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1 Introduction to High Energy Astrophysics

LECTURE OUTLINE

• Intended learning outcomes

• Recommended literature

• History of X-rays

• Classification and key terminology

Astronomy 345: High Energy Astrophysics I
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1.1 Course aims

• To introduce students to the physical processes responsible for X-

Ray production, as a basis for the applications discussed in X-Ray 

Astrophysics II

• To introduce students to the concept of a reaction cross-section, and 

to explain how to calculate X-Ray emission rates and spectra from 

specified source conditions

Further details are also available in Course Handbook

Astronomy 345: High Energy Astrophysics I
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1.2 Recommended literature and useful resources:

These lecture notes are following the material from:

Malcolm S. Longair, High energy astrophysics, volume 

1 & 2, High energy astrophysics, 1992, UofG Library 

link or e.g. Amazon

Astronomy 345: High Energy Astrophysics I

http://tinyurl.com/yxwdwdlm
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http://www.amazon.com/High-Energy-Astrophysics-Particles-Detection/dp/0521387736
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1.3 A Brief History of X-rays

Wilhelm Roentgen

• Oct 1895 Wilhelm Roentgen begins to study 

Cathode Rays (discovered decades earlier)

• 8 Nov 1895 Roentgen notices glowing flu-

orescent screen some distance away from 

cathode ray tube - realises he has discov-

ered a new phenomenon: X-rays

• 22 Dec 1895 Roentgen photographs his 

wife’s hand - The first X-Ray Picture

Astronomy 345: High Energy Astrophysics I
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First X-ray Picture

Print of Wilhelm Rontgen’s first X-ray, 

of his wife’s hand, taken on 22 De-

cember 1895 and presented to Ludwig 

Zehnder of the Physik Institut, Univer-

sity of Freiburg, on 1 January 1896

Astronomy 345: High Energy Astrophysics I



Lecture: 1 Introduction to High Energy Astrophysics 8

X-ray timeline:

• 28 Dec 1895 Discovery announced at Wurzburg Physico-Medical Soci-

ety

• 4 Jan 1896 Discovery announced at Berlin Physical Society

• Jan 1896 Discovery published in newspapers around the world

• 2 Mar 1896 Henri Becquerel discovers natural radioactivity of Uranium

Astronomy 345: High Energy Astrophysics I
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1.4 From the past till now

• 1901 First ever Nobel Prize in Physics awarded to Roentgen

• 1903 Third Nobel Prize in Physics awarded to Becquerel, Pierre and 

Marie Curie

• ...

• 1999 Launch of CHANDRA and XMM X-ray satellites

• 2002 Launch of RHESSI X-ray and gamma-ray satellite

• 2008 Launch of Fermi X-ray and gamma-ray satellite

• 2012 Launch of NuSTAR X-ray satellite by NASA

• February 2020 Solar Orbiter with STIX X-ray imager

Astronomy 345: High Energy Astrophysics I
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1.5 X-ray Region of Electromagnetic Spectrum

Wavelength 𝜆:
0.01nm ≲ 𝜆 ≲ 10nm

0.1 Å ≲ 𝜆 ≲ 100Å

where 1nm = 10−9 m, 1Å = 10−10 m.

Corresponding photon energy:

𝐸 = ℎ𝜈 = ℎ𝑐
𝜆 = 6.63 × 10−34 × 3 × 108

1.6 × 10−19𝜆[m]
[eV] = 12.4

𝜆[Å]
[keV]

where 1 eV = 1.602 × 10−19 J.

1 keV = 103 eV, 1 MeV = 106 eV, 1 GeV = 109 eV, 1 TeV = 1012 eV

Astronomy 345: High Energy Astrophysics I
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Figure 1.1:  Image of Crab nebula at different wavelengths/frequencies  Chandra, Harvard

Astronomy 345: High Energy Astrophysics I

http://chandra.harvard.edu/photo/1999/0052/
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1.6 Classification/terminology

 Energy range  Wavelength range

Soft X-rays 0.1 − 1 keV ∼ 100 − 10Å
Classical X-rays 1 − 10 keV ∼ 10 − 1Å
Hard X-rays 10 − 100 keV ∼ 1 − 0.1Å
Gamma-rays (𝛾-rays) ≳ 0.1 MeV ≲ 0.1Å

Note that the classification/terminology is somewhat different in various 

areas of Astrophysics.

Energy ⟺ Temperature:

𝐸 ≃ 𝑘𝐵𝑇 ⟹ 1keV ≃ 107K

where 𝑘𝐵 = 1.38 × 10−23 J/K Boltzmann constant.

Hence to produce X-rays we need very high temperatures!

Astronomy 345: High Energy Astrophysics I
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1.7 X-ray and atmosphere

Only a few windows in the E-M spectrum exist for ground-based observations: 

optical and radio (see Figure 1.2).

Figure 1.2: X-ray and gamma-ray penetration via 
atmosphere

Space-based observations opened 

up rest of E-M Spectrum.

Classical X-rays:

• These are readily absorbed 

(photoelectric absorption) by gases, 

liquids and solids

• Unable to penetrate the Earth’s 

atmosphere

• Observations must be made 

at altitudes above 100 km using 

rockets or satellites

Astronomy 345: High Energy Astrophysics I
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Hard X-rays:

• More penetrating than classi-

cal X-rays. Observations can be 

made from e.g. balloon platforms at ∼ 30 km altitude

Soft X-rays:

• Much weaker flux than classical or hard X-rays. Strongly attenuated by 

interstellar gas in the galaxy

Astronomy 345: High Energy Astrophysics I
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1.8 Useful wavelength range for Astronomy

Useful range for obtaining astronomical information:

10−21m ≲ 𝜆 ≲ 104m

• For 𝜆 ≲ 10−21m  (Energy ≳ 1015 eV), 𝛾-rays readily destroyed by 

collisions with CMBR photons, producing electron-positron pairs

• For 𝜆 ≳ 104m , radio waves are absorbed by solar wind plasma (cut-off 

frequency near Earth ∼ 20 kHz) . Earth ionosphere produces cut-off 

near 10 MHz

Astronomy 345: High Energy Astrophysics I
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1.9 Luminosity of a bright X-ray star

Scorpius X-1 delivers roughly 106 m−2 s−1 classical X-ray photons to the 

Earth.

Since the typical energy of classical X-ray photon

𝐸𝑋1 = 5keV = 8 × 10−16J ,

the energy flux is

𝐹𝑋1 = 8 × 10−16 × 106 = 8 × 10−10W/m
2

Given the distance 𝐷 = 2800 pc [recall 1 pc=3.1 × 1016 m]

Luminocity: 𝐿𝑋1 = 4𝜋𝐷2𝐹 = 4𝜋(9 × 1019)2 × 8 × 10−10W ≃ 8 × 1031W

hence, recalling that 𝐿⊙ ≃ 4 × 1026 W

𝐿𝑋1 ≃ 105𝐿⊙
Astronomy 345: High Energy Astrophysics I
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Bright X-ray sources in our galaxy similar to Sco X-1 include:

• compact binaries

• supernova remnants

But these are sparse. The Galaxy contains only 100 X-ray sources with 𝐿 >
1028 W.

Taking as a typical luminosity of a bright X-ray source 𝐿 ∼ 1031 W, the total 

X-ray luminosity for the galaxy

𝐿𝑋 ∼ 1033W

Let us compare this with the total bolometric luminosity of stars

𝐿𝑏𝑜𝑙 ∼ 1011stars × 4 × 1026W ∼ 4 × 1037W

So X-ray emission is only∼ 0.01 % of the bolometric luminosity of the Milky 

Way - i.e. we are not (any more) an active galaxy

Astronomy 345: High Energy Astrophysics I
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2 Observing X-rays in Astrophysics

LECTURE OUTLINE

• Past, present and future high energy observations

• Astrophysical objects at high energies

• X-ray and gamma ray observation techniques: grazing incidence optics, 

collimators

• X-ray spectroscopy

Astronomy 345: High Energy Astrophysics I
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2.1 X-ray Astronomy observations from Space

Rocket experiments started with captured German V2 rockets. (Although 

the flight lasted for only a few minutes)

• 1948 Solar X-rays detected (from the solar corona)

• 1962 Bright X-ray source discovered in Scorpius; star denoted Sco X-1

• 1963 Isotropic X-ray background discovered; Extragalactic Sources; 

X-ray source detected in Crab Nebula

• 1966 X-ray galaxies identified

Astronomy 345: High Energy Astrophysics I
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2.2 Satellite Missions

Since 1970 till present day large number of satellites launched to observe 

various astrophysical objects in X-rays e.g. ROSAT, Yohkoh, SoHo, XMM, 

Chandra, RHESSI,...

Main observational results:

• Huge numbers of sources detected (e.g. 60000 by ROSAT; > 10 times more 

by XMM, Chandra)

• Many X-ray binaries identified (e.g. Cygnus X-1, black hole candidate)

• Detailed observations of solar flares, pulsars, quasars, galaxy clusters, su-

pernova, galaxies, moon, comets...

Astronomy 345: High Energy Astrophysics I
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Figure 2.1: ROSAT X-ray bright sources see ROSAT webpage

Astronomy 345: High Energy Astrophysics I
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Figure 2.2: All sky map of gamma-ray counts above 1 GeV from  NASA Fermi data
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http://fermi.gsfc.nasa.gov/ssc/
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Figure 2.3: Abell galaxy cluster by  Chandra X-ray observatory
Astronomy 345: High Energy Astrophysics I

https://www.nasa.gov/mission_pages/chandra/main/index.html
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Figure 2.4: X-ray jet blasting out of the nucleus of M87  Chandra
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Figure 2.5:  X-ray image of Crab nebula from  Chandra, Harvard

Astronomy 345: High Energy Astrophysics I
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Figure 2.6: GOES soft X-ray flux from the Sun. [Image from NOAA Space Weather 
Prediction Center] REAL-TIME soft X-rays from the Sun

Astronomy 345: High Energy Astrophysics I
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Figure 2.7: SDO and RHESSI ob-
servations of a solar flare: ∼ 106 K 
corona plasma (yellow), 10 keV X-ray 
(red), > 30 keV X-rays (blue) from 
Astronomy & Astrophysics
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http://sdo.gsfc.nasa.gov/
http://hesperia.gsfc.nasa.gov/rhessi3/
http://www.aanda.org/articles/aa/full_html/2011/09/aa17605-11/aa17605-11.html
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Figure 2.8: X-rays are produced by fluorescence when solar X-rays bombard Moon  
Chandra, Harvard

Astronomy 345: High Energy Astrophysics I

http://chandra.harvard.edu/photo/2003/moon/index.html
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2.3 Athena (due for launch in early 2030s)

Figure 2.9:  Athena mission, Athena webpage

Athena (Advanced Telescope 

for High ENergy Astrophysics) 

is the X-ray observatory mis-

sion selected by ESA to ad-

dress the Hot and Energetic 

Universe scientific theme.

Athena (Fig. 2.9) will con-

sist of a single large-aperture 

grazing-incidence X-ray tele-

scope, utilizing a novel tech-

nology (High-performance Si 

pore optics), with 12 m focal length and 5 arcsec HEW on-axis angular reso-

lution.

