 1979. Climate of the Chucki-Imuruk area. Pages 32–37 *in* H. R. Melchior, ed., Biological survey of the Bering Land Bridge National Monument. Alaska Cooperative Park Studies Unit, University of Alaska Fairbanks, Fairbanks, AK.
- Racine, C. H., W. A. Patterson III, and J. G. Dennis. 1983. Permafrost thaw associated with tundra fires in northwest Alaska. Pages 1024–1029 *in* Proceedings, Permafrost, Fourth International Conference. National Academy Press, Washington, D.C.
- Rendig, V. V., and H. M. Taylor. 1989. Principles of soil-plant interrelationships. McGraw-Hill, New York. 275 pp.
- Roberts, D.W. 2007. labdsv: ordination and multivariate analysis for ecology. R package version 1.3-1. http://ecology.msu.montana.edu/labdsv/R

- Rupp, T. S., F. S. Chapin III, and A. M. Starfield. 2001. Modeling the influence of topographic barriers on treeline advance at the forest-tundra ecotone in northwestern Alaska. Climatic Change 48: 399–416.
- Sainsbury, C. L. 1972. Geologic map of the Teller Quadrangle, Western Seward Peninsula, Alaska. U.S. Geological Survey, Washington, D.C. Map I-685. 4 pp. plus map.
- ——. 1967. Quaternary geology of Western Seward Peninsula. Pages 121–143 *in* D. M. Hopkins, ed., The Bering Land Bridge. Stanford University Press, Stanford, CA.
- Schoeneberger, P. L., P. A. Wysocki, E. C. Benham, and W. D. Broderson. 1998. Fieldbook for describing and sampling soils. National Soil Survey Center, Natural Resource Conservation Service, U.S. Dept. of Agriculture, Lincoln, NE.
- Shepard, R. N. 1962a. The analysis proximities: multidimensional scaling with an unknown distance function, I. Psychometrika. 27:125–140.
- ——. 1962b. The analysis proximities: multidimensional scaling with an unknown distance function, II. Psychometrika. 27: 219–246.
- Smith, P. S. 1933. Geographic and geologic evidence relating to the connection of Siberia and northwestern Alaska. Pages 753–758 *in* 5th Pacific Science Congress, Canada 1933, Proceedings. Vol. 1.
- ——. 1912. Glaciation in northwestern Alaska. Geol. Soc. of Amer. Bulletin 23: 563–570.
- Soil Survey Staff (SSS). 2003. Keys to soil taxonomy, ninth edition. U.S. Department of Agriculture, Washington, D.C.
- Suarez, F., D. Binkley, M.W. Kaye, and R. Stottlemyer. 1999. Expansion of forest stands into tundra in the Noatak National Preserve, northwest Alaska. Écoscience 6: 465–470.
- Swanson, D. K. 2001. Ecological units of Cape Krusenstern National Monument, Alaska. Fairbanks, AK: National Park Service.
- 1995. Landscape ecosystems of the Kobuk Preserve Unit: Gates of the Arctic National Park, Alaska. Technical Report, NPS/ARRNR/NRTR-95/22U.S. National Park Service. Alaska Regional Office, Anchorage, AK. 291 pp.
- Swanson, F. J., T. K. Kratz, N. Caine, and R. G. Woodmansee. 1988. Landform effects on ecosystem patterns and processes. Bioscience 38:92–98.
- Thenhaus, P. C., J. I. Zion, W. H. Diment, M. G. Hopper, D. M. Perkins, S. L. Hanson, and S. T. Aigermissen. 1982. Probalistic estimates of maximum seismic horizontal ground motion on rock in Alaska and the adjacent outer continental shelf. Pages 5–8 *in* U.S. Geological Survey in Alaska: Accomplishments during 1980. U.S. Geological Survey, Washington, D.C. USGS Circular 844.
- Till, A. B., and J. A. Dumoulin. 1994. Geology of Seward Peninsula and Saint Lawrence Island. Pages 141–152 in Plafker, G. and Berg, H. C., eds., The geology of Alaska. The Geology of North America, Vol. G-1. The Geological Society of America, Denver, CO.
- Till, A. B., J. A. Dumoulin, B. M. Gamble, D. S. Kaufman, and P. I. Carroll. 1986. U.S. Geological Survey, Washington, D.C. Open-File Rep. 86-276. 8 pp., plus maps.
- Tolson, R. B. 1987. Structure and stratigraphy of the Hope Basin, southern Chukchi Sea, Alaska. Pages 59–71 *in* D. W. Scholl et al., eds. Geology and resource potential of the continental margin of western North America and adjacent ocean basins—Beaufort Sea to Baja, California. Circum-Pacific Council for Energy and Minerals, Houston, TX. Earth Science Series, Vol. 6.
- Ugolini, F. C., and J. Walters. 1974. Pedological survey of the Noatak River Valley, Alaska. Pages 86–157 *in* S. B. Young, ed., The environment of the Noatak River Basin, Alaska: results of the center for northern studies biological survey of the Noatak River Valley, 1973. Center for Northern Studies, Wolcott, VT.
- United States Department of Agriculture (USDA). 2008. The PLANTS database. National Plant Data Center, Baton Rouge, LA. (http://plants.usda.gov).
- United States Geological Survey (USGS). 2006. Multi-resolution land characteristics 2001 (MRLC2001) image preprocessing procedure. Revised January 9, 2006. Website: http://landcover.usgs.gov/pdf/image\_preprocessing.pdf.

- Van Cleve, K., F. S. Chapin III, C. T. Cyrness, and L. A. Viereck. 1990. Element cycling in taiga forests: state-factor control. Bioscience 41:78–88.
- Vegetation Subcommittee (VS). 2008. National vegetation classification standard, version 2. Federal Geographic Data Committee, Secretariat, U.S. Geological Survey. Reston, VA., Washington, D.C. FGDC-STD-005-2008 (Version 2) 126 pp.
- Viereck, L. A., and E. L. Little. 1972. Alaska trees and shrubs. U.S. Government Printing Office, Washington, D.C.
- Viereck, L. A., C. T. Dyrness, A. R. Batten, and K. J. Wenzlick. 1992. The Alaska vegetation classification. Pacific Northwest Research Station, U.S. Forest Service, Portland, OR. Gen. Tech. Rep. PNW-GTR-286. 278 pp.
- Vitousek, P. M. 1994. Factors controlling ecosystem structure and function. Pages 87–97 *in* R. Amundsen, J. Harden, and M. Singer, eds., Factors of soil formation: a fiftieth anniversary retrospective. Soil Science Society of America, Madison, WI.
- Wahrhaftig, C. 1965. Physiographic divisions of Alaska. U.S. Geological Survey, Waqshington, D.C. Professional Paper 482. 52 pp., 6 pl.
- Walker, D. A. 1999. An integrated vegetation mapping approach for northern Alaska (1:4 M scale). Int. Journ. Remote Sensing 20:2895–2920.
- ——. 1983. A hierarchical tundra vegetation classification especially designed for mapping in northern Alaska. Pages 1332-1337 in Permafrost Fourth International Conference Proceedings. National Academy Press Washington, D.C.
- 1981. The vegetation and environmental gradients of the Prudhoe Bay region, Alaska. University of Colorado, Boulder, Colorado.
- Walker, D. A., and M. D. Walker. 1991. History and pattern of disturbance in Alaskan arctic terrestrial ecosystems: a hierarchical approach to analyzing landscape change. J. Appl. Ecol. 28:244–276.
- Walker, D. A., K. R. Everett, P. J. Webber, and J. Brown. 1980. Geobotanical atlas of the Prudhoe Bay region, Alaska. U.S. Army Corps of Engineers Cold Regions Research and Engineering, Hanover, NH. Laboratory Report 80-14. 69 pp.
- Walker, D. A., W. A Gould, H. A. Meier, and M. K. Raynolds. 2002. The circumpolar arctic vegetation map. International Journal of Remote Sensing. 23:2552–2570.
- Walker, M. D., D. A. Walker, and N. A. Auerbach. 1994. Plant communities of a tussock tundra landscape in the Brooks Range foothills, Alaska. Journal of Veg. Sci. 5:843–866.
- Walker, M. D., D. A. Walker, and K. A. Everett. 1989. Wetland soils and vegetation, arctic foothills, Alaska. U.S. Fish and Wildlife Service, Wash., D.C. Biol. Rep. 89 (7). 89 pp.
- Walter, H. 1979. Vegetation of the Earth, and ecological systems of the geobiosphere. Springer-Verlag, New York. 274 pp.
- Washburn, A. L. 1973. Periglacial processes and environments. Edward Arnold, London. 320 pp. Watt, A. S. 1947. pattern and process in the plant community. Journal of Ecology 35:1–22.
- Wein, R. W. 1976. Frequency and characteristics of arctic tundra fires. Arctic 29:213–222.
- Wiken, E. B. 1981. Ecological land classification: analysis and methodologies. Ottawa, Canada, Lands Directorate, Environment Canada.
- Wiken, E. B., and G. Ironside. 1977. The development of ecological (biophysical) land classification in Canada. Landscape Planning 4:273–275.
- Western Regional Climate Center (WRCC). 2001. Alaska climate summaries. Western Regional Climate Center, Desert Research Institute, Reno, NV. (Website (http://www.wrcc.dri.edu/summary/climsmak.html).
- Young, S. B., ed. 1974. The Environment of the Noatak River Basin, Alaska. Center for Northern Studies, Wolcott, VT. 584 pp.

#### Appendix 1. Coding system ogical ch

RW

LW

needleleaf forest

Lake (still water)

Coastal (saline)

River (flowing water)

|       | IN UNITS                        | Ld  |
|-------|---------------------------------|-----|
| Bxw   | Bedrock, weathered              | Ld  |
|       | (undiffer.)                     | Lo  |
| If    | Intrusive-felsic                | Ld  |
| li    | Intrusive-intermediate          | 0   |
| lm    | Intrusive-mafic                 | Ol  |
| lu    | Intrusive ultra mafic           | W   |
| Vfy   | Volcanic-felsic-younger         | W   |
| Vfo   | Volcanic-felsic-older           | W   |
| Viy   | Volcanic-intermediate, younger  | W   |
| Vio   | Volcanic-intermediate, older    | W   |
| Vmy   | Volcanic-mafic-younger          | W   |
| Vmo   | Volcanic-mafic-older            | W   |
| Vp    | Volcanic-pyroclastics           | W   |
| Sc    | Sedimentary, carbonate          | W   |
| Sn    | Sedimentary, noncarbonate       | W   |
| Nc    | Metamorphic-carbonate           | W   |
| Nn    | Metamorphic-noncarbonate        | W   |
| C     | Colluvial Deposits              | W   |
| Ch    | Hillslope Colluvium             | W   |
| Cl    | Landslide Deposit               | W   |
| Cs    | Solifluction Deposits           | W   |
| Ct    | Talus                           | M   |
| Ell   | Lowland Loess                   | c   |
| Elu   | Upland Loess                    | Fŀ  |
| Esa   | Eolian Active Sand              | Fp  |
| Esi   | Eolian Inactive Sand            | Sł  |
| Fdr   | Delta Channel Deposit           | St  |
| Fdo   | Delta Overbank Deposit          | Sb  |
| Fmrac |                                 | Sb  |
| Fmric | Meand Coarse Inactv Chan. Dep.  | Sc  |
| Fmraf | Meander Fine Active Chan Dep.   | Su  |
| Fmrif | Meander Fine Inactive Chan Dep. | Su  |
| Fmo   | Meander Overbank Deposit        | Su  |
| Fmoa  | Meander Active Overbank Dep     | Su  |
| Fmoi  | Meander Inactive Overbank Dep   | Su  |
| Fmob  | Mean. Abandoned Overbank Dep    | SI  |
| Fbrac | Braided Coarse Active Chanl     | Slo |
| Fbric | Braided Coarse Inact. ChanDep.  | Slo |
| Fboa  | Braided Active Overbank Deposit | Sl  |
| Fboi  | Braided Inactive Overbank Dep   | Sl  |
| Fbob  | Braided Abandoned Ovrbank       | T   |
|       | Dep                             | D   |
| Fhl   | Headwater Lowland               | В   |
|       | Floodplain                      | Вс  |
| Fhm   | Mod Steep Headwater Fldplain    | Bk  |
| Fhmo  | Mod Steep Headwtr Overbnk       | F   |
|       | Dep                             | Fn  |
| Fto   | Old Terrace (lower terraces)    | Fn  |
| Ff    | Alluvial Fan                    | Fc  |
| Ffi   | Alluvial Fan Inactive Deposit   | Fi  |
| Ffb   | Alluvial Fan Abandoned Deposit  | FI  |
| Gmo   | Older Moraine                   | Fb  |
| Gmy   | Younger Moraine                 | Fb  |
| Gto   | Older Till Sheet                | Fs  |
| Gty   | Younger Till Sheet              | Ft  |
| GFo   | Glaciofluvial Outwash           | Ff  |
| GFoo  | Glacfluvial Outwsh, Older       | W   |
| GFk   | Kame Deposits                   | W   |
| GFt   | Glacflyl Outwsh, Terrace        | Ln  |
| GL    | Glaciolacustrine Deposits       | Lb  |
| L     | LACUSTRINE DEPOSITS             | R   |
| Ldnc  | Drained Basin, Ice-poor center  | Rp  |
| Ldnm  | Drained Basin, Ice-poor margin  | Rs  |
| Ldnu  | Drained basin, Ice-poor undiff  | Ri  |
|       |                                 |     |

| m foi            | characterizing ecolo                                        |
|------------------|-------------------------------------------------------------|
| 111 101          | characterizing ecolo                                        |
| Ldic             | Drained Basin, Ice-rich center                              |
| Ldim             | Drained Basin, Ice-rich margin                              |
| Ldiu             | Drained basin, Ice-rich undiff                              |
| Ldip             | Drained Basin Pngo                                          |
| Of               | Organic Fens (0rg >40cm)                                    |
| Ob               | Bogs                                                        |
| Wrhm             | Mountain Headwater Stream                                   |
| Wrln             | Lower Perennial, non-glacial                                |
| Wrlg             | Lower Perennial, glacial                                    |
| Wrun             | Upper Perennial, Non-glacial                                |
| Wrug             | Upper Perennial, Glacial                                    |
| Wldc             | Deep Connected Lake                                         |
| Wldcm            | Deep Connected Lake, Moraina                                |
| Wldir            | Deep Isolated Lake, Riverine                                |
| Wldit            | Deep Isolated Lake Thaw                                     |
| Wldim            | Deep Isolated Lake, Thaw<br>Deep Isolated Lake, Morainal    |
| Wisc             | Shallow Connected Lake                                      |
| Wiscv            | Shallow Connected Beaver Pnd                                |
| Wlsi             | Shallow Isolated Lake                                       |
| Wlsir            | Shallow Isolated Lake, Riverine                             |
| Wisit            | Shallow Isolated Lake, Riverine Shallow Isolated Lake, Thaw |
| Wisim            | Shallow Iso Lake, Morainal                                  |
|                  | TOPOGRAPHY:                                                 |
| C                | Top, Crest, Summit Or Ridge                                 |
| Fh               | Plateau (High Flats)                                        |
|                  |                                                             |
| Fpp<br><b>Sh</b> | Permafrost Plateau                                          |
|                  | Shoulder Slope                                              |
| Steep S<br>Sb    |                                                             |
| Sbs              | Bluff or Bank (unconsolidated) Steep bluff south facing     |
| Sc               | Cliff (rocky)                                               |
|                  |                                                             |
| Su               | UPPER SLOPE (convex, creep)                                 |
| Suc              | Concave (water gathering)                                   |
| Suv              | Convex (water shedding)                                     |
| Suvs             | Convex, south-facing                                        |
| Sup              | Plane                                                       |
| SI               | LOWER SLOPE (concave)                                       |
| Slc              | Concave (water gathering)                                   |
| Slch             | Nivation hollows, Snowbanks,                                |
| Slv              | Convex (water shedding)                                     |
| Slp              | Plane                                                       |
| T                | TOE Slope                                                   |
| D                | <b>Drainage</b> or Water Track                              |
| В                | BASINS OR DEPRESSIONS                                       |
| Bd               | Drained Basin                                               |
| Bk               | Kettle                                                      |
| F                | FLAT/FLUVIAL RELATED                                        |
| Fn               | Nonpatterned                                                |
| Fm               | Flats margins (transition)                                  |
| Fc               | Channel, swale or gut,                                      |
| Fi               | Interfluv or flat bank                                      |
| Fl               | Levee                                                       |
| Fb               | Bar (undifferentiated)                                      |
| Fbp              | Point Bar                                                   |
| Fs               | Crevasse splay                                              |
| Ft               | Terrace                                                     |
| Ff               | Flood Basin (behind levee)                                  |
|                  | ATERBODIES                                                  |
| Wi               | Islands Present                                             |
| Lm               | Lake Margins                                                |
| Lb               | Wave cut bench (shore)                                      |
|                  | IVER OR STREAM                                              |
| Rp               | Deep Pools (>1.5 m)                                         |

Shallow Runs (<1.5 m)

Riffles,

| ical d         | characteristics of field plo              | ots       |
|----------------|-------------------------------------------|-----------|
| Rr             | Rapids                                    | VE        |
| ХC             | CHANNEL COMPLEX                           | Bb        |
| Хp             | Pingo                                     | Bp        |
| Xm             | Morraine Complx, undulating               | Fb        |
| E              | Eolian Patterns                           | Fb        |
| Н              | Human modified                            | Fb        |
|                | ROTOPOGRAPHY:                             | Fb        |
| N              | NONPATTERNED                              | Fb<br>Fb  |
|                | of FEATURES                               | Fb        |
| Fh<br>Fr       | Hummocks (mineral cored)                  | Fb        |
| Ff<br>Ff       | Reticulate<br>Frost Scars and Boils       | Fn        |
| Fc             | Circles (non-sorted, sorted)              | Fn        |
| Fs             | Stripes (non-sorted, sorted)              | Fn        |
| Fn             | Nets (non-sorted, sorted)                 | Fn        |
| Ft             | Steps (non-sorted, sorted)                | Fn        |
|                | NDS (ice and peat related)                | Fn        |
| Mi             | Ice-cored mounds                          | Fn        |
|                | Peat mounds                               | Fn        |
| Ms             | String (strang)                           | Fn        |
| Mg             | Gelifluction lobes (saturated flow)       | Fn        |
| Mrb            | Rocks, Blockfields                        | Sf        |
| Mrm            | Rocky Mounds/Outcrops                     | Sf        |
| Mrs            | Soil covered rocks                        | Ha        |
| Mw             | Mounds caused by wildlife                 | Ha        |
| MI             | Tree mounds (dwnd logs/root balls)        | Hk        |
| Mu             | Undifferentiated mounds (distinct)        | Hk<br>Hf  |
| DKAI<br>Dt     | NAGE or EROSION RELATED                   | Hf        |
| Dr             | Water tracks (non-incised) Ripples        | Hg        |
| Dc             | Riverbed cobbles, boulders                | Hg        |
| Ds             | Scour channels-ridges                     | Ho        |
|                | AN RELATED                                | Ho        |
| Es             | Small dune                                | Ηç        |
| POLY           | GONS (ice aggradation)                    | Ηç        |
| Pd             | Disjunct polygon rims                     | Ηç        |
| Phh            | High-centered polygons, high-             | Ηç        |
| relief         |                                           | Ηç        |
| Phl            | High-centered polygons, low-relief        | Ηç        |
|                | (and flat centered)                       | Ηç        |
| PIII           | Low-center., Low relief, low-dens.        | Ho        |
| Tm             | Mixed pits and polygons                   | Hg<br>Hg  |
| <b>W</b><br>Wi | WATER                                     | Ho        |
| Lp             | Islands present Polygonized margin (>10%) | Ho        |
|                | YPE VEG STRUCT Code:                      | Ho        |
| BP             | barrens or Partially vegetated            | Sd        |
| FA             | Aquatic Forb                              | Sd        |
| SE             | Sedge Emergent (Marsh)                    | Sd        |
| GE             | Graminoid Emergent (Marsh)                | Sd        |
| FE             | Forb Emergent (Marsh)                     | Sd        |
| SM             | Sedge Meadow                              | Sd        |
| GM             | Grass Meadow                              | Sd        |
| FM             | Forb Meadow                               | Sd        |
| TM             | Tussock Meadow                            | Sd        |
| KM             | Salt-killed Meadow                        | Sd        |
| DS             | dwarf scrub (<20cm)                       | Sd<br>Slo |
| LS             | low scrub (20–150cm)                      | Slo       |
| TS<br>BF       | tall scrub (>150cm)                       | Slo       |
| MF             | broadleaf forest<br>mixed forest          | Slo       |
| IVIE           | mineu iorest                              | SIA       |

| VEGET          | ATION CLASSES (IV):                                              |
|----------------|------------------------------------------------------------------|
| Bbg            | Barrens (<5% veg)                                                |
| Bpv            | Partially Vegetated (5–30)                                       |
| Fbcb           | Closed Paper Birch Forest                                        |
| Fbcba          | Closed Paper Birch-Aspen Forest                                  |
| Fboa           | Open Quaking Aspen Forest                                        |
| Fbob           | Open Paper Birch Forest                                          |
| Fbop           | Open Balsam Poplar Forest                                        |
| Fbwb           | Paper Birch Woodland                                             |
| Fbwp           | Balsam Poplar Woodland                                           |
| Fbwt           | Broadleaf–Tall Scrub Woodland                                    |
| Fmcas          | Closed Quaking Aspen-Spruce                                      |
| Fmcsb          | Closed Spruce-Paper Birch Forest                                 |
| Fmoas          | Open Quaking Aspen-Spruce                                        |
| Fmosb          | Open Spruce-Paper Birch Forest                                   |
| Fmosp<br>Fncbs | Open Spruce-Balsam Poplar<br>Closed Black Spruce                 |
| Fnobs          | Open Black Spruce Forest                                         |
| Fnows          | Open White Spruce Forest                                         |
| Fnwbs          | Black Spruce Woodland                                            |
| Fnwws          | White Spruce Woodland                                            |
| Sfobs          | Open Dwarf Black Spruce                                          |
| Sfows          | Open Dwarf White Spruce                                          |
| Hafm           | Common Marestail                                                 |
| Hafp           | Fresh Pondweed                                                   |
| Hbbd           | Dry Bryophyte                                                    |
| Hbl            | Lichen                                                           |
| Hfmm           | Mixed Herbs                                                      |
| Hfwhb          | 3                                                                |
| Hgmb           | Bluejoint Meadow                                                 |
|                | Bluejoint-Herb                                                   |
| Hgmbs          |                                                                  |
| Hgmsd          | Moist Sedge-Dryas Tundra<br>t Moist Sedge-Grass .Tundra          |
| Hgmss          | Moist Sedge-Grass Tundra  Moist Sedge-Shrub Tundra               |
|                | tMoist Sedge-Willow Tundra                                       |
| Hgmt           | Tussock Tundra                                                   |
| Hgwfg          |                                                                  |
| Hgwfs          | Fresh Sedge Marsh                                                |
| Hgwsb          |                                                                  |
| Hgwsbt         | : Wet Sedge-Birch Tundra                                         |
| Hgwsl          | Subarc Lowlnd Sedge Wet Mead                                     |
|                | b Sub Lowl Sedge-Moss Bog Mea                                    |
|                | Sub Lowl Sedge-Shrub Wet Mead                                    |
| Hgwst          | Wet Sedge Meadow Tundra                                          |
|                | t Wet Sedge-Willow Tundra                                        |
| Sddf           | Dryas-Forb Dwarf Shrub Tundra                                    |
| Sddl<br>Sdds   | Dryas-Lichen Dwarf Shrb Tundra<br>Dryas-Sedge Dwarf Shrub Tundra |
| Sddt           | Dryas Dwarf Shrub Tundra                                         |
| Sdeb           | Bearberry Dwarf Shrub Tundra                                     |
| Sdec           | Cassiope Dwarf Shrub Tundra                                      |
| Sdee           | Crowberry Dwarf Shrub Tundra                                     |
| Sdel           | Ericaceous-Lichen Dwf ShrbTund                                   |
| Sdet           | Ericaceous Dwarf Shrub Tundra                                    |
| Sdev           | Vaccinium Dwarf Shrub Tundra                                     |
| Sdwt           | Willow Dwarf Shrub Tundra                                        |
| Slcb           | Closed Low Shrub Birch                                           |
| Slcbe          | Closed Shrub Birch-Ericaceous                                    |
| Slcbw          | Closed Low Shrub Birch-Willow                                    |
| Sice           | Closed Low Ericaceous Shrub                                      |
| Slow           | Closed Low Willow                                                |
| Sloaw<br>Slobb | Open Low Alder-Willow Open Shrub Birch-Eric Shrb Bog             |
| JIODD          | open sinub bileti-Lite sinb Bog                                  |

Slobe Open Mesic Shrub Birch-Ericac Slobw Open Low Shrub Birch-Willow Open Sweetgale-Graminoid Bog Open Low Ericaceous Shrub Sloeb Open Low Ericaceous Shrub Bog Slol Open Low Silverberry Shrub Open Mixed Shrub Tussock Bog Slotb Slott Open Mixed Shrub Tussk Tundra Open Low Willow Slow Closed Tall Alder Stca Closed Tall Alder-Willow Closed Tall Shrub Birch-Willow Stcbw Closed Tall Willow Stcw Open Tall Alder Stoa Stoaw Open Tall Alder-Willow Open Tall Willow Stow W Water no data nd **DISTURBANCE CLASS LEV2 ABSENT (mature vegetation)** Ν Naturally occurring Nf Fire Ng **Geomorphic Process** Nw Weather Processes (e.g. wind) **Human generated** Human Developed Sites (urban Hd complex) Hf Fill Excavation/Pits (undifferentiated) Clearings (Non-agricultural or undifferentiated)