Astronomy 345: High Energy Astrophysics I
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2.4 Grazing Incidence Optics

Figure 2.10:  Grazing Incidence Optics

For low energy photons 𝐸 <
10 keV, Grazing Incidence Optics 

can be used. Series of nested 

surfaces of highly conducting ma-

terial (e.g. Cu), so that X-ray 

photons reflected for large inci-

dence angles Grazing Incidence 

(Fig. 2.10).

Limited angular resolution (but 

improving all the time, e.g. XMM 

Newton: 5 arcsec resolution (Fig 2.11); also X-ray spectra)

Works OK but only up to a few tens of keV.

Astronomy 345: High Energy Astrophysics I
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Figure 2.11: XMM Newton X-ray optics.

Astronomy 345: High Energy Astrophysics I
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2.5 Mechanical collimators

Figure 2.12:  Mechanical collimator

Mechanical collimators block X-rays 

from unwanted parts of the sky.

The layout of a simple X-ray telescope 

of the type flown on the UHURU and 

Ariel-V satellite is shown in Fig 2.12.

Angle 𝜃 gives angular resolution of 

such telescope.

Proportional counters are used as 

detectors (see Figure 2.12) shielded 

by anti-coincidence detectors.

Astronomy 345: High Energy Astrophysics I
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2.6 Rotating modulating collimators

Figure 2.13: Rotating modulating 
collimator. Two grids modulate in-
coming photon flux.

For example,  Ramaty High Energy Solar Spectroscopic Imager (RHESSI) satel-

lite detectors look at the source through a pair of grids called Rotating Mod-

ulating Collimator (RMC).

Astronomy 345: High Energy Astrophysics I
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As spacecraft spins about once every ∼ 4 sec, artificial modulation of incom-

ing X-ray flux appears in the detectors.

Figure 2.14: Modulation of incoming X-ray flux from a point source using Rotating 
Modulating Collimator (see Fig 2.13).

Astronomy 345: High Energy Astrophysics I
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2.7 RHESSI

Figure 2.15: RHESSI grids see Hur-
ford et al, 2002 for details. Modula-
tion using RMC see Figure 2.13.

RHESSI is designed to investigate particle acceleration and energy release in 

solar flares through imaging and spectroscopy of hard X-ray and gamma-rays 

in the range from 3 keV up to 17 MeV (Lin et al 2002).

Astronomy 345: High Energy Astrophysics I

http://adsabs.harvard.edu/abs/2002SoPh..210...61H
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RHESSI has 9 Ge detectors (see Fig 2.16) and rotating modulating collimators 

allowing angular resolution down to 2.3 arcsec.

Figure 2.16: RHESSI has 9 RMCs for 9 detectors Slats/Slits spacing growing with 
detector (RMC) number angular resolution from  2.3 arcsec (RMC #1) to 180 arcsec 
(RMC #9)

Astronomy 345: High Energy Astrophysics I
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2.8 Germanium detectors X-ray spectroscopy

Hard X-ray photon interacting in the cooled 

semiconductor crystal (e.g. Germanium) re-

leases one or more energetic electrons, which 

lose energy by creating free electron-hole 

pairs. The electrons and holes pulled to each 

electrode by high voltage, creating a current 

pulse proportional to the photon energy. The 

current pulse is amplified and digitized by suit-

able electronics.

For example, RHESSI spacecraft observes solar 

photons from 3 keV to 17 MeV using cooled 

coaxial germanium detectors.

Figure 2.17: RHESSI response matrices. Sample 
responses at 50, 350 and 2500 keV Smith et al, 2002 
for details. Modulation using RMC see Figure 2.13.

Astronomy 345: High Energy Astrophysics I
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3 X-ray emission mechanisms, Black-body emission

LECTURE OUTLINE

• Introduction into high energy emission mechanisms

• Thermal radiation, optical depth, bremsstrahlung, inverse Compton 

scattering, synchrotron radiation

• Black-body emission, X-ray spectrum

Astronomy 345: High Energy Astrophysics I
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3.1 Thermal Mechanisms

Figure 3.1: Maxwellian velocity distribution

Hot gas (plasma) in thermal equi-

librium has a Maxwellian distri-

bution of velocities:

𝑓(𝑣) ∼ 𝑣2 exp (− 𝑚𝑣2
2𝑘𝐵𝑇

)

For X-rays, say 1 keV we have

𝑇 ∼ 107K

We can have 2 regimes: optically 

thick, optically thin.

Astronomy 345: High Energy Astrophysics I
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3.2 Optical depth

Optical depth, 𝜏 gives a measure of how opaque a medium is to radiation 

passing through it.

Recall definition of optical depth from Astronomy 2. The intensity1 of radia-

tion

𝐼(𝜏) = 𝐼0 exp(−𝜏), 𝜏 ∝ 1
𝑙𝑚𝑓𝑝

where 𝑙𝑚𝑓𝑝 is the mean free path of a photon between collisions, 𝐼0 is the 

intensity before absorption or scattering.

• 𝜏 ≪ 1 - optically thin

• 𝜏 ≫ 1 - optically thick

1Recall that intensity 𝐼 is the energy emitted from a source surface element 𝑑𝐴 at position �⃗�, into solid angle 
𝑑Ω in time interval between 𝑡 and 𝑡 + 𝑑𝑡, i.e. 𝑑𝐸 = 𝐼(�⃗�)𝑑𝐴𝑑Ω𝑑𝑡; Specific intensity, 𝐼𝜈 is the intensity 
in the frequency range 𝜈 and 𝜈 + 𝑑𝜈, i.e. 𝑑𝐸 = 𝐼𝜈(�⃗�)𝑑𝐴𝑑Ω𝑑𝑡𝑑𝜈

Astronomy 345: High Energy Astrophysics I
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3.3 Optically Thick and Thin Sources

Depending on optical depth within the emitting source, we distinguish:

Optically thick case:

Photons interact with, and are in thermal equilibrium with, hot gas e.g. black-

body radiation

Optically thin case:

Gas does not appreciably absorb its own radiation. Observed spectrum of 

X-rays is same as spectrum during their production.

Astronomy 345: High Energy Astrophysics I
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3.4 Bremsstrahlung

Figure 3.2:  Bremsstrahlung (free-free) emission in 
Hydrogen plasma. X-rays produced by free-free 
transitions of electrons also known as (thermal) 
bremsstrahlung (a.k.a ‘braking radiation’)

Bremsstrahlung radiation could 

be due to either non-thermal 

electrons or thermal elec-

trons, hence we distinguish 

thermal and non-thermal

bremsstrahlung.

Astronomy 345: High Energy Astrophysics I
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3.5 Non-Thermal bremsstrahlung

Emission of radiation by electrons with a Non-Maxwellian distribution of 

energies is called Non-thermal bremsstrahlung.

Usually a power-law energy distribution is a good model for non-thermal 

particles:

𝑓(𝐸) = 𝐶𝐸−𝛿

where 𝑓(𝐸)𝑑𝐸 is fraction (or number) of particles with energy between 𝐸
and 𝐸 + 𝑑𝐸 and 𝐶 and 𝛿 are constants.

So that the number density is

Total number (or number density) =∫
∞

0
𝑓(𝐸)𝑑𝐸

Astronomy 345: High Energy Astrophysics I
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3.6 Inverse Compton Scattering

Figure 3.3:  Inverse Compton scattering

Inverse Compton Scattering⟺ A low 

energy photon collides with a relativistic 

electron and gains energy at the expense 

of the electron (e.g. radio photons might 

be boosted to X-ray energies)

For Inverse Compton scattering: 𝐸′ < 𝐸
and 𝜈′ > 𝜈

For Compton scattering: 𝐸′ > 𝐸 and 

𝜈′ < 𝜈

For example, in the standard model of 

AGN, hot material forms above the accretion disc and can inverse-Compton 

scatter photons up to X-ray energies.

Astronomy 345: High Energy Astrophysics I
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3.7 Synchrotron Radiation

Figure 3.4:  Synchrotron Radiation

Synchrotron Radiation⟺ Emission 

of radiation by relativistic electrons 

spiralling in a magnetic field.

Radiation is normally forward beamed 

and strongly polarised (generally 

only synchrotron has this property)

For example, synchrotron radiation is 

responsible for X-ray emission from 

supernova remnants (e.g. Crab Nebula) and possibly X-ray continuum emis-

sion of quasars.

Astronomy 345: High Energy Astrophysics I
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3.8 X-ray spectra shape

Figure 3.5:  Typical X-ray spectra.

Power law X-ray spectrum may be 

generated by:

• Synchrotron radiation

• Inverse Compton

• Collisional bremsstrahlung

Spectrum which falls exponentially 

at high energies ⟹ thermal.

Many galactic sources appear to be 

thermal (Fig 3.7, 3.8), but other 

sources e.g. Crab Nebula (Fig 3.6) gives a power law spectrum.

Astronomy 345: High Energy Astrophysics I
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3.9 Examples of X-ray spectra

Figure 3.6:  The Crab nebula spectrum in the 1 keV - 10 MeV energy interval adopted 
from Kuiper, L. et al, 2001

Astronomy 345: High Energy Astrophysics I
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Figure 3.7: Simulated X-ray spectra of solar flare plasma thermal emission for a range of 
plasma temperatures from 10 to 50 MK, from Skinner et al, 2013

Astronomy 345: High Energy Astrophysics I

http://adsabs.harvard.edu/abs/2013arXiv1311.6955S
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Figure 3.8: Extended hard-X-ray emission from XMM-Newton and NuStar in the 
inner few parsecs of the Galaxy, from Perez et al, 2015

Astronomy 345: High Energy Astrophysics I

http://www.nature.com/nature/journal/v520/n7549/fig_tab/nature14353_F3.html
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Figure 3.9: Typical full-Sun flare X-ray spectrum. Dashed: non-thermal spectrum, 
Dotted: Thermal spectrum, from a plasma with temperature T = 20 MK, adopted from 
Holman et al, 2011

Astronomy 345: High Energy Astrophysics I

http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1109.6496
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3.10 Black-body emission

Figure 3.10:  Black-body 
spectra

For Main Sequence stars, the peak of the black 

body curve lies in, or close to, the visible part of 

the E-M spectrum. For X-ray sources, peak lies at 

X-ray wavelengths. From Wien’s law:

𝜆𝑚𝑎𝑥𝑇 = 2.9 × 10−3 (3.1)

where 𝜆𝑚𝑎𝑥 [m], 𝑇 [K]. For 𝑇 ≃ 107 K, we find 

𝜆𝑚𝑎𝑥 ≃ 3 Å, e.g. classical X-rays.

Planck Spectrum characterised by:

• Temperature of the source

• Isotropic emission

• Unpolarised radiation

Astronomy 345: High Energy Astrophysics I
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3.11 Plank spectrum

Expressing Planck spectrum as a function of frequency:

𝐼𝜈 =
2ℎ𝜈3

𝑐2 [exp ( ℎ𝜈
𝑘𝐵𝑇

) − 1]
(3.2)

where 𝐼𝜈 is the specific intensity.

Limiting cases: For ℎ𝜈 ≪ 𝑘𝐵𝑇, exp (
ℎ𝜈
𝑘𝐵𝑇

) − 1 ≃ ℎ𝜈
𝑘𝐵𝑇

 and

𝐼𝜈 ∝ 𝜈2 ⟸ Rayleigh-Jeans approximation (3.3)

For ℎ𝜈 ≫ 𝑘𝐵𝑇, exp (
ℎ𝜈
𝑘𝐵𝑇

) − 1 ≃ exp ( ℎ𝜈
𝑘𝐵𝑇

) and

𝐼𝜈 ∝ 𝜈3 exp (− ℎ𝜈
𝑘𝐵𝑇

) ⟸ Wien approximation (3.4)

Astronomy 345: High Energy Astrophysics I
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Figure 3.11: Planck spectrum (Eq 3.2) and limiting cases (3.3, 3.4).
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3.12 Stefan-Boltzmann Law

Integrating the spectrum (3.2) over all frequencies, bolometric luminos-

ity radiated per unit area from a black body becomes:

𝐿𝑏𝑜𝑙 = 𝜎𝑇4, (3.5)

where 𝜎 = 5.67 × 10−8 Jm−2s−1K−4 is Stefan-Boltzmann constant.

Black body radiation energy density:

𝑈𝑟𝑎𝑑 = 𝑎𝑇4 (3.6)

where 𝑎 = 4𝜍
𝑐
= 7.56 × 10−16 Jm−3K−4 is Stefan constant.
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3.13 Black body emission from astrophysical objects

Consider a spherical mass, 𝑀, of radius, 𝑅, made of ionised hydrogen - dense 

enough to be optically thick, and hence emitting black body radiation, with 

𝑇 ≃ 107 K.

Suppose that 𝑇 is uniform throughout the mass.

Thermal energy of the source is

𝐸 = 3𝑁𝑘𝐵𝑇

where 𝑁 is the number of electrons (or protons).

Surface luminosity (e.g. power emitted) is

𝐿 = 4𝜋𝑅2𝜎𝑇4
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Cooling time (using that 𝑁 = 𝑀/𝑚𝑝, where 𝑚𝑝 is the proton mass)

𝜏 ≃ 𝐸
𝐿 = 3𝑘𝑀𝑇

4𝜋𝑅2𝜎𝑚𝑝𝑇4

It can be shown that the cooling time

𝜏 =
(140sec ) × ( 𝑀

𝑀⊙
)

( 𝑅
𝑅⊙
)
2
× ( 𝑇

107K
)
3

and the Luminosity

𝐿 = 3.5 × 1039W × ( 𝑅𝑅⊙
)
2
× ( 𝑇

107K )
4
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and hence, for 𝑇 = 107 K and 𝑀 = 𝑀⊙:

𝑅 = 𝑅⊙ ⟹𝜏 = 140sec ; 𝐿 = 1013𝐿⊙
𝑅 = 3 × 10−3𝑅⊙ ⟹𝜏 = 6months ; 𝐿 = 108𝐿⊙

𝑅 = 10−5𝑅⊙ ⟹𝜏 = 4 × 104years ; 𝐿 = 103𝐿⊙
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3.14 Short and long-lived objects

Black body X-ray sources possible, with 𝑀 = 𝑀⊙, are:

• Small (𝑅 ≪ 𝑅⊙) long-lived compact objects

• Large (𝑅 ∼ 𝑅⊙) transient (short-lived) objects
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3.15 Black body emission from astrophysical objects

Figure 3.12:  NASA artist’s impression 
of accretion disk

In both cases (short and long-lived), we 

require high (or very high) luminosities, 

i.e. a source where energy is constantly 

supplied to maintain the luminosity ⟹
e.g. Dense accretion disk in an X-ray bi-

nary, see examples of X-ray spectra in 

Figures 3.13,3.14.

Also possible are very small, short lived 

sources with - e.g. X-ray bursts from the 

thermonuclear flash as newly accreted 

gas rich in hydrogen and helium reaches 

the neutron star surface.
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Figure 3.13: Swift/XRT 
and NuSTAR spectrum (fit-
ted with black-body) of 
the Supergiant Fast X-ray 
Transient IGR J17544-2619 
from Tomsick et al, 2015
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Figure 3.14: Unfolded 
NuSTAR (black) and Swift 
(red) spectra from Dege-
naar et al, 2015. The solid 
lines indicate fits to an ab-
sorbed, phenomenological 
continuum consisting of a 
Γ = −2 power law (dashed 
lines), a cool 𝑘𝐵𝑇𝑏𝑏 =
0.1 keV blackbody (dot-
ted curve), and a hotter 
𝑘𝐵𝑇𝑏𝑏 = 0.4 keV black-
body (dash-dotted curves). 
The bottom panel shows 
the data-to-model ratio.
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4 Reaction cross-section

LECTURE OUTLINE

• Incident flux, reaction rate, reaction cross-section

• Emissivity, flux, luminosity

• Energy dependent characteristics (e.g. emissivity differential in energy)
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4.1 Incident beam and target

Figure 4.1:  Incident beam and target

Consider a beam of particles (e.g. elec-

trons) with number density, 𝑛 [particles 

m−3], and velocity 𝑣 [m s−1] incident on a 

thin ’target’ containing 𝑁𝑇 particles (e.g. 

protons) and with area 𝐴𝑇 [m−2] perpen-

dicular to the incident beam (Fig. 4.1).

The total number of target particles

𝑁𝑇 = ∫
𝑉
𝑛𝑇( ⃗𝐫)𝑑𝑉,

where 𝑛𝑇( ⃗𝐫) is the target particle density 

(In general, it may depend on position within the target).
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4.2 Incident flux and reaction rate

Incident flux is the number of beam particles crossing per unit area of the 

target per unit time

𝐹 = 𝑛𝑣, [particles m−2 s−1]

Reaction rate is number of interactions per unit time

𝑅 ∝ 𝐹𝑁𝑇, [ s−1]
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4.3 Definition of reaction cross-section

We define the constant of proportionality to be the reaction cross-section, 

𝑄, which has units of area.

𝑅 = 𝑄𝐹𝑁𝑇
The reaction cross section can be thought of as defining an effective area for 

collisions/interactions between the beam and target particles.

Number of beam particles passing through target per unit time

= 𝐹𝐴𝑇

Number of interactions per unit time is 𝐹𝑁𝑇𝑄; Then

Collision probability = 𝐹𝑁𝑇𝑄
𝐹𝐴𝑇

= 𝑁𝑇𝑄
𝐴𝑇

,

i.e. we can think of 𝑄 a disc of area associated with each target particle.
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4.4 Definitions of emissivity

We are interested in interactions where a photon is emitted. We define the 

emission rate, or emissivity, 𝐽 as the number of photons emitted per unit 

time from the interaction volume.

𝐽 = ∫
𝑉
𝑗( ⃗𝐫)𝑑𝑉

where 𝑗( ⃗𝐫) is the emissivity per unit volume (in general can depend on 

position within the target).

Then it follows that

𝑗 = 𝑛𝑇𝐹𝑄 [m−3s−1] (4.1)
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4.5 Energy dependent emissivity

Assuming that the incident flux of beam particles is independent of ⃗𝐫 then

𝐽 = 𝑁𝑇𝐹𝑄 (4.2)

Differential emissivity of photons with energy in the range between 𝜖
and 𝜖 + 𝑑𝜖 can be written as

𝑑𝑗 =
𝑑𝑗
𝑑𝜖𝑑𝜖

𝑑𝑗(𝜖)
𝑑𝜖 = 𝑛𝑇𝐹

𝑑𝑄
𝑑𝜖 [ m−3s−1keV−1] (4.3)

where 
𝑑𝑗(𝜖)
𝑑𝜖

 is the differential emissivity of photons with energy, per unit 

energy range per unit volume, 
𝑑𝑄
𝑑𝜖

 is the differential cross section.
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We can define differential quantities

𝑗 = ∫
𝜖

𝑑𝑗
𝑑𝜖𝑑𝜖, [ photons m−3s−1]

and

𝑄 = ∫
𝜖

𝑑𝑄
𝑑𝜖 𝑑𝜖, [ m2]

Similarly
𝑑𝐽
𝑑𝜖 = ∫

𝑉

𝑑𝑗
𝑑𝜖𝑑𝑉, [ photons s−1keV−1]

so that

𝐽 = ∫
𝑉
∫
𝜖

𝑑𝑗
𝑑𝜖𝑑𝜖⏟⎵⏟⎵⏟
=𝑗

𝑑𝑉 = ∫
𝜖
∫
𝑉

𝑑𝑗
𝑑𝜖𝑑𝑉⏟⎵⏟⎵⏟
=𝑑𝐽
𝑑𝜖

𝑑𝜖
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4.6 Source luminosity

The differential source luminosity, per unit photon energy range, is

𝑑𝐿
𝑑𝜖 = 𝜖𝑑𝐽𝑑𝜖, [ W keV−1] (4.4)

Total source luminosity is then

𝐿 = ∫
𝜖

𝑑𝐿
𝑑𝜖𝑑𝜖 = ∫

𝜖
𝜖𝑑𝐽𝑑𝜖𝑑𝜖, [ W]

Combining with earlier results

𝐿 = ∫
𝜖
𝜖𝑑𝜖∫

𝑉
𝑛𝑇𝐹

𝑑𝑄
𝑑𝜖 𝑑𝑉, [W] (4.5)

Note that more generally, the flux and cross section are a function of the 

energy of the incoming beam particles.
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4.7 Angular dependence

Cross-section also quantifies the intrinsic rate at which the scattered particles 

(or emitted photons) can be detected at a given angle.

Spherical coordinate system is often used so that the target placed at the 

origin and the 𝑧-axis of aligned with the incident beam. Then

𝑄 = ∫
Ω

𝑑𝑄
𝑑Ω𝑑Ω

where 𝑑Ω = sin(𝜃)𝑑𝜃𝑑𝜑, 𝜃 is the scattering angle, measured between the 

incident beam and the scattered beam, 𝜑 is the azimuthal angle. Often both 

energy and angular dependency are important, we have energy and angle 

differential cross-section,
𝑑2𝑄
𝑑𝜖𝑑Ω
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so that the total cross-section 𝑄 is

𝑄 = ∫
Ω
∫
𝜖

𝑑2𝑄
𝑑𝜖𝑑Ω𝑑𝜖𝑑Ω
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4.8 Flux at the Earth

Note the distinction between the particle flux incident on the target and the 

flux received at the Earth

Consider a source at distance 𝐷. Then photon number flux at the Earth

Ψ = 𝐽
4𝜋𝐷2 , [ m−2s−1]

and energy flux is

Υ = 𝐿
4𝜋𝐷2 , [ Wm−2]

the corresponding spectral distributions are defined similarly to before (see 

Equations 4.3,4.4)

𝑑Ψ
𝑑𝜖 = 1

4𝜋𝐷2
𝑑𝐽
𝑑𝜖, [ m−2s−1keV−1]

𝑑Υ
𝑑𝜖 =

1
4𝜋𝐷2

𝑑𝐿
𝑑𝜖 =

𝜖
4𝜋𝐷2

𝑑𝐽
𝑑𝜖, [ J m−2s−1keV−1]
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4.9 Note different differential characteristics

Some characteristics are presented in the table below2

Quantity/chacteristic Integrated (e.g. energy integrated) differential

luminosity 𝐿 𝑑𝐿
𝑑𝜀

emissivity 𝐽 = 𝐿/𝜀 𝑑𝐽
𝑑𝜀

emissivity per unit volume 𝑗 𝑑𝑗
𝑑𝜀

cross-section 𝑄 𝑑𝑄
𝑑𝜀

cross-section 𝑄 𝑑𝑄
𝑑𝜀𝑑Ω

... ... ...