Agricultural Field

Structures and Debris

Disturbance complex

Waterbodies, Man-made

Pollutants/Contaminants

Trail

no data

На

Ht

Hs

Hw

DC

nd

| ۱pp                                        | endix 1. Continued                      |                                                                                    |             |
|--------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------|-------------|
|                                            | IRONMENTAL PLOT DATA                    | Drained Depth (cm):                                                                | Sgm         |
|                                            | <u>0ata=999</u>                         | CryoTurb: Present, Absent, unknown                                                 | Om          |
|                                            | tID: Unique Identifier                  | SurfOrg: depth of top Org layer (cm)                                               | Ol          |
|                                            | e: mm/dd/yy (ck)                        | CumOrg40: total org in top 40                                                      | Olt         |
| Observers: Initials of Observer            |                                         | Loess Thick (cm): eolian silt thickness                                            | Oa          |
| Plot                                       | Photos: Camera Name                     | <b>DomMineral40:</b> dominant mineral text.                                        | Fm          |
| _                                          | (Photos:verticle, oblique, soil)        | in top 40 cm                                                                       | Fom         |
|                                            | gLandMark: river, mountain, etc         | K Blocky (angular, >76 mm, >15%)                                                   | Fom         |
|                                            | Prick: enter "y" after marked           | B Boldery (rounded, >76 mm, >15%)                                                  | F           |
|                                            | Radius(m): Usually 10                   | R Rubbly (angl, 15-60%, 2-76 mm)                                                   | Fgm         |
| -                                          | siography:                              | G Gravelly (rounded, 15-60%, 2-76 mm)                                              | Fl<br>Fr    |
| A                                          | Alpine                                  | S Sandy (grSa to I Sa; <15% gravel)                                                | For         |
| S                                          | Subalpine                               | L Loamy (CL to SL)                                                                 | Fcm         |
| U                                          | Upland                                  | C Clayey (SC to C) P Peat (if no mineral ~40 cm thick)                             | Fcl         |
| L                                          | Lowland<br>Glacial                      | P Peat (if no mineral, ~40 cm thick) <b>DomText40:</b> dominant text. top 40cm, as | Fa          |
| G<br>P                                     |                                         | above, + O = organic (<40cm thick)                                                 | Тор         |
| R                                          | Lacustrine (ponded)                     | Frost Boils (%):                                                                   | Bot         |
| C                                          | Riverine<br>Coastal                     | SurfaceFrag: coarse frags on soil surf                                             | Hor         |
| Н                                          | Human                                   | (%)                                                                                | Mas         |
|                                            | fGeomorph: see Terrain Unit codes       | RockDepth: depth to coarse frags >15%                                              | A/E,        |
|                                            | Geomorph: see Terrain Unit codes        | RootDepth: cm, dep. to common rt (1-                                               | R.          |
|                                            | pe(deg):                                | 5/cm² for fine (1-2 mm); 1-5/dm² for                                               | Hor         |
|                                            | ect(deg):                               | medium (2-5 mm); >5/m² for coarse                                                  | a, b        |
| •                                          | crotopography: see codes                | SoilPH10: to 0.1 units in paste (10 cm)                                            | ma,         |
|                                            | rotopog: see codes                      | SoilPH30: to 0.1 units in paste (30 cm)                                            |             |
|                                            | rorelief (cm):                          | SoilEC: uS/cm from paste (10cm)                                                    | Bou         |
|                                            | l Water Regime:                         | Soil Strat: form done? (y/n/u)                                                     | Dist        |
| U                                          | Upland                                  | SampMeth (Sampling Method):                                                        | <b>A</b> br |
| Ts                                         | Subtidal                                | Pit pLug Auger                                                                     | <b>G</b> ra |
| Te                                         | Irregularly exposed                     | Corer bank Exposure                                                                | Top         |
| Tr                                         | Regularly flooded                       | Surface Metal probe                                                                | Smo         |
| Ti                                         | Irregularly flooded                     | LM plug + probe LA plug + auger                                                    | Irre        |
| Np                                         | Permanently flooded                     | MaxObsDepth: Max depth plug/probe                                                  | Coa         |
| Nei                                        | Intermittently exposed                  | SoilClass: NRCS 9 <sup>th</sup> ed                                                 |             |
| Nsp                                        | Semipermanently flooded                 | Veg Completeness: Complete, Partial,                                               |             |
| Nse                                        | Seasonally flooded                      | Dominants only, nd                                                                 | S           |
| Nsa                                        | Saturated (S)                           | VegClass4: Viereck Level IV                                                        |             |
| Nt                                         | Temporarily flooded                     | <b>AltVeg</b> : cutpoint veg class, if applicable                                  | V           |
| Ni                                         | Intermittently flooded                  | EcoType: sequencial coding for                                                     | Х           |
| Na                                         | Artificially flooded                    | Physiograph, DomTex40, SoilMoist, Soil                                             | C           |
|                                            | erDep: (+/-, or >pit depth)             | Chemisty (circumneut pH=5.6-7.3,                                                   | Crse        |
|                                            | soilSurf : water above or below         | brackish (e)>800uS), Veg Structure                                                 | fl          |
|                                            | urat<30: y,n,u (unknown)                | <b>DstbClass2</b> : Disturbance Class, see codes                                   | cn          |
|                                            | terPH: to 0.1 pH units                  | GPS X-Y-Z: enter UTM, verifies data                                                | by          |
|                                            | : <b>erEC:</b> (uS/cm)<br><u>inage:</u> | NOTES: record codes not on drop lists                                              | st          |
| E                                          | Excessively drained                     | SOIL PROFILE FORM                                                                  | cb          |
| Es                                         | Somewhat excess. drained                | Lithofacies:                                                                       | gr          |
| W                                          | Well drained                            | B Blocky (angular>380 mm, >60%) R Rubble (angular, 2-380 mm, >60%)                 | Fine        |
| Wm                                         |                                         | , , , , , , , , , , , , , , , , , , , ,                                            | s           |
| Ps                                         | Somewhat poorly drained                 |                                                                                    | vcos        |
| P                                          | Poorly drained                          | Gm Gravel (rounded, massive, >60%) Gfm Gravel, with fine, massive, 15-60%          | cos         |
| Pv                                         | Very poorly drained                     | Gsm Gravel, with sand, massive                                                     | ms          |
| F                                          | Flooded                                 | Gl Gravel (2-250 mm), layered                                                      | fs          |
|                                            | Moist: Dry, Moist, Wet (field cap. to   | Sm Sands, massive                                                                  | vfs         |
| sat.), <b>A</b> quatic (>10cm, perm water) |                                         | Si Sands, inclined                                                                 | Icos        |
| Low                                        | MottDep: depth cm to chr=2 or less      | SI Sands, layerd                                                                   | ls          |
|                                            | MatrDepth: depth cm to chr=1, no        | Soi Sands with org, inclined                                                       | lfs         |
|                                            | nottling, full gley                     | Sr Sands, rippled                                                                  | lvfs        |
|                                            | ricSoil: y, n, u (unknown)              | Sor – sands with org, inclined                                                     | cosl        |
| -                                          | mfrst: y, n, u (unknown)                | Sgm Sands w/tr gravel, massive                                                     | sl          |
|                                            |                                         | - ·                                                                                | fsl         |

```
Sgmt Sands w/tr gravel, turbated
                                         vfsl very fine sandy loam
      Organic, massive
                                               loam
OI
      Organic, layered (> 10% organic)
                                         sil
                                              silt loam
Olt
      Organic, layered, turbated
                                               silt (0.002-0.05 mm)
Oa
      Organic, limnic
                                               sandy clay loam
      Fines massive
                                               clay loam
Fm
                                         cl
Fom Fines with organics, massive
                                         sicl
                                              silty clay loam
     Fines with organics, massive,
                                              sandy clay loac
      turbated
                                              silty clay
Fam
     Fines w/tr gravel (tr-15% gravel)
                                               clay (<0.02 mm)
      Fines, layered
                                               Organic Soils
      Fines, rippled
                                              slightly decomposed
      Fines with organics, rippled
                                              intermediate decomposition.
      Fines with clay, massive
                                              highly decomposed
      Fines with clay, layered
                                              mucky peat (>10% OM,<17% fibers
      Fines with algae, limnic
                                         Coarse Fragment Content: %
TopDepth: cm from surf (exc live moss)
                                         Coarse Fragment Size: maximum (mm)
BotDepth: cm
                                         Coarse Fragment Shape:
Horizon: used NRCS codes
                                              very angular,
Master horizon:O, A, AB, AE, A/B,
                                              angular,
A/E,A/C, AC, E, E/A, BA B, BC, B/C, C, L, W,
                                              subangular
                                              subrounded.
Horizon suffixes
                                              rounded
a, b, c, co, d, di, e, f, ff, g, h, i, j, jj, k, m,
                                              well rounded
ma, n, o, p, q, r, s, ss, t, v, w, y, z,
                                         Peat Types (Peat):
                                               Graminoid or sedge
Boundary: (combine, e.g. As)
                                               Gramin., fine (<2 mm wide)
                                              Gram, coarse (>2 mm wide)
Distinctness:
Abrupt (<2 cm); Clear (2–5 cm)
                                               Herbaceous
Gradual (5–15 cm) Diffuse (>15 cm)
                                               Allochtonous (drifted)
                                              feathermoss
Topography:
Smooth Wavy
                                              Sphag
Irregular (deeper than wide) Broken
                                              dicranum/Polytrichum
                                         MI
                                              Live mosses
Coarse fragment content class:
     Combine content + size (sgr, xby)
                                         W
                                              Woody
     0%, no crs frag modifier
                                               Sedimentary (algal, coprogen.)
                                         ColorMatrix: Munsell chart
     trace to 15 % (grssil)
                                         Mottles (combine.g., ffd)
     15 to 35 %; no content modifier
     35 to 60 % (cbssil)
                                         Abundance:
     60-90 % (grxSiL)
                                               few (< 2% area)
     >90%; use crs frg alone (eg. gr)
Crse fragment size class (>2mm);
                                               common (2 - 20 %)
                                         c
                                               many (> 20 % area)
largest
     flagstones (flat, 150-380 mm)
                                         Size:
     channery (flat, 2-150 mm)
                                               fine (< 2 mm)
     boulder (round, > 600 mm)
                                               medium (2 to 5 mm)
                                               coarse (5 - 20 mm)
     stone (round, 250 - 600 mm)
     cobble (round, 75 - 250 mm)
                                               very coarse (20 - 76 mm)
     gravel (round, 2 - 75 mm)
                                               extremely coarse (>76 mm)
                                         Contrast: (change in value, chroma)
Fine
    fraction codes
     sand
                                               faint (hue, chroma similar)
vcos very coarse sand (1-2 mm)
                                               distinct (value 2-4, >1 chroma)
     coarse sand (0.5-1 mm)
                                               prominent (value > 4)
     medium sand (0.25-0.5 mm)
                                         Redox Kind:
     fine sand (0.1-.25 mm)
                                         Reduced matrix; redox depletions;
     very fine sand (0.05-0.1 mm)
                                         concentration-masses; concentration
                                         nodules; concentration-concretions;
Icos
     loamy coarse sand
     loamy sand
                                         surface coats
     loamy fine sand
                                         Structure:
     loamy very fine sand
                                         Grade
```

structureless (single-arained)

moderate (easily observable)

weak (barely visible)

coarse sandy loam

fine sandy loam

sandy loam

strongly Size (mm) very fine (g-p <1; c-r-p <10; a-s <5mm) fine (g-p 1-2; c-r-p 10-20; a-s 5-10) med. (g-p 2-5; c-r-p 20-50; a-s 10-20) crse (g-p 5-10/c-r-p 50-100/a-s 20-50) very crse g-p >10/c-r-p 100–500/a-s>50 extr. coarse (c-r-p >500 mm) Type (shape) granular; p platy prismatic c columnar angular blocky subangular blocky wedge g single grained m massive l clods Rupture Resistance: (moist) loose friable vfr very friable fi firm vfi very firm extremely firm sr slightly rigid rigid vr very rigid Stickiness and Plasticity:: None Slightly Moderately Very **VEGETATION STRUCTURE Crown Class** 0 overtopping; D Dominant Codominant I Intermediate C Understory Size Class (typical) Seedling; sApling (<5cm DBH)

Pole(5-15) Timber (15-30)

Large timber (>30cm)

# Appendix 2. Complete species list for the Arctic Network based on data from ABR, Parker (2006), and the NPS Fire Program. Taxonomy folllows Hultén (1968) and Vierek and Little (1972) for trees and shrubs. Current synonyms are listed after each taxon.

Adoxaceae

Adoxa moschatellina L.

Araceae

Calla palustris L.

Aspidiaceae

Dryopteris dilatata (Hoffm.) A.Gray ssp. americana

(Fisch.) Hult.

Dryopteris expansa

Dryopteris fragrans (L.) Schott

Gymnocarpium dryopteris (L.) Newm.

Polystichum Ionchitis (L.) Roth

Athyriaceae

Athyrium filix-femina (L.) Roth

Cystopteris fragilis (L.) Bernh.

Cystopteris montana (Lam.) Bernh.

Woodsia alpina (Bolton) S.F. Gray

Woodsia glabella R. Br.

Woodsia ilvensis (L.) R. Br.

Betulaceae

Alnus crispa (Ait.) Pursh

Alnus fruticosa Rupr.

Alnus viridus ssp. fruticosa (Rupr.) Nyman

Alnus sinuata (Regel) Rydb.

Alnus sinuata (Regel ex DC.) Rydb

Alnus tenuifolia Nutt.

Alnus incana (L.) DC. ssp. tenuifolia (Nutt.)

Breitung

Alnus tenuifolia Nutt.

Betula glandulosa Michx.

Betula hybrids

Betula nana L.

Betula occidentalis Hooker

Betula papyrifera Marsh.

Betula neoalaskana Sarg.

Boraginaceae

Eritrichium aretioides (Cham.) DC.

Eritrichium chamissonis DC.

Eritrichium splendens Kearney

Mertensia maritima (L.) S.F. Gray ssp. maritima

Mertensia paniculata (Ait.) G. Don

Myosotis alpestris F. W. Schmidt ssp. asiatica Vestergr.

Callitrichaceae

Callitriche anceps Fern.

Callitriche heterophylla Pursh ssp. Heterophylla

Callitriche hermaphroditica L.

Callitriche palustris L.

Callitriche verna L. emend. Lonnr.

Callitriche verna L. emend. Lonnr.

Callitriche palustris L.

Campanulaceae

Campanula aurita Greene

Campanula lasiocarpa Cham.

Campanula uniflora L.

Lomatogonium rotatum (I.) E. Fries

Caprifoliaceae

Linnaea borealis L.

Linnaea borealis L. ssp. americana (Forbes) Hult.

Viburnum edule (Michx.) Raf.

Caryophyllaceae

Arenaria capillaris Poir.

Eremogone capillaris (Poiret) Fenzl

Arenaria chamissonis Maguire

Stellaria dicranoides (Cham. & Schltdl.) Fenzl

Arenaria longipedunculata

Cerastium beeringianum Cham. & Schlecht. var.

beeringianum

Cerastium beeringianum Cham. & Schlecht. var.

grandiflorum (Fenzl.) Hult.

Cerastium jenisejense Hult.

Dianthus repens Willd.

Gastrolychnis apetala (L.) Tolm & Koz.

Silene uralensis (Ruprecht) Bocquet ssp. uralensis

Honckenya peploides (L.) Ehrh.

Melandrium affine J. Vahl

Silene involucrata (Chamis. & Schlecht.) Bocquet

ssp. involucrata

Melandrium apetalum (L.) Fenzl.

Silene uralensis (Rupr.) Bocquet ssp. uralensis

Melandrium macrospermum Pors.

Gastrolychnis macrosperma (Porsild) Tolm. &

Kozhańch.

Silene uralensis ssp. porsildii Bocquet

Melandrium taimyrense Tolm.

Gastrolychnis ostenfeldii (Porsild) Petrovsky

Silene involucrata (Chamis. & Schlecht.) Bocquet

ssp. tenella

Minuartia arctica (Stev.) Aschers. & Graebn

Minuartia biflora (L.) Sching & Thell.

Minuartia dawsonensis (Britt.) Mattf.

Minuartia elegans (Cham. & Schlecht.) Schischk.

Minuartia rossii (R.Br. ex Rich.) Graebn. ssp.

elegans (Cham. & Schlt.) Rebrist.

Minuartia macrocarpa (Pursh) Ostenf.

Minuartia obtusiloba (Rydb.) House

Minuartia rossii (R. Br.) Graebn.

Minuartia rubella (Wahlenb.) Graebn.

Minuartia stricta (Sw.) Hiern

Minuartia yukonensis Hult.

Moehringia lateriflora (L.) Fenzl

Sagina intermedia Fenzl

Sagina nivalis (Lindblom) Fries

Sagina saginoides (L.) Karst.

Silene acaulis L.

Silene repens Patrin

Stellaria alaskana Hult.

Stellaria borealis Bigelow

Stellaria calycantha (Ledeb.) Bong.

Stellaria calycantha (Ledeb.) Bong. ssp. isophylla (Fern.) Fern.

Stellaria borealis Bigel. ssp. borealis

Stellaria crassifolia Ehrh.

Stellaria edwardsii R. Br.

Stellaria longipes Goldie ssp. longipes

Stellaria humifusa Rottb.

Stellaria laeta Richards.

Stellaria longipes Goldie ssp. longipes

Stellaria longifolia Muhl. ex Willd.

Stellaria longipes Goldie

Stellaria monantha Hult.

Stellaria longipes Goldie ssp. longipes

Stellaria umbellata Turcz.

Wilhelmsia physodes (Fisch.) McNeill

#### Chenopodiaceae

Atriplex gmelini C.A. Meyer

Chenopodium glaucum

#### Compositae (Asteraceae)

Achillea sibirica Ledeb.

Achillea alpina L.

Antennaria alpina (L.) Gaertn.

Antennaria pallida E. E. Nelson

Antennaria friesiana (Trautv.) Ekman

Antennaria isolepis Greene

Antennaria rosea Greene ssp. pulvinata (Greene) Bayer

Antennaria monocephala DC.

Antennaria pulcherrima (Hook.) Greene

Antennaria pulcherrima (Hook.) Greene var.

angustisquama Porsild

Antennaria rosea E. Greene

Arnica alpina (L.) Olin ssp. angustifolia (M. Vahl)

Maguire

Arnica angustifolia Vahl in Oeder et al.

Arnica frigida C.A. Mey.

Arnica griscomii Fernald ssp. frigida (Meyer ex Iljin) Wolf

Arnica lessingii Greene

Artemisia alaskana Rydb.

Artemisia arctica Less.

Artemisia norvegica Fr. var. saxatilis (Besser) Jeps.

Artemisia borealis Pall.

Artemisia frigida Willd.

Artemisia furcata Bieb.

Artemisia hyperborea Rydb.

Artemisia globularia Bess.

Artemisia glomerata Ledeb.

Artemisia senjavinensis Bess.

Artemisia tilesii Ledeb.

Aster junciformis Rydb.

Symphyotrichum boreale (Torr. & Gray) Löve & Löve

Aster sibiricus L.

Eurybia sibirica (L.) G.L. Nesom

Aster yukonensis Cronq.

Symphyotrichum yukonense (Cronquist) Nesom

Chrysanthemum arcticum L.

Arctanthemum arcticum (L.) Tzvelev s. lat

Chrysanthemum bipinnatum L.

Tanacetum bipinnatum (L.) Schultz-Bipontinus

Chrysanthemum integrifolium

Hulteniella integrifolia (Richardson) Tzvelev

Crepis elegans Hook.

Crepis nana Richards.

Erigeron acris L.

Erigeron caespitosus Nutt.

Erigeron elatus Greene

Erigeron eriocephalus J. Vahl

Erigeron uniflorus Linnaeus var. eriocephalus (J.

Vahl) B. Boivin

Erigeron humilis Graham

Erigeron hyperboreus

Erigeron lonchophyllus Hook.

Erigeron pallens Cronq.

Erigeron purpuratus Greene pro parte

Erigeron porsildii G. L. Nesom & D. F. Murray

Erigeron grandiflorus Hook. ssp. arcticus A.E. Porsild

Erigeron purpuratus Greene

Hieracium triste Willd.

Petasites frigidus (L.) Franchet

Petasites hyperboreus Rydb.

Petasites frigidus (L.) Fr. var. frigidus

Saussurea angustifolia (Willd.) DC.

Saussurea nuda Ledeb.

Saussurea triangulata Trautv. & C.A.Mey.

Saussurea viscida Hultén var. yukonensis (Porsild) Hultén

iiten

Saussurea angustifolia (L.) de Candolle var. yukonensis Porsild

Senecio atropurpureus (Ledeb.) Fedtsch.

Tephroseris atropurpurea (Ledeb.) Holub

Senecio atropurpureus (Ledeb.) Fedtsch. ssp. frigidus (Richards.) Hult.

Tephroseris frigida (Richardson) Holub

Senecio congestus (R. Br.) DC.

Tephroseris palustris (L.) Reichenbach

Senecio conterminus Greenm.

Packera contermina (Greenman) Bain

Senecio fuscatus (Jord. & Fourr.) Hayek

Tephroseris lyndstroemii

Senecio hyperborealis Greenm.

Packera hyperborealis (Greenman) Löve & Löve

Senecio kjellmanii Porsild

Tephroseris kjellmanii (Porsild) Holub

Senecio lugens Richardson

Senecio ogotorukensis Packer

Packera ogotorukensis (Packer) Löve & Löve

Senecio pseudoarnica Less.

Senecio resedifolius Less.

Packera cymbalaria (Pursh) Weber & Löve

Senecio yukonensis Pors.

Tephroseris yukonensis (Porsild) Holub

Solidago multiradiata Ait.

Taraxacum alaskanum Rydb.

Taraxacum kamtschaticum Dahlstedt

Taraxacum ceratophorum (Ledeb.) DC.

Taraxacum lateritium Dahlstedt

Taraxacum kamtschaticum Dahlstedt

Taraxacum alaskanum Rydb.

Taraxacum phymatocarpum J. Vahl

Tripleurospermum phaeocephalum (L.) W.D.J. Koch

#### Cornaceae

Cornus canadensis L.

Cornus suecica L.

#### Crassulaceae

Sedum rosea (L.) Scop. ssp. integrifolium (Raf.) Hult.

Rhodiola intefrigolia Raf.

#### Cruciferae (Brassicaceae)

Aphragmus eschscholtzianus Andrz.

Arabis drummondii Gray

Arabis hirsuta (L.) Scop. ssp. pycnocarpa (M. Hopkins)

Hult.

Arabis lyrata L. ssp. kamchatica (Fisch.) Hult.

Arabis kamchatica (Fisch. ex DC.) Ledeb.

Barbarea orthoceras Ledeb.

Braya glabella Richards. ssp. glabella

Braya bartlettiana Jordal

Braya henryae sensu Hulten

Braya humilis (C.A. Mey.) Robins.

Torularia humilis (C. A. Mey.) Schulz

Braya purpurascens (R. Br.) Bunge

Braya glabella Richards. ssp. purpurascens (R. Br.)

Cody

Cardamine bellidifolia L.

Cardamine hyperborea O.E. Schulz

Cardamine digitata Richardson

Cardamine microphylla Adams

Cardamine pratensis L. ssp. angustifolia (Hook.) O.E.

Schultz

Cardamine purpurea Cham. & Schlecht

Cardamine umbellata Greene

Cochlearia officinalis L.

Cochlearia arctica

Cochlearia officinalis L. ssp. arctica

Cochlearia arctica Schltdl.

Descurainia sophioides (Fisch.) O.E. Shultz

Draba alpina L.

Draba pilosa DC

Draba borealis DC.

Draba cana Rydb.

Draba lanceolata auct., non Royle

Draba cinerea Adams

Draba corymbosa R. Br.

Draba exalata Ekman

Draba ruaxes Payson & St. John

Draba fladzinensis Wulf

Draba glabella Pursh

Draba juvenilis Komarov

Draba lactea Adams

Draba lonchocarpa Rydb.

Draba macounii O.E. Schultz

Draba nivalis Liljebl.

Draba palanderiana Kjellm.

Draba pilosa DC

Draba alpina

Draba stenoloba Ledeb.

Draba stenopetala Trautv.

Erysimum cheiranthoides L.

Erysimum inconspicuum (S. Wats.) MacM.

Erysimum pallasii (Pursch) Fern.

Eutrema edwardsii R. Br.

Halimolobos mollis (Hook.) Rollins

Lesquerella arctica (Wormsk.) S. Wats.

Parrya nudicaulis (L.) Regel

Rorippa hispida (Desv.) Britt.

Rorippa palustris (L.) Besser ssp. hispida (Desv.)

Jonsell

Rorippa islandica (Oeder) Borbás ssp. fernaldiana

(Butters & Abbe) Hultén

Rorippa palustris (L.) Besser ssp. fernaldiana

(Butters & Abbe) Jonsell

Smelowskia borealis (Greene) Drury & Rollins

Smelowskia calycina (Steph.) C.A. Mey. integrifolia (Seem.) Hult.

Smelowskia spathulatifolia Velichkin

Smelowskia calycina (Steph.) C.A. Mey. var porsildii (Drury & Rollins)

Smelowskia porsildii (Drury & Rollins) Yurtsev

Subularia aquatica L.

Thlaspi arcticum Pors.

Noccaea arctica (Porsild) Holub.

#### Cryptogrammaceae

Cryptogramma crispa (L.) R. Br. var. sitchensis (Rupr.)

Christens

Cryptogramma stelleri (S.G. Gmel.) Prantl

#### Cupressaceae

Juniperus communis L.

#### Cyperaceae

Carex albo-nigra Mack.

Carex amblyorhynca Krecz.

Carex marina Dewey

Carex aquatilis Wahlenb. ssp. aquatilis

Carex arcta Boott.

Carex atrofusca Schkuhr

Carex aurea Nutt.

Carex bicolor All.

Carex bigelowii Torr.

Carex brunnescens (Pers.) Poir.

Carex canescens L.

Carex capillaris L.

Carex capitata Soland. In L.

Carex chordorrhiza Ehrh.

Carex concinna R. Br.

Carex deflexa Hornem.

Carex diandra Schrank

Carex dioica ssp. gynocrates (Wormsk.) Hult.

Carex gynocrates Wormskjöld ex Drejer

Carex filifolia Nutt.
Carex franklinii Boott

Carex petricosa Dewey var. petricosa

Carex garberi Fern. ssp. bifaria (Fern.) Hult.

Carex glacialis Mack.

Carex glareosa Wahlenb. ssp. glareosa

Carex gmelinii Hook. & Arn.

Carex heleonastes Ehrh.

Carex holostoma Drej.

Carex interior Bailey

Carex kelloggii W. Boott

Carex lenticularis var lipocarpa

Carex krausei Boeck.

Carex lachenalii Schkuhr.

Carex lapponica Lang

Carex leptalea Wahlenb.

Carex limosa L.

Carex livida (Wahlenb.) Willd.

Carex loliacea L.

Carex lugens Holm

Carex bigelowii Torr. ex Schwein. ssp. lugens

(Holm) Egorova

Carex lyngbyaei Hornem.

Carex mackenziei V. Krecz.

Carex magellanica Lam. ssp. irrigua (Wahlenb.) Hult.

Carex maritima Gunn.

Carex media R. Br.

Carex membranacea Hook.

Carex microchaeta Holm.

Carex microglochin Walenb.

Carex misandra R. Br.

Carex fuliginosa Schkuhr

Carex nardina E. Fries

Carex hepburnii Boott

Carex nesophila Holm.

Carex microchaeta Holm ssp. nesophila (Holm)

Murray

Carex obtusata Lilj.

Carex oederi Retz. ssp. viridula (Michx.) Hult.

Carex viridula Michaux var. viridula

Carex petricosa Dewey

Carex pluriflora Hult.

Carex podocarpa C. B. Clarke

Carex praticola Rydb.

Carex pyrenaica Wahlenb. ssp. micropoda (C. A.

Meyer) Hult.

Carex micropoda Mey.

Carex ramenskii Kom.

Carex rariflora (Wahlenb.) Smith

Carex rostrata Stokes

Carex rotundata Wahlenb.

Carex rupestris All.

Carex saxatilis L.ssp. laxa (Trautv.) Kalela

Carex scirpoidea Michx.

Carex stylosa C. A. Mey

Carex subspathacea Wormsk.

Carex supina Willd. ssp. spaniocarpa (Steud.) Hultén

Carex tenuiflora Wahlenb.

Carex utriculata F. Boott

Carex vaginata Tausch

Carex williamsii Britt.

Eleocharis acicularis (L.) Roem. & Schult.

Eleocharis kamtschatica (C.A. Meyer) V. Komarov

Eleocharis palustris (L.) Roem. & Schult.

Eleocharis quinqueflora (F. Hartmann) O. Schwarz

Eriophorum angustifolium Honck. ssp. subarcticum (V.

Vassiljev) Hult.

Eriophorum brachyantherum Trautv. & Mey.

Eriophorum callitrix Cham.

Eriophorum gracile Koch

Eriophorum russeolum Fries

Eriophorum chamissonis C. A. Meyer in C. F.

Ledebour

Eriophorum scheuchzeri Hoppe

Eriophorum vaginatum L.

Eriophorum viridi-carinatum (Englem.) Fern.

Kobresia myosuroides (Vill.) Fiori & Paol.

Kobresia sibirica Turcz.

Kobresia simpliciuscula (Wahlenb.) Mack.

Trichophorum alpinum (L.) Pers.

Trichophorum caespitosum (L.) Hartm.

Diapensiaceae

Diapensia lapponica L.

Droseraceae

Drosera anglica Huds.

Drosera rotundifolia L.

Elaegnaceae

Shepherdia canadensis (L.) Nutt.

Empetraceae

Empetrum nigrum L.

Empetrum hermaphroditum Hagerup

Equisetaceae

Equisetum arvense L.

Equisetum fluviatile L. ampl. Ehrh.

Equisetum palustre L.

Equisetum pratense L.

Equisetum scirpoides Michx.

Equisetum sylvaticum L.

Equisetum variegatum Schleich.

Ericaceae

Andromeda polifolia L.

Arctostaphylos alpina (L.) Spreng.

Arctous alpina (L.) Nied.

Arctostaphylos rubra (Rehd. & Wilson) Fern.

Arctous rubra (Rehder & Wilson) Nakai & Koidz.

Arctostaphylos uva-ursi (L.) Sprengel

Cassiope tetragona (L.) D. Don

Chamaedaphne calyculata (L.) Moench

Ledum decumbens (Ait.) Lodd.

Ledum groenlandicum Oeder

Loiseleuria procumbens (L.) Desv.

Oxycoccus microcarpus Turcz. ex Rupr.

Rhododendron camtschaticum Pallas

Therorhodion camtschaticum (Pall.) Small

Rhododendron lapponicum (L.) Wahlenb.

Vaccinium uliginosum L.

Vaccinium vitis-idaea L

#### **Fumariaceae**

Corydalis pauciflora (Steph.) Pers.

Corvdalis arctica Popov.

Corydalis sempervirens (L.) Pers.

#### Gentianaceae

Gentiana glauca Pallas

Gentiana propinqua Richards. ssp. propinqua

Gentianella propinqua (Richards.) Gillett

Gentiana prostrata Haenke

Gentiana tenella Rottb.