2At home, complete the table with various values used in the course.
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5 Thomson scattering

LECTURE OUTLINE

• Classical treatment of wave scattering

• Thomson scattering, cross-section

• Limitations of classical description
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5.1 EM wave scattering

Thomson scattering is the classical, non-relativistic scattering of radiation by 

a free electron - at rest initially - accelerated by interaction with the radiation 

to velocity 𝑣.

Figure 5.1: Cartoon showing scattering of EM 
wave on a free electron from Jeffrey (2014)

Classically, the �⃗�-field exerts a force 

on the electron (we can neglect the 

�⃗�-field if 𝑣 ≪ 𝑐, where 𝑐 is the 

speed of light)

We assume �⃗� = �⃗�0 cos(𝜔𝑡) at the 

electron, which we treat as a single 

particle target ( i.e. with 𝑁𝑇 = 1)
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5.2 Incoming EM flux

Incident energy flux (modulus of Poynting vector, �⃗�),

𝑆 = ||�⃗�|| =
|||
1
𝜇0
�⃗� × �⃗�||| =

1
2𝑐𝜖0𝐸

2
0, [W m−2] (5.1)

where 𝜖0 is the dielectric permittivity of free space, 𝜇0 is the vacuum perme-

ability.

Then incident photon flux,

𝐹 = 𝑆
ℏ𝜔, [photons s−1m−2]

where

ℏ ≡ ℎ
2𝜋.
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5.3 Radiated EM emission

Figure 5.2:  Cartoon showing a polarized incident 
plane wave interacting with an electron, causing 
it to oscillate and re-radiate. The original figure 
was taken from here and Jeffrey (2014).

Power radiated by scattered elec-

tron (e.g. by charge moving with 

acceleration ̇𝑣)

𝑃 = 𝑒2 ̇𝑣2

6𝜋𝜖0𝑐3
, [ W ] (5.2)

where 𝑒 is the electron charge.

We know that from 2-nd Newton 

law

𝑚 ̇�⃗� = 𝑒�⃗�,

where 𝑚 is the electron mass. 

Hence one finds

̇𝑣2 =
𝑒2𝐸20 cos2 𝜔𝑡

𝑚2
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and averaging over a wave period 𝑇 = 2𝜋/𝜔

⟨ ̇𝑣2⟩ =
𝑒2𝐸20
𝑚2 ⟨cos2 𝜔𝑡⟩⏟⎵⏟⎵⏟

=1/2

=
𝑒2𝐸20
2𝑚2

therefore power radiated by oscillating electron is

𝑃 =
𝑒4𝐸20

12𝜋𝜖0𝑚2𝑐3 , [ W] (5.3)

Classically, scattered radiation also has angular frequency 𝜔 (i.e. elastic 

scattering of electromagnetic radiation and energy is not transferred to the 

scattering electron)

Then photon emissivity is

𝐽 = 𝑃
ℏ𝜔, [ photons s−1]
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But we also have

𝐽 = 𝑁𝑇𝐹𝑄 = 1⏟
=𝑁𝑇

𝑆
ℏ𝜔⏟
=𝐹

𝑄

since on the other hand we have

𝐽 = 𝑃
ℏ𝜔

hence

𝑄 = 𝑃
𝑆

Substituting expressions for 𝑆 (Eq 5.1) and 𝑃 (Eq. 5.3), one finds

𝑄 = 𝑃
𝑆 =

𝑒4𝐸20
12𝜋𝜖0𝑚2𝑐3⏟⎵⎵⏟⎵⎵⏟

=𝑃

2
𝑐𝜖0𝐸20⏟
=1/𝑆

simplifying, we find the expression for the cross-section.
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Thomson cross-section:

𝑄𝑇 =
8𝜋
3 ( 𝑒2

4𝜋𝜖0𝑚𝑐2
)
2

= 8𝜋
3 𝑟

2
𝑒 (5.4)

where 𝑟𝑒 is the classical electron radius. Numerically

𝑄𝑇 = 6.65 × 10−29 m2

in SI units.
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5.4 Classical electron radius

The classical electron radius, 𝑟𝑒, is the length scale at which the electrostatic 

(Coulomb) energy of an electron is equal to its rest-mass energy.

Let us consider two electrons, A and B (which classically we think of as point 

particles) separated by distance 𝑟𝑒.

Electrostatic energy of A, due to Coulomb repulsion of B (and vice versa) is 

given by
𝑒2

4𝜋𝜖0𝑟𝑒
Equating it to 𝑚𝑐2, we have

𝑒2
4𝜋𝜖0𝑟𝑒

= 𝑚𝑐2
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hence, one finds

𝑟𝑒 =
𝑒2

4𝜋𝜖0𝑚𝑐2
= 2.82 × 10−15m

Classically, therefore, we can think of as the cross-sectional area of the ’disc’ 

over which the pointlike electron influences other particles in its vicinity.

𝑟𝑒 is (approximately) the radius of this disc.

BUT:

How does this classical picture of the disc around the electron fit in with its 

quantum description?
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5.5 Limitations of classical description

Take electron momentum, 𝑝 ≃ 𝑚𝑐

Equate this with Δ𝑝 from the Heisenberg uncertainty principle, (e.g. Δ𝑝Δ𝑥 ≥
ℏ/2)

𝑚𝑐 ≃ Δ𝑝 ≥ ℏ
Δ𝑥

This lets us define a ’Quantum’ length scale:

𝜆𝑄 ≃ Δ𝑥 ≥ ℏ
𝑚𝑐 =

4𝜋𝜖0𝑐ℏ
𝑒2 𝑟𝑒 (5.5)

The quantity

𝛼 = 𝑒2
4𝜋𝜖0𝑐ℏ

≃ 1
137

is a dimensionless number known as the fine structure constant.

Astronomy 345: High Energy Astrophysics I



Lecture: 5 Thomson scattering 84

So from Equation (5.5), we find for high-energy electrons quantum effects 

become important on a scale

𝜆𝑄 ≲ 1
𝛼𝑟𝑒 ≃ 137𝑟𝑒

The Thomson cross-section is, however, an adequate description of low 

energy scattering:

ℏ𝜔 ≪ 𝑚𝑐2

This is consistent with the assumption of elastic scattering or small energy 

exchange, i.e. the electron kinetic energy and photon frequency are the 

same before and after the scattering.
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6 Bremsstrahlung

LECTURE OUTLINE

• Bremsstrahlung emission mechanism

• Differential bremsstrahlung cross-section

• Bethe-Heitler formula

• Optically thin spectrum and bremsstrahlung luminosity spectrum

• Non-thermal bremsstrahlung
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6.1 Bremsstrahlung emission mechanism

Figure 6.1:  Cartoon showing 
bremsstrahlung emission on an ion 
from Jeffrey (2014)

Bremsstrahlung radiation is produced 

from the interaction of electrons with a pro-

ton (or ion, see Fig 6.1).

For X-ray production, we want an electron 

which is fast but still non-relativistic.

Consider an electron with kinetic energy, 

𝐸 = 10 keV.

Compare this with the electron’s rest mass 

energy:

𝑚𝑣2/2
𝑚𝑐2 = 0.02⟹ 𝑣2

𝑐2 = 0.04⟹ 𝑣 = 0.2𝑐
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6.2 Differential electron flux

Consider a plasma of ionised hydrogen, with a proton density 𝑛𝑝 m−3. Note 

that the electron density 𝑛𝑒 = 𝑛𝑝.

For electrons with a single speed (monoenergetic beam) 𝑣, and kinetic energy 

𝐸 = 𝑚𝑣2/2
Electron flux = 𝑛𝑒𝑣 [ m−2s−1]

Suppose now we have a distribution of electron speeds. Total electron flux

𝐹𝑡𝑜𝑡 = ∫
𝐸

𝑑𝐹
𝑑𝐸𝑑𝐸, [electron m−2s−1]

where differential flux or flux spectrum

𝑑𝐹
𝑑𝐸 ≡ 𝐹(𝐸), [electron m−2s−1keV−1] flux spectrum
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𝐹(𝐸)𝑑𝐸 is the flux of electrons [ m−2s−1] with kinetic energy in the range 

between 𝐸 and 𝐸 + 𝑑𝐸
𝐹(𝐸) = 𝑣(𝐸)

𝑑𝑛𝑒
𝑑𝐸

where 𝑣(𝐸) = √2𝐸/𝑚 and

𝑑𝑛𝑒
𝑑𝐸 = number of electrons [ m−3keV−1]
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6.3 Differential emissivity

Differential emissivity for photons of energy 𝜖 produced by electrons of a 

single energy (speed) 𝐸 = 𝑚𝑣2/2 is given by

𝑑𝑗
𝑑𝜖 = 𝑛𝑝𝐹

𝑑𝑄𝐵
𝑑𝜖 (𝜖, 𝐸) [photons m−3s−1keV−1] (6.1)

where 𝐹 = 𝑛𝑒𝑣 and

𝑑𝑄𝐵
𝑑𝜖 (𝜖, 𝐸)⟺ differential bremsstrahlung cross-section

i.e. cross-section for photon emission in energy range (𝜖, 𝜖 + 𝑑𝜖) from an 

electron with energy 𝐸. The units are [m2 keV−1].

Suppose now we have a distribution of electron speeds, then we need to 

sum the contributions from all electron energies, i.e. to integrate equation 

(6.1).
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The emissivity differential in energy becomes:

𝑑𝑗
𝑑𝜖 = 𝑛𝑝

∞

∫
𝜖

𝐹(𝐸)𝑑𝑄𝐵
𝑑𝜖 (𝜖, 𝐸)𝑑𝐸 [ photons m−3s−1keV−1] (6.2)

Note that the integral lower limit arises from energy conservation - i.e. 

each emitted photon cannot have more energy than the kinetic energy 

of the electron whose deceleration produced it.

We compute the emissivity for photons of energy 𝜖 by integrating over all 

electrons with energy 𝐸 > 𝜖.
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6.4 Bremsstrahlung cross-section

Bremsstrahlung cross-section can be written

𝑑𝑄𝐵
𝑑𝜖 (𝜖, 𝐸) =

𝑄0𝑚𝑐2

𝜖𝐸 ln (
1 + √1 − 𝜖/𝐸
1 − √1 − 𝜖/𝐸

) (6.3)

This is known as the Bethe-Heitler formula, where

𝑄0 =
8
3𝛼𝑟

2
𝑒 = 1.54 × 10−31[m2]

recalling that 𝛼 = 1/137, we find that

𝑄0 =
𝑄𝑇
137𝜋

The Bethe-Heitler formula is valid in the regime where the initial 𝑣𝑖 and final 
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𝑣𝑓 velocities of the electron satisfy:

𝛼𝑐 ≪ 𝑣𝑖, 𝑣𝑓 ≪ 𝑐

(For lower 𝑣𝑖 velocities we require quantum mechanical corrections; for 

higher velocities we require relativistic corrections)

Note that the term

ln (
1 + √1 − 𝜖/𝐸
1 − √1 − 𝜖/𝐸

)

is rather complicated (see Fig 6.2). 