Gentianella tenella (Rottb.) Borner

#### Graminae (Poaceae)

Agropyron boreale (Turcz.) Drobov ssp. alaskanum (Scribn. & Merr.) Melderis

> Elymus alaskanus (Scribn. & Merr.) Löve ssp. latiglumis (Scribn. & Sm.) Löve

Agropyron boreale (Turcz.) Drobov ssp. hyperarcticum

> Elymus alaskanus (Scribn. & Merr.) Löve ssp. hyperarcticus (Polunin) Löve

Agropyron macrourum (Turcz.) Drobov

Elymus macrourus (Turcz.) Tzvelev

Agropyron pauciflorum (Schwein.) Hitchc.

Elymus trachycaulus (Link) Gould ex Shinners

Agropyron violaceum (Hornem.) Lange ssp. andinum (Scribn. & J.G. Sm.) Melderis

Elymus trachycaulus (Link) Gould ex Shinners ssp. trachycaulus

Agropyron violaceum (Hornem.) Lange ssp. violaceum

Elymus alaskanus (Scribn. & Merr.) Löve ssp.

latiglumis (Scribn. & Sm.) Löve

Agrostis scabra Willd.

Agrostis geminata Trin.

Alopecuris aequalis Sobol.

Alopecuris alpinus Sm. ssp. alpinus

Alopecurus borealis Trin.

Arctagrostis latifolia (R. Br.) Griseb.

Arctophila fulva (Trin.) Anderss.

Beckmannia erucaeformis (L.) Host ssp. baicalensis (Kusn.) Hult.

Beckmannia syzigachne (Steud.) Fernald

Bromus ciliatus L.

Bromus pumpellianus SL

Bromopsis pumpellianus (Scribn.) Holub.

Calamagrostis canadensis (Michx.) Beauv.

Calamagrostis deschampsioides Trin.

Calamagrostis holmii Lange

Calamagrostis inexpansa Gray

Calamagrostis stricta (Timm) Koeler ssp.

inexpansa (A.Gray) C.W.Greene

Calamagrostis lapponica (Wahlenb.) Hartman. F.

Calamagrostis neglecta (Ehrh.) P.G. Gaertn., B. Mey. & Scherb.

> Calamagrostis stricta (Timm) Koeler ssp. stricta (Timm) Koeler

Calamagrostis nutkaensis (C. Presl) Steudel

Calamagrostis purpurascens R. Br. ssp. purpurascens

Colpodium vahlianum (Liebm.) Nevski

Puccinellia vahliana (Liebm.) Scribn. & Merr.

Colpodium wrightii Scribn. & Merr.

Puccinellia wrightii (Scribn. & Merr.) Tzvelev

Deschampsia brevifolia R. Br.

Deschampsia caespitosa (L.) P. Beauv.

Dupontia fischeri R.Br.

Elymus alaskanus (Scribn. & Merr.) A. Loeve ssp.

alaskanus

Agropyron boreale (Turcz.) Drobov ssp. alaskanum (Scribn. & Merr.) Melderis

Elymus arenarius L. ssp. mollis (Trin.) Hult.

Leymus mollis (Trin.) Pilg. ssp. mollis

Elymus innovatus Beal

Leymus innovatus

Elymus trachycaulis SL

Agropyron violoceum s. lat.

Festuca altaica Trin.

Festuca baffinensis Polunin

Festuca brachyphylla Schult.

Festuca brevissima Yurtsev

Festuca lenensis Drobow

Festuca richardsonii Hook

Festuca rubra L.

Festuca saximontana Rydb.

Festuca vivipara (L.) Smith

Festuca viviparoidea Krajina ex Pavlick

Glyceria pulchella (Nash) Schum.

Glyceria striata (Lam.) A. Hitchc. ssp. stricta (Scribn.) Hult.

Hierchloe alpina (Sw.) Roem. & Schult.

Hierochloe odorata (L.) P. Beauv.

Hierochloe pauciflora R. Br.

Hordeum jubatum L.

Phippsia algida (Soland.) R. Br.

Poa abbreviata R. Br.

Poa alpigena (E. Fries) Lindm.

Poa pratensis L. ssp. alpigena (Fr. ex Blytt)

Hiitonen

Poa alpina L.

Poa arctica R. Br. Poa eminens Presl

Poa glauca M. Vahl.

Poa lanata Scribn. & Merr.

Poa arctica R. Br. ssp. lanata (Scribn.) Soreng

Poa palustris L.

Poa paucispicula Scribn. & Merr.

Poa pratensis L.

Poa pseudoabbreviata Roshev.

Puccinellia borealis Swallen

Puccinellia arctica (Hook.) Fernald

Puccinellia phryganodes (Trin.) Scribner & Marr.

Puccinellia vaginata (Lange) Fern. & Weath.

Schizachne purpurascens (Torr.) Swallen

Trisetum spicatum (L.) Richter ssp. molle (Michx.) Hult.

Trisetum spicatum (L.) Richter ssp. spicatum

#### Haloragaceae

Hippuris tetraphylla L.F.

Hippuris vulgaris L.

Myriophyllum spicatum L.

Myriophyllum verticillatum L.

#### Iridaceae

Iris setosa Pall. ssp. setosa

#### Isoetaceae

Isoetes echinospora Durieu

#### Juncaceae

Juncus alpinus Villers

Juncus alpinoarticulatus Chaix

Juncus arcticus Willd.

Juncus arcticus Willd. ssp. alaskanus Hult.

Juncus biglumis L.

Juncus bufonius L.

Juncus castaneus Sm. ssp. castaneus

Juncus filiformis L.

Juncus stygius L. ssp. americanus (Buchenau) Hult.

Juncus triglumis L.

Juncus triglumis L. ssp. albescens (Lange) Hulten

Luzula arctica Blytt.

Luzula nivalis (Laest.) Beurling

Luzula arcuata (Wahlenb.) Sw.

Luzula arcuata (Wahlenb.) Sw. ssp. unalaschensis

(Buchenau) Hult.

Luzula confusa Lindeb.

Luzula multiflora (Retz.) Lej.

Luzula multiflora (Retz.) Lej. ssp. multiflora var.

kjellmaniana (Miyabe & Kudo) Sam.

Luzula parviflora (Ehrh.) Desv.

Luzula rufescens Fisch.

Luzula tundricola Gorodk.

Luzula kjellmaniana Miyabe & Kudo

Luzula wahlenbergii Rupr. ssp. wahlenbergii

### Juncaginaceae

Triglochin maritimum L.

Triglochin palustris L.

#### Leguminosae (Fabaceae)

Astragalus aboriginum Richards.

Astragalus alpinus L.

Astragalus eucosmus Hornem. ssp. sealei (LePage) Hult.

Astragalus eucosmus Rob.

Astragalus nutzotinensis Rousseau

Astragalus polaris Benth.

Astragalus umbellatus Bunge

Hedysarum alpinum L.

Hedysarum hedysaroides (L.) Schinz & Thell.

Hedysarum hedysaroides (L.) Schinz & Thell.

Hedysarum alpinum L.

Hedysarum mackenzii Richards.

Lathyrus maritimus L. ssp. maritimus

Lathyrus japonicus Willd.

Lupinus arcticus S. Wats.

Lupinus kuschei Eastw.

Oxytropis arctica R. Br.

Oxytropis borealis DC.

Oxytropis bryophila (E. Greene) Yurtsev

Oxytropis gorodkovi Jurtzev

Oxytropis campestris (L.) DC.

Oxytropis campestris (L.) DC. ssp. jordalii (Porsild)

Hultén

Oxytropis jordalii Porsild

Oxytropis campestris (L.) DC. ssp. varians (Rydb.) Cody

Oxytropis tananensis Yurtzev

Oxytropis varians (Rydb.) Schum.

Oxytropis deflexa (Pall.) DC.

Oxytropis huddelsonii Pors.

Oxytropis kobukensis Welsh

Oxytropis kokrinensis Porsild

Oxytropis koyukukensis Pors.

Oxytropis arctica R.Br. var. koyukukensis (Porsild)

Welsh

Oxytropis maydelliana Trautv.

Oxytropis mertensiana Turcz.

Oxytropis nigrescens (Pall.) Fisch.

Oxytropis nigrescens (Pallas) Fisch. ssp. pygmaea

(Pallas) Hultén

Oxytropis gorodkovii Jurtzev

Oxytropis scammaniana Hultén

Oxytropis viscida Nutt.

Vicia cracca L.

#### Lemnaceae

Lemna trisulca L.

## Lentibulariaceae

Pinguicula villosa L.

Pinguicula vulgaris L.

Utricularia intermedia Hayne

Utricularia minor L.

Utricularia vulgaris L. ssp. macrorhiza (LeConte)

Clauson

Utricularia macrorhiza Leconte

#### Liliaceae

Allium schoenoprasum L.

Tofieldia coccinea Richards.

Tofieldia pusilla (Michx.) Pers.

Veratrum album L. ssp. oxysepalum (Turcz.) Hult.

Zygadenus elegans Pursh

Linaceae

Linum perenne L. ssp. lewisii

Linum lewisii Pursh

Lycopodiaceae

Lycopodium alpinum L.

Diphasiastrum alpinum (Linnaeus) Holub

Lycopodium annotinum L.

Lycopodium clavatum L.

Lycopodium complanatum L.

Diphasiastrum complanatum (Linnaeus) Holub

Lycopodium dendroideum Michx.

Lycopodium selago L.

Huperzia selago (Linnaeus) Bernhardi ex Schrank

& Martius

Menyanthaceae

Menyanthes trifoliata L.

Myricaeae

Myrica gale L.

Nymphaceae

Nuphar polysepalum Engelm.

Onagraceae

Circaea alpina L.

Epilobium adenocaulon Haussk.

Epilobium anagallidifolium Lam.

Epilobium angustifolium L.

Chamerion angustifolium (L.) Holub

Epilobium behringianum Haussk.

Epilobium ciliatum Raf.

Epilobium davuricum Fisch.

Epilobium glandulosum Lehm.

Epilobium hornemannii Reichb. ssp. hornemannii

Epilobium latifolium L.

Chamerion latifolium (L.) Holub

Epilobium palustre L.

Ophioglossaceae

Botrychium Iunaria (L.) Sw.

Botrychium minganense Victorin

Orchidaceae

Amerorchis rotundifolia (Banks) Hult.

Coeloglossum viride (L.) Hartm. ssp. viride var. (Lindl.)

Schulze

Corallorrhiza trifida Chatel.

Cypripedium parviflorum L.

Cypripedium passerinum Richards

Goodyera repens (L.) R. Br. var. ophioides Fern.

Hammarbya paludosa (L.) Ktze.

Malaxis paludosa (Linnaeus) Swartz

Listera borealis Morong

Listera cordata (L.) R. Br.

Lloydia serotina (L.) Rchb.

Platanthera hyperborea (L.) Lindl.

Platanthera obtusata (Pursh) Lindl.

Lysiella obtusata (Banks ex Pursh) Rydb.

Spiranthes romanzoffiana Cham.

Orobanchaceae

Boschniakia rossica (Cham & Schldl.) B. Fedtsch.

Papaveraceae

Papaver alaskanum Hultén

Papaver mcconnellii Hulten

Papaver gorodkovi Tolmatchew & V.V. Petrovsky

Papaver hultenii Knaben

Papaver lapponicum (Tolm.) Nordh.

Papaver hultenii Knaben

Papaver lapponicum (Tolm.) Nordh. ssp. porsildii

. Knaben

Papaver radicatum ssp. radicatum

Papaver macounii Greene

Papaver radicatum Rottb. ssp. radicatum

Papaver walpolei Pors.

Pinaceae

Picea glauca (Moench) Voss

Picea mariana (Mill.) Britt., Sterns & Pogg

Plantaginaceae

Plantago canescens Adams

Plumbaginaceae

Armeria maritima (Mill.) Willd. ssp. arctica (Cham.)

Hult.

Polemoniaceae

Phlox sibirica L. ssp. sibirica

Phlox alaskensis Jordal

Polemonium acutiflorum Willd.

Polemonium boreale Adams

Polygonaceae

Koenigia islandica L.

Oxyria digyna (L.) Hill

Polygonum alaskanum (Small) Wight

Aconogonon alaskanum (Small) Soják

Polygonum amphibium L.

Persicaria amphibia (L.) Gray

Polygonum aviculare L.

Polygonum bistorta L. ssp. plumosum (Small) Hult.

Bistorta plumosa (Small) Greene

Polygonum caurianum Robins.

Polygonum humifusum Merck ex. Koch ssp.

caurianum (Robins.) Costea & Tardif

Polygonum lapathifolium L.

Persicaria lapathifolia (L.) Gray

Polygonum viviparum L.

Bistorta vivipara (L.) Delarbre

Rumex acetosa L. ssp. alpestris (Scop.) Love

Rumex acetosella L. ssp. acetosa

Rumex arcticus Trautv.

Rumex crispus L.

Polypodiaceae

Polypodium vulgare L.

Polypodium sibiricum Sipliv.

Portulacaceae

Claytonia acutifolia Pall. ssp. graminifolia Hultén

Claytonia eschscholtzii Cham.

Claytonia sarmentosa C. Meyer

Montia sarmentosa (C.A. Mey.) Rob.

Claytonia tuberosa Pall.

Montia fonata L. ssp. fontana

#### Portulaceae

Claytonia scammaniana Hulten

#### Potamogetonaceae

Potamogeton alpinus Balbis ssp. tenuifolius (Raf.)

Hultén

Potamogeton berchtoldii Fieber

Potamogeton pusillus ssp. tenuissimus (Mertens

& Koch) Haynes & Hellquist

Potamogeton epihydrus Raf.

Potamogeton filiformis Pers.

Stuckenia filiformis (Pers.) Böerner

Potamogeton friesii Rupr.

Potamogeton gramineus L.

Potamogeton pectinatus L.

Stuckenia pectinata (L.) Borner

Potamogeton perfoliatus L. ssp. richardsonii (Benn.)

Hultén

Potamogeton richardsonii (Bennett) Rydberg

Potamogeton praelongus Wulf.

Potamogeton subsibiricus Hagstr.

Potamogeton vaginatus Turcz.

Stuckenia vaginata (Turczaninow) Holub

Potamogeton zosterifolius Schum.

Zannichellia palustris L.

#### Primulaceae

Androsace chamaejasme Host ssp. lehmannia

(Spreng.) Hult.

Androsace septentrionalis L.

Dodecatheon frigidum Cham. & Schlecht.

Dodecatheon pulchellum (Raf.) Merr.

Douglasia arctica Hook

Douglasia ochotensis (Willd.) Hult.

Primula anvilensis S. Kelso

Primula borealis Duby

Primula egaliksensis Wormsk.

Primula mistassinica Michx.

Primula sibirica Jacq.

Primula nutans Georgi

Primula stricta Hornem.

Primula tschuktschorum Kjellm. var. arctica (Koidz.)

Fern.

Trientalis europaea L.

Trientalis europaea L. ssp. arctica (Fisch.) Hult.

#### Pyrolaceae

Moneses uniflora (L.) Gray

Pyrola asarifolia Michx.

Pyrola chlorantha Sw.

Pyrola grandiflora Radius

Pyrola minor L.

Pyrola secunda L.

Orthilia secunda (L.) House

Ranunculaceae

Aconitum delphinifolium DC.

Anemone drummondii S. Wats.

Anemone multiceps (Greene) Standl.

Anemone narcissiflora L.

Anemone parviflora Michx.

Anemone richardsonii Hook.

Caltha natans Pall.

Caltha palustris L.

Delphinium brachycentrum Ledeb.

Delphinium chamissonis Pritz. ex Walp.

Delphinium glaucum S. Wats.

Pulsatilla patens (L.) Mill ssp. multifida (Pritz.) Zamels

Anemone patens var. multifida Pritzel

Ranunculus eschscholtzii Schlecht.

Ranunculus gelidus Kar. & Kir. ssp. grayi (Britt.) Hultén

Ranunculus glacialis L. ssp. chamissonis (Schlecht.) Hult.

Ranunculus glacialis L. var. camissonis (Schltdl.)

Ranunculus gmelini DC. ssp. gmelini

Ranunculus hyperboreus Rottb.

Ranunculus lapponicus L.

Coptidium lapponicum (L.) Tzvelev

Ranunculus nivalis L

Ranunculus pallasii Schlect.

Ranunculus pedatifidus Sm. ssp. affinis (R. Br.) Hult.

Ranunculus pygmaeus Wahl.

Ranunculus reptans L.

Ranunculus flammula var. reptans (L.) E. Meyer

Ranunculus sulphureus Soland. var. intercedens Hultén

Ranunculus trichophyllus Chaix

Ranunculus aquatilis var. diffusus Withering

Ranunculus trichophyllus Chaix var. hispidulus (E.

Drew) W. Drew

Ranunculus aquatilis var. aquatilis

Thalictrum alpinum L.

Thalictrum sparsiflorum Turcz.

## Rosaceae

Dryas drummondii Richards.

Dryas integrifolia Vahl.

Dryas integrifolia var. sylvatica Hulten

Dryas octopetala L.

Dryas octopetala L. ssp. alaskensis (Pors.) Hult.

Dryas alaskensis

Geum glaciale Adams

Novosieversia glacialis (J. E. Adams) Bolle

Geum rossii (R. Br.) Ser.

Acomostylis rossii (R. Br.) Greene

Potentilla biflora Willd.

Potentilla egedii Wormsk. ssp. grandis (Torr. & Gray)

Potentilla elegans Cham. & Schlecht.

Potentilla fruticosa L.

Dasiphora fruticosa (L.) Rydb.

Potentilla hookeriana Lehm.

Potentilla hyparctica Malte

Potentilla nivea L.

Potentilla norvegica L.

Potentilla palustris (L.) Scop.

Comarum palustre L.

Potentilla pennsylvanica L.

Potentilla rubricaulis Lehm.

Potentilla stipularis L.

Potentilla uniflora Ledeb.

Potentilla gorodkovii

Potentilla vahliana Lehm.

Potentilla villosa Pall.

Potentilla virgulata Nels.

Potentilla litoralis Rydb.

Rosa acicularis Lindl.

Rubus arcticus L. ssp. arcticus

Rubus arcticus L. ssp. stellatus (Sm.) Boiv. Emend.

Hulten

Rubus chamaemorus L.

Rubus idaeus L.

Sanguisorba officinalis L.

Sibbaldia procumbens L.

Sorbus scopulina Greene

Spiraea beauverdiana Schneid.

Spiraea stevenii (C.K. Schneid.) Rydb.

#### Rubiaceae

Galium boreale L.

Galium brandegei Gray

Galium trifidum L. ssp. trifidum

# Salicaceae

Populus balsamifera L.

Populus balsamifera L. ssp. trichocarpa (Torr. & Gray)

Brayshaw

Populus tremuloides Michx.

Salix alaxensis (Anderss.) Cov.

Salix arbusculoides Anderss.

Salix arctica Pall.

Salix barclayi Anderss.

Salix bebbiana Sarg.

Salix brachycarpa Nutt. ssp. niphoclada (Rydb.) Argus

Salix niphoclada Rydb.

Salix chamissonis Anderss.

Salix fuscescens Anderss.

Salix glauca L.

Salix hastata L.

Salix interior Rowlee

Salix lanata L. ssp. richardsonii (Hook.) Skvort.

Salix richardsonii Hook.

Salix monticola Bebb

Salix pseudomonticola Ball

Salix ovalifolia Trautv.

Salix phlebophylla Anderss.

Salix planifolia Pursch. ssp.pulchra (Cham.) Argus

Salix pulchra Cham.

Salix polaris Wahlenb. ssp. pseudopolaris (Flod.) Hult.

Salix reticulata L.

 ${\bf Salix\ rotundifolia\ Trautv}.$ 

Salix rotundifolia Trautv. ssp. dodgeana (Rydb.) Argus

Salix scouleriana Barratt

Salix sphenophylla A. Skvortz.

#### Santalaceae

Geocaulon lividum (Richards.) Fern.

#### Saxifragaceae

Boykinia richardsonii (Hook.) Gray

Chrysosplenium tetrandrum (Lund) T. Fries

Chrysosplenium wrightii Fr. And Sav.

Parnassia kotzebuei Cham. & Schlecht.

Parnassia palustris L.

Ribes triste Pall.

Saxifraga bronchialis L.

Saxifraga bronchialis L. ssp. funstonii (Small) Hult.

Saxifraga caespitosa L.

Saxifraga calycina Sternb.

Saxifraga cernua L.

Saxifraga davurica Willd. ssp. grandipetala (Engler &

Irmsch.) Hult.

Saxifraga eschscholtzii Sternb.

Saxifraga exilis Steph.

Saxifraga flagellaris Willd.

Saxifraga flagellaris Willd. ssp. setigera (Pursh.) Tolm.

Saxifraga foliolosa R. Br.

Saxifraga hieracifolia Waldst. & Kit.

Saxifraga hirculis L.

Saxifraga nivalis L.

Saxifraga nudicaulis D. Don

Saxifraga oppositifolia L. Saxifraga punctata L.

Saxifraga nelsoniana D.Don.

--- --- --- (D. D.-.)

Saxifraga punctata L. ssp. nelsoniana (D. Don) Hult.

Saxifraga reflexa Hook.

Saxifraga rivularis L.

Saxifraga serpyllifolia Pursh

Saxifraga spicata D. Don

Saxifraga tricuspidata Rottb.

#### Scrophulariaceae

Castilleja caudata (Pennell) Rebr.

Castilleja pallida (L.) Spreng. ssp. caudata Pennell

Castilleja elegans Malte

Castilleja hyperborea Pennell

Lagotis glauca Gaertn. ssp. glauca

Lagotis glauca Gaertn. ssp. minor (Willd.) Hult.

Limosella aquatica L.

Pedicularis capitata Adams.

Pedicularis kanei Durand ssp. kanei

Pedicularis lanata Cham. & Schltdl.

Pedicularis labradorica Wirsing

Pedicularis langsdorffii Fisch. ssp.arctica (R. Br.)

Pennell

Pedicularis langsdorffii Fisch. ssp.langsdorffii

Pedicularis lapponica L.

Pedicularis oederi M. Vahl

Pedicularis parviflora J.E. Sm. ssp. parviflora

Pedicularis parviflora J.E. Sm. ssp. pennellii (Hult.) Hult.

Pedicularis pennellii Hulten

Pedicularis sudetica Willd. ssp. albolabiata Hultén

Pedicularis albolabiata (Hultén) Kozhanch.

Pedicularis sudetica Willd. ssp. interior Hult.

Pedicularis interior (Hultén) Molau & Murray

Pedicularis sudetica Willd. ssp. pacifica Hult.

Pedicularis pacifica (Hultén) Kozh

Pedicularis verticillata L.

Veronica wormskjoldii Roem & Schult.

## Selaginellaceae

Selaginella selaginoides (L.) Link Selaginella sibirica (Milde) Hieron.

#### Sparganiaceae

Sparganium angustifolium Michx.

Sparganium hyperboreum Laest.

Sparganium minimum (Hartm.) E. Fries

Sparganium natans Linnaeus

#### Thelypteridaceae

Thelypteris phegopteris (L.) Slosson

Phegopteris connectilis (Michaux) Watt

#### Umbelliferae (Apiaceae)

Angelica lucida L.

Bupleurum triradiatum Adams ssp. arcticum (Regel)

Hult.

Bupleurum americanum J.M. Coult. & Rose

Cicuta virosa L.

Cnidium cnidiifolium (Turcz.) Schischk.

Conioselinum chinense L. BSP.

Conioselinum gmelinii (Cham. & Schltdl.) Steud.

Heracleum lanatum Michx.

Ligusticum scoticum L. ssp. hultenii (Fern.) Cald. & Tayl.

Podistera macounii (Coult. & Rose) Math. & Const.

#### Valerianaceae

Valeriana capitata Pall.

#### Violaceae

Viola biflora L.

Viola epipsila Ledeb. ssp. repens (Turcz.) Becker

Viola langsdorffii Fisch. Viola renifolia Gray Viola selkirkii Pursh

#### Lichen

Acarospora schleicheri (Ach.) A. Massal.

Agonimia tristicula (Nyl.) Zahlbr. Alectoria nigricans (Ach.) Nyl.

Alectoria ochroleuca (Hoffm.) A. Massal.

Alectoria sp.

Allantoparmelia almquistii Arctoparmelia centrifuga

Arctoparmelia separata (Th. Fr.) Hale

Arctoparmelia sp.

Asahinea chrysantha (Tuck.) Culb. & C. Culb.

Asahinea scholanderi

Asahinea sp.

Baeomyces rufus (Huds.) Rebent.

Brodoa oroarctica (Krog) Goward Bryocaulon divergens (Ach.) Kärnefelt

Bryocaulon sp.

Bryonora castanea (Hepp) Poelt

Bryoria chalybeiformis (L.) Brodo & D. Hawksw. Bryoria nitidula (Th. Fr.) Brodo & D. Hawksw.

Bryoria sp.

Buellia insignis(Naeg. ex Hepp) Th. Fr. Buellia punctata (Hoffm.) Massal.

Caloplaca ammiospila (Wahlenb.) H. Olivier Caloplaca fraudans (Th. Fr.) H. Olivier

Caloplaca holocarpa (Hoffm. ex Ach.) M. Wade

Caloplaca tetraspora (Nyl.) H. Olivier

Caloplaca tiroliensis Zahlbr.

Candelaria sp.

Catapyrenium lachneum (Ach.) R. Sant.

Cetraria aculeata (Schreber) Fr.

Cetraria commixta Cetraria ericetorum Opiz Cetraria hepatizon (Ach.) Vain. Cetraria islandica (L.) Ach.

Cetraria islandica (L.) Ach. ssp. islandica

Cetraria islandica ssp. crispiformis (Räsänen) Kärnefelt

Cetraria kamczatica Savicz Cetraria laevigata Rass.

Cetraria muricata (Ach.) Eckfeldt

Cetraria nigricans Nyl.

Cetraria pinastri (Scop.) S. Gray

Vulpicida pinastri

Cetraria sp.

Cetrariella delisei (Bory ex Schaerer) Kärnefelt & Thell

Cetraria delisei Cetraria hiascens

Cetrariella fastigiata (Delise ex Nyl.) Kärnefelt & Thell

Cladina arbuscula (Wallr.) Hale & Culb.

Cladina mitis (Sandst.) Hustich Cladina rangiferina (L.) Nyl.

Cladina sp.

Cladina stellaris (Opiz) Brodo Cladina stygia (Fr.) Ahti

Cladonia aberrans (Abbayes) Hale & Culb.

Cladonia acuminata (Ach.) Norrlin

Cladonia alaskana A. Evans

Cladonia amaurocraea (Flörke) Schaerer Cladonia bellidiflora (Ach.) Schaerer Cladonia botrytes (Hag.) Willd. Cladonia cariosa (Ach.) Spreng. Cladonia carneola (Fr.) Fr. Cladonia cenotea (Ach.) Schaer.

Cladonia chlorophaea (Flörke ex Sommerf.) Sprengel

Cladonia coccifera (L.) Willd. s. lat. Cladonia cornuta (L.) Hoffm. Cladonia crispata (Ach.) Flot. Cladonia decorticata (Flörke) Spreng.

Cladonia deformis (L.) Hoffm.

Cladonia ecmocyna Leighton Cladonia fimbriata (L.) Fr.

Cladonia furcata (Hudson) Schrader

Cladonia gracilis (L.) Willd.

Cladonia gracilis (L.) Willd. ssp. elongata (Jacq.) Vainio

Cladonia gracilis (L.) Willd. ssp. vulnerata Ahti

Cladonia macilenta Hoffm.

Cladonia macrophylla (Schaerer) Stenh. Cladonia maxima (Asahina) Ahti Cladonia metacorallifera Asah. Cladonia nipponica Asah.

Cladonia pleurota (Flörke) Schaerer Cladonia pocillum (Ach.) Grognot Cladonia pyxidata (L.) Hoffm. Cladonia scabriuscula (del.) Leight.

Cladonia sp.

Cladonia squamosa Hoffm.
Cladonia stricta (Nyl.) Nyl.
Cladonia subfurcata (Nyl.) Arnold
Cladonia subulata (L.) F.H. Wigg.
Cladonia sulphurina (Michaux) Fr.
Cladonia symphycarpia (Ach.) Fr.
Cladonia uncialis (L.) F. H. Wigg.
Cladonia verticillata (Hoffm.) Schaerer

Cornicularia divergens

Dactylina arctica (Richardson) Nyl.

Dactylina beringica C. D. Bird & J. W. Thomson Dactylina madreporiformis (Ach.) Tuck.

Dactylina ramulosa (Hook.) Tuck.

Dactylina sp.

Diploschistes scruposus (Schreb.) Norman

Evernia perfragilis Llano

Flavocetraria cucullata (Bellardi) Kärnefelt & Thell

Flavocetraria nivalis (L.) Kärnefelt & Thell

Flavocetraria sp.