This factor should be included in precise calculations (e.g. RHESSI), but it 

varies fairly slowly with and we will replace it by a constant.
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Figure 6.2:  Log-term ln (1+√1−𝜖/𝐸
1−√1−𝜖/𝐸

) from Eq. 6.3.
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For simplicity we can take,

ln (
1 + √1 − 𝜖/𝐸
1 − √1 − 𝜖/𝐸

) = 1

so that bremsstrahlung cross-section can be written

𝑑𝑄𝐵
𝑑𝜖 (𝜖, 𝐸) =

𝑄0𝑚𝑐2

𝜖𝐸 [m2keV−1] (6.4)

This is known as the Kramers approximation.
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6.5 Optically thin spectrum

Substituting Equation (6.4) into the expression for differential emissivity (Eq. 

6.1), one finds a simplified expression:

𝑑𝑗
𝑑𝜖 = 𝑛𝑝

𝑄0𝑚𝑐2

𝜖

∞

∫
𝜖

𝐹(𝐸)
𝐸 𝑑𝐸 [ photons m−3s−1keV−1]

For an extended, optically thin source of volume 𝑉, in which we have 𝑛𝑝 =
𝑛𝑝( ⃗𝐫), 𝐹(𝐸) = 𝐹(𝐸, ⃗𝐫), i.e. proton number density and electron energy 

distribution are, in general, functions of position.
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The bremsstrahlung differential emissivity is (using Kramers approxima-

tion)

𝑑𝐽
𝑑𝜖 =

𝑄0𝑚𝑐2

𝜖 ∫
𝑉
𝑛𝑝( ⃗𝐫)

∞

∫
𝜖

𝐹(𝐸, ⃗𝐫)
𝐸 𝑑𝐸𝑑𝑉 [ photons s−1keV−1] (6.5)

and

the differential luminosity becomes

𝑑𝐿
𝑑𝜖 = 𝜖𝑑𝐽𝑑𝜖 = 𝑄0𝑚𝑐2∫

𝑉
𝑛𝑝( ⃗𝐫)

∞

∫
𝜖

𝐹(𝐸, ⃗𝐫)
𝐸 𝑑𝐸𝑑𝑉 [ J s−1keV−1] (6.6)

We will apply these formulae later, and in the example sheets.
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6.6 Bremsstrahlung luminosity spectrum

Suppose there exists some non-zero energy, 𝐸𝑚𝑖𝑛, such that the kinetic 

energy of all electrons satisfies 𝐸 > 𝐸𝑚𝑖𝑛.

It then follows that 𝐹(𝐸, ⃗𝐫) = 0, for all 𝐸 < 𝐸𝑚𝑖𝑛, and the energy integral in 

Equation 6.6
∞

∫
𝜖

𝐹(𝐸, ⃗𝐫)
𝐸 𝑑𝐸 =

∞

∫
𝐸𝑚𝑖𝑛

𝐹(𝐸, ⃗𝐫)
𝐸 𝑑𝐸

Hence, for all photon energies 𝜖 < 𝐸𝑚𝑖𝑛, the differential emissivity

𝑑𝐽
𝑑𝜖 =

𝑄0𝑚𝑐2

𝜖 ∫
𝑉
𝑛𝑝( ⃗𝐫)

∞

∫
𝐸𝑚𝑖𝑛

𝐹(𝐸, ⃗𝐫)
𝐸 𝑑𝐸𝑑𝑉 [ photons s−1keV−1]
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and the luminosity

𝑑𝐿
𝑑𝜖 = 𝑄0𝑚𝑐2∫

𝑉
𝑛𝑝( ⃗𝐫)

∞

∫
𝐸𝑚𝑖𝑛

𝐹(𝐸, ⃗𝐫)
𝐸 𝑑𝐸𝑑𝑉 [ J s−1keV−1]

Note that 
𝑑𝐿
𝑑𝜖

 is independent of the photon energy 𝜖.

Hence at low photon energies, 𝜖 < 𝐸𝑚𝑖𝑛, the differential bremsstrahlung 

spectrum, 
𝑑𝐿
𝑑𝜖
, is flat.
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Figure 6.3:  For a thermal distribution of electrons, we have 𝐹(𝐸)⟶ 0 as 𝐸 ⟶ 0, 
so we can make the approximation 𝐹(𝐸, �⃗�) = 0, for all 𝐸 < 𝐸𝑚𝑖𝑛 and and hence the 
luminosity spectrum of thermal bremsstrahlung becomes flat at low photon energies.
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6.7 Non-thermal bremsstrahlung

Consider a non-Maxwellian distribution of electron velocities - e.g. a power 

law differential electron flux spectrum:

𝐹(𝐸) = 𝐹0𝐸−𝛿

where 𝐹(𝐸)𝑑𝐸 is the fraction (or number) of particles with energy between 

𝐸 and 𝐸 + 𝑑𝐸, and 𝐹0 and 𝛿.

Note that the power law is usually defined from some low energy cut off, 𝐸𝑚𝑖𝑛, 

because a power law extending to 𝐸 ⟶ 0 would formally give 𝐹(𝐸)⟶∞
for 𝛿 > 0.

Consider electrons with kinetic energy 𝐸 > 𝐸𝑚𝑖𝑛. Total flux for 𝛿 > 1

𝐹𝑡𝑜𝑡 =

∞

∫
𝐸𝑚𝑖𝑛

𝐹(𝐸)𝑑𝐸 =

∞

∫
𝐸𝑚𝑖𝑛

𝐹0𝐸−𝛿𝑑𝐸 =
𝐹0

1 − 𝛿𝐸
1−𝛿|||

∞

𝐸𝑚𝑖𝑛

=
𝐹0

𝛿 − 1𝐸
1−𝛿
𝑚𝑖𝑛
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i.e. we find the constant

𝐹0 = 𝐹𝑡𝑜𝑡(𝛿 − 1)𝐸𝛿−1𝑚𝑖𝑛

where 𝐹𝑡𝑜𝑡 is the flux above 𝐸𝑚𝑖𝑛.

Differential emissivity with power-law flux spectrum of electrons is, then:

𝑑𝐽
𝑑𝜖 =

𝑄0𝑚𝑐2

𝜖 ∫
𝑉
𝑛𝑝( ⃗𝐫)

∞

∫
𝜖

𝐹0𝐸−𝛿

𝐸 𝑑𝐸𝑑𝑉

𝑑𝐽
𝑑𝜖 =

𝑄0𝑚𝑐2

𝜖 ∫
𝑉
𝑛𝑝( ⃗𝐫)

∞

∫
𝜖

𝐹0𝐸−𝛿−1𝑑𝐸𝑑𝑉

which is valid for 𝐸 > 𝐸𝑚𝑖𝑛.
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For a uniform plasma with 𝑛𝑝( ⃗𝐫) = 𝑐𝑜𝑛𝑠𝑡 = 𝑛𝑝 and 𝐹0, 𝛿 are constant,

𝑑𝐽
𝑑𝜖 =

𝑄0𝑚𝑐2

𝜖 𝑛𝑝𝑉𝐹0 (−
𝐸−𝛿
𝛿 )

|
|
|

∞

𝜖

The volume-integrated emissivity differential in energy becomes

𝑑𝐽
𝑑𝜖 =

𝑄0𝑚𝑐2

𝛿 𝑛𝑝𝑉𝐹0𝜖−(𝛿+1) (6.7)

hence
𝑑𝐽
𝑑𝜖 ∝ 𝜖−(𝛿+1); 𝑑𝐿

𝑑𝜖 = 𝜖𝑑𝐽𝑑𝜖 ∝ 𝜖−𝛿

Thus, the non-thermal (collisional) bremsstrahlung photon spectrum is also 

a power law, with the same exponent as the power law differential electron 

flux spectrum. Observationally, by measuring the slope of the observed 

photon spectrum, we can deduce the slope of the electron flux spectrum.
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7 Thermal and multi-thermal bremsstrahlung

LECTURE OUTLINE

• Thermal Bremsstrahlung

• Non-uniform, non-isothermal plasma

• Multi-thermal bremsstrahlung
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7.1 Isothermal, uniform plasma

Consider an isothermal, homogeneous plasma of fully ionised hydrogen. We 

have 𝑛𝑒 = 𝑛𝑝 independent of position

𝐹(𝐸) = 𝐹𝑀(𝐸) = 𝑣(𝐸)
𝑑𝑛𝑒
𝑑𝐸

where 
𝑑𝑛𝑒
𝑑𝐸

 is the Maxwellian distribution. Hence the flux spectrum

𝐹𝑀(𝐸) = √
2𝐸
𝑚
2𝑛𝑝
√𝜋

𝐸1/2

(𝑘𝐵𝑇)3/2
exp (− 𝐸

𝑘𝐵𝑇
)

Note: before we defined 𝐹(𝐸) = 𝐹(𝐸, ⃗𝐫), this is equivalent to writing 𝐹(𝐸) =
𝐹(𝐸, 𝑇) provided we can define 𝑇 = 𝑇( ⃗𝐫).
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The differential emissivity is, then

𝑑𝐽
𝑑𝜖 =

𝑄0𝑚𝑐2

𝜖 ∫
𝑉
𝑛𝑝( ⃗𝐫)

∞

∫
𝜖

𝐹(𝐸, 𝑇)
𝐸 𝑑𝐸𝑑𝑉 =

=
2𝑛2𝑝𝑉𝑄0𝑚𝑐2

𝜖

∞

∫
𝜖
√

2
𝜋𝑚

𝐸
𝐸

1
(𝑘𝐵𝑇)3/2

exp (− 𝐸
𝑘𝐵𝑇

) 𝑑𝐸 .

Putting 𝑧 = 𝐸/𝑘𝐵𝑇 and integrating over 𝐸,
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the emissivity spectrum becomes

𝑑𝐽
𝑑𝜖 = 2√

2
𝜋𝑚

𝑛2𝑝𝑉𝑄0𝑚𝑐2

(𝑘𝐵𝑇)1/2𝜖
exp (− 𝜖

𝑘𝐵𝑇
) (7.1)

and luminosity spectrum

𝑑𝐿
𝑑𝜖 = 2√

2
𝜋𝑚

𝑛2𝑝𝑉𝑄0𝑚𝑐2

(𝑘𝐵𝑇)1/2
exp (− 𝜖

𝑘𝐵𝑇
) (7.2)

Thus, the energy spectrum for thermal bremsstrahlung from a homoge-

neous plasma decays exponentially at high photon energies.
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7.2 Spectral shape

Recall Figure 3.5 from the previous lec-

tures.

Spectrum which falls exponen-

tially at high energies - ther-

mal, see e.g. Figure 3.5.

Observationally, measuring 

the shape of 
𝑑𝐿
𝑑𝜖

 allows us to 

determine a temperature, 

𝑇, for the plasma. We can 

do this, e.g., for the X-ray 

emission from galaxy clusters 

and the Sun. (The isothermal 

assumption may break down, 

however).
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7.3 Thermal bremsstrahlung from Coma cluster

Figure 7.1: XMM-Newton mosaic image of the central region of Coma (5 overlapping 
pointings) in the [0.3-2] keV energy band and isothermal with with 𝑘𝐵𝑇 = 8.25 keV from 
Arnaud et al, 2001
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7.4 Thermal (and non-thermal) bremsstrahlung from solar flares

Figure 7.2: Left: RHESSI image of a solar flare: red - thermal, blue - non-thermal, yellow 
background is ∼ 1 MK plasma from SDO/AIA; Right: X-ray spectrum of a limb flare. 
From Kontar et al, 2010
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7.5 Multi-Thermal Bremsstrahlung

Recall Equation 7.2 for thermal bremsstrahlung:

𝑑𝐿
𝑑𝜖 = 2√

2
𝜋𝑚

𝑛2𝑝𝑉𝑄0𝑚𝑐2

(𝑘𝐵𝑇)1/2
exp (− 𝜖

𝑘𝐵𝑇
)

Measuring 𝑑𝐿/𝑑𝜖 also permits us to determine 𝑛2𝑝𝑉. This quantity is known 

as the emission measure.

Note that the mass of gas in the plasma is given by (ignoring the mass of 

electrons): 𝑀𝑔𝑎𝑠 = 𝑛𝑝𝑉𝑚𝑝.

So the emission measure does not directly tell us 𝑀𝑔𝑎𝑠; to determine this 

we need to estimate 𝑉 separately.

For example, for the X-ray emission from a galaxy cluster, we can assume 

the cluster is spherical and use its angular size and redshift to estimate its 

volume.
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7.6 Inhomogeneous plasma

Suppose the plasma is not isothermal. Consider the differential emissivity 

per unit volume at position, ⃗𝐫 (from Equation 7.1)

𝑑𝑗
𝑑𝜖 = 2√

2
𝜋𝑚

𝑛2𝑝( ⃗𝐫)𝑄0𝑚𝑐2

(𝑘𝐵𝑇( ⃗𝐫))1/2𝜖
exp (− 𝜖

𝑘𝐵𝑇( ⃗𝐫)
) [ photons m−3s−1keV−1]

Integrated emissivity for the whole volume is then

𝑑𝐽
𝑑𝜖 = ∫

𝑉

𝑑𝑗
𝑑𝜖𝑑𝑉

i.e.

𝑑𝐽
𝑑𝜖 = 2√

2
𝜋𝑚

𝑄0𝑚𝑐2

𝑘1/2𝜖
∫
𝑉

𝑛2𝑝( ⃗𝐫)
𝑇( ⃗𝐫)1/2

exp (− 𝜖
𝑘𝐵𝑇( ⃗𝐫)

) 𝑑𝑉
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7.7 Source emission measure function

One useful approach to simplifying this expression is to replace the integral 

over volume with an integral over temperature. We do this by introducing the 

source emission measure function or sometimes called differential emission 

measure. This is a measure of how much of the plasma is at temperature 𝑇.

We define

∫
𝑇
𝜉(𝑇)𝑑𝑇 = ∫

𝑉
𝑛2𝑝( ⃗𝐫)𝑑𝑉 (7.3)

where ⃗𝐫 = ⃗𝐫(𝑇).

From which it can be shown that (e.g. using integration by parts)3,

3Try at home as exercise
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the differential emissivity from inhomogeneous, non-isothermal plasma 

becomes

𝑑𝐽
𝑑𝜖 = 2√

2
𝜋𝑚

𝑄0𝑚𝑐2

𝑘1/2𝜖

∞

∫
0

𝜉(𝑇) 1
𝑇1/2 exp (− 𝜖

𝑘𝐵𝑇
) 𝑑𝑇 (7.4)

where 𝜉(𝑇) characterises the plasma.
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7.8 Spherical volume

We can see more easily how this substitution works for the specific example 

of a spherically symmetric temperature distribution, i.e.

𝑇 = 𝑇(𝑟)

We make the change of variables from (𝑟, 𝜃, 𝜑) to (𝑇, 𝜃, 𝜑) and we write

𝑑𝑉 = 𝑟2 sin(𝜃)𝑑𝜃𝑑𝜑𝑑𝑟 = 𝑑𝑆𝑑𝑟

where 𝑑𝑆 is area element.

Let us make a substitution:

𝑑𝑟 = |||
𝑑𝑟
𝑑𝑇

||| 𝑑𝑇 = 𝑑𝑇
||
𝑑𝑇
𝑑𝑟
||

changing integration variable from 𝑟 to 𝑇.
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Then, it follows that

∫
𝑉

𝑒
(− 𝜖

𝑘𝐵𝑇(�⃗�)
)𝑛2𝑝( ⃗𝐫)𝑑𝑆𝑑𝑟

√𝑇( ⃗𝐫)
=∫

𝑇

∫
𝑆

𝑒
(− 𝜖

𝑘𝐵𝑇(�⃗�)
) 𝑛2𝑝( ⃗𝐫)

√𝑇( ⃗𝐫) ||
𝑑𝑇
𝑑𝑟
||
𝑑𝑆 𝑑𝑇 =

=∫
𝑇

𝜉(𝑇)

√𝑇( ⃗𝐫)
exp (− 𝜖

𝑘𝐵𝑇( ⃗𝐫)
) 𝑑𝑇 ,

where

𝜉(𝑇) = ∫
𝑆𝑇

𝑛2𝑝( ⃗𝐫)
||
𝑑𝑇
𝑑𝑟
||
𝑑𝑆

is the differential emission measure and 𝑆𝑇 denotes spherical surface of 

constant temperature 𝑇, at radius 𝑟.

Things simplify further if the plasma density is also spherically symmetric i.e. 

𝑛𝑝( ⃗𝐫) = 𝑛𝑝(𝑟). Note the problems in the example sheet.
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7.9 Isothermal surfaces

Figure 7.3:  Isothermal surfaces

More generally 𝑇 = 𝑇(𝑟, 𝜃, 𝜑) but we can 

still change variables in the integral by iden-

tifying isothermal surfaces - i.e. surfaces 

of constant temperature (which will not in 

general be spherical).

The source emission measure is now de-

fined in terms of the temperature gradient, 

∇𝑇

𝜉(𝑇) = ∫
𝑆𝑇

𝑛2𝑝( ⃗𝐫)
|∇𝑇| 𝑑𝑆

but we will not consider any non-spherical 

cases here.

Astronomy 345: High Energy Astrophysics I



Lecture: 7 Thermal and multi-thermal bremsstrahlung 117

7.10 Examples of inhomogeneous plasma

The differential emissivity from non-uniformly heated plasma can be pre-

sented using 𝜉(𝑇), see Equation 7.4:

1
𝜖
𝑑𝐿
𝑑𝜖 =

𝑑𝐽
𝑑𝜖 = 2√

2
𝜋𝑚

𝑄0𝑚𝑐2

𝑘1/2𝜖

∞

∫
0

𝜉(𝑇) 1
𝑇1/2 exp (− 𝜖

𝑘𝐵𝑇
) 𝑑𝑇

A wide range of behaviour for 𝜉(𝑇) is possible:

• 𝜉(𝑇) smoothly varying in an extended gas cloud (e.g. solar corona, 

galaxy cluster Figure 7.4)

• 𝜉(𝑇) has a sharp change or discontinuous across a shock front (e.g. 

transition region in the solar atmosphere, supernova remnant, Fig-

ure 7.5)
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Figure 7.4: Temperature structure of the galaxy cluster Abell 3921. From Belsole et al, 
2005
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Figure 7.5: Cassiopeia A Super-
nova Remnant: In this false-color 
image, NuSTAR data, which show 
high-energy X-rays from radioactive 
material, are colored blue. Lower-
energy X-rays from non-radioactive 
material, imaged previously with 
NASA’s Chandra X-ray Observatory, 
are shown in red, yellow and green 
from NuSTAR webpage
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8 Photon spectrum interpretation

LECTURE OUTLINE

• Ambiguity between thermal and non-thermal processes

• Electron energy spectrum from photon spectrum
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8.1 Mimicking Non-thermal Processes

We saw earlier that, if the non-thermal differential electron flux distribution 

is a power law, then the differential photon luminosity is also a power law, 

with the same exponent.

If, instead, we have a thermal plasma, but not an isothermal plasma, then we 

can also obtain a power law photon spectrum - provided the source emission 

measure function has a power law dependence on temperature, i.e. 4

if 𝜉(𝑇) ∝ 𝑇−𝛼 then
𝑑𝐿
𝑑𝜖 ∝ 𝜖−𝛽

with 𝛼 ≠ 𝛽, but there is ambiguity between thermal and non-thermal 

processes.

4See problem sheet
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8.2 Interpreting Energy Spectra

The fact that measurements of 𝑑𝐽/𝑑𝜖 and 𝑑𝐿/𝑑𝜖 are not perfect, but are 

subject to experimental errors, raises some important numerical issues.

The problem is to determine, from 𝑑𝐽/𝑑𝜖:

• 𝜉(𝑇) for a thermal source

• 𝐹(𝐸) for a non-thermal source

Consider a non-thermal source, homogeneous plasma:

𝑑𝐽
𝑑𝜖 =

𝑄0𝑚𝑐2

𝜖 𝑛𝑝𝑉

∞

∫
𝜖

𝐹(𝐸)
𝐸 𝑑𝐸
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The integral
∞

∫
𝜖

𝐹(𝐸)
𝐸 𝑑𝐸

is a function of photon energy, 𝜖. We define

𝐺(𝜖) =

∞

∫
𝜖

𝐹(𝐸)
𝐸 𝑑𝐸

It follows that
𝑑𝐽
𝑑𝜖 =

𝑄0𝑚𝑐2

𝜖 𝑛𝑝𝑉𝐺(𝜖)

Then

𝐺(𝜖) = 1
𝑄0𝑚𝑐2𝑛𝑝𝑉

𝜖𝑑𝐽𝑑𝜖
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Let us differentiate 𝐺(𝜖)5

𝑑𝐺
𝑑𝜖 =

𝑑
𝑑𝜖

∞

∫
𝜖

𝐹(𝐸)
𝐸 𝑑𝐸 = − 𝐹(𝐸)

𝐸
|||𝐸=𝜖

then we can find

𝐹(𝐸) = − (𝜖𝑑𝐺𝑑𝜖 )
|||𝜖=𝐸

= −𝐸 𝑑𝐺
𝑑𝜖
|||𝜖=𝐸

and substituting expression for 𝐺(𝜖), we have

5If f(y) is a function that is continuous on our interval, then

𝑑
𝑑𝑥 ∫

𝑏(𝑥)

𝑎(𝑥)
𝑓(𝑦)𝑑𝑦 = 𝑓(𝑏(𝑥))𝑑𝑏𝑑𝑥 − 𝑓(𝑎(𝑥))𝑑𝑎𝑑𝑥

where 𝑎(𝑥) and 𝑏(𝑥) are functions of 𝑥.
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𝐹(𝐸) = −𝐸
𝑄0𝑚𝑐2𝑛𝑝𝑉

𝑑
𝑑𝜖𝜖

𝑑𝐽
𝑑𝜖
|||𝜖=𝐸

=

= −𝐸
𝑄0𝑚𝑐2𝑛𝑝𝑉

[𝑑𝐽𝑑𝜖 + 𝜖 𝑑𝑑𝜖 (
𝑑𝐽
𝑑𝜖)]

|||𝜖=𝐸
(8.1)

Since the solution (8.1) for 𝐹(𝐸) involves the derivative of the photon energy 

spectrum, 
𝑑𝐽
𝑑𝜖

 , this means that small changes in the measured data for 
𝑑𝐽
𝑑𝜖

can lead to large changes in the inferred 𝐹(𝐸). 6

To solve the problem with large errors, we need to apply regularization. 