Fulgensia bracteata (Hoffm.) Rasanen Hypogymnia austerodes (Nyl.) Rasanen Hypogymnia physodes (L.) Nyl.

Hypogymnia sp.

Hypogymnia subobscura (Vainio) Poelt Icmadophila ericetorum (L.) Zahlbr. Lasallia pensylvanica (Hoffm.) Llano

Lecanora beringii Nyl.

Lecanora circumborealis Brodo & Vitik.

Lecanora epibryon (Ach.) Ach.

Lecanora sp.

Leptogium gelatinosum (With.) J. R. Laundon

Leptogium saturninum (Dicks.) Nyl.

Leptogium sp.

Lobaria hallii (Tuck.) Zahlbr. Lobaria linita (Ach.) Rabenh.

Lobaria sp.

Lopadium pezizoideum (Ach.) Körb. Masonhalea richardsonii (Hook.) Massalongia carnosav (Dickson) Korber

Megaspora verrucosa (Ach.) Hafellner & V. Wirth

Melanelia commixta (Nyl.) Thell Melanelia stygia (L.) Essl. Nephroma arcticum (L.) Torss. Nephroma expallidum (Nyl.) Nyl. Nephroma helveticum Ach. Nephroma parile (Ach.) Ach. Nephroma resupinatum (L.) Ach.

Nephroma sp.

Ochrolechia frigida (Sw.) Lynge Ochrolechia inaequatula (Nyl.) Zahlbr.

Ochrolechia sp.

Ochrolechia upsaliensis (L.) A. Massal.

Ophioparma lapponica (Räsänen) Hafellner & R. W.

Rogers

Pannaria pezzizoides (G. Web.) Trev. Parmelia omphalodes (L.) Ach. Parmelia saxatilis (L.) Ach.

Parmelia sp.

Parmelia sulcata Taylor

Parmeliopsis ambigua (Wulfen) Nyl Parmeliopsis hyperopta (Ach.) Arnold Peltigera aphthosa (L.) Willd.

Peltigera canina (L.) Willd. Peltigera collina (Ach.) Schrader

Peltigera didactyla var. extenuata (Nyl. ex Vainio)

Goffinet & Hastings

Peltigera leucophlebia (Nyl.) Gyelnik Peltigera malacea (Ach.) Funck Peltigera membranacea (Ach.) Nyl. Peltigera neckeri Hepp ex Müll. Arg. Peltigera neopolydactyla (Gyelnik) Gyelnik Peltigera polydactylon (Neck.) Hoffm. Peltigera rufescens (Weiss) Humb.

Peltigera sp.

Peltigera scabrosa Th. Fr.

Peltigera venosa (L.) Hoffm.
Pertusaria bryontha (Ach.) Nyl.
Pertusaria dactylina (Ach.) Nyl.
Pertusaria panyrga (Ach.) A. Massal.

Pertusaria sp.

Pertusaria subobducens Nyl. Physconia muscigena (Ach.) Poelt

Placynthiella uliginosa (Schrad.) Coppins & P. James

Pseudephebe Choisy

Pseudephebe minuscula (Nyl. ex Arnold) Brodo & D.

Hawksw.

Pseudephebe pubescens (L.) Choisy Psora decipiens (Hedwig) Hoffm. Psora rubiformis (Ach.) Hook. Psoroma hypnorum (Vahl) Gray Ramalina almquistii Vainio

Ramalina dilacerata (Hoffm.) Hoffm. Rhizocarpon geographicum (L.) DC.

Rhizocarpon sp.

Rhizocarpon umbilicatum (Ramond) Flagey

Rinodina roscida (Sommerf.) Arnold

Rinodina turfacea (Wahlenb.) Körber

Solorina bispora Nyl. Solorina crocea (L.) Ach.

Solorina octospora (Arnold) Arnold

Solorina saccata (L.) Ach.

Solorina sp.

Sphaerophorus fragilis (L.) Pers.

Sphaerophorus globosus (Hudson) Vainio

Sphaerophorus sp.
Spilonema revertens Nyl.

Squamarina lentigera (Weber) Poelt Stereocaulon alpinum Laurer ex Funck Stereocaulon apocalypticum Nyl. (saxicolous)

Stereocaulon botryosum Ach. Stereocaulon dactylophyllum Flörke Stereocaulon glareosum (Savicz) H. Magn.

Stereocaulon grande (H. Magn.) H. Magn.
Stereocaulon groenlandicum (A.E. Dahl) I.M. Lamb

Stereocaulon paschale (L.) Hoffm.

Stereocaulon sp.

Stereocaulon subcoralloides (Nyl.) Nyl.

Stereocaulon tomentosum Fr.

Thamnolia sp.

Thamnolia subuliformis (Ehrh.) Culb.

Thamnolia subvermicularis Asah.

Thamnolia vermicularis var. subuliformis Thamnolia vermicularis (Sw.) Ach. ex Schaerer

Toninia sedifolia (Scop.) Timdal Toninia tristis (Th. Fr.) Th. Fr.

Trapeliopsis granulosa (Hoffm.) Lumbsch

Umbilicaria caroliniana Tuck.

Umbilicaria cinereorufescens (Schaerer) Frev

Umbilicaria hyperborea (Ach.) Hoffm. Umbilicaria proboscidea (L.) Schrader

Umbilicaria sp.

Umbilicaria torrefacta (Lightf.) Schrad.

Usnea sp.

Varicellaria rhodocarpa (Körber) Th. Fr.

Vulpicida pinastri (Scop.) J.-E. Mattsson & M. J. Lai

Vulpicida sp.

Vulpicida tilesii (Ach.) J.-E. Mattsson & M. J. Lai

Xanthoria elegans (Link) Th. Fr.

Xanthoria sp.

# Liverwort

Anastrophyllum minutum (Schreb.) R.M. Schust. Anastrophyllum saxicola (Schrad.) R.M. Schust.

Chandonanthus setiformis (Ehrh.) Lindb. Gymnocolea inflata (Huds.) Dumort.

Gymnomitrion corallioides Nees Hepaticae

Mylia anomala (Hook.) S. Gray Radula prolifera S.W. Arnell Tetralophozia setiformis (Ehrh.) Schljakov

#### Moss

Abietinella abietina (Hedw.) Fleisch.

Thuidium abietinum (Hedw.) Schimp.

Amphidium mougeotii (Bruch & Schimp.) Schimp.

Andreaea rupestris Hedw.

Andreaea sp.

Andreaeobryum macrosporum Steere & B.M. Murray

Aongstroemia longipes (Somm.) B.S.G.

Aulacomnium acuminatum (Lindb. & Arnell) Kindb.

Aulacomnium palustre (Hedw.) Schwaegr.

Aulacomnium sp.

Aulacomnium turgidum (Wahlenb.) Schwaegr. Barbula convoluta Hedw. var. gallinula R.H. Zander

Bartramia pomiformis Hedw.

Blepharostoma trichophyllum (L.) Dum.

Brachythecium coruscum Hag.

Brachythecium erythrorrhizon Schimp. in B.S.G. Brachythecium mildeanum (Schimp.) Schimp. ex Milde

Brachythecium nelsonii Grout

Brachythecium reflexum (Starke in Web.et Mohr)

Schimp.

Brachythecium rivulare Schimp. in B.S.G.

Brachythecium salebrosum (Web. et Mohr) B.S.G.

Brachythecium sp.

Bryobrittonia longipes (Mitt.) Horton

Bryoerythrophyllum recurvirostre (Hedw.) Chen

Bryum argenteum Hedw.
Bryum caespiticium Hedw.
Bryum submuticum
Bryum capillare Hedw.

Bryum cryophilum Mårtensson

Bryum lisae De Not.

Bryum pallescens Schleich. exSchwaegr.

Bryum pseudotriquetrum (Hedw.) Gaertn. et al.

Bryum sp.

Bryum subneodamense Kindb. Calliergon cordifolium (Hedw.) Kindb. Calliergon giganteum (Schimp.) Kindb.

Calliergon sp.

Calliergon stramineum (Brid.) Kindb. Campylium arcticum Williams Campylium halleri (Hedw.) Lindb.

Campylium longicuspis (Lindb. etH.Arnell) Hedenaes

Campylium polygamum (B.S.G.) C.Jens.

Drepanocladus poligamus (B.S.G.) Hedenaeas

Campylium sp.

Campylium stellatum (Hedw.) C.Jens. Catoscopium nigritum (Hedw.) Brid. Ceratodon purpureus (Hedw.) Brid.

Ceratodon sp.

Cinclidium arcticum B.S.G.
Cinclidium latifolium Lindb.
Cinclidium subrotundum Lindb.

Cirriphyllum cirrosum (Schwaegr.) Grout

Cirriphyllum piliferum (Hedw.) Grout

Climacium dendroides (Hedw.) Web. et Mohr.

Conocephalum sp.

Ctenidium procerrimum (Mol.) Lindb.
Cynodontium polycarpon (Hedw.) Schimp.
Cynodontium strumiferum (Hedw.) Lindb.

Cyrtomnium hymenophyllum (B.S.G.) Holmen

Dicranella sp.

Dicranella subulata (Hedw.) Schimp.

Dicranoweisia crispula (Hedw.) Lindb. ex Milde Dicranum acutifolium (Lindb. et H.Arnell) C. Jens.

Dicranum alaevdens Williams Dicranum angustum Lindb. Dicranum bonjeanii De Not

Dicranum elongatum Schleich. ex Schwaegr.

Dicranum fuscescens Turner.
Dicranum groenlandicum Brid.
Dicranum laevidens Williams
Dicranum angustum Lindb.

Dicranum majus Sm.
Dicranum polysetum SW.
Dicranum scoparium Hedw.

Dicranum sp

Dicranum spadiceum Zett.
Dicranum undulatum Brid.

Dicranum bergeri Bland. in Sturm Didymodon asperifolius (Mitt.) Crum et al.

Didymodon rigidulus Hedw. var. gracilis (Schleich. ex

Hook. & Grev.) R.H. Zander

Didymodon sp.

Distichium capillaceum (Hedw.) B.S.G. Distichium inclinatum (Hedw.) B.S.G. Ditrichum flexicaule (Schwaegr.) Hampe

Ditrichum sp.

Drepanocladus aduncus (Hedw.) Warnst. s.l. Drepanocladus brevifolius (Lindb.) Warnst.

Pseudocalliergon brevifolium (Lindb.) Hedenaes

Drepanocladus capillifolius (Warnst) Warnst.
Drepanocladus aduncus capillifolius
Drepanocladus revolvens (Sw.) Warnst.
Limprichtia revolvens (Sw.) Loeske

Drepanocladus sendtneri (Schimp. ex C.Muell.) Warnst.

Drepanocladus sp. Encalypta sp.

Eurhynchium pulchellum (Hedw.) Jenn.

Fissidens osmundioides Hedw.

Grimmia affinis Hoppe & Hornsch. ex Hornsch. Hamatocaulis vernicosus (Mitt.) Hedenaes

Homalothecium sp.

Hylocomiastrum pyrenaicum (Spruce) Fleisch. Hylocomium splendens (Hedw.) B.S.G. Hymenostylium recurvirostre (Hedw.) Dix.

Hypnum bambergeri Schimp. Hypnum dieckei Renauld & Cardot Hypnum hamulosum Schimp. Hypnum holmenii Ando Hypnum lindbergii Mitt.

Hypnum plicatulum (Lindb.) Jaeg. Hypnum pratense Koch ex Spruce Hypnum revolutum (Mitt.) Lindb.

Hypnum sp.

Hypnum vaucheri Lesq.

Isopterygiopsis pulchella (Hedw.) Iwats. Leptobryum pyriforme (Hedw.) Wils. Limprichtia cossoni (Schimp.) Anderson et al.

Limprichtia revolvens (Sw.) Loeske Loeskypnum badium (Hartm.) Paul

Lophozia sp.

Marchantia polymorpha L

Marchantia sp.

Meesia triquetra (Richter) Aongstr.

Meesia uliginosa Hedw. Mnium blyttii B. S.G.

Mnium sp.

Mnium spinulosum Bruch & Schimp.

Mnium thomsonii Schimp.

Myurella julacea (Schwaegr.) B.S.G. Myurella sibirica (Müll. Hal.) Reim. Oncophorus wahlenbergii Brid.

Orthothecium chryseon (Schwaegr. ex Schultes)

Schimp.

Orthotrichum speciosum Nees Paludella squarrosa (Hedw.) Brid. Philonotis fontana (Hedw.) Brid. Philonotis tomentella Molendo

Plagiomnium curvatulum (Lind.) Schljakov Plagiothecium laetum Schimp. Plagiomnium ellipticum (Brid.) T.Kop.

Plagiomnium medium (Bruch & Schimp. in B.S.G.) T.

Kon

Plagiomnium sp.

Plagiothecium berggrenianum Frisvoll Plagiothecium cavifolium (Brid.) Iwats. Plagiothecium denticulatum (Hedw.) B.S.G.

Pleurozium schreberi (Brid.) Mitt. Pohlia cruda (Hedw.) Lindb. Pohlia nutans (Hedw.) Lindb.

Pohlia sp.

Pohlia wahlenbergii (Web. & Mohr) Andrews Polytrichastrum alpinum (Hedw.) G.L.Sm.

Polytrichum commune Hedw.
Polytrichum formosum Hedw.
Polytrichum hyperboreum R.Br.
Polytrichum jensenii Hag.
Polytrichum juniperinum Hedw.
Polytrichum piliferum Hedw.

Polytrichum sp.

Polytrichum strictum Brid. Preissia quadrata (Scop.) Nees

Pseudocalliergon turgescens (T.Jens.) Loeske

Pseudoleskeella sibirica (Arnell) P. Wilson & Norris

Pseudoleskeella tectorum (Funck ex Brid.) Kindb.

Psilopilum laevigatum (Wahlenb.) Lindb.

Ptilidium ciliare (L.) Hampe

Ptilidium pulcherrimum (G. Web.) Vain.

Ptilium crista-castrensis (Hedw.) De Not.

Racomitrium canescens (Hedw.) Brid.

Racomitrium elongatum Ehrh. ex Frisv.

Racomitrium ericoides (Web. ex Brid.) Brid.

Racomitrium lanuginosum (Hedw.) Brid.

Racomitrium sp.

Racomitrium sudeticum (Funck) Bruch & Schimp.

Rhizomnium andrewsianum (Steere) T. Kop.

Rhizomnium sp.

Rhytidiadelphus sp.

Rhytidiadelphus squarrosus (Hedw.) Warnst.

Rhytidiadelphus triquetrus (Hedw.) Warnst.

Rhytidium rugosum (Hedw.) Kindb.

Rhytidium sp.

Sanionia sp.

Sanionia uncinata (Hedw.) Loeske

Scapania paludicola Loeske & Müll. Frib.

Schistidium apocarpum (Hedw.) Bruch & Schimp.

Schistidium cf. andreaeopsis (C.Muell.) Lazar.

Schistidium papillosum Culm.

Schistidium sp.

Schistidium tenerum (J.E. Zetterst.) Nyholm

Scorpidium scorpioides (Hedw.) Limpr.

Sphagnum angustifolium (Russ. ex Russ.) C.Jens

Sphagnum aongstroemii C.Hartm.

Sphagnum balticum (Russ.) Russ. ex C.Jens.

Sphagnum capillifolium (Ehrh.) Hedw.

Sphagnum compactum DC. in Lam. et DC.

Sphagnum fimbriatum Wils.

Sphagnum fuscum (Schimp.) Klinggr.

Sphagnum girgensohnii Russ.

Sphagnum imbricatum Hornsch. ex Russ.

Sphagnum jensnii H. Lindb.

Sphagnum lenense H.Lindb. ex Pohle

Sphagnum lindbergii Schimp. ex Lindb.

Sphagnum magellanicum Brid.

Sphagnum obtusum Warnst.

Sphagnum orientale Sav.-Ljub.

Sphagnum riparium Ångstr.

Sphagnum rubellum Wils.

Sphagnum russowii Warnst.

Sphagnum sp.

Sphagnum squarrosum Crome

Sphagnum steerei R.E. Andrus

Sphagnum subsecundum Nees ex Sturm

Sphagnum teres (Schimp.) Ångstr. in Hartm.

Sphagnum warnstorfii Russ.

Sphenolobus minutus (Schreb.) Berggr.

Splachnum luteum

Splachnum sp.

Splachnum sphaericum Hedw

Stegonia latifolia (Schwägr.) Vent. ex Broth.

Syntrichia norvegica Web.

Syntrichia ruralis (Hedw.) Web. et Mohr

Thuidium recognitum (Hedw.) Lindb.

Thuidium sp.

Timmia austriaca Hedw.

Timmia megapolitana Hedw.

Tomentypnum nitens (Hedw.) Loeske

Tortella arctica (Arnell) Crundw. & Nyholm

Tortella fragilis (Hook. et Wils. in Drumm.) Limpr.

Tortella inclinata (R. Hedw.) Limpr.

Tortella sp.

Tortella tortuosa (Hedw.) Limpr.

Tortula norvegica (Web.f.) Wahlenb. ex Lindb.

Tortula ruralis (Hedw.) Gaertn., Meyer, & Scherb.

Warnstorfia exannulata (Guemb. in B.S.G.) Loeske

Warnstorfia fluitans (Hedw.) Loeske

Warnstorfia pseudostraminea (C. Muell.) Tuom. et T.

Kop.

Warnstorfia sarmentosa (Wahlenb.) Hedenaes

Appendix 3. Newly documented species for GAAR, based on data collected by ABR in 2008 and data collected during the NPS floristic inventory (Parker 2006). Vouchers exist only for records that have been verified..

| Family                    | Taxon                                | Synonym                                                  | Plot ID           | Locality                                               | Notes                             | Verifed by | Botanist  |
|---------------------------|--------------------------------------|----------------------------------------------------------|-------------------|--------------------------------------------------------|-----------------------------------|------------|-----------|
|                           |                                      |                                                          |                   | N. Fork R near Florence                                |                                   |            |           |
| Araceae                   | Calla palustris L.                   |                                                          | GAAR_T112_08_2008 | Lake                                                   |                                   | C. Parker  | M. Duffy  |
| Athyriaceae               | Cystopteris montana (Lam.) Bernh.    |                                                          | GAAR_T90_05_2008  | Walker Lake                                            |                                   |            | M. Duffy  |
|                           |                                      |                                                          | GAAR_T90_08_2008  | Walker Lake                                            |                                   |            | M. Duffy  |
|                           |                                      |                                                          | GAAR_T90_09_2008  | Walker Lake                                            |                                   |            | M. Duffy  |
|                           |                                      |                                                          | GAAR_T92_07_2008  | vic. Kaluluktok Cr.                                    |                                   |            | M. Duffy  |
|                           |                                      | Callitriche heterophylla Pursh ssp.                      |                   | N. Fork R near Florence                                |                                   |            |           |
| Callitrichaceae           | Callitriche anceps Fern.             | heterophylla                                             | GAAR_T113_12_2008 | Lake                                                   |                                   |            | M. Duffy  |
| Campanulaceae             | Lomatogonium rotatum (I.) E. Fries   |                                                          | GAAR_T94_07_2008  | vic. Island Lake, Tobuk Cr.                            |                                   | M. Duffy   | T. Miller |
|                           |                                      |                                                          | GAAR_T94_08_2008  | vic. Island Lake, Tobuk Cr.                            |                                   | C. Parker  | T. Miller |
| Caryophyllaceae           | Silene repens Patrin                 |                                                          | GAAR_T90_12_2008  | Walker Lake                                            |                                   | C. Parker  | M. Duffy  |
|                           |                                      |                                                          | GAAR_T90_14_2008  | Walker Lake                                            |                                   |            | M. Duffy  |
|                           |                                      |                                                          | GAAR_T90_16_2008  | Walker Lake                                            |                                   |            | M. Duffy  |
| Compositae (Asteraceae)   | Antennaria rosea E. Greene           |                                                          | GAAR_T90_14_2008  | Walker Lake                                            |                                   | C. Parker  | M. Duffy  |
|                           | Chrysanthemum arcticum L.            | Arctanthemum arcticum (L.) Tzvelev s. lat                | GAAR_T94_08_2008  | vic. Island Lake, Tobuk Cr.<br>N. Fork R near Florence |                                   |            | T. Miller |
|                           | Erigeron lonchophyllus Hook.         |                                                          | GAAR_T114_03_2008 | Lake                                                   |                                   |            | M. Duffy  |
| Cornaceae                 | Cornus canadensis L.                 |                                                          | GAAR_T90_06_2008  | Walker Lake                                            |                                   |            | M. Duffy  |
|                           |                                      |                                                          | GAAR_T90_08_2008  | Walker Lake                                            |                                   |            | M. Duffy  |
|                           |                                      |                                                          |                   |                                                        |                                   |            |           |
|                           |                                      | Boechera drummondii (A.Gray) A.Love &                    |                   |                                                        | Range extension<br>northward from |            |           |
| Cruciferae (Brassicaceae) | Arabis drummondii Gray               | D.Love                                                   | GAAR_T90_13_2008  | Walker Lake                                            | Broad Pass                        | C. Parker  | M. Duffy  |
|                           | Braya purpurascens (R. Br.) Bunge    | Braya glabella Richards. ssp. purpurascens (R. Br.) Cody | GAAR_T114_03_2008 | N. Fork R near Florence<br>Lake                        |                                   |            | M. Duffy  |
|                           | Cryptogramma crispa (L.) R. Br. var. |                                                          |                   |                                                        |                                   |            |           |
| Cryptogrammaceae          | sitchensis (Rupr.) Christens.        |                                                          | GAAR_T90_13_2008  | Walker Lake                                            |                                   | C. Parker  | M. Duffy  |
| Cyperaceae                | Carex deflexa Hornem.                |                                                          | GAAR_T90_01_2008  | Walker Lake                                            | G5 S1S2                           | C. Parker  | M. Duffy  |
|                           |                                      |                                                          | GAAR_T90_08_2008  | Walker Lake                                            | G5 S1S2                           | C. Parker  | M. Duffy  |
|                           |                                      |                                                          | GAAR_T90_16_2008  | Walker Lake                                            |                                   |            | M. Duffy  |

| Family                 | Taxon                                                          | Synonym                            | Plot ID           | Locality                                                   | Notes | Verifed by | Botanist  |
|------------------------|----------------------------------------------------------------|------------------------------------|-------------------|------------------------------------------------------------|-------|------------|-----------|
|                        | Carex magellanica Lam. ssp. irrigua<br>(Wahlenb.) Hult.        |                                    | GAAR_T93_04_2008  | vic. Arrigetch Peaks                                       |       |            | M. Duffy  |
|                        | Carex microglochin Walenb.                                     |                                    | GAAR_T94_08_2008  | vic. Island Lake, Tobuk Cr.                                |       | C. Parker  | T. Miller |
|                        | Carex praticola Rydb.                                          |                                    | GAAR_T90_13_2008  | Walker Lake                                                |       | C. Parker  | M. Duffy  |
|                        | Carex pyrenaica Wahlenb. ssp. micropoda<br>(C. A. Meyer) Hult. | Carex micropoda C.A. Mey.          | GAAR_T92_02_2008  | Walker Lake                                                |       |            | M. Duffy  |
|                        |                                                                |                                    | GAAR_T96_06_2008  | vic. Island Lake, Tobuk Cr.                                |       | M. Duffy   | T. Miller |
| Graminae (Poaceae)     | Hordeum jubatum L.                                             |                                    | GAAR_T112_03_2008 | N. Fork R near Florence<br>Lake<br>N. Fork R near Florence |       |            | M. Duffy  |
|                        |                                                                |                                    | GAAR_T114_03_2008 | Lake                                                       |       |            | M. Duffy  |
| Juncaceae              | Juncus alpinus Villers                                         | Juncus alpinoarticulatus Chaix     | GAAR_T108_08_2008 | Gates of the Arctic                                        |       |            | G Frost   |
|                        |                                                                |                                    | GAAR_T108_09_2008 | Gates of the Arctic                                        |       |            | G Frost   |
|                        |                                                                |                                    | GAAR_T108_12_2008 | Gates of the Arctic                                        |       |            | G Frost   |
|                        | Luzula rufescens Fisch.                                        |                                    | GAAR_T98_15_2008  | vic. Upper Gedeke Lake                                     |       | M. Duffy   | T. Miller |
|                        | Luzula wahlenbergii Rupr. ssp.<br>wahlenbergii                 |                                    | GAAR_T98_14_2008  | vic. Upper Gedeke Lake                                     |       | C. Parker  | T. Miller |
| Leguminosae (Fabaceae) | Oxytropis viscida Nutt.                                        |                                    | GAAR_T108_04_2008 | Gates of the Arctic                                        |       | C. Parker  | G Frost   |
|                        |                                                                |                                    | GAAR_T108_07_2008 | Gates of the Arctic                                        |       |            | G Frost   |
|                        |                                                                |                                    | GAAR_T108_13_2008 | Gates of the Arctic                                        |       |            | G Frost   |
|                        |                                                                |                                    | GAAR_T109_06_2008 | Gates of the Arctic                                        |       |            | J. Roth   |
|                        |                                                                |                                    | GAAR_T109_07_2008 | Gates of the Arctic<br>N. Fork R near Florence             |       |            | J. Roth   |
| emnaceae               | Lemna trisulca L.                                              |                                    | GAAR_T113_12_2008 | Lake<br>N. Fork R near Florence                            |       |            | M. Duffy  |
| entibulariaceae        | Pinguicula villosa L.                                          |                                    | GAAR_T113_04_2008 | Lake<br>N. Fork R near Florence                            |       |            | M. Duffy  |
|                        |                                                                |                                    | GAAR_T113_11_2008 | Lake                                                       |       |            | M. Duffy  |
|                        |                                                                |                                    | GAAR_T93_01_2008  | vic. Arrigetch Peaks                                       |       |            | M. Duffy  |
| rchidaceae             | Hammarbya paludosa (L.) Ktze.                                  | Malaxis paludosa (Linnaeus) Swartz | GAAR_T93_07_2008  | vic. Arrigetch Peaks                                       | G4 S3 |            | M. Duffy  |
|                        | Listera borealis Morong                                        |                                    | GAAR_T108_06_2008 | Gates of the Arctic                                        |       | C. Parker  | G Frost   |
|                        |                                                                |                                    | GAAR_T108_10_2008 | Gates of the Arctic                                        |       |            | G Frost   |
|                        |                                                                |                                    | GAAR_T108_11_2008 | Gates of the Arctic                                        |       |            | G Frost   |
|                        |                                                                |                                    | GAAR_T108_13_2008 | Gates of the Arctic                                        |       |            | G Frost   |

Appendix 3. Continued.

| Family                  | Taxon                          | Synonym                                               | Plot ID           | Locality                               | Notes | Verifed by | Botanist  |
|-------------------------|--------------------------------|-------------------------------------------------------|-------------------|----------------------------------------|-------|------------|-----------|
|                         |                                |                                                       | GAAR_T110_01_2008 | Gates of the Arctic                    |       | M. Duffy   | G Frost   |
|                         |                                |                                                       | GAAR_T114_09_2008 | N. Fork R near Florence<br>Lake        |       |            | M. Duffy  |
|                         |                                |                                                       | GAAR_T90_05_2008  | Walker Lake                            |       | C. Parker  | M. Duffy  |
|                         |                                | Potamogeton pusillus ssp. tenuissimus                 |                   |                                        |       |            |           |
| Potamogetonaceae        | Potamogeton berchtoldii Fieber | (Mertens & W. D. J. Koch) R. R. Haynes &<br>Hellquist | GAAR_T113_05_2008 | N. Fork R near Florence<br>Lake        |       | C. Parker  | M. Duffy  |
| Totamogetonaceae        | rotamogeton berentolan riesel  | rendance                                              | GAAR_T93_02_2008  | vic. Arrigetch Peaks                   |       | C. Parker  | M. Duffy  |
|                         |                                |                                                       | GAAN_133_02_2000  | N. Fork R near Florence                |       | C. I dikei | Wi. Durry |
|                         | Potamogeton epihydrus Raf.     |                                                       | GAAR_T113_05_2008 | Lake                                   |       |            | M. Duffy  |
| Pyrolaceae              | Pyrola chlorantha Sw.          | Pyrola virens Schreb.                                 | GAAR_T90_08_2008  | Walker Lake<br>Upper Alatna River      |       | C. Parker  | M. Duffy  |
| Rosaceae                | Potentilla vahliana Lehm.      |                                                       | GAAR_T100_01_2008 | Drainage                               |       | C. Parker  | T. Miller |
|                         | Sorbus scopulina Greene        |                                                       | GAAR_T90_13_2008  | Walker Lake<br>N. Fork R near Florence |       | C. Parker  | M. Duffy  |
| Salicaceae              | Salix scouleriana Barratt      |                                                       | GAAR_T113_08_2008 | Lake<br>N. Fork R near Florence        |       |            | M. Duffy  |
|                         |                                |                                                       | GAAR_T113_09_2008 | Lake<br>N. Fork R near Florence        |       |            | M. Duffy  |
|                         |                                |                                                       | GAAR_T113_10_2008 | Lake                                   |       |            | M. Duffy  |
|                         |                                |                                                       | GAAR_T90_03_2008  | Walker Lake                            |       |            | M. Duffy  |
|                         |                                |                                                       | GAAR_T90_08_2008  | Walker Lake                            |       |            | M. Duffy  |
|                         |                                | e: ,                                                  | CAAR T442 00 2000 | N. Fork R near Florence                |       |            |           |
| Umbelliferae (Apiaceae) | Cicuta mackenzieana Raup       | Cicuta virosa L.                                      | GAAR_T112_08_2008 | Lake<br>N. Fork R near Florence        |       | M. Duffy   | M. Duffy  |
|                         |                                |                                                       | GAAR_T113_13_2008 | Lake                                   |       |            | M. Duffy  |
| Violaceae               | Viola biflora L.               |                                                       | GAAR_T90_08_2008  | Walker Lake                            |       | M. Duffy   | M. Duffy  |
|                         |                                |                                                       | GAAR_T92_05_2008  | vic. Kaluluktok Cr.                    |       |            | M. Duffy  |
|                         | Viola langsdorffii Fisch.      |                                                       | GAAR_T92_05_2008  | vic. Kaluluktok Cr.                    |       |            | M. Duffy  |
|                         | Viola renifolia Gray           |                                                       | GAAR_T101_05_2008 | vic. Anguneleechak Pass                |       |            | M. Duffy  |
|                         |                                |                                                       | GAAR_T90_05_2008  | Walker Lake                            |       | C. Parker  | M. Duffy  |
|                         |                                |                                                       | GAAR_T90_08_2008  | Walker Lake                            |       |            | M. Duffy  |
|                         | Viola selkirkii Pursh          |                                                       | GAAR_T90_05_2008  | Walker Lake                            | G5 S3 | C. Parker  | M. Duffy  |
|                         |                                |                                                       | GAAR_T90_08_2008  | Walker Lake                            | G5 S3 | C. Parker  | M. Duffy  |
|                         |                                |                                                       | GAAR_T90_09_2008  | Walker Lake                            | G5 S3 |            | M. Duffy  |
|                         |                                |                                                       | GAAR_T90_13_2008  | Walker Lake                            | G5 S3 |            | M. Duffy  |
|                         |                                |                                                       | GAAR_T90_15_2008  | Walker Lake                            | G5 S3 |            | M. Duffy  |
|                         | T.                             |                                                       |                   |                                        |       | I          | Ni. Duriy |

ARCN Ecological Land Survey \ 287

Appendix 4. Newly documented species for KOVA, based on data collected by ABR in 2007 and data collected during the NPS floristic inventory (Parker 2006). Vouchers exist only for records that have been verified.

| Family         | Taxon                                | Synonym                                                    | Plot ID          | Locality                    | Notes              | Verifed by | Botanist  |
|----------------|--------------------------------------|------------------------------------------------------------|------------------|-----------------------------|--------------------|------------|-----------|
| Aspidiaceae    | Gymnocarpium dryopteris (L.) Newm.   |                                                            | KOVA_T81_05_2007 | S of Kitlik River           |                    |            | M. Duffy  |
|                |                                      |                                                            | KOVA_T81_06_2007 | S of Kitlik River           |                    |            | M. Duffy  |
|                |                                      |                                                            | KOVA_T81_07_2007 | S of Kitlik River           |                    |            | M. Duffy  |
| Athyriaceae    | Cystopteris montana (Lam.) Bernh.    |                                                            | KOVA_T75_08_2007 | vic. Akillik R Baird Mts    |                    | C. Parker  | T. Miller |
|                |                                      |                                                            | KOVA_T83_08_2007 | vic. Upper Tutuksuk R       |                    | C. Parker  | T. Miller |
| Betulaceae     | Alnus tenuifolia Nutt.               | Alnus tenuifolia Nutt.                                     | KOVA_T57_04_2007 | Kobuk River Slough          |                    |            | J. Roth   |
|                |                                      |                                                            | KOVA_T57_05_2007 | Kobuk River Slough          |                    |            | J. Roth   |
|                |                                      |                                                            | KOVA_T58_04_2007 | Salmon R-Hunt R Floodplains |                    |            | J. Roth   |
|                |                                      |                                                            | KOVA_T62_04_2007 | Kobuk Floodplain            |                    |            | M. Duffy  |
|                |                                      |                                                            | KOVA_T62_11_2007 | Kobuk Floodplain            |                    | C. Parker  | M. Duffy  |
|                |                                      |                                                            | KOVA_T74_06_2007 | N toe of Jade Mt            |                    |            | T. Miller |
| Betulaceae     | Betula occidentalis Hooker           |                                                            | KOVA_T56_08_2007 | Hunt Cr. Burn               |                    |            | T. Miller |
|                |                                      |                                                            | KOVA_T65_08_2007 | Little Kobuk Sand Dunes     |                    |            | T. Miller |
|                |                                      |                                                            | KOVA_T65_09_2007 | Little Kobuk Sand Dunes     |                    |            | T. Miller |
|                |                                      | Silene involucrata (Chamisso & Schlechtendal) Bocquet ssp. |                  |                             |                    |            |           |
| aryophyllaceae | Melandrium taimyrense Tolm.          | tenella                                                    | KOVA_T62_04_2007 | Kobuk Floodplain            |                    |            | M. Duffy  |
|                | Stellaria crassifolia Ehrh.          |                                                            | KOVA_T62_02_2007 | Kobuk Floodplain            |                    |            | M. Duffy  |
|                |                                      |                                                            | KOVA_T62_07_2007 | Kobuk Floodplain            |                    |            | M. Duffy  |
|                | Stellaria longifolia Muhl. ex Willd. |                                                            | KOVA_T56_04_2007 | Hunt Cr. Burn               |                    |            | T. Miller |
|                |                                      |                                                            | KOVA_T74_07_2007 | N toe of Jade Mt            |                    |            | T. Miller |
| Compositae     | Arnica alpina (L.) Olin ssp.         | Arnica angustifolia Vahl in G.C.                           |                  |                             |                    |            |           |
| Asteraceae)    | angustifolia (M. Vahl) Maguire       | Oeder et al.                                               | KOVA_T62_05_2007 | Kobuk Floodplain            |                    |            | M. Duffy  |
|                |                                      |                                                            | KOVA_T75_02_2007 | vic. Akillik R Baird Mts    |                    |            | T. Miller |
|                |                                      |                                                            | KOVA_T75_04_2007 | vic. Akillik R Baird Mts    |                    |            | T. Miller |
|                | Arnica lessingii Greene              |                                                            | KOVA_T78_02_2007 | vic. Kaliguricheark R.      |                    |            | J. Roth   |
|                |                                      |                                                            | KOVA_T81_04_2007 | S of Kitlik River           |                    | C. Parker  | M. Duffy  |
|                | Artemisia glomerata Ledeb.           |                                                            | KOVA_T83_02_2007 | vic. Upper Tutuksuk R       |                    | C. Parker  | T. Miller |
|                | Senecio congestus (R. Br.) DC.       | Tephroseris palustris (L.)<br>Reichenbach                  | KOVA_T66_15_2007 | Kobuk Dunes                 |                    |            | M. Duffy  |
|                | -                                    |                                                            | KOVA_T70_10_2007 | vic. Ahnewetut Cr           |                    |            | J. Roth   |
| Cruciferae     | Descurainia sophioides (Fisch.) O.E. |                                                            |                  |                             |                    |            |           |
| Brassicaceae)  | Shultz                               |                                                            | KOVA_T62_02_2007 | Kobuk Floodplain            |                    | C. Parker  | M. Duffy  |
|                | Draba fladzinensis Wulf              |                                                            | KOVA_T80_06_2007 | E of Kanaktok Cr            | Range              | C. Parker  | T. Miller |
| Cyperaceae     | Carex arcta Boott.                   |                                                            | KOVA_T62_07_2007 | Kobuk Floodplain            | extension<br>Range | C. Parker  | M. Duffy  |
|                |                                      |                                                            | KOVA_T62_08_2007 | Kobuk Floodplain            | extension          |            | M. Duffy  |
|                |                                      |                                                            |                  |                             |                    |            |           |

Appendix 4. Continued.

| Family   | Taxon                                 | Synonym                        | Plot ID          | Locality                       | Notes       | Verifed by | Botanist  |
|----------|---------------------------------------|--------------------------------|------------------|--------------------------------|-------------|------------|-----------|
|          |                                       |                                |                  |                                | Range       |            |           |
|          |                                       |                                | KOVA_T71_07_2007 | Nigeruk Cr S Tributary of Kobu | k extension | C. Parker  | T. Miller |
|          | Carex leptalea Wahlenb.               |                                | KOVA_T62_12_2007 | Kobuk Floodplain               |             | C. Parker  | M. Duffy  |
|          | Carex livida (Wahlenb.) Willd.        |                                | KOVA_T57_05_2007 | Kobuk River Slough             |             |            | J. Roth   |
|          |                                       |                                | KOVA_T57_09_2007 | Kobuk River Slough             |             |            | J. Roth   |
|          |                                       |                                | KOVA_T70_05_2007 | vic. Ahnewetut Cr              |             |            | J. Roth   |
|          |                                       |                                | KOVA_T70_06_2007 | vic. Ahnewetut Cr              |             |            | J. Roth   |
|          |                                       |                                | KOVA_T70_07_2007 | vic. Ahnewetut Cr              |             |            | J. Roth   |
|          |                                       |                                | KOVA_T70_08_2007 | vic. Ahnewetut Cr              |             |            | J. Roth   |
|          |                                       |                                | KOVA_T70_09_2007 | vic. Ahnewetut Cr              |             |            | J. Roth   |
|          | Carex loliacea L.                     |                                | KOVA_T59_11_2007 | Kobuk Flats                    |             | C. Parker  | M. Duffy  |
|          |                                       |                                | KOVA_T72_01_2007 | E. of Elaroniluk Cr            |             |            | J. Roth   |
|          | Carex magellanica Lam. ssp. irrigua   |                                |                  |                                |             |            |           |
|          | (Wahlenb.) Hult.                      |                                | KOVA_T59_09_2007 | Kobuk Flats                    |             |            | M. Duffy  |
|          | Carex microchaeta Holm.               |                                | KOVA_T67_04_2007 | Waring Mts                     |             |            | J. Roth   |
|          |                                       |                                | KOVA_T68_01_2007 | Waring Mts vic. Elaroniluk Cr  |             | C. Parker  | G Frost   |
|          |                                       |                                | KOVA_T74_01_2007 | N toe of Jade Mt               |             |            | T. Miller |
|          |                                       |                                | KOVA_T78_01_2007 | vic. Kaliguricheark R.         |             |            | J. Roth   |
|          |                                       |                                | KOVA_T84_01_2007 | vic. Tutuksuk R. Headwater     |             |            | T. Miller |
|          |                                       | Carex microchaeta T. Holm ssp. |                  |                                |             |            |           |
|          | Carex nesophila Holm.                 | nesophila (T. Holm) E. Murray  | KOVA_T75_10_2007 | vic. Akillik R Baird Mts       |             | C. Parker  | T. Miller |
|          | Carex williamsii Britt.               |                                | KOVA_T63_02_2007 | Ahnewetut Wetlands             |             | C. Parker  | J. Roth   |
|          |                                       |                                | KOVA_T63_03_2007 | Ahnewetut Wetlands             |             | C. Parker  | J. Roth   |
|          |                                       |                                | KOVA_T63_04_2007 | Ahnewetut Wetlands             |             |            | J. Roth   |
|          |                                       |                                | KOVA_T64_04_2007 | Kobuk Dunes                    |             |            | J. Roth   |
|          | Kobresia sibirica Turcz.              |                                | KOVA_T64_03_2007 | Kobuk Dunes                    |             |            | J. Roth   |
|          |                                       |                                | KOVA_T64_05_2007 | Kobuk Dunes                    |             |            | J. Roth   |
| ricaceae | Ledum groenlandicum Oeder             |                                | KOVA_T57_08_2007 | Kobuk River Slough             |             |            | J. Roth   |
|          |                                       |                                | KOVA_T70_04_2007 | vic. Ahnewetut Cr              |             |            | J. Roth   |
|          |                                       |                                | KOVA_T78_06_2007 | vic. Kaliguricheark R.         |             |            | J. Roth   |
| Graminae | Elymus alaskanus (Scribn. & Merr.) A. |                                |                  |                                |             |            |           |
| Poaceae) | Loeve ssp. alaskanus                  |                                | KOVA_T62_02_2007 | Kobuk Floodplain               |             |            | M. Duffy  |
|          |                                       |                                | KOVA_T62_03_2007 | Kobuk Floodplain               |             |            | M. Duffy  |
|          |                                       |                                | KOVA_T62_04_2007 | Kobuk Floodplain               |             |            | M. Duffy  |
|          |                                       |                                | KOVA_T80_06_2007 | E of Kanaktok Cr               |             | C. Parker  | T. Miller |
|          | Footuse browinging Vurteeu            | Festuca ovina L. ssp. alaskana | VOVA T94 01 2007 | via Tutukauk B. Haaduustar     |             |            | T. Miller |
|          | Festuca brevissima Yurtsev            | Holmen                         | KOVA_T84_01_2007 | vic. Tutuksuk R. Headwater     |             |            |           |
|          | Festuca rubra L.                      |                                | KOVA_T58_03_2007 | Salmon R-Hunt R Floodplains    |             |            | J. Roth   |
|          |                                       |                                | VOVA T44 01 2007 | Kabuk Dupas                    | CLP: rubra  | C Parkor   | I Doth    |
|          |                                       |                                | KOVA_T64_01_2007 | Kobuk Dunes                    | ssp. rubra  | C. Parker  | J. Roth   |
|          |                                       |                                |                  |                                |             |            |           |

| Family                     | Taxon                                | Synonym                                                                                        | Plot ID                              | Locality                                       | Notes | Verifed by             | Botanist               |
|----------------------------|--------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------|-------|------------------------|------------------------|
|                            |                                      |                                                                                                | KOVA_T64_02_2007                     | Kobuk Dunes                                    |       |                        | J. Roth                |
|                            |                                      |                                                                                                | KOVA_T64_05_2007                     | Kobuk Dunes                                    |       |                        | J. Roth                |
|                            | Festuca saximontana Rydb.            |                                                                                                | KOVA_T66_11_2007                     | Kobuk Dunes                                    |       | C. Parker              | M. Duffy               |
|                            | Poa abbreviata R. Br.                |                                                                                                | KOVA_T83_01_2007                     | vic. Upper Tutuksuk R                          |       | C. Parker              | T. Miller              |
| Haloragaceae               | Myriophyllum spicatum L.             |                                                                                                | KOVA_T63_05_2007                     | Ahnewetut Wetlands                             |       |                        | J. Roth                |
|                            | Myriophyllum verticillatum L.        |                                                                                                | KOVA_T62_11_2007                     | Kobuk Floodplain                               |       | C. Parker              | M. Duffy               |
| Juncaceae<br>Leguminosae   | Juncus filiformis L.                 |                                                                                                | KOVA_T71_09_2007                     | Nigeruk Cr S Tributary of Kobuk                |       | C. Parker              | T. Miller              |
| (Fabaceae)                 | Astragalus polaris Benth.            |                                                                                                | KOVA_T83_02_2007                     | vic. Upper Tutuksuk R                          |       | C. Parker              | T. Miller              |
| Lentibulariaceae           | Pinguicula villosa L.                |                                                                                                | KOVA_T59_01_2007                     | Kobuk Flats                                    |       | C. Parker              | M. Duffy               |
| Orchidaceae                | Listera cordata (L.) R. Br.          |                                                                                                | KOVA_T81_07_2007                     | S of Kitlik River                              |       | C. Parker              | M. Duffy               |
| Polygonaceae               | Polygonum aviculare L.               |                                                                                                | KOVA_T62_02_2007                     | Kobuk Floodplain                               |       | C. Parker              | M. Duffy               |
|                            | Polygonum lapathifolium L.           | Persicaria lapathifolia (L.) Gray                                                              | KOVA_T62_02_2007                     | Kobuk Floodplain                               |       | C. Parker              | M. Duffy               |
|                            | Rumex acetosa L                      |                                                                                                | KOVA_T66_11_2007                     | Kobuk Dunes                                    |       |                        | M. Duffy               |
| Potamogetonaceae           | Potamogeton berchtoldii Fieber       | Potamogeton pusillus ssp.<br>tenuissimus (Mertens & W. D. J.<br>Koch) R. R. Haynes & Hellquist | KOVA_T59_07_2007                     | Kobuk Flats<br>Akilik Wetlands                 |       | C. Parker<br>C. Parker | M. Duffy<br>M. Duffy   |
|                            |                                      |                                                                                                | KOVA_T61_03_2007                     |                                                |       | C. Parker              | •                      |
|                            | Determination outsition of the meter |                                                                                                | KOVA_T61_04_2007                     | Akilik Wetlands                                |       | C. Parker              | M. Duffy               |
| Duine                      | Potamogeton subsibiricus Hagstr.     |                                                                                                | KOVA_T61_03_2007                     | Akilik Wetlands                                |       | C. Parker              | M. Duffy               |
| Primulaceae                | Dodecatheon pulchellum (Raf.) Merr.  |                                                                                                | KOVA_T75_08_2007                     | vic. Akillik R Baird Mts                       |       | C Darkor               | T. Miller              |
| Primulaceae                |                                      |                                                                                                | KOVA_T83_07_2007                     | vic. Upper Tutuksuk R                          |       | C. Parker              | T. Miller<br>T. Miller |
| Primulaceae<br>Primulaceae | Primula anvilensis S. Kelso          |                                                                                                | KOVA_T83_08_2007                     | vic. Upper Tutuksuk R<br>vic. Upper Tutuksuk R |       | T. Kelso               | T. Miller              |
|                            |                                      |                                                                                                | KOVA_T83_06_2007                     |                                                |       | C. Parker              |                        |
| Pyrolaceae<br>Pyrolaceae   | Pyrola minor L.                      |                                                                                                | KOVA_T66_13_2007<br>KOVA_T75_08_2007 | Kobuk Dunes<br>vic. Akillik R Baird Mts        |       | C. Parker              | M. Duffy<br>T. Miller  |
| Ranunculaceae              | Ranunculus pallasii Schlect.         |                                                                                                | KOVA_173_08_2007<br>KOVA_T61_09_2007 | Akilik Wetlands                                |       |                        | M. Duffy               |
| Rosaceae                   | Sorbus scopulina Greene              |                                                                                                | KOVA_181_09_2007<br>KOVA_T81_07_2007 | S of Kitlik River                              |       | C. Parker              | M. Duffy               |
| Salicaceae                 | Salix arbusculoides Anderss.         |                                                                                                | KOVA_T81_07_2007<br>KOVA_T56_04_2007 | Hunt Cr. Burn                                  |       | C. Faikei              | T. Miller              |
| Salicaceae                 | Sully di busculoides Anderss.        |                                                                                                | KOVA_T56_04_2007<br>KOVA_T56_06_2007 | Hunt Cr. Burn                                  |       |                        | T. Miller              |
| Salicaceae                 |                                      |                                                                                                | KOVA_T50_00_2007<br>KOVA_T57_06_2007 | Kobuk River Slough                             |       |                        | J. Roth                |
| Salicaceae                 |                                      |                                                                                                | KOVA_T57_00_2007<br>KOVA_T57_07_2007 | Kobuk River Slough                             |       |                        | J. Roth                |
| Salicaceae                 |                                      |                                                                                                | KOVA_T61_05_2007                     | Akilik Wetlands                                |       |                        | M. Duffy               |
| Salicaceae                 |                                      |                                                                                                | KOVA_T68_03_2007                     | Waring Mts vic. Elaroniluk Cr                  |       |                        | G Frost                |
| Salicaceae                 |                                      |                                                                                                | KOVA_100_03_2007<br>KOVA_T70_10_2007 | vic. Ahnewetut Cr                              |       |                        | J. Roth                |
| Salicaceae                 | Salix barclayi Anderss.              |                                                                                                | KOVA_170_10_2007<br>KOVA_T57_04_2007 | Kobuk River Slough                             |       |                        | J. Roth                |
| Salicaceae                 | James Clay Finderson                 |                                                                                                | KOVA_T57_05_2007                     | Kobuk River Slough                             |       |                        | J. Roth                |
| Salicaceae                 |                                      |                                                                                                | KOVA_T57_06_2007                     | Kobuk River Slough                             |       |                        | J. Roth                |
| Salicaceae                 |                                      |                                                                                                | KOVA_T57_08_2007                     | Kobuk River Slough                             |       |                        | J. Roth                |
| Salicaceae                 |                                      |                                                                                                | KOVA_T57_00_2007<br>KOVA_T57_09_2007 | Kobuk River Slough                             |       |                        | J. Roth                |
| Salicaceae                 |                                      |                                                                                                | KOVA_T58_02_2007                     | Salmon R-Hunt R Floodplains                    |       |                        | J. Roth                |
| Jancaceae                  |                                      |                                                                                                | NO VA_130_02_2007                    | Jamon K-Hunt K i toouptains                    |       |                        | J. KUUI                |

Appendix 4. Continued.

| Family           | Taxon                                | Synonym                                   | Plot ID          | Locality                    | Notes | Verifed by | Botanist  |
|------------------|--------------------------------------|-------------------------------------------|------------------|-----------------------------|-------|------------|-----------|
| Salicaceae       | Salix interior Rowlee                |                                           | KOVA_T62_02_2007 | Kobuk Floodplain            |       | C. Parker  | M. Duffy  |
| Salicaceae       | Salix monticola Bebb                 | Salix pseudomonticola C.R. Ball           | KOVA_T65_09_2007 | Little Kobuk Sand Dunes     |       |            | T. Miller |
| Salicaceae       | Salix scouleriana Barratt            |                                           | KOVA_T56_04_2007 | Hunt Cr. Burn               |       |            | T. Miller |
| Salicaceae       |                                      |                                           | KOVA_T58_04_2007 | Salmon R-Hunt R Floodplains |       |            | J. Roth   |
| Salicaceae       |                                      |                                           | KOVA_T58_05_2007 | Salmon R-Hunt R Floodplains |       |            | J. Roth   |
| Salicaceae       |                                      |                                           | KOVA_T69_01_2007 | E of Waring Peak VABM 2102  |       | C. Parker  | G Frost   |
| Saxifragaceae    | Saxifraga foliolosa R. Br.           |                                           | KOVA_T80_06_2007 | E of Kanaktok Cr            |       |            | T. Miller |
| Saxifragaceae    | Saxifraga tricuspidata Rottb.        |                                           | KOVA_T80_06_2007 | E of Kanaktok Cr            |       |            | T. Miller |
| Scrophulariaceae | Limosella aquatica L.                |                                           | KOVA_T62_02_2007 | Kobuk Floodplain            | G5 S3 | C. Parker  | M. Duffy  |
| Scrophulariaceae | Pedicularis lapponica L.             |                                           | KOVA_T64_07_2007 | Kobuk Dunes                 |       |            | J. Roth   |
| Selaginellaceae  | Selaginella selaginoides (L.) Link   |                                           | KOVA_T83_07_2007 | vic. Upper Tutuksuk R       |       | C. Parker  | T. Miller |
| Sparganiaceae    | Sparganium angustifolium Michx.      |                                           | KOVA_T56_07_2007 | Hunt Cr. Burn               |       | C. Parker  | T. Miller |
| Sparganiaceae    | Sparganium minimum (Hartm.) E. Frie  | s Sparganium natans L.                    | KOVA_T62_10_2007 | Kobuk Floodplain            |       | C. Parker  | M. Duffy  |
| Sparganiaceae    |                                      | N                                         | KOVA_T62_11_2007 | Kobuk Floodplain            |       | C. Parker  | M. Duffy  |
| Thelypteridaceae | Thelypteris phegopteris (L.) Slosson | Phegopteris connectilis<br>(Michaux) Watt | KOVA_T81_05_2007 | S of Kitlik River           |       | C. Parker  | M. Duffy  |

ARCN Ecological Land Survey \ 291

Appendix 5. Newly documented species for NOAT, based on data collected by ABR in 2008 and data collected during the NPS floristic inventory (Parker 2006). Vouchers exist only for records that have been verified.

| Family                       | Taxon                                 | Synonym                                                          | Plot ID          | Locality                  | Notes | Verifed by | Botanist  |
|------------------------------|---------------------------------------|------------------------------------------------------------------|------------------|---------------------------|-------|------------|-----------|
| Callitrichaceae              | Callitriche verna L. emend. Lonnr.    | Callitriche palustris L.                                         | NOAT_T05_07_2005 |                           |       |            | T. Miller |
| Campanulaceae                | Lomatogonium rotatum (l.) E. Fries    |                                                                  | NOAT_T07_04_2005 | Uvgoon creek              |       | D. Murray  | T. Miller |
|                              |                                       |                                                                  | NOAT_T10_04_2005 | Lower Noatak Floodplain   |       |            | M. Duffy  |
| Caryophyllaceae              | Minuartia dawsonensis (Britt.) Mattf. |                                                                  | NOAT_T18_01_2005 |                           |       | D. Murray  | M. Duffy  |
| Compositae                   |                                       |                                                                  |                  |                           |       |            |           |
| (Asteraceae)                 | Antennaria alpina (L.) Gaertn.        | Antennaria pallida E. E. Nelson                                  | NOAT_T21_03_2005 | Kagvik ridge              |       |            | J. Roth   |
|                              |                                       |                                                                  | NOAT_T21_04_2005 | Kagvik ridge              |       |            | J. Roth   |
|                              | Antennaria isolepis Greene            | Antennaria rosea Greene subsp.<br>pulvinata (Greene) R. J. Bayer | NOAT_T54_04_2006 | Near Natmotirak Creek     |       |            | M. Duffy  |
|                              | Aster junciformis Rydb.               | Symphyotrichum boreale (Torr.<br>& A. Gray) A. Löve & D. Löve    | NOAT_T31_05_2005 | Noatak canyon             |       | D. Murray  | M. Duffy  |
|                              |                                       | Arctanthemum arcticum (L.)                                       |                  | NOAT-KOVA Border & Cutler |       |            |           |
|                              | Chrysanthemum arcticum L.             | Tzvelev s. lat                                                   | NOAT_T76_03_2007 | R Headwater               |       |            | M. Duffy  |
|                              | Erigeron caespitosus Nutt.            |                                                                  | NOAT_G02_03_2005 |                           |       | D. Murray  | M. Duffy  |
| Cruciferae<br>(Brassicaceae) | Aphragmus eschscholtzianus Andrz.     |                                                                  | NOAT_T42_02_2006 | Knoll W Feniak            | G3 S3 |            | M. Duffy  |
| (Бі аззісасеае)              | Cardamine umbellata Greene            |                                                                  | NOAT_T06_08_2005 | Eli River Mtns            | d3 33 |            | M. Duffy  |
|                              | cardamine ambenata di cene            |                                                                  | NOAT T10 06 2005 | Lower Noatak Floodplain   |       |            | M. Duffy  |
|                              | Draba nivalis Liljebl.                |                                                                  | NOAT_G02_03_2005 | Lower Woulder Floodplain  |       | D. Murray  | M. Duffy  |
|                              | Drasa mvans Enjest.                   |                                                                  | NOAT_G03_03_2005 | SW Avan Mtns              |       | D. Murray  | M. Duffy  |
|                              |                                       |                                                                  | NOAT_T06_02_2005 | Eli River Mtns            |       | D. Murray  | M. Duffy  |
|                              |                                       |                                                                  | NOAT_T20_04_2005 | Avan Mtns                 |       | D. Murray  | J. Roth   |
|                              |                                       |                                                                  | NOAT_T20_05_2005 | Avan Mtns                 |       | ,          | J. Roth   |
|                              |                                       |                                                                  | NOAT_T22_01_2005 |                           |       |            | T. Miller |
|                              |                                       |                                                                  | NOAT_T22_02_2005 |                           |       |            | T. Miller |
|                              |                                       |                                                                  | NOAT_T27_01_2005 | Mishiguk Ultramafic Mtns  |       | C. Parker  | T. Miller |
|                              |                                       |                                                                  | NOAT_T27_02_2005 | Mishiguk Ultramafic Mtns  |       | C. Parker  | T. Miller |
|                              |                                       |                                                                  | NOAT_T28_02_2005 | Mt Bastille               |       | D. Murray  | T. Miller |
|                              |                                       |                                                                  | NOAT_T40_01_2006 | vic. Feniak Lake          |       | C. Parker  | T. Miller |
|                              |                                       |                                                                  | NOAT_T40_02_2006 | vic. Feniak Lake          |       | C. Parker  | T. Miller |
|                              |                                       |                                                                  | NOAT_T42_02_2006 | Knoll W Feniak            |       | C. Parker  | M. Duffy  |
|                              |                                       |                                                                  | NOAT_T42_07_2006 | Knoll W Feniak            |       |            | M. Duffy  |
|                              | Smelowskia calycina (Steph.) C.A.     | Smelowskia spathulatifolia                                       |                  |                           |       |            |           |
|                              | Mey. integrifolia (Seem.) Hult.       | Velichkin                                                        | NOAT_T25_01_2005 | Poktovik Mts.             |       | D. Murray  | J. Roth   |
|                              | Thlaspi arcticum Pors.                |                                                                  | NOAT_G03_01_2005 | SW Avan Mtns              | G3 S3 | D. Murray  | M. Duffy  |
| _                            |                                       |                                                                  | NOAT_G03_03_2005 | SW Avan Mtns              |       |            | M. Duffy  |
| Cyperaceae                   | Carex canescens L.                    |                                                                  | NOAT_T42_20_2006 | Mts E of Feniak Lake      |       |            | J. Roth   |