Extraction of electron spectrum from photon spectrum is a challenge, see 

e.g. Brown et al, 2006.

6This an example of an ill-posed inverse problem.
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Figure 8.1: Left: Two weakly different X-ray spectra 𝑑𝐽/𝑑𝜀. Right: Two corresponding 
electron spectra 𝐹(𝐸) showing large differences after differentiation in Equation 8.1.
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8.3 Example: Hard X-ray spectrum of a solar flare

Figure 8.2: Albedo-corrected RHESSI spectrum (crosses with error bars) at the hard X-ray 
peak of the solar flare on 2002-06-02 from Holman et al, 2011. The solid line shows the 
combined isothermal (dotted line) plus double power-law (dashed line) spectral fit. The 
spectral fit before albedo correction is over-laid (gray, solid line).
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8.4 Example: Derivative of a noisy data

Figure 8.3: A power-law spectrum 𝐽(𝐸) ∝ 1/𝐸 (left panel) and the absolute value of 
the derivative |𝑑𝐽/𝑑𝐸| ∝ 1/𝐸2 (right panel); without and with 3% Gaussian noise added. 
See python 3.6 code online.
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8.5 Derivative as an inverse problem

Let us assume that we have a smooth function 𝐽(𝐸) over the interval 𝐸01 ≤
𝐸 ≤ 𝐸02. We have a finite sample 𝐽𝑖 of measured values of this function, 

obtained over some grid 𝐸01 = 𝐸0 < 𝐸1 < ... < 𝐸𝑖 < ... < 𝐸𝑛 = 𝐸02 with 

mesh size Δ𝐸. The noisy data set has an error

|𝐽𝑖 − 𝐽(𝐸𝑖)| ≤ 𝛿𝐽 (8.2)

where 𝛿𝐽 is an uncertainty of measurement.

We want to find the best smooth estimate of the derivative 𝐽′(𝐸) using the 

given data set ∀ 𝐸 ∈ [𝐸01, 𝐸02]. The two point finite difference estimate is 

readily available with the following bound

|||
𝐽𝑖+1 − 𝐽𝑖
Δ𝐸 − 𝐽′(𝐸𝑖)

||| ≤ 𝑂(Δ𝐸 + 𝛿𝐽
Δ𝐸), (8.3)

where the first and second terms in the right hand side represent consistency 

and propagation errors respectively.
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8.6 Thermal X-ray Emission Lines

Hot astrophysical plasmas in e.g. the Sun contain traces of heavier elements 

which are partially (often highly!) ionised. 
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Figure 8.4: Simulated X-ray spectra of solar flare plasma thermal emission for a range of 
plasma temperatures from 10 to 50 MK, from Skinner et al, 2013
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Figure 8.5: The Sun at 171 Å chiefly 
emitted by Fe IX and X at million 
degrees K. Elements produce emis-
sion lines, superimposed on a thermal 
background (Fig 3.7). Such emission 
lines can be observed using narrow 
filters, sensitive to only a narrow 
range of X-ray energies (tempera-
tures).
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Figure 8.6: Multi-temperature solar corona from SDO/AIA observations of multi-
temperature corona.
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9 Inverse Compton Scattering

LECTURE OUTLINE

• Compton (inverse Compton) scattering

• Kinematics of the scattering (head-on collision)

• Energy gain due to the scattering

• Validity of approximations used
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9.1 Thompson scattering and Compton scattering

The scattering of photons in media due to their interaction with electrons.

Thompson scattering (which we already discussed in Lecture 5) is the special 

case of Compton scattering in the limit of a low energy incoming photon - 

i.e. in the rest frame of the electron, the photon has incoming frequency 𝜈, 
such that

ℎ𝜈 ≪ 𝑚𝑐2

In this low energy limit, the frequency 𝜈′, of the outgoing photon satisfies

𝜈 = 𝜈′

and the reaction cross-section is equal to the Thompson cross-section (see 

Section 5). This is purely classical result.
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9.2 Compton Scattering

More generally (Compton, 1923, Klein & Nishina, 1929), we need to take 

into account :

1) Modification of cross-section

Thompson cross-section replaced by Klein-Nishina formula

𝑄𝐾𝑁 = 𝑄𝑇 [1 − 2 ℎ𝜈𝑚𝑐2 +
25
6 ( ℎ𝜈𝑚𝑐2)

2
− ...]

2) Electron recoils, and absorbs some of the photon’s energy , so that

𝜈 > 𝜈′

e.g. energy loss by a photon.
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9.3 Inverse Compton Scattering

A low energy photon collides with a relativistic electron and gains energy at 

the expense of the electron (e.g. radio photons might be boosted to X-ray 

energies). So for Inverse Compton scattering we want

𝐸′ ≪ 𝐸, 𝜈′ ≫ 𝜈

In most astrophysical situations it is still OK to assume that, in the rest frame 

of the electron, the energy of the photon before collision is much less than 

the rest mass energy of the electron i.e.:

ℎ𝜈 ≪ 𝑚𝑐2

This means that we do not need to use the Klein-Nishina formula, but we 

can assume

𝑄𝐼𝐶 ≈ 𝑄𝑇 =
8
3𝜋𝑟

2
𝑒
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9.4 Kinematics (head-on collision)

To study the kinematics of inverse Compton scattering, we consider first the 

case of a head-on collision.

Figure 9.1: Photon of energy 𝜖, scattered through 180𝑜 by a relativistic electron of initial 
energy 𝐸1.

Recall from special relativity, energy and momentum together make up the 

Astronomy 345: High Energy Astrophysics I



Lecture: 9 Inverse Compton Scattering 139

4-vector, 4-momentum and Lorentz factor is 𝛾 = 1
√1−𝑣2/𝑐2

For the photon:

energy: 𝜖 = ℎ𝜈

momentum: 𝑝 = 𝜖
𝑐 =

ℎ𝜈
𝑐

For electron:

energy: 𝐸 = 𝛾𝑚𝑐2

momentum: 𝑝 = 𝛾𝑚𝑣

Let us recall the useful relation, for the electron

𝐸2 = 𝑝2𝑐2 +𝑚2𝑐4

Astronomy 345: High Energy Astrophysics I



Lecture: 9 Inverse Compton Scattering 140

hence

𝑝2 = 𝐸2

𝑐2 −𝑚2𝑐2 = 𝛾2𝑚2𝑐2 −𝑚2𝑐2 = (𝛾2 − 1)𝑚2𝑐2

⟹ 𝑝 = 𝑚𝑐√𝛾2 − 1

By the conservation of energy, we have

𝐸1 + 𝜖1 = 𝐸2 + 𝜖2

𝐸1 − 𝐸2 = Δ𝐸 = 𝜖2 − 𝜖1 (9.1)

and conservation of momentum:

𝑝1 −
𝜖1
𝑐 = 𝑝2 +

𝜖2
𝑐 (9.2)

We want to express 𝜖2 (final photon energy) in terms of 𝜖1 and 𝐸1, i.e. we 

want to eliminate 𝐸2.

Astronomy 345: High Energy Astrophysics I



Lecture: 9 Inverse Compton Scattering 141

We introduce the dimensionless energy variable for the photon

𝜌 = 𝜖
𝑚𝑐2

analogous to

𝛾 = 𝐸
𝑚𝑐2

Equations (9.1, 9.2) give

𝛾1 − 𝛾2 =𝜌2 − 𝜌1 = Δ𝜌 (9.3)

√𝛾21 − 1 − 𝜌1 =√𝛾22 − 1 + 𝜌2 (9.4)

Thus

𝛾2 = 𝛾1 − Δ𝜌

√𝛾21 − 1 −√𝛾22 − 1 = 𝜌1 + 𝜌2 = 2𝜌1 + Δ𝜌
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Substituting for 𝛾2:

√𝛾21 − 1 −√(𝛾1 − Δ𝜌)2 − 1 = 2𝜌1 + Δ𝜌

⟹ (𝛾1 − Δ𝜌)2 − 1 = [√𝛾21 − 1 − (2𝜌1 + Δ𝜌)]
2

simplifying, one obtains

⟹ Δ𝜌[𝛾1 + 2𝜌1 −√𝛾21 − 1] = 2𝜌1 [√𝛾21 − 1 − 𝜌1]

Δ𝜌 =
2𝜌1 [√𝛾21 − 1 − 𝜌1]

[𝛾1 + 2𝜌1 −√𝛾21 − 1]
(9.5)

We can further simplify this formula by noting that, for astrophysical examples 
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of inverse Compton scattering, we have:

Low energy incoming photons: 𝜌1 ≪ 1
High energy incoming electrons: 𝛾1 ≫ 1

so we have from Equation (9.5)

Δ𝜌 =
2𝜌1 [√𝛾21 − 1 − 𝜌1]

[𝛾1 + 2𝜌1 −√𝛾21 − 1]
=

2𝜌1𝛾1 [√1 − 1/𝛾21 − 𝜌1/𝛾1]

𝛾1 [1 + 2𝜌1/𝛾1 −√1 − 1/𝛾21 ]

Let us retain first order terms in 1/𝛾1, and using that (1 + 𝑥)𝑛 ≃ 1 + 𝑛𝑥, we 

can derive

Δ𝜌 =
2𝜌1 [1 − 1/2𝛾21 − 𝜌1/𝛾1]
[1 + 2𝜌1/𝛾1 − 1 + 1/2𝛾21 ]

≃
2𝜌1𝛾21

[2𝜌1𝛾1 + 1/2]
=

4𝜌1𝛾21
[4𝜌1𝛾1 + 1]

(9.6)

Equation 9.6 can be further simplified. However, since we assumed 𝛾1 ≫ 1, 
and 𝜌1 ≪ 1, the value 𝛾1𝜌1 is undefined, i.e. 𝛾1𝜌1 ≫ 1 or 𝛾1𝜌1 ≪ 1
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Let us first consider the case 𝛾1𝜌1 ≫ 1 in 9.6:

Δ𝜌 ≃
4𝜌1𝛾21

[4𝜌1𝛾1 + 1]
≃ 𝛾1 (9.7)

Equation 9.7 is approximation saying that photon gains all the energy of the 

incoming electron.

However, even larger relative boost can be achieved if 𝜌1𝛾1 ≪ 1.

Let us now consider the case 𝜌1𝛾1 ≪ 1 in Equation (9.6), so we can 

write:

Δ𝜌 ≃ 𝜌2 ≃ 4𝜌1𝛾21 (9.8)

since Δ𝜌 = 𝜌2 − 𝜌1 ≃ 𝜌2.

Note that a head-on collision gives the maximum energy transfer to the 

outgoing photon.
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Averaging over all scattering directions gives approximately:

⟨𝜌2⟩ ≃
4
3𝛾

2
1 𝜌1 (9.9)

when averaged over all angles.
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9.5 Example I

Let us consider head-on collision between an optical photon 𝜖1 = 1 eV and 

a cosmic ray electron.