Appendix 5. Continued.

| Family | Taxon                                       | Synonym                                                        | Plot ID                              | Locality                                 | Notes | Verifed by | Botanist   |
|--------|---------------------------------------------|----------------------------------------------------------------|--------------------------------------|------------------------------------------|-------|------------|------------|
|        | Carex dioica gynocrates (Wormsk.)<br>Hult.  | Carex gynocrates Wormskjöld<br>ex Drejer                       | NOAT_T17_09_2005                     |                                          |       | D. Murray  | T. Miller  |
|        | Carex glareosa Wahlenb. ssp.                | ,                                                              | NOAT T40 02 2006                     |                                          |       | 6.5.1      | T . A. III |
|        | glareosa                                    |                                                                | NOAT_T40_02_2006                     | vic. Feniak Lake                         |       | C. Parker  | T. Miller  |
|        |                                             |                                                                | NOAT_T53_02_2006                     | Kavachuruk Limestone Mtns                |       | M. Duffy   | M. Duffy   |
|        | Carex kelloggii W. Boott                    | Carex lenticularis Michx. var lipocarpa (T. Holm) L.A. Standl. | NOAT T40 07 2006                     | vic. Feniak Lake                         |       |            | T. Miller  |
|        | Carex limosa L.                             | npocarpa (1. 110mi) Esta Stariai.                              | NOAT_T12_06_2005                     | VABM- Bone                               |       |            | T. Miller  |
|        | Carex Innosa E.                             |                                                                | NOAT_T12_00_2005                     | VABM- Bone                               |       |            | T. Miller  |
|        |                                             |                                                                | NOAT_T23_06_2005                     | Hogback                                  |       |            | M. Duffy   |
|        |                                             |                                                                | NOAT_T46_02_2006                     | Upper Noatak Basin                       |       |            | J. Roth    |
|        |                                             |                                                                | NOAT_T40_02_2000<br>NOAT_T47_05_2006 | Middle Noatak drained lake               |       |            | T. Miller  |
|        |                                             |                                                                | NOA1_147_03_2006                     |                                          |       |            | i. Willer  |
|        | Carex Ioliacea L.                           |                                                                | NOAT_T76_06_2007                     | NOAT-KOVA Border & Cutler<br>R Headwater |       | C. Parker  | M. Duffy   |
|        |                                             |                                                                |                                      | NOAT-KOVA Border & Cutler                |       |            | •          |
|        |                                             |                                                                | NOAT_T76_07_2007                     | R Headwater                              |       |            | M. Duffy   |
|        | Carex magellanica Lam. ssp. irrigua         |                                                                |                                      |                                          |       |            |            |
|        | (Wahlenb.) Hult.                            |                                                                | NOAT_T04_08_2005                     | Noatak Flats                             |       | D. Murray  | J. Roth    |
|        | Carex pluriflora Hult.                      |                                                                | NOAT_T50_08_2006                     | Aniuk River                              |       |            | M. Duffy   |
|        | Carex stylosa C. A. Mey                     |                                                                | NOAT_T06_08_2005                     | Eli River Mtns                           |       |            | M. Duffy   |
|        |                                             |                                                                | NOAT_T13_07_2005                     |                                          |       |            | J. Roth    |
|        |                                             |                                                                | NOAT_T53_05_2006                     | Kavachuruk Limestone Mtns                |       |            | M. Duffy   |
|        | Carex utriculata F. Boott                   |                                                                | NOAT_T04_02_2005                     | Noatak Flats                             |       |            | J. Roth    |
|        | 5/ / / . //                                 |                                                                | NOAT_T17_06_2005                     |                                          |       | C. Parker  | T. Miller  |
|        | Eleocharis acicularis (L.) Roem. & Schult.  |                                                                | NOAT_T10_06_2005                     | Lower Noatak Floodplain                  |       |            | M. Duffy   |
|        | Schare.                                     |                                                                | NOAT_T10_00_2005                     | Lower Noatak Floodplain                  |       |            | M. Duffy   |
|        |                                             |                                                                | NOAT_T10_T1_2005<br>NOAT_T31_08_2005 | Noatak R. Canyon                         |       | D. Murray  | M. Duffy   |
|        | Eriophorum brachyantherum Trautv.           |                                                                | NOA1_131_00_2003                     | Noatak II. Carryon                       |       | D. Wullay  | Wi. Durry  |
|        | & Mey.                                      |                                                                | NOAT_T23_01_2005                     | Hogback                                  |       |            | M. Duffy   |
|        |                                             |                                                                | NOAT_T23_06_2005                     | Hogback                                  |       |            | M. Duffy   |
|        |                                             |                                                                | NOAT_T48_10_2006                     | Middle Noatak River                      |       |            | M. Duffy   |
|        |                                             |                                                                | NOAT_T50_08_2006                     | Aniuk River                              |       |            | M. Duffy   |
|        |                                             |                                                                | NOAT_T50_09_2006                     | Aniuk River                              |       |            | M. Duffy   |
|        |                                             |                                                                | NOAT T76 07 2007                     | NOAT-KOVA Border & Cutler<br>R Headwater |       |            | M. Duffy   |
|        |                                             |                                                                | NOAT_T76_07_2007                     |                                          |       |            | ivi. Duriy |
|        | <b>.</b>                                    |                                                                | NOAT_T76_10_2007                     | NOAT-KOVA Border & Cutler<br>R Headwater |       |            | M. Duffy   |
|        | Eriophorum viridi-carinatum (Englem.) Fern. |                                                                | NOAT_T51_02_2006                     | Atongarak Cr.                            | G5 S2 |            | T. Miller  |
|        | (Engleth,) rem.                             |                                                                | NOAT_T51_02_2006<br>NOAT_T51_03_2006 | Atongarak Cr.                            | 33 32 |            | T. Miller  |
|        | Trichophorum caespitosum (L.)               |                                                                | NOAT_T31_03_2006<br>NOAT_T48_08_2006 | Middle Noatak River                      |       |            | M. Duffy   |
|        | menophorum caespitosum (L.)                 |                                                                | 140/1-140/00/2000                    | WINGUIC INDUITAR KIVEI                   |       |            | W. Dully   |

Appendix 5. Continued.

| Family                    | Taxon                                          | Synonym                                                     | Plot ID           | Locality                   | Notes   | Verifed by   | Botanist   |
|---------------------------|------------------------------------------------|-------------------------------------------------------------|-------------------|----------------------------|---------|--------------|------------|
|                           | Hartm.                                         |                                                             |                   |                            |         |              |            |
| Dryopteridaceae           | Woodsia alpina (Bolton) S.F. Gray              |                                                             | NOAT_T06_03_2005  | Eli River Mtns             |         |              | M. Duffy   |
|                           |                                                |                                                             | NOAT_T22_02_2005  |                            |         |              | T. Miller  |
|                           |                                                |                                                             | NOAT_T22_07_2005  |                            |         |              | T. Miller  |
|                           |                                                |                                                             | NOAT_T42_07_2006  | Knoll W Feniak             |         |              | M. Duffy   |
|                           |                                                |                                                             |                   | NOAT-KOVA Border & Cutler  |         |              |            |
|                           |                                                |                                                             | NOAT_T76_03_2007  | R Headwater                |         |              | M. Duffy   |
| Ericaceae                 | Arctostaphylos uva-ursi (L.) Sprengel          |                                                             | NOAT_T01_04_2005  |                            |         |              | J. Roth    |
|                           | Ledum groenlandicum Oeder                      |                                                             | NOAT_T08_01_2005  | VABM- Dry                  |         |              | J. Roth    |
|                           |                                                |                                                             | NOAT_T08_04_2005  | VABM- Dry                  |         |              | J. Roth    |
|                           |                                                |                                                             | NOAT_T13_04_2005  |                            |         |              | J. Roth    |
| Graminae                  |                                                |                                                             | NOAT_T45_02_2006  | Nimiuktuk River            |         |              | J. Roth    |
| (Poaceae)                 | Alopecuris alpinus Sm. ssp. alpinus            |                                                             | NOAT_T42_01_2006  | Knoll W Feniak             |         |              | M. Duffy   |
|                           |                                                |                                                             | NOAT_T42_02_2006  | Knoll W Feniak             |         | C. Parker    | M. Duffy   |
|                           |                                                | Calamagrostis stricta (Timm) Koeler ssp. inexpansa (A.Gray) |                   |                            |         |              |            |
|                           | Calamagrostis inexpansa Gray                   | C.W.Greene                                                  | NOAT_T12_08_2005  | VABM- Bone                 |         |              | T. Miller  |
|                           |                                                |                                                             | NOAT_T15_01_2005  | Kelley River               |         |              | T. Miller  |
|                           |                                                |                                                             | NOAT_T23_04_2005  | Hogback                    |         |              | M. Duffy   |
|                           |                                                |                                                             |                   |                            |         | M. Duffy, C. |            |
|                           |                                                |                                                             | NOAT_T48_03_2006  | Middle Noatak River        |         | Parker       | M. Duffy   |
|                           | Calamagrostis nutkaensis (C. Presl)<br>Steudel |                                                             | NOAT_T23_05_2005  | Hogback                    |         |              | M. Duffy   |
|                           | Elymus arenarius L. ssp. mollis (Trin.)        | Leymus mollis (Trin.) Pilg. ssp.                            | 140/11/25_05_2005 | Подраск                    |         |              | IVI. Duriy |
|                           | Hult.                                          | mollis                                                      | NOAT_T02_03_2005  |                            |         |              | J. Roth    |
|                           |                                                |                                                             | NOAT_T02_07_2005  |                            |         |              | J. Roth    |
|                           |                                                |                                                             | NOAT_T02_09_2005  |                            |         |              | J. Roth    |
|                           | Poa abbreviata R. Br.                          | Poa arctica R. Br. ssp. lanata                              | NOAT_T43_02_2006  | Siniktanneyak Mtn          |         | C. Parker    | M. Duffy   |
|                           | Poa lanata Scribn. & Merr.                     | (Scribn.) Soreng                                            | NOAT_T13_04_2005  |                            |         |              | J. Roth    |
|                           |                                                |                                                             | NOAT_T18_06_2005  |                            |         | D. Murray    | M. Duffy   |
|                           |                                                |                                                             | NOAT_T29_08_2005  | Sisiak creek               |         | •            | M. Duffy   |
| Juncaceae                 | Juncus bufonius L.                             |                                                             | NOAT_T29_08_2005  | Sisiak creek               |         |              | M. Duffy   |
| Juncaginaceae             | Triglochin maritimum L.                        |                                                             | NOAT_T50_08_2006  | Aniuk River                |         |              | M. Duffy   |
| Leguminosae<br>(Fabaceae) | Oxytropis huddelsonii Pors.                    |                                                             | NOAT_T19_03_2005  | Ampitheater Mtn            | G3 S2S3 | C. Parker    | T. Miller  |
| Lentibulariaceae          | Pinguicula villosa L.                          |                                                             | NOAT_T05_01_2005  | Eli River lowlands         |         |              | T. Miller  |
| 5 5 2 2 2                 | J                                              |                                                             | NOAT_T05_05_2005  | Eli River lowlands         |         |              | T. Miller  |
|                           |                                                |                                                             | NOAT_T47_02_2006  | Middle Noatak drained lake |         |              | T. Miller  |
| Menyanthaceae             | Menyanthes trifoliata L.                       |                                                             | NOAT_T04_01_2005  | Noatak Flats               |         |              | J. Roth    |
| ,                         | , ,                                            |                                                             | NOAT_T04_10_2005  | Noatak Flats               |         |              | J. Roth    |

Appendix 5. Continued.

| Family        | Taxon                                | Synonym                         | Plot ID          | Locality                   | Notes | Verifed by   | Botanist  |
|---------------|--------------------------------------|---------------------------------|------------------|----------------------------|-------|--------------|-----------|
|               |                                      |                                 | NOAT_T17_03_2005 |                            |       |              | T. Miller |
|               |                                      |                                 | NOAT_T23_04_2005 | Hogback                    |       |              | M. Duffy  |
|               |                                      |                                 | NOAT_T23_05_2005 | Hogback                    |       |              | M. Duffy  |
|               |                                      |                                 | NOAT_T23_08_2005 | Hogback                    |       |              | M. Duffy  |
| _             | Papaver gorodkovii Tolmatchew &      |                                 |                  |                            |       |              |           |
| Papaveraceae  | V.V. Petrovsky                       |                                 | NOAT_T22_03_2005 |                            |       | C. Parker    | T. Miller |
|               |                                      | Papaver lapponicum (Tolm.)      | NOAT_T28_02_2005 | Mt Bastille                |       | D. Murray    | T. Miller |
|               | Papaver hultenii Knaben              | Nordh.                          | NOAT_T51_02_2006 | Atongarak Cr.              |       |              | T. Miller |
|               |                                      |                                 | NOAT_T51_03_2006 | Atongarak Cr.              |       |              | T. Miller |
| Portulacaceae | Claytonia tuberosa Pall.             |                                 | NOAT_T03_03_2005 | , ttoguran e               |       |              | M. Duffy  |
|               | Potamogeton friesii Rupr.            |                                 | NOAT_T54_04_2006 | Near Natmotirak Creek      |       |              | M. Duffy  |
|               |                                      |                                 | NOAT_T54_07_2006 | Near Natmotirak Creek      |       |              | M. Duffy  |
|               | Potamogeton pectinatus L.            | Stuckenia pectinata (L.) Borner | NOAT_T10_06_2005 | Lower Noatak Floodplain    |       | D. Murray    | M. Duffy  |
|               |                                      | ζ=,                             | NOAT_T10_11_2005 | Lower Noatak Floodplain    |       | D. Murray    | M. Duffy  |
|               |                                      |                                 |                  |                            |       | M. Duffy, C. | ,         |
|               | Potamogeton praelongus Wulf.         |                                 | NOAT_T48_09_2006 | Middle Noatak River        |       | Parker       | M. Duffy  |
| Primulaceae   | Primula stricta Hornem.              |                                 | NOAT_T22_08_2005 |                            |       | D. Murray    | T. Miller |
| Pyrolaceae    | Pyrola minor L.                      |                                 | NOAT_T03_07_2005 | Asik Mountain              |       |              | M. Duffy  |
| ,             | ,                                    |                                 | NOAT_T18_07_2005 |                            |       |              | M. Duffy  |
|               |                                      |                                 | NOAT_T47_10_2006 | Middle Noatak drained lake |       |              | T. Miller |
| Ranunculaceae | Caltha natans Pall.                  |                                 | NOAT_T23_05_2005 | Hogback                    |       | D. Murray    | M. Duffy  |
|               |                                      |                                 | NOAT_T23_10_2005 | Hogback                    |       |              | M. Duffy  |
|               |                                      |                                 | NOAT_T31_08_2005 | Noatak R. Canyon           |       |              | M. Duffy  |
|               | Delphinium glaucum S. Wats.          |                                 | NOAT_T21_02_2005 | Kagvik ridge               |       |              | J. Roth   |
|               | Ranunculus eschscholtzii Schlecht.   |                                 | NOAT_T42_09_2006 | Knoll W Feniak             |       | C. Parker    | M. Duffy  |
|               |                                      | Ranunculus aquatilis var.       |                  |                            |       |              |           |
|               | Ranunculus trichophyllus Chaix       | diffusus Withering              | NOAT_T10_06_2005 | Lower Noatak Floodplain    |       |              | M. Duffy  |
|               |                                      |                                 | NOAT_T17_03_2005 |                            |       |              | T. Miller |
|               | Ranunculus trichophyllus Chaix var.  | Ranunculus aquatilis var.       |                  |                            |       |              | "         |
| _             | hispidulus (E. Drew) W. Drew         | aquatilis                       | NOAT_T48_09_2006 | Middle Noatak River        |       |              | M. Duffy  |
| Rosaceae      | Potentilla elegans Cham. & Schlecht. |                                 | NOAT_T29_02_2005 | Sisiak creek               |       | D. Murray    | M. Duffy  |
|               |                                      |                                 | NOAT_T42_01_2006 | Knoll W Feniak             |       | C. Parker    | M. Duffy  |
| 5.1.          | 6.17                                 |                                 | NOAT_T42_03_2006 | Knoll W Feniak             |       |              | M. Duffy  |
| Rubiaceae     | Galium trifidum L. ssp. trifidum     |                                 | NOAT_T08_08_2005 | VABM- Dry                  |       |              | J. Roth   |
|               |                                      |                                 | NOAT_T10_06_2005 | Lower Noatak Floodplain    |       |              | M. Duffy  |
| c !:          |                                      |                                 | NOAT_T48_09_2006 | Middle Noatak River        |       | 5.4          | M. Duffy  |
| Salicaceae    | Salix barclayi Anderss.              |                                 | NOAT_T24_04_2005 | Kukururok River            |       | D. Murray    | J. Roth   |
|               | C. C. C. C. L. D. H.                 | 6.17 1 (5.1. 6.2. 2.11)         | NOAT_T24_05_2005 | Kukururok River            |       | D 14         | J. Roth   |
|               | Salix monticola Bebb                 | Salix pseudomonticola C.R. Ball |                  | Uvgoon Creek               |       | D. Murray    | T. Miller |
|               |                                      |                                 | NOAT_T10_02_2005 | Lower Noatak Floodplain    |       |              | M. Duffy  |

Appendix 5. Continued.

| Family     | Taxon                    | Synonym | Plot ID          | Locality                | Notes | Verifed by Botanist |
|------------|--------------------------|---------|------------------|-------------------------|-------|---------------------|
|            |                          |         | NOAT_T10_07_2005 | Lower Noatak Floodplain |       | M. Duffy            |
|            |                          |         | NOAT_T10_09_2005 | Lower Noatak Floodplain |       | M. Duffy            |
|            |                          |         | NOAT_T10_10_2005 | Lower Noatak Floodplain |       | M. Duffy            |
|            |                          |         | NOAT_T15_02_2005 | Kelley River            |       | T. Miller           |
|            |                          |         | NOAT_T15_04_2005 | Kelley River            |       | T. Miller           |
|            |                          |         | NOAT_T15_05_2005 | Kelley River            |       | T. Miller           |
|            |                          |         | NOAT_T15_07_2005 | Kelley River            |       | T. Miller           |
|            |                          |         | NOAT_T15_10_2005 | Kelley River            |       | T. Miller           |
|            |                          |         | NOAT_T25_08_2005 |                         |       | J. Roth             |
|            |                          |         | NOAT_T31_07_2005 | Noatak R. Canyon        |       | M. Duffy            |
| Salicaceae | Salix ovalifolia Trautv. |         | NOAT_T17_09_2005 |                         |       | T. Miller           |
| Violaceae  | Viola biflora L.         |         | NOAT_T03_07_2005 | Asik Mountain           |       | M. Duffy            |

Appendix 6. Rare species documented within the Arctic Network, 2005-2008, based on the Alaska Natural Heritage Program's Rare Plant Tracking List.

|                                      |                                |           | Verifed   |                  |                          | AKNH       |
|--------------------------------------|--------------------------------|-----------|-----------|------------------|--------------------------|------------|
| Taxon                                | Synonym                        | Botanist  | by        | Plot ID          | Locality                 | Rank       |
| Aphragmus eschscholtzianus           |                                |           |           |                  |                          |            |
| Andrz.                               |                                | M. Duffy  |           | NOAT_T42_02_2006 | Knoll W Feniak           | <b>S</b> 3 |
|                                      | Stellaria dicranoides (Cham. & |           |           |                  |                          |            |
| A <i>renaria chamissonis</i> Maguire | Schltdl.) Fenzl                | J. Roth   |           | NOAT_T25_01_2005 | Poktovik Mts.            | G3 S3      |
|                                      |                                | T. Miller | C. Parker | KOVA_T83_01_2007 | vic. Upper Tutuksuk R    | G3 S3      |
|                                      |                                | M. Duffy  |           | NOAT_T54_01_2006 | Near Natmotirak Creek    | G3 S3      |
|                                      |                                |           |           |                  | Kavachuruk Limestone     |            |
|                                      |                                | M. Duffy  |           | NOAT_T53_02_2006 | Mtns                     | G3 S3      |
|                                      |                                |           |           |                  | Kavachuruk Limestone     |            |
|                                      |                                | M. Duffy  | C. Parker | NOAT_T53_01_2006 | Mtns                     | G3 S3      |
|                                      |                                | M. Duffy  |           | NOAT_T43_02_2006 | Siniktanneyak Mtn        | G3 S3      |
|                                      |                                | M. Duffy  |           | NOAT_T42_07_2006 | Knoll W Feniak           | G3 S3      |
|                                      |                                | M. Duffy  |           | NOAT_T42_03_2006 | Knoll W Feniak           | G3 S3      |
|                                      |                                | M. Duffy  |           | NOAT_T41_03_2006 | Feniak Lake north beach  | G3 S3      |
|                                      |                                | T. Miller |           | NOAT_T40_05_2006 | vic. Feniak Lake         | G3 S3      |
|                                      |                                | T. Miller |           | NOAT_T40_02_2006 | vic. Feniak Lake         | G3 S3      |
|                                      |                                | T. Miller | C. Parker | NOAT_T40_01_2006 | vic. Feniak Lake         | G3 S3      |
|                                      |                                | T. Miller |           | KOVA_T75_04_2007 | vic. Akillik R Baird Mts | G3 S3      |
|                                      |                                | T. Miller |           | NOAT_T27_02_2005 | Mishiguk Ultramafic Mtns | G3 S3      |
|                                      |                                | T. Miller |           | KOVA_T83_04_2007 | vic. Upper Tutuksuk R    | G3 S3      |
|                                      |                                | T. Miller |           | NOAT_T22_03_2005 |                          | G3 S3      |
|                                      |                                | T. Miller |           | NOAT_T22_02_2005 |                          | G3 S3      |
|                                      |                                | M. Duffy  |           | NOAT_T09_05_2005 |                          | G3 S3      |
|                                      |                                | M. Duffy  |           | NOAT_T09_04_2005 |                          | G3 S3      |
|                                      |                                | M. Duffy  |           | NOAT_T09_03_2005 |                          | G3 S3      |
|                                      |                                | M. Duffy  |           | NOAT_T09_02_2005 |                          | G3 S3      |
|                                      |                                | M. Duffy  | D. Murray | NOAT_T09_01_2005 |                          | G3 S3      |
|                                      |                                | M. Duffy  |           | NOAT_T06_02_2005 | Eli River Mtns           | G3 S3      |
|                                      |                                | M. Duffy  |           | NOAT_T03_04_2005 |                          | G3 S3      |
|                                      |                                | M. Duffy  |           | NOAT_T03_01_2005 |                          | G3 S3      |
|                                      |                                | M. Duffy  |           | NOAT_G03_02_2005 | SW Avan Mtns             | G3 S3      |
|                                      |                                | M. Duffy  |           | NOAT_G03_01_2005 | SW Avan Mtns             | G3 S3      |

Appendix 6. Continued.

|                                              | ·                                                       |            | Verifed   |                    |                                       | AKNHP   |
|----------------------------------------------|---------------------------------------------------------|------------|-----------|--------------------|---------------------------------------|---------|
| Taxon                                        | Synonym                                                 | Botanist   | by        | Plot ID            | Locality                              | Rank    |
|                                              |                                                         | T. Miller  |           | NOAT_T27_03_2005   | Mishiguk Ultramafic Mtns              | G3 S3   |
|                                              |                                                         | M. Duffy   |           | NOAT_T76_01_2007   | NOAT-KOVA BorderCutler<br>R Headwater | G3 S3   |
|                                              |                                                         | Wi. Durry  |           | NOA1_170_01_2007   | NOAT-KOVA BorderCutler                | G2 22   |
|                                              |                                                         | M. Duffy   |           | NOAT_T76_03_2007   | R Headwater                           | G3 S3   |
|                                              | Symphyotrichum yukonense                                | iii. Durry |           | 110711_170_03_2007 | N. F. Cadavater                       | 05 55   |
| Aster yukonensis Crong.                      | (Cronquist) G.L. Nesom                                  | J. Roth    | C. Parker | KOVA_T64_05_2007   | Kobuk Dunes                           | G3 S3   |
|                                              |                                                         |            | M. Duffy, |                    |                                       |         |
|                                              |                                                         | M. Duffy   |           | NOAT_T48_02_2006   | middle Noatak River                   | G3 S3   |
|                                              |                                                         | T. Miller  |           | GAAR_T94_08_2008   | vic. Island Lake, Tobuk Cr.           | G3 S3   |
|                                              |                                                         | T. Miller  | C. Parker | GAAR_T94_07_2008   | vic. Island Lake, Tobuk Cr.           | G3 S3   |
|                                              |                                                         | T. Miller  |           | GAAR_T94_05_2008   | vic. Island Lake, Tobuk Cr.           | G3 S3   |
|                                              |                                                         | T. Miller  | C. Parker | GAAR_T94_02_2008   | vic. Island Lake, Tobuk Cr.           | G3 S3   |
| Campanula aurita Greene                      |                                                         | T. Miller  | M. Duffy  | GAAR_T96_06_2008   | vic. Island Lake, Tobuk Cr.           | G4 S3S4 |
|                                              |                                                         | T. Miller  | M. Duffy  | GAAR_T96_05_2008   | vic. Island Lake, Tobuk Cr.           | G4 S3S4 |
| Carex deflexa Hornem.                        |                                                         | M. Duffy   | C. Parker | GAAR_T90_08_2008   | Walker Lake                           | G5 S1S2 |
|                                              |                                                         | M. Duffy   |           | GAAR_T90_16_2008   | Walker Lake                           | G5 S1S2 |
|                                              |                                                         | M. Duffy   | C. Parker | GAAR_T90_01_2008   | Walker Lake                           | G5 S1S2 |
| Carex holostoma Drej.                        |                                                         | J. Roth    |           | NOAT_T25_05_2005   | Poktovik Mts.                         | G4? S3  |
|                                              |                                                         |            |           |                    |                                       | G4G5Q   |
| Carex lapponica Lang                         |                                                         | T. Miller  | C. Parker | GAAR_T95_10_2008   | vic. Island Lake, Tobuk Cr.           | S2      |
|                                              |                                                         |            |           |                    | N. Fork R near Florence               | G4G5Q   |
|                                              |                                                         | M. Duffy   |           | GAAR_T114_04_2008  | Lake                                  | S2      |
|                                              |                                                         |            |           |                    |                                       | G4G5Q   |
| -                                            |                                                         | T. Miller  |           | KOVA_T84_03_2007   | vic. Tutuksuk R. Headwater            | \$2     |
| Colpodium vahlianum (Liebm.)                 | <i>Puccinellia vahliana</i> (Liebm.)<br>Scribn. & Merr. | M Duff.    | C Dawleau | NOAT T42 02 2006   | Knoll W Feniak                        | C4 5252 |
| Nevski                                       | SCHOIL & Merr.                                          | M. Duffy   | C. Parker | NOAT_T42_02_2006   |                                       | G4 S2S3 |
| County and the Harite C                      |                                                         | M. Duffy   | C. Parker | NOAT_T42_06_2006   | Knoll W Feniak                        | G4 S2S3 |
| Cryptogramma stelleri (S.G.<br>Gmel.) Prantl |                                                         | M. Duffy   |           | NOAT_G02_04_2005   | Noatak Canyon                         | G5 S2S3 |
| differ./ Franti                              |                                                         | IVI. Durry |           | NOA1_002_04_2003   | Noatak Carryon                        | G5 5255 |
|                                              | Erigeron grandiflorus Hook. ssp.                        |            |           |                    |                                       |         |
| Erigeron porsildii                           | arcticus A.E. Porsild                                   | M. Duffy   | D. Murrav | NOAT_G02_03_2005   |                                       | G3G4 S3 |
| Eriophorum viridi-carinatum                  |                                                         | - ',       | ,         |                    |                                       |         |
| (Englem.) Fern.                              |                                                         | M. Duffy   | C. Parker | GAAR_T93_07_2008   | vic. Arrigetch Peaks                  | G5 S2   |
| -                                            |                                                         | T. Miller  |           | NOAT_T51_02_2006   | Atongarak Cr.                         | G5 S2   |

Appendix 6. Continued.

|                                  |                             |           | Verifed   |                  |                            | AKNHP   |
|----------------------------------|-----------------------------|-----------|-----------|------------------|----------------------------|---------|
| Taxon                            | Synonym                     | Botanist  | by        | Plot ID          | Locality                   | Rank    |
|                                  |                             | T. Miller |           | NOAT_T51_03_2006 | Atongarak Cr.              | G5 S2   |
| Festuca lenensis Drobowi         |                             | M. Duffy  | D. Murray | NOAT_G02_03_2005 |                            | G4G5 S3 |
| Glyceria pulchella (Nash) Schum. |                             | M. Duffy  | C. Parker | KOVA_T62_07_2007 | Kobuk Floodplain           | G5 S2S3 |
|                                  |                             | M. Duffy  |           | KOVA_T62_08_2007 | Kobuk Floodplain           | G5 S2S3 |
|                                  |                             | M. Duffy  |           | KOVA_T62_10_2007 | Kobuk Floodplain           | G5 S2S3 |
|                                  |                             | J. Roth   | C. Parker | KOVA_T57_07_2007 | Kobuk River Slough         | G5 S2S3 |
|                                  | Malaxis paludosa (Linnaeus) |           |           |                  |                            |         |
| Hammarbya paludosa (L.) Ktze.    | Swartz                      | M. Duffy  |           | GAAR_T93_07_2008 | vic. Arrigetch Peaks       | G4 S3   |
| Limosella aquatica L.            |                             | M. Duffy  | C. Parker | KOVA_T62_02_2007 | Kobuk Floodplain           | G5 S3   |
| Lupinus kuschei Eastw.           |                             | M. Duffy  | C. Parker | KOVA_T66_02_2007 | Kobuk Dunes                | G3 S2   |
|                                  |                             | M. Duffy  |           | KOVA_T66_03_2007 | Kobuk Dunes                | G3 S2   |
|                                  |                             | M. Duffy  |           | KOVA_T66_08_2007 | Kobuk Dunes                | G3 S2   |
|                                  |                             | M. Duffy  |           | KOVA_T66_07_2007 | Kobuk Dunes                | G3 S2   |
|                                  |                             | T. Miller | C. Parker | KOVA_T65_02_2007 | Little Kobuk Sand Dunes    | G3 S2   |
|                                  |                             | T. Miller |           | KOVA_T65_03_2007 | Little Kobuk Sand Dunes    | G3 S2   |
|                                  |                             | T. Miller |           | KOVA_T65_05_2007 | Little Kobuk Sand Dunes    | G3 S2   |
| Minuartia yukonensis Hult.       |                             | M. Duffy  | D. Murray | NOAT_G02_03_2005 |                            | G4? \$3 |
| Myriophyllum verticillatum L.    |                             | M. Duffy  | C. Parker | KOVA_T62_11_2007 | Kobuk Floodplain           | G5 S3   |
| Oxytropis huddelsonii Pors.      |                             | T. Miller | C. Parker | NOAT_T19_03_2005 | Ampitheater Mtn            | G3 S2S3 |
| Oxytropis kobukensis Welsh       |                             | J. Roth   | C. Parker | KOVA_T64_03_2007 | Kobuk Dunes                | G2 S2   |
|                                  |                             | M. Duffy  |           | KOVA_T66_09_2007 | Kobuk Dunes                | G2 S2   |
|                                  |                             | M. Duffy  |           | KOVA_T66_07_2007 | Kobuk Dunes                | G2 S2   |
|                                  |                             | T. Miller |           | KOVA_T65_04_2007 | Little Kobuk Sand Dunes    | G2 S2   |
|                                  |                             | T. Miller | C. Parker | KOVA_T65_01_2007 | Little Kobuk Sand Dunes    | G2 S2   |
|                                  |                             | M. Duffy  | C. Parker | KOVA_T66_02_2007 | Kobuk Dunes                | G2 S2   |
|                                  |                             | M. Duffy  | C. Parker | KOVA_T66_04_2007 | Kobuk Dunes                | G2 S2   |
|                                  |                             | J. Roth   | C. Parker | KOVA_T64_02_2007 | Kobuk Dunes                | G2 S2   |
|                                  |                             | M. Duffy  |           | KOVA_T66_05_2007 | Kobuk Dunes                | G2 S2   |
|                                  |                             | J. Roth   | C. Parker | KOVA_T64_01_2007 | Kobuk Dunes                | G2 S2   |
|                                  |                             | M. Duffy  |           | KOVA_T66_06_2007 | Kobuk Dunes                | G2 S2   |
|                                  |                             | M. Duffy  |           | KOVA_T66_03_2007 | Kobuk Dunes                | G2 S2   |
| Oxytropis kokrinensis Porsild    |                             | T. Miller | C. Parker | KOVA_T84_01_2007 | vic. Tutuksuk R. Headwater | G3 S3   |

| Taxon                              | Synonym | Botanist   | Verifed<br>by | Plot ID          | Locality                              | AKNHP<br>Rank |
|------------------------------------|---------|------------|---------------|------------------|---------------------------------------|---------------|
| - I WACH                           |         | J. Roth    |               | NOAT_T25_01_2005 | Poktovik Mts.                         | G3 S3         |
|                                    |         |            |               | KOVA_T81_01_2007 | S of Kitlik River                     | G3 S3         |
|                                    |         | •          | C. Parker     | NOAT_T42_01_2006 | Knoll W Feniak                        | G3 S3         |
|                                    |         | T. Miller  | C. Parker     | KOVA_T75_04_2007 | vic. Akillik R Baird Mts              | G3 S3         |
|                                    |         | M. Duffy   |               | NOAT_T42_04_2006 | Knoll W Feniak                        | G3 S3         |
|                                    |         | J. Roth    |               | KOVA_T78_01_2007 | vic. Kaliguricheark R.                | G3 S3         |
|                                    |         | J. Roth    | C. Parker     | NOAT_T46_07_2006 | Upper Noatak Basin                    | G3 S3         |
| Oxytropis campestris (L.) DC. ssp. |         |            |               |                  |                                       | G2G3Q         |
| varians (Rydb.) Cody               |         | M. Duffy   | D. Murray     | NOAT_T31_06_2005 | Noatak Canyon                         | S2S3          |
| Papaver gorodkovii Tolmatchew      |         |            |               |                  |                                       |               |
| & V.V. Petrovsky                   |         | T. Miller  | •             | NOAT_T28_02_2005 | Mt Bastille                           | G3 S2S3       |
|                                    |         | T. Miller  | C. Parker     | NOAT_T22_03_2005 |                                       | G3 S2S3       |
|                                    |         |            |               |                  | Kavachuruk Limestone                  |               |
| Papaver walpolei Pors.             |         | M. Duffy   | C. Parker     | NOAT_T53_03_2006 | Mtns                                  | G3 S3         |
|                                    |         | M. Duffy   |               | NOAT_T76_03_2007 | NOAT-KOVA BorderCutler<br>R Headwater | G3 S3         |
|                                    |         | IVI. Duriy |               | NOA1_170_03_2007 | NOAT-KOVA BorderCutler                | G2 22         |
|                                    |         | M. Duffy   | C. Parker     | NOAT_T76_01_2007 | R Headwater                           | G3 S3         |
|                                    |         | M. Duffy   |               | NOAT_T06_03_2005 | Eli River Mtns                        | G3 S3         |
|                                    |         | M. Duffy   | D. Murrav     | NOAT_T06_02_2005 | Eli River Mtns                        | G3 S3         |
|                                    |         | ,          | ,             |                  | Kavachuruk Limestone                  |               |
|                                    |         | M. Duffy   | C. Parker     | NOAT_T53_01_2006 | Mtns                                  | G3 S3         |
|                                    |         |            |               |                  | Kavachuruk Limestone                  |               |
|                                    |         | M. Duffy   |               | NOAT_T53_02_2006 | Mtns                                  | G3 S3         |
| Potentilla rubricaulis Lehm.       |         | M. Duffy   | D. Murray     | NOAT_G02_03_2005 |                                       | G4 S2?        |
| Potamogeton subsibiricus Hagstr.   |         | M. Duffy   | C. Parker     | KOVA_T61_03_2007 | Akilik Wetlands                       | G3 S3         |
| Schizachne purpurascens (Torr.)    |         |            |               |                  |                                       |               |
| Swallen                            |         | M. Duffy   |               | GAAR_T90_16_2008 | Walker Lake                           | G5 S2         |
|                                    |         | M. Duffy   |               | GAAR_T90_14_2008 | Walker Lake                           | G5 S2         |
|                                    |         | M. Duffy   | C. Parker     | GAAR_T90_13_2008 | Walker Lake                           | G5 S2         |
| Thlaspi arcticum Pors.             |         | M. Duffy   |               | NOAT_G03_03_2005 | SW Avan Mtns                          | G3 S3         |
|                                    |         | M. Duffy   | D. Murray     | NOAT_G03_01_2005 | SW Avan Mtns                          | G3 S3         |

Appendix 6. Continued.

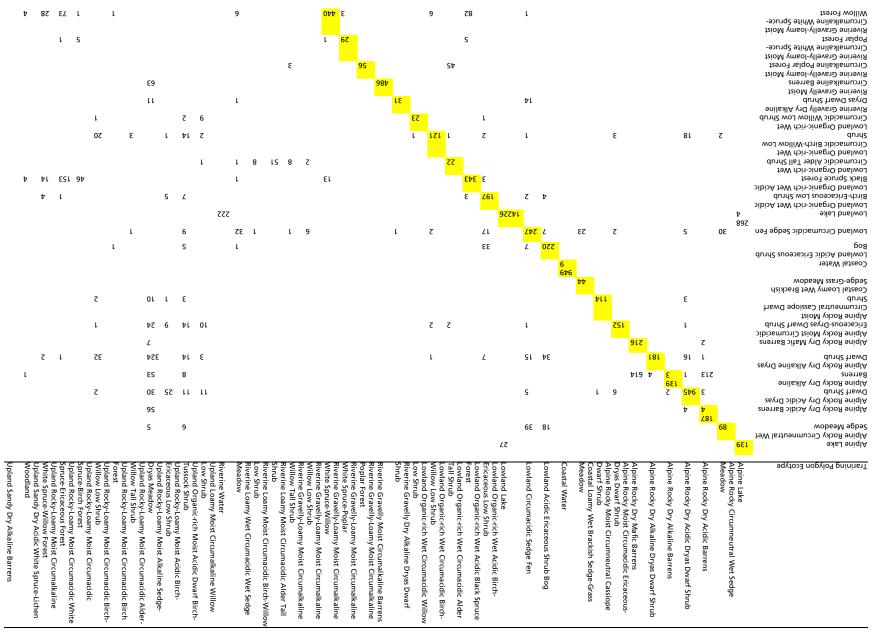
|                       |         |          | Verifed   |                  |             | AKNHP   |
|-----------------------|---------|----------|-----------|------------------|-------------|---------|
| Taxon                 | Synonym | Botanist | by        | Plot ID          | Locality    | Rank    |
| Viola selkirkii Pursh |         | M. Duffy |           | GAAR_T90_15_2008 | Walker Lake | G5? \$3 |
|                       |         | M. Duffy |           | GAAR_T90_09_2008 | Walker Lake | G5? S3  |
|                       |         | M. Duffy | C. Parker | GAAR_T90_08_2008 | Walker Lake | G5? \$3 |
|                       |         | M. Duffy | C. Parker | GAAR_T90_05_2008 | Walker Lake | G5? \$3 |
|                       |         | M. Duffy |           | GAAR_T90_13_2008 | Walker Lake | G5? S3  |

Appendix 7a. Landsat ETM+ and TM data used for mosaic and spectral classification of the Arctic Network.

|      |             |      |          | Landsat A | Availability | (rows) |             |              |               |            |
|------|-------------|------|----------|-----------|--------------|--------|-------------|--------------|---------------|------------|
|      | Acquisition | Path |          |           |              |        | -           | Area<br>(sq. | Area (%<br>of | Area       |
| Path | Date        | ID   | Platform | NPS       | GeoCover     | USGS   | Area (Sq m) | km)          | mosaic)       | Proportion |
| 74   | 2002-08-02  | 741  | 7        |           |              | 12-13  | 13362097462 | 13362.1      | 11.299%       | 33.297%    |
| 75   | 2002-07-24  | 751  | 7        |           |              | 12-14  | 7738498844  | 7738.5       | 6.544%        | 19.284%    |
| 76   | 2002-07-31  | 761  | 7        | 12-13     |              | 12-14  | 7772540554  | 7772.5       | 6.573%        | 19.368%    |
| 76   | 2003-07-18  | 762  | 7        |           |              | 13     | 129742077.7 | 129.7        | 0.110%        | 0.323%     |
| 77   | 2002-08-07  | 771  | 7        |           |              | 13-14  | 1306192164  | 1306.2       | 1.105%        | 3.255%     |
| 77   | 2005-07-22  | 772  | 5        |           |              | 13-14  | 133136089.2 | 133.1        | 0.113%        | 0.332%     |
| 77   | 2008-06-28  | 773  | 5        |           |              | 13     | 263800158.2 | 263.8        | 0.223%        | 0.657%     |
| 78   | 2002-07-29  | 781  | 7        | 13-14     |              | 12-14  | 44771660983 | 44771.7      | 37.860%       | 111.567%   |
| 78   | 2008-07-05  | 782  | 5        |           |              | 12     | 6505203.083 | 6.5          | 0.006%        | 0.016%     |
| 79   | 2002-08-05  | 791  | 7        |           |              | 13     | 6066873.079 | 6.1          | 0.005%        | 0.015%     |
| 79   | 1999-07-28  | 793  | 7        | 12.5-13.5 |              | 12-13  | 1808832436  | 1808.8       | 1.530%        | 4.507%     |
| 79   | 2008-07-28  | 794  | 5        |           |              | 13     | 24286724.61 | 24.3         | 0.021%        | 0.061%     |
| 80   | 2002-07-27  | 801  | 7        |           |              | 12-13  | 23857789642 | 23857.8      | 20.175%       | 59.451%    |
| 81   | 2002-08-03  | 811  | 7        | 11-14     | 12,14        | 11-13  | 17075749872 | 17075.7      | 14.440%       | 42.551%    |

Appendix 7b. Landsat ETM+ and TM scene parameters by data source.

|             |            |            | Resolution      | Geolocation       |                |                         |
|-------------|------------|------------|-----------------|-------------------|----------------|-------------------------|
| Source      | Resampling | Destriping | (multispectral) | Level             | Projection     | <b>Horizontal Datum</b> |
| NPS (NLAPS) | NN         | Yes        | 28.5 m          | Terrain           | Alaska Albers  | NAD1927 and NAD1983     |
| GeoCover    | NN         | No         | 28.5 m          | Precision Terrain | UTM (variable) | WGS1984                 |
| USGS        | CC         | No         | 30 m            | Precision Terrain | UTM (variable) | WGS1984                 |


Appendix 8. Crosswalk between Ecotype, Map Ecotype, the Regional Map Ecotype, Vegetation Class and the Regional Vegetation Class for the Arctic Network, Alaska. Regional classes integrate data for all five parks while the other variables are based on data for NOAT and KOVA.

| Ecotype (short name)                  | Map Ecotype                           | Regional Map Ecotype (short)              | Map Vegetation Class              | Regional Map Vegetation Class           |
|---------------------------------------|---------------------------------------|-------------------------------------------|-----------------------------------|-----------------------------------------|
| Alpine Acidic Barrens                 | Alpine Acidic Barrens                 | Alpine Acidic Barrens                     | Partially Vegetated               | Partially Vegetated                     |
| Alpine Acidic Dryas Dwarf Shrub       | Alpine Acidic Dryas Dwarf Shrub       | Alpine Dryas Dwarf Shrub                  | Dryas Dwarf Shrub                 | Dryas Dwarf Shrub                       |
| Alpine Alkaline Barrens               | Alpine Alkaline Barrens               | Alpine Alkaline Barrens                   | Partially Vegetated               | Partially Vegetated                     |
| Alpine Alkaline Dryas Dwarf Shrub     | Alpine Alkaline Dryas Dwarf Shrub     | Alpine Dryas Dwarf Shrub                  | Dryas Dwarf Shrub                 | Dryas Dwarf Shrub                       |
| Alpine Cassiope Dwarf Shrub           | Alpine Cassiope Dwarf Shrub           | Alpine Ericaceous Dwarf Shrub             | Cassiope Dwarf Shrub              | Ericaceous Dwarf Shrub                  |
| Alpine Ericaceous-Dryas Dwarf Shrub   | Alpine Ericaceous-Dryas Dwarf Shrub   | Alpine Ericaceous Dwarf Shrub             | Ericaceous-Dryas Dwarf Shrub      | Ericaceous Dwarf Shrub                  |
| Alpine Lake                           | Alpine Lake                           | Alpine Lake                               | Fresh Water                       | Fresh Water                             |
| Alpine Mafic Barrens                  | Alpine Mafic Barrens                  | Alpine Mafic Barrens                      | Partially Vegetated               | Partially Vegetated                     |
| Alpine Wet Sedge Meadow               | Alpine Wet Sedge Meadow               | Alpine Wet Sedge Meadow                   | Sedge Wet Meadow                  | Sedge Wet Meadow                        |
| Lacustrine Wet Sedge Meadow           | Lowland Sedge Fen                     | Lowland Sedge Fen                         | Sedge Fen                         | Sedge Fen                               |
| Lowland Alder Tall Shrub              | Lowland Alder Tall Shrub              | Lowland Alder Tall Shrub                  | Alder Tall Shrub                  | Alder or Willow Tall Shrub              |
| Lowland Birch-Ericaceous Low Shrub    | Lowland Birch-Ericaceous Low Shrub    | Lowland Birch-Ericaceous-Willow Low Shrub | Dwarf Birch-Ericaceous Low Shrub  | Dwarf Birch-Ericaceous-Willow Low Shrub |
| Lowland Birch-Willow Low Shrub        | Lowland Birch-Willow Low Shrub        | Lowland Birch-Ericaceous-Willow Low Shrub | Dwarf Birch-Willow Low Shrub      | Dwarf Birch-Ericaceous-Willow Low Shrub |
| Lowland Black Spruce Forest           | Lowland Black Spruce Forest           | Lowland Black Spruce Forest               | Black Spruce Forest               | Black Spruce Forest                     |
| Lowland Ericaceous Shrub Bog          | Lowland Ericaceous Shrub Bog          | Lowland Ericaceous Shrub Bog              | Ericaceous Shrub Bog              | Ericaceous Shrub Bog                    |
| Lowland Lake                          | Lowland Lake                          | Lowland Lake                              | Fresh Water                       | Fresh Water                             |
| Lowland Sedge Fen                     | Lowland Sedge Fen                     | Lowland Sedge Fen                         | Sedge Fen                         | Sedge Fen                               |
| Lowland Sedge-Willow Fen              | Lowland Sedge Fen                     | Lowland Sedge Fen                         | Sedge Fen                         | Sedge Fen                               |
| Lowland Willow Low Shrub              | Lowland Willow Low Shrub              | Lowland Willow Low Shrub                  | Willow Low Shrub                  | Willow Low Shrub                        |
| River                                 | Riverine Water                        | Riverine Water                            | Fresh Water                       | Fresh Water                             |
| Riverine Alder Tall Shrub             | Riverine Alder Tall Shrub             | Riverine Alder or Willow Tall Shrub       | Alder Tall Shrub                  | Alder or Willow Tall Shrub              |
| Riverine Barrens                      | Riverine Barrens                      | Riverine Barrens                          | Partially Vegetated               | Partially Vegetated                     |
| Riverine Birch-Willow Low Shrub       | Riverine Birch-Willow Low Shrub       | Riverine Birch-Willow Low Shrub           | Dwarf Birch-Willow Low Shrub      | Dwarf Birch-Willow Low Shrub            |
| Riverine Dryas Dwarf Shrub            | Riverine Dryas Dwarf Shrub            | Riverine Dryas Dwarf Shrub                | Dryas Dwarf Shrub                 | Dryas Dwarf Shrub                       |
| Riverine Lake                         | Riverine Water                        | Riverine Water                            | Fresh Water                       | Fresh Water                             |
| Riverine Moist Willow Tall Shrub      | Riverine Moist Willow Tall Shrub      | Riverine Alder or Willow Tall Shrub       | Willow Tall Shrub                 | Alder or Willow Tall Shrub              |
| Riverine Poplar Forest                | Riverine Poplar Forest                | Riverine Poplar Forest                    | Balsam Poplar Forest              | Balsam Poplar Forest                    |
| Riverine Wet Sedge Meadow             | Riverine Wet Sedge Meadow             | Riverine Wet Sedge Meadow                 | Sedge Wet Meadow                  | Sedge Wet Meadow                        |
| Riverine Wet Willow Tall Shrub        | Riverine Moist Willow Tall Shrub      | Riverine Alder or Willow Tall Shrub       | Willow Tall Shrub                 | Alder or Willow Tall Shrub              |
| Riverine White Spruce-Alder Forest    | Riverine White Spruce-Willow Forest   | Riverine White Spruce-Willow Forest       | White Spruce Forest               | White Spruce Forest                     |
| Riverine White Spruce-Poplar Forest   | Riverine White Spruce-Poplar Forest   | Riverine White Spruce-Poplar Forest       | White Spruce-Balsam Poplar Forest | White Spruce-Balsam Poplar Forest       |
| Riverine White Spruce-Willow Forest   | Riverine White Spruce-Willow Forest   | Riverine White Spruce-Willow Forest       | White Spruce Forest               | White Spruce Forest                     |
| Riverine Willow Low Shrub             | Riverine Willow Low Shrub             | Riverine Willow Low Shrub                 | Willow Low Shrub                  | Willow Low Shrub                        |
| Upland Alder-Willow Tall Shrub        | Upland Alder-Willow Tall Shrub        | Upland Alder-Willow Tall Shrub            | Alder-Willow Tall Shrub           | Alder or Willow Tall Shrub              |
| Upland Birch Forest                   | Upland Birch Forest                   | Upland Birch Forest                       | Paper Birch Forest                | Paper Birch Forest                      |
| Upland Birch-Ericaceous Low Shrub     | Upland Birch-Ericaceous Low Shrub     | Upland Birch-Ericaceous-Willow Low Shrub  | Dwarf Birch-Ericaceous Low Shrub  | Dwarf Birch-Ericaceous-Willow Low Shrub |
| Upland Birch-Willow Low Shrub         | Upland Birch-Willow Low Shrub         | Upland Birch-Ericaceous-Willow Low Shrub  | Dwarf Birch-Willow Low Shrub      | Dwarf Birch-Ericaceous-Willow Low Shrub |
| Upland Dwarf Birch-Tussock Shrub      | Upland Dwarf Birch-Tussock Shrub      | Upland Dwarf Birch-Tussock Shrub          | Dwarf Birch-Tussock Shrub         | Dwarf Birch-Tussock Shrub               |
| Upland Sandy Barrens                  | Upland Sandy Barrens                  | Upland Sandy Barrens                      | Partially Vegetated               | Partially Vegetated                     |
| Upland Sedge-Dryas Meadow             | Upland Sedge-Dryas Meadow             | Upland Sedge-Dryas Meadow                 | Sedge-Dryas Meadow                | Sedge-Dryas Meadow                      |
| Upland Spiraea Low Shrub              | Upland Birch-Willow Low Shrub         | Upland Birch-Ericaceous-Willow Low Shrub  | Dwarf Birch-Willow Low Shrub      | Dwarf Birch-Ericaceous-Willow Low Shrub |
| Upland Spruce-Birch Forest            | Upland Spruce-Birch Forest            | Upland Spruce-Birch Forest                | Spruce-Paper Birch Forest         | Spruce-Paper Birch Forest               |
| Upland White Spruce-Dryas Woodland    | Upland White Spruce-Lichen Woodland   | Upland White Spruce-Lichen Woodland       | White Spruce-Lichen Woodland      | White Spruce-Lichen Woodland            |
| Upland White Spruce-Ericaceous Forest | Upland White Spruce-Ericaceous Forest | Upland White Spruce Forest                | White Spruce Forest               | White Spruce Forest                     |
| Upland White Spruce-Lichen Woodland   | Upland White Spruce-Lichen Woodland   | Upland White Spruce-Lichen Woodland       | White Spruce-Lichen Woodland      | White Spruce-Lichen Woodland            |
| Upland White Spruce-Willow Forest     | Upland White Spruce-Willow Forest     | Upland White Spruce Forest                | White Spruce Forest               | White Spruce Forest                     |
|                                       |                                       |                                           | · ·                               | •                                       |
| Upland Willow Low Shrub               | Upland Willow Low Shrub               | Upland Willow Low Shrub                   | Willow Low Shrub                  | Willow Low Shrub                        |

Alpine Rocky Dry Mafic Barrens

2 2

| Strong the commonthy without the plant with t   | 2 1 1 3 2 1 1 3 2 1 1 3 3 1 1 1 1 1 1 1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Strate   County   Strate   S   | - 2                                     |
| Comparison   Com   | - 2                                     |
| Figure 1999      | - 2                                     |
| Second process   Seco   |                                         |
| Reconstruction   Part   |                                         |
| Stronger Chromate-like Wiltow Tall Shareh   Stronger Chromate-li   |                                         |
| Comparison   Com   |                                         |
| Straine Channel Straine Stra   |                                         |
| Stratic Carry Wed Circumstate Willow Tail Sharb  Stratic Carry Wed Circumstate Willow Tail Sharb  Stratic Carry Wed Circumstate Willow Tail Sharb  Special Carry Wed Circumstate William Tail Sharb  Special Carry Wed Circumstate William Tail  Special Carry Wed William Tail  Special Carry Wed Circumstate William Tail  Special Carry Wed Circumstate William Tail  Special Carry Wed William Tail  Special Carry Wed Circumstate William Tail  Special Carry Wed William Tail  Special Carry Wed Circumstate Will William Tail  Special Carr |                                         |
| Siverine Lounny Med Chromachie Multinov Tail Shareb  By Siverine Chromicalite Multinov Tail Shareb  Contact I contact I contact I contact I shareb  Lounned Opposite chromachie Med Part Tail Shareb  Lounned Opposite Chromachie Med Part Tail Shareb  Lounned Opposite Chromachie Med Part Tail Shareb  Lounned Shareb Down Whelet Chromachie Med Part Tail Shareb  Lounned Shareb Down Whelet Chromachie Med Part Tail Shareb  Lounned Shareb Down Whelet Chromachie Med Part Tail Shareb  Lounned Shareb Down Whelet Chromachie Med Part Tail Shareb  Lounned Shareb Down Whelet Chromachie Med Part Tail Shareb  Riverine Chromachie Tail Part Part Tail Shareb  Riverine Chromachie Med Part Tail Shareb  Riverine Chromachie Tail Shareb  Riverine Chromachie Med Part Tail Shareb  Riverine Chromachie Med |                                         |
| Secretary   Commanded Michael Michae   |                                         |
| Riverine Choracy We Chromasolite Shillow Fall Shinds Choracy (Sheep Willow Fall Shinds Fal |                                         |
| Biverine Loumy Word Circumsclide William Vall Slumb  Were Grand-Grand-Grand-Gride William Vall Slumb  By Straine Converted Fourth World Circumsclide Miles Fourth-Special Fourth  Reveral Converted Circumsclide Miles Fourth-Special Fourth  Reveral Converted Strain Fourth  Reveral Converted Strain Fourth-Special Fourth  Reveral Converted Strain  Reveral Converted  |                                         |
| Stront   Common   Stront   Stront   Common   Stront   Common   Stront   Stront   Common   Stront   Stront   Common   Stront   S   |                                         |
| Riverine Louny Wet Circumscide Willow Tall Shrub  Riverine Camerickie Willow Tall Shrub  Riverine Camerickie Willow Tall Shrub  Riverine Camerickie Med Spruce-Plophur  Riverine Camerickie White Spruce-Chophur  Riverine Camerickie White Spruce-Millow  Riverine Camerickie White Spruce-Millow  Riverine Camerickie White Spruce-Millow  Riverine Camerickie White Spruce-Chost  Riverine Camerickie White Spruce-Chost  Riverine Camerickie White Spruce-Chost  Riverine Camerickie White Spruce-Shrubliose  Riverine Camerickie White Spruce-Chost  Riverine Cam |                                         |
| Skycrine (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly-louny) Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly Motet Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly World Circumscides (Willow Tall Shrunb Land)  By Cycline (charachly World Circumscides (Willow Tall Shrunb)  By Cycline (charachly  |                                         |
| With circums Charachy Word Circumscide Wilsow Tail Shrub  With circumscian Appears Commercials Wilsow Tail Shrub  With circumscian Appears Circumscials Wind |                                         |
| Wisconia Lounny Wisconianscidis Williamy Wild Circumscidis Wild Flamburg Wild Since Plant Wild Williams William |                                         |
| Figure 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
| Riverine Loamy Wet Circumacidic Willow Tall Shrub  Riverine Charachyloung Most Circumacidic Willow Tall Shrub  Riverine Charachyloung Word Circumacidic Willow Tall Shrub  Riverine Charachyloung Most Circumacidic Shruce  Riverine Charachyloung Most Circumacidic White Sprace-Willow Forst  Riverine Charachyloung Wilder Circumacidic White Sprace-Willow Forst  Riverine Charachyloung Wilder Circumacidic White Sprace-Willow Forst  Riverine Charachyloung Wilder Circumacidic White Sprace-Public William  Riverine Charachyloung Wilder Circumacidic White Sprace-Public William  Riverine Charachyloung Wilder Circumacidic William  Riverine Charachyloung Wilder Circumacidic White Sprace-Public William  Riverine Charachyloung William  Riverine Charachyloung William William  Riverine Charachyloung William Willia |                                         |
| Riverine Loamy Wet Circumscide Willow Tall Shrub  Riverine Caractic Circumscide Willow Tall Shrub  Riverine Caractic Circumscide Wiley Was a Language and Languag |                                         |
| Riverine Loamy Wet Circumacidic Willow Tall Shrub  Riverine Loamy Wet Circumacidic Willow Tall Shrub  Riverine Caracily-loamy Moist Circumacidic Miles Tall Shrub  Loam And Order-Willow Tall Shrub  Loam And Order-Willow Tall Shrub  Riverine Loamy Moist Circumacidic Adder-Willow Tall Shrub  Caracily-loamy Moist Circumacidic Adder-Willow Tall Shrub  Riverine Caracily-loamy Moist Circumacidic Miles Tall Shrub  Caracily-loamy Moist Circumacidic Miles Tall Shrub  Caracily-loamy Moist Circumacidic Miles Tall Shrub  Caracily-loamy Moist Circumacidic Miles Poplar Forest  Caracily-loamy Moist Circumacidic Shruce-Appen  |                                         |
| Riverine Loamy Wet Circumacidie Willow Tall Shrub   Riverine Loamy Wet Circumacidie Willow Tall Shrub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| Riverine Loamy Wet Circumacidic Willow Tall Shrub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| Riverine Louny Wet Circumacide Willow Tall Shrub  Riverine Louny Wet Circumacide Wild will Shrub  Riverine Circumja Abota Circumacide Wild Tall Shrub  Lowland Organic-rich Wet Circumacide Abder Tall Shrub  Lowland Organic-rich Wet Circumacide Abder Tall Shrub  Riverine Circumacide Abder Tall Shrub  Riverine Circumacide Abder Tall Shrub  Lowland Organic-rich Wet Circumacide Abder Tall Shrub  Riverine Circumacide Shrub Poecat  Circumacide Circumacide Shrub Foecat  |                                         |
| Riverine Loamy Wet Circumacidic Willow Tall Shrub  Riverine Carvelly-leamy Most Circumacidic Willow Tall Shrub  Riverine Carvelly-leamy Word Circumacidic Wilder Tall Shrub  Load Rodey-leamy Most Circumacidic Mider Tall Shrub  Load Rodey-leamy Most Circumacidic Mider Tall Shrub  Load Rodey-leamy Most Circumacidic Mider Tall Shrub  Riverine Loamy Most Circumacidic Mider Tall Shrub  Load Rodey-leamy Most Circumacidic Mider Tall Shrub  Riverine Loamy Most Circumacidic Mider Tall Shrub  Loamy Most Circumacidic Mider Tall Shrub  Riverine Loamy Most Circumacidic Birch Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| Riverine Loamy Wet Circumacidis Willow Tall Shrub  As a s s s s s s s s s s s s s s s s s s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| Riverine Loamy Wet Circumacidie Willow Tall Shrub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| Riverine Loamy Wet Circumacidie Willow Tall Shrub  Riverine Convelly-loamy Wet Circumacidie Willow Tall Shrub    Riverine Convelly-loamy Weist Circumacidie Willow Tall Shrub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| Riverine Losany Wet Circumasidio Willow Tall Shrub  Riverine Convelly-losany Moist Circumalicities Willow Tall Shrub  Riverine Convelly-losany Moist Circumanicities Willow Tall Shrub  L L L L L L L L L L L L L L L L L L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| Riverine Loamy Wet Circumacidis Williams and Shareh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| Riverine Loamy Wet Circumacidis Willow Tall Shrub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| drad2 [left wellist objectment] bioM ware I knoted I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
| Upland Rocky-louny, Most Circumscript: Blacky-louny, Most Circumscript: Blackoim Meadow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Lowland Organic-rich Wet Circumacidic Willow Low Shrub  Lacusrine Loamy Wet Circumacidic Blucjoint Meadow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| P. P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
| The control of the co |                                         |
| Activities Circumscriptic Birach-Willow Low Shrub  Riverine Losany Moist Circumscriptic Birach-Willow Low Shrub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| durif would beforemung 1) this diversimenty burson 2. — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
| drunt's word autoescend-faithed labely as look quanti-queed banded or or word and autoescend-faithed labely as look quanti-queed banded or or word and autoescend and autoescend part of the control of t |                                         |
| dunt 8 word, autoconscient denial subsists by the dissiming to harden — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| dunid was disting & subset in the Work of Sood Build I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
| durit2 shoesuT-draitd Tuewd sibirA kiolM dair-sinegrO bnulqU = 2 \( \subseteq \times \text{ct} \ \sigma \times \circ \) = \( \supseteq \supseteq \times \tin |                                         |
| Coastal Sandy Moist Circumacidic Crowberry Dwarf Shrub  Tholand Turanic Acidic Transfer Shrub  Tholand Turanic Acidic Transfer Shrub  Tholand Turanic Shrub  Tho |                                         |
| Applied Yang Applied The Applied The Applied The Applied The Applied A |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| annic james de discontrate de la contrate del la contrate de la contrate del la contrate de la contrate del la contrate de la  |                                         |
| Lypitand Rocky-Jouany, Moist Alladine Sedge-Jouany, Moist Alladine Sedge-Jouany, Moist Alladine Sedge-Jouany, Moist Circumneuntal Willow Dwart Shrub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| quay, pased, a onlient year for the pase of the pase o |                                         |
| annis (Barka Saka Ziminek Act Astron andre 4 –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
| Acceptance all registrations and the second and the |                                         |
| Reference Cody of National Parlies Barcars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| strained submittee (ed. 500-0) and de-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
| Applies and Applie |                                         |
| served antick (or good and)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| Appine Booky Dry Mafte Burrers  Appine Booky Dry Mafte Burrers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |



Appendix 10. Map accuracy assessed by tabulating mapped ecotype against ground plots used to create the map.

| l pixels<br>perrect                                                             | %S<br>287                                           | 177    | 3                               | %<br>68<br>I<br>901                       | %<br>001<br>S<br>681              | %<br>56<br>161                              | 2 5      |                                                                            | %<br>98<br>92                                                | %<br>96<br>611 | %<br>99<br>∠9 | %<br>001<br>5<br>5<br>5<br>5<br>6 | 9 (<br>EE ( | %<br>59<br>5                        | St                             | 1425 | ì           | %<br>IS<br>7 178                                           | %<br>SZ<br>09t | %<br>61<br>511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %<br>87<br>721           | %<br>6Z<br>6L                                   | %<br>26<br>78                     | 100        | %<br>bL<br>9L                                              | 6 1         | 16                                | %<br>. 1/5                                   | %<br>16<br>7/1 | %<br>16<br>087        | %<br>8S<br>90Z                | 6<br>9 :<br>11 : | 9 8<br>El S                             | 08     | %<br>5<br>081  | 649                                                 | 6 1                                          | ۷ 8                       | %<br>62<br>90       | %<br>19<br>6<br>6S1 | %<br>E6<br>L<br>ELI                                 | 790                                                 | 3 (                                       | %<br>t/8<br>5 9<br>81                       | %<br>t/L<br>808 | %<br>       | %<br>88<br>189 |                        |    |
|---------------------------------------------------------------------------------|-----------------------------------------------------|--------|---------------------------------|-------------------------------------------|-----------------------------------|---------------------------------------------|----------|----------------------------------------------------------------------------|--------------------------------------------------------------|----------------|---------------|-----------------------------------|-------------|-------------------------------------|--------------------------------|------|-------------|------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------|-----------------------------------|------------|------------------------------------------------------------|-------------|-----------------------------------|----------------------------------------------|----------------|-----------------------|-------------------------------|------------------|-----------------------------------------|--------|----------------|-----------------------------------------------------|----------------------------------------------|---------------------------|---------------------|---------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------------------------|---------------------------------------------|-----------------|-------------|----------------|------------------------|----|
| ens<br>nd Sandy Dry Alkaline                                                    |                                                     |        |                                 |                                           |                                   |                                             |          |                                                                            |                                                              |                |               |                                   |             |                                     |                                |      |             |                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                 |                                   |            |                                                            |             |                                   |                                              |                |                       |                               |                  |                                         |        |                |                                                     |                                              |                           |                     |                     |                                                     |                                                     |                                           |                                             |                 |             |                |                        | 25 |
| nd Sandy Dry Acidic White<br>ce-Lichen Woodland                                 |                                                     |        |                                 |                                           |                                   |                                             |          |                                                                            |                                                              |                |               |                                   |             |                                     | 99                             |      |             |                                                            | 7              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                 |                                   |            |                                                            |             |                                   |                                              |                |                       |                               |                  |                                         |        |                |                                                     |                                              |                           |                     |                     |                                                     |                                                     | ō                                         |                                             | l               | 8           |                | b91                    |    |
| nd Rocky-loamy Moist<br>imalkaline White Spruce-<br>ow Forest                   |                                                     |        |                                 |                                           |                                   |                                             |          |                                                                            |                                                              |                |               |                                   |             |                                     | Þ                              | •    |             | 7                                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                 |                                   |            |                                                            |             |                                   |                                              |                |                       |                               |                  |                                         |        |                | 3                                                   | 1                                            |                           | 3                   |                     | 10                                                  | 7                                                   | l t                                       | 81                                          | 13              | 55          | 181            |                        |    |
| imacidic White Spruce-<br>iceous Forest<br>ad Bosky Logict                      |                                                     |        |                                 |                                           |                                   |                                             |          |                                                                            |                                                              |                |               |                                   |             |                                     | L                              |      | Ξ           | ٤٤                                                         | 77             | Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Þ                        |                                                 |                                   |            |                                                            |             |                                   |                                              |                |                       |                               |                  |                                         |        |                |                                                     |                                              | Þ                         | 67                  |                     | ι                                                   |                                                     |                                           |                                             | 11              | 968         | 22             | 9                      |    |
| ımacidic Spruce-Birch Forest<br>nd Rocky-loamy Moist                            |                                                     |        |                                 |                                           |                                   |                                             |          |                                                                            |                                                              |                |               |                                   | L           | ٤١                                  |                                |      |             | ι                                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۲۲                       |                                                 |                                   |            |                                                            |             |                                   |                                              |                |                       |                               |                  |                                         |        |                |                                                     |                                              |                           | ι                   |                     |                                                     |                                                     |                                           | 2                                           | 877             | 6           | S              | ι                      |    |
| ımacidic Birch-Willow Low<br>b<br>nd Rocky-loamy Moist                          |                                                     |        |                                 | ι                                         |                                   | 9                                           | 9        |                                                                            | ι                                                            |                |               |                                   |             |                                     |                                |      |             | ι                                                          |                | Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01⁄2                     |                                                 |                                   |            |                                                            |             |                                   |                                              |                |                       |                               |                  |                                         |        |                | 77                                                  | 7 7                                          | 87                        | 97                  | 15                  | 6 l                                                 |                                                     | 56                                        | 86                                          |                 | 3           | 10             |                        |    |
| macidic Birch Forest<br>nd Rocky-loamy Moist<br>macidic Birch-Willow Low        |                                                     |        |                                 |                                           |                                   |                                             |          |                                                                            |                                                              |                |               |                                   |             |                                     | 3                              |      |             | Z                                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                 |                                   |            |                                                            |             |                                   |                                              |                |                       |                               |                  |                                         |        |                |                                                     |                                              | 7                         |                     |                     | 7                                                   | 97                                                  | (                                         |                                             |                 |             |                |                        |    |
| b<br>nd Rocky-loamy Moist                                                       |                                                     |        |                                 |                                           |                                   |                                             |          |                                                                            |                                                              |                |               |                                   |             |                                     | •                              |      |             |                                                            |                | 9١                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                 |                                   |            | bι                                                         | 1           |                                   |                                              | S              | 71                    | 35                            | : ;              | 7                                       |        |                | 7                                                   |                                              |                           | S                   |                     | 8                                                   | ١.                                                  | 7 4                                       | 0t                                          | ı               |             | b              |                        |    |
| wobsan suy to see 50 miles<br>by Socky-loamy Moist<br>macidic Alder-Willow Tall |                                                     | _      |                                 |                                           |                                   |                                             |          |                                                                            |                                                              |                |               |                                   |             |                                     |                                |      |             |                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                 |                                   |            |                                                            |             |                                   |                                              |                |                       |                               |                  |                                         |        |                | ,                                                   | _                                            |                           |                     | 505                 | 191                                                 |                                                     |                                           |                                             |                 |             |                | 0.1                    |    |
| b<br>nd Rocky-loamy Moist<br>line Sedge-Dryas Meadow                            |                                                     | S      |                                 | 0S<br>6                                   |                                   |                                             |          |                                                                            | L                                                            | Þ              |               |                                   | ı           | ا کا<br>ا                           |                                |      | ,           | 61⁄2                                                       | ı              | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>71                  |                                                 |                                   |            |                                                            |             |                                   |                                              |                |                       |                               |                  |                                         |        |                | L                                                   | E 1                                          | ۱۱<br>0 <mark>7 کا</mark> | 100                 | 586                 | 8                                                   |                                                     |                                           | 6                                           |                 | 89          | ٤              | 01                     |    |
| nd Rocky-loamy Moist<br>ic Birch-Ericaceous Low<br>L                            |                                                     |        |                                 | Ü                                         |                                   |                                             |          |                                                                            |                                                              |                |               |                                   |             | ٠                                   | _                              |      |             | Ον                                                         | ٠              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cı                       |                                                 |                                   |            |                                                            |             |                                   |                                              |                |                       |                               |                  |                                         |        |                |                                                     | _                                            | 3 00                      | . 9.                |                     | 0                                                   |                                                     |                                           | Ü                                           |                 | 63          |                |                        |    |
| nd Organic-rich Moist Acidic<br>rf Birch-Tussock Shrub                          |                                                     | ι      |                                 | Þ                                         |                                   |                                             |          |                                                                            | 7                                                            |                |               |                                   |             | 2                                   |                                |      |             | 8                                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | ε                                               |                                   |            |                                                            |             |                                   |                                              |                |                       |                               | 7                | 9                                       | ı      |                | 01                                                  | 33                                           | S 28                      | Þ                   |                     | S                                                   |                                                     |                                           | 81                                          |                 | L           |                |                        |    |
| ine Water<br>nd Loamy Moist<br>malkaline Willow Low<br>b                        |                                                     |        |                                 | Þ                                         |                                   |                                             |          |                                                                            | 7                                                            |                |               |                                   |             | L                                   | 11                             |      |             | ÞΙ                                                         |                | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Þ                        | 97                                              |                                   |            |                                                            |             |                                   |                                              |                |                       |                               |                  |                                         |        | ٤              | <b>78</b> 7                                         | 7 1                                          | 67                        | S                   | L                   | 7                                                   |                                                     | l                                         | II                                          |                 |             |                |                        |    |
| ine Loamy Wet<br>macidic Wet Sedge<br>wow                                       |                                                     |        |                                 |                                           |                                   |                                             |          |                                                                            |                                                              |                |               |                                   |             |                                     | ı                              |      |             |                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                 |                                   |            |                                                            |             |                                   |                                              | 7              |                       |                               |                  | 8                                       | S8     | 801            |                                                     |                                              |                           |                     |                     |                                                     |                                                     |                                           |                                             |                 |             |                |                        |    |
| macidic Birch-Willow Low<br>o<br>ine Loamy Wet                                  |                                                     |        |                                 |                                           |                                   |                                             |          |                                                                            |                                                              |                |               |                                   |             |                                     | 6                              |      |             |                                                            |                | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54                       |                                                 |                                   |            |                                                            |             |                                   |                                              |                |                       |                               | L                | 8                                       | l      |                | Þ                                                   | l 1                                          | 01                        | 81                  |                     | L                                                   |                                                     | 2                                         | 23                                          |                 |             |                |                        |    |
| durdS Ilaer Tall Shrub<br>rine Loamy Moist                                      |                                                     |        |                                 |                                           |                                   |                                             |          |                                                                            |                                                              |                |               |                                   |             |                                     |                                |      |             |                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                 |                                   |            |                                                            |             |                                   |                                              |                | Z                     | 150                           |                  |                                         |        |                |                                                     |                                              |                           |                     |                     |                                                     |                                                     |                                           |                                             |                 |             |                |                        |    |
| malkaline Willow Tall<br>b<br>ine Loamy Moist                                   |                                                     |        |                                 |                                           |                                   |                                             |          |                                                                            |                                                              |                |               |                                   |             |                                     |                                |      |             | S                                                          |                | s١                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                 |                                   |            | 9                                                          | 9           |                                   |                                              |                | <b>₽S</b> Z           | ε                             | ,                |                                         | ı      |                |                                                     |                                              |                           | 8                   |                     | LΦ                                                  |                                                     |                                           | 7                                           | 7               | 6           | 8              |                        |    |
| d<br>rine Gravelly-loamy Moist                                                  |                                                     |        |                                 |                                           |                                   |                                             |          |                                                                            | ı                                                            |                |               |                                   | L           | ιι                                  | 8                              | ,    |             | S                                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                        | 97                                              |                                   |            |                                                            |             |                                   |                                              | 651            |                       |                               |                  |                                         |        |                | ιι                                                  |                                              | 6                         | S                   | 7                   | 50                                                  |                                                     | l                                         | 01                                          |                 |             |                |                        |    |
| ine Gravelly-loamy Moist<br>walkaline Willow Low                                |                                                     |        |                                 |                                           |                                   |                                             |          |                                                                            |                                                              |                |               |                                   |             |                                     |                                |      |             |                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                 |                                   |            |                                                            |             |                                   |                                              |                |                       |                               |                  |                                         |        |                |                                                     |                                              |                           |                     |                     |                                                     |                                                     |                                           |                                             |                 |             |                |                        |    |
| ning Polygon Ecotype                                                            | Alpine Lake<br>Alpine Rocky Circumneutral Wet Sedge | Meadow | Alpine Rocky Dry Acidic Barrens | Alpine Roc                                | Alpine Rocky Dry Alkaline Barrens | Alpine Roc                                  |          | Alpine Roc<br>Alpine Roc                                                   | Dryas Dwa<br>Albine Roc                                      | Dwarf Shrub    | Meadow        | Coastal Water                     | >           | Lowland Acidic Ericaceous Shrub Bog | Lowland Circumacidic Sedge Fen | -    | Lowland O   | Ericaceous Low Shrub Lowland Organic-rich Wet Acidic Black | Forest         | Tall Shrub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Willow Lov               | Lowland O                                       | Riverine Gr<br>Shrub              | Riverine G | Riverine Gravelly-Loamy Moist Circumalkaline Poplar Forest | Riverine G  | Riverine Gravelly-Loa             | White Spruce-Willow<br>Riverine Gravelly-Loa |                | Willow Tall Shr       | Shrub                         | Riverine Lo      | Riverine Lo                             | Meadow | Riverine Water | Low Shrub                                           | Upland Org                                   | Tussock Sh<br>Upland Ro   | Ericaceous          | Dryas Meadow        | Willow Tal                                          | Upland Ro                                           | Upland Ro                                 | Willow Low<br>Upland Rocl                   | Spruce-Bird     | Spruce-Eric | White Spru     | Upland Sar<br>Woodland |    |
|                                                                                 | e<br>Ky Circui                                      | •      | ky Dry A                        | ky Dry A                                  | ky Dry A                          | ky Dry A                                    |          | ky Dry N<br>ky Moist                                                       | rf Shrub<br>kv Moist                                         | Jb Wet         | מוווץ עעבו    | ter                               |             | cidic Eric                          | ircumaci                       | -    | rganic-ri   | Low Shr<br>rganic-ri                                       |                | Shrub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Low Shrub                | rganic-ri                                       | ravelly D                         | avelly N   | ravelly-Lر<br>؛st                                          | ravelly-Lo  | Gravelly-Lo                       | ruce-Willo،<br>Gravelly-L                    | w Shrub        | - 듀 약                 | amy Mc                        | amy Mo           | amy We                                  |        | ater           | amy Moi                                             | ganic-rid                                    | rub<br>cky-Loan           | Low Shr             | dow -               | CKy-Loan                                            | cky-Loan                                            | cky-Loan                                  | w Shrub<br>cky-Loan                         | Birch Forest    | aceous For  | ିନ <b>ଦ୍</b>   | indy Dry /             |    |
|                                                                                 | nneutral                                            |        | cidic Barr                      | cidic Drya                                | lkaline Ba                        | lkaline D                                   |          | 1afic Barn<br>Circuma                                                      | Circumn                                                      | Brackish       | DIACKISI      |                                   |             | aceous Si                           | dic Sedge                      |      | ch Wet A    | ub<br>ch Wet A                                             | ch Wa+         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cu wet c                 | ch Wet C                                        | ry Alkalin                        | oist Circu | oamy Mo                                                    | oamy Moi    | ar<br>ɔamy Moi                    | yamy Moi                                     |                |                       | ist Circun                    | ist Circun       | t Circuma                               |        | +              | st Circum                                           | h Moist A                                    | າy Moist /                | ub d                | ווא ואוסופרי        | ny Moist (                                          | ny Moist (                                          | າy Moist ເ                                | ην Moist (                                  | Moist o         | orest       | w Forest       | Acidic Wh              |    |
|                                                                                 | Wet Sedge                                           |        | ens                             | Alpine Rocky Dry Acidic Dryas Dwarf Shrub | arrens                            | Alpine Rocky Dry Alkaline Dryas Dwarf Shrub | yas Dwai | lpine Rocky Dry Mafic Barrens<br>lpine Rocky Moist Circumacidic Ericaceous | ryas Dwarf Shrub<br>Ibine Rockv Moist Circumneutral Cassione | Sedge-Gra      | Meadow        |                                   | ,           | hrub Bog                            | Fen                            |      | cidic Birch | Wet Acidic Black Spruce                                    |                | week disconlined and a second a | vvet Circumacidic Birch- | land Organic-rich Wet Circumacidic Willow Shrub | Gravelly Dry Alkaline Dryas Dwarf | ımalkaline | ist Circuma                                                | ist Circuma | lar<br>_oamy Moist Circumalkaline | llow<br>-Loamv Moist Circumalkaline          |                | Cainy worse encommand | Moist Circumacidic Aider Fail | w. Shriib        | verine Loamy Wet Circumacidic Wet Sedge |        | alkalina M     | pland Loamy Moist Circumalkaline Willow<br>ow Shrub | pland Organic-rich Moist Acidic Dwarf Birch- | Acidic Birch              | ricaceous Low Shrub | ryas Meadow         | Rocky-Loamy Moist Circumacidic Alder-<br>Tall Shrub | pland Rocky-Loamy Moist Circumacidic Birch<br>prest | and Rocky-Loamy Moist Circumacidic Birch- | Low Shrub<br>Rocky-Loamy Moist Circumacidic | ircimacid       | est         | Forest         | White Spruce-Lichen    |    |
|                                                                                 |                                                     |        |                                 | hrub                                      |                                   | Shrub                                       | 2        | -suo-                                                                      | iope                                                         | Ž              | 8             |                                   |             |                                     |                                |      | '           | Spruce                                                     | > -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c Birch-                 | c Willow                                        | warf                              | Barrens    | alkaline                                                   | alkaline    | lkaline                           | ılkaline                                     | 5              |                       | eriali                        | :h-Willov        | Sedge                                   |        |                | MOIII                                               | ਰ Birch-                                     | 7                         | 2                   | , de                | iic Alder                                           | lic Birch                                           | lic Birch-                                | ς.                                          | ir White        | : 7         |                | -Lichen                |    |
|                                                                                 |                                                     |        |                                 |                                           |                                   |                                             |          |                                                                            |                                                              |                |               |                                   |             |                                     |                                |      |             |                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | _ `                                             |                                   |            |                                                            |             |                                   |                                              |                |                       |                               | 2                |                                         |        |                |                                                     |                                              |                           |                     |                     | _ '                                                 |                                                     |                                           |                                             | -               |             |                |                        |    |

.ff xibnəqqA

%16 %68 %98 %16 %98 %t/ %19 %89 %St %001 %16 %001 %98 %59 %t8 %t6 %t/ %16 %001 %96 %99 %5/ %t/ %86 %09 % Correct 32 190 832 280 Total pixels Z6ZZ 80E 66S1 ZSZ 975 230 2325 1888 1921 288 1825 331 1881 1881 ۷9 09t 321 1737 9 81 ۷١ 7 7 ٤١ LÞ Willow Tall Shrub 738 6 6١ 81 33 40 30 Þ J 55 3 Willow Low Shrub 99 7 8 7 White Spruce-Lichen Woodland 7 S ς White Spruce-Balsam Poplar Forest ε 25 1973 71 ς ε ٥١ 9 ١L 90l ll b White Spruce Forest 87 τl 228 7 Spruce-Paper Birch Forest l ٤١ 77 ٥l ۷l ς ١٤ 20 L 10ل Sedge-Dryas Meadow S S 0t 9 7 7LL 81 Sedge Wet Meadow 79 6 23 uəച əbpəç l 9 747 L ε ۷l 9 Partially Vegetated l 6/l 8 6 7 ε 7 7 Paper Birch Forest Fresh Water Ericaceous-Dryas Dwart Shrub 10 77 τl 6 7 ς 33 L Ericaceous Shrub Bog 67 ٤١ 71 3 10 25 84 52 23 9 Dwarf Birch-Willow Low Shrub ε ٤١ L 71 7 7 S 71 Þ Dwarf Birch-Tussock Shrub <del>(</del>6 8 94 17 ۲2 815 Þ L Dwarf Birch-Ericaceous Low Shrub ÞΙ 3 34 9 9 34 32 52 35 1173 Dryas Dwarf Shrub 392 6676 Coastal Water ٥١ 7 ε ε Cassiope Dwarf Shrub l Brackish Sedge-Grass Wet Meadow ٤ Black Spruce Forest 081 94 l 3 S۲ Balsam Poplar Forest 71 ۷l S τl 8191 817 l 77 L Alder-Willow Tall Shrub L Þ 163 10 ε L Alder Tall Shrub Willow Tall Shrub Willow Low Shrub Spruce-Paper Birch Forest Dwarf Birch-Ericaceous Low Shrub Brackish Sedge-Grass Wet Meadow Black Spruce Forest Balsam Poplar Forest Alder Tall Shrub Training Polygon Vegetation Class White Spruce-Balsam Poplar Forest Sedge Fen White Spruce Forest Dwarf Birch-Willow Low Shrub Dwarf Birch-Tussock Shrub Dryas Dwarf Shrub Coastal Water White Spruce-Lichen \lder-Willow Tall Shrub iricaceous-Dryas Dwarf Shrub ricaceous Shrub Bog Cassiope Dwarf Shrub edge Wet Meadow artially Vegetated aper Birch Forest resh Water Meadow

Map accuracy assessed by tabulating mapped vegetation type against ground plots used to create the map.



# **National Park Service U.S. Department of the Interior**



Natural Resource Program Center 1201 Oak Ridge Drive, Suite 150 Fort Collins, Colorado 80525

www.nature.nps.gov