Note that 𝜌1 = 𝜖1/𝑚𝑐2 = 10−3/511 ≃ 2 × 10−6.
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9.6 Example II

For a CMBR photon 𝜖1 = 10−3 eV and a cosmic ray electron. Note that 

𝜌1 = 𝜖1/𝑚𝑐2 = 10−6/511 ≃ 2 × 10−9.
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9.7 Validity of approximations

Two examples show that in two cases:

• Head-on collision between a CMBR photon and a cosmic ray electron

• Head-on collision between an optical photon and a cosmic ray electron

In all cases we considered, 𝜌1𝛾1 ≪ 1, as we assumed in deriving the 

expression for 𝜌2.
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10 Inverse Compton Luminosity and Spectrum

LECTURE OUTLINE

• Inverse Compton luminosity

• Compton scattering cross-section

• Inverse Compton luminosity spectrum
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10.1 Inverse Compton Luminosity

Consider a homogeneous volume, 𝑉, filled with electrons all of energy 𝐸 =
𝛾𝑚𝑐2 and number density 𝑛𝑒, and photons all of energy 𝜖 = ℎ𝜈 and number 

density 𝑛𝜈

Total emissivity from this volume is given by (see Equation 4.2):

𝐽 = 𝑁𝑇𝐹𝑄

We regard the photons as the target particles, hit by a beam of highly rela-

tivistic electrons. Thus:

𝑁𝑇 = 𝑛𝜈𝑉 and 𝐹 = 𝑛𝑒𝑣 ≃ 𝑛𝑒𝑐

so that

𝐽 = 𝑛𝜈𝑉𝑛𝑒𝑐𝑄𝐼𝐶 (10.1)
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From previous section, average energy of a scattered photon,

⟨𝜖2⟩ ≃
4
3𝛾

2ℎ𝜈

Thus, average source luminosity from Equation (10.1)

𝐿 = 𝐽⟨𝜖2⟩ = 𝑛𝜈𝑉𝑛𝑒𝑐𝑄𝐼𝐶
4
3𝛾

2ℎ𝜈
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We can re-write this as follows:

𝐿𝐼𝐶 =
4
3𝑐𝛾

2 𝑁𝑒⏟
=𝑛𝑒𝑉

𝑄𝐼𝐶 𝑈𝜈⏟
=𝑛𝜈ℎ𝜈

, [W] (10.2)

where 𝑈𝜈 is the radiation energy density.

Hence, the average IC power emitted from 𝑁𝑒 electrons of energy 𝛾𝑚𝑐2

(𝑑𝐸𝑑𝑡 )𝐼𝐶
= 𝐿𝐼𝐶 =

4
3𝑄𝐼𝐶𝑐𝑁𝑒𝛾

2𝑈𝜈 [W] (10.3)

which is also the energy loss rate of the electrons.
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10.2 Lifetime of an electron and IC losses

Power emitted by a single electron

𝐿𝐼𝐶 =
4
3𝑄𝐼𝐶𝑐𝛾

2𝑈𝜈

Timescale for an electron to lose its energy

𝜏𝐼𝐶 ≈
𝐸
𝑑𝐸
𝑑𝑡

= 𝛾𝑚𝑐2
32
9
𝜋𝑟2𝑒 𝑐𝛾2𝑈𝜈

= 9𝑚𝑐
32𝜋𝑟2𝑒

1
𝛾𝑈𝜈

Let us consider e.g., CMBR photons 𝑇 ≃ 2.7 K. From black body radiation 

energy density (see Equation 3.6 and description in Section 3.10)

𝑈𝜈 = 𝑎𝑇4 ≃ 4 × 10−14, [J m−3]

Timescale for an electron to lose its energy in CMBR background

𝜏𝐼𝐶 ≈
9𝑚𝑐
32𝜋𝑟2𝑒

1
𝛾𝑈𝜈

≃ 2 × 1012
𝛾 [ years]
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For, e.g., 1 GeV electron

𝛾 = 𝐸
𝑚𝑐2 ≃ 2 × 103

we have 𝜏𝐼𝐶 ≃ 109 years.
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10.3 IC spectrum

In a real situation the electrons and photons would have a distribution of 

initial energies, on which the Inverse Compton cross-section, 𝑄𝐼𝐶 would 

depend - i.e. for an IC photon of outgoing energy 𝜖 = ℎ𝜈 we have

𝑑𝑄𝐼𝐶
𝑑𝜖 =

𝑑𝑄𝐼𝐶
𝑑𝜖 (ℎ𝜈0, 𝐸)

where ℎ𝜈0 is the energy of incoming photon, 𝐸 is the energy of incoming 

electron. Further

𝑑𝐽𝐼𝐶
𝑑𝜖 = 𝑐∫∫∫

𝑑𝑛𝑒
𝑑𝐸

𝑑𝑛𝜈
𝑑𝜈0

𝑑𝑄𝐼𝐶
𝑑𝜖 𝑑𝜈0𝑑𝐸𝑑𝑉

We can define the electron energy before collision via 𝛾 = 𝐸/𝑚𝑐2, so that 

we can also write

𝑑𝐽𝐼𝐶
𝑑𝜖 = 𝑐∫∫∫

𝑑𝑛𝑒
𝑑𝛾

𝑑𝑛𝜈
𝑑𝜈0

𝑑𝑄𝐼𝐶
𝑑𝜖 𝑑𝜈0𝑑𝛾𝑑𝑉
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and
𝑑𝐿𝐼𝐶
𝑑𝜖 = 𝑐𝜖∫∫∫

𝑑𝑛𝑒
𝑑𝛾

𝑑𝑛𝜈
𝑑𝜈0

𝑑𝑄𝐼𝐶
𝑑𝜖 𝑑𝜈0𝑑𝛾𝑑𝑉

We can simplify this integral by make the assumption that all emitted pho-

tons gain the average amount of energy i.e.

𝑑𝑄𝐼𝐶
𝑑𝜖 = 0 unless 𝜖 = 4

3𝛾
2ℎ𝜈0

we can write this as

𝑑𝑄𝐼𝐶
𝑑𝜖 = 8

3𝜋𝑟
2
𝑒 𝛿 (

4
3𝛾

2ℎ𝜈0 − 𝜖) = 𝑄𝑇𝛿 (
4
3𝛾

2ℎ𝜈0 − 𝜖) (10.4)

where 𝛿(𝑥) is Dirac delta function. Noting that Dirac delta function has the 

following properties:

𝛿(𝑥 − 𝑥0) = 0 if 𝑥 ≠ 𝑥0
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∫
∞

−∞
𝛿(𝑥 − 𝑥0)𝑑𝑥 = 1 and ∫

∞

−∞
𝑓(𝑥)𝛿(𝑥 − 𝑥0)𝑑𝑥 = 𝑓(𝑥0)

Changing variables from 𝛾 to 𝑥 = 4/3𝛾2ℎ𝜈0 at fixed 𝜈0, we have:

𝑑𝐿𝐼𝐶
𝑑𝜖 = 𝑐𝜖∫∫∫

𝑑𝑛𝑒
𝑑𝛾

𝑑𝑛𝜈
𝑑𝜈0

𝑄𝑇𝛿(𝑥 − 𝜖)𝑑𝜈0
3

8𝛾ℎ𝜈0
𝑑𝑥𝑑𝑉

Integrating over the electron energy 𝑥

𝑑𝐿𝐼𝐶
𝑑𝜖 = 𝑐𝜖𝑄𝑇∫∫ (

𝑑𝑛𝑒
𝑑𝛾

3
8𝛾ℎ𝜈0

)|||𝑥=𝜖

𝑑𝑛𝜈
𝑑𝜈0

𝑑𝜈0𝑑𝑉

Substituting back 𝜖 = 𝑥 = 4
3
𝛾2ℎ𝜈0 and simplifying, we find luminosity 

spectrum of Inverse Compton emission for arbitrary electron and photon 

spectra
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The luminosity differential in energy

𝑑𝐿𝐼𝐶
𝑑𝜖 = 𝑐𝑄𝑇∫∫ (

𝛾
2
𝑑𝑛𝑒
𝑑𝛾 )

|||𝛾=
√

3𝜖
4ℎ𝜈0

𝑑𝑛𝜈
𝑑𝜈0

𝑑𝜈0𝑑𝑉, [ W keV−1] (10.5)

depends on electron spectrum.

Now we need to assume the spectrum of incoming electrons.
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10.4 Power-law spectrum of electrons

Suppose we have a power-law electron spectrum independent of position 

i.e.
𝑑𝑛𝑒
𝑑𝛾 = 𝐾𝛾−𝛼 (10.6)

Then

(
𝛾
2
𝑑𝑛𝑒
𝑑𝛾 )

|||𝛾=
√

3𝜖
4ℎ𝜈0

= 𝐾
2𝛾

−𝛼+1 = 𝐾
2 (

3𝜖
4ℎ𝜈0

)
1−𝛼
2

so luminosity differential in energy

𝑑𝐿𝐼𝐶
𝑑𝜖 = 𝑐83𝜋𝑟

2
𝑒
𝐾
2 (

3
4ℎ)

1−𝛼
2 𝜖

1−𝛼
2 ∫∫𝜈

𝛼−1
2

0
𝑑𝑛𝜈
𝑑𝜈0

𝑑𝜈0𝑑𝑉, [ W keV−1]

(10.7)

i.e. if we neglect the constants.
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The proportionality becomes

𝑑𝐿𝐼𝐶
𝑑𝜖 ∝ 𝜖−𝛽, where 𝛽 = 𝛼 − 1

2 (10.8)

So, again, we find that a power-law distribution of electron energies 

gives rise to a power law photon spectrum, but with a different power 

law index.
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10.5 Summary of power-law spectra

 X-ray mechanism  Electron distribution  Photon index

 Non-thermal Bremsstrahlung 𝐹(𝐸) ∝ 𝐸−𝛿 𝑑𝐿
𝑑𝜖
∝ 𝜖−𝛿

 Thermal inhomogeneous plasma 𝜉 ∝ 𝑇−𝛼 𝑑𝐿
𝑑𝜖
∝ 𝜖−𝛽

 Inverse Compton scattering
𝑑𝑛𝑒
𝑑𝛾

∝ 𝛾−𝛼 𝑑𝐿
𝑑𝜖
∝ 𝜖−

(𝛼−1)
2

Note spectrum for synchrotron radiation in the next section.
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11 Synchrotron radiation: luminosity and spectrum

LECTURE OUTLINE

• Synchrotron radiation luminosity

• Synchrotron radiation cross-section

• Synchrotron radiation luminosity spectrum
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11.1 Cyclotron radiation

Figure 11.1:  Electron gy-
rating in �⃗� field

Consider a non-relativistic electron, with 𝑣 ≪ 𝑐, 
following a circular orbit or radius, 𝑟, ’around’ a field 

line of a uniform magnetic field, �⃗�.

Lorentz force gives circular motion (Figure 11.1)

𝑒𝑣𝐵 = 𝑚𝑣2
𝑟 ⟹ 𝜔𝐿 =

𝑣
𝑟 =

𝑒𝐵
𝑚

where 𝜔𝐿 is Larmor angular frequency. Electron 

emits cyclotron radiation at the Larmor frequency

𝜈𝐿

𝜈𝐿 =
𝜔𝐿
2𝜋 = 𝑒𝐵

2𝜋𝑚 (11.1)

Any constant velocity component parallel to the magnetic field does not lead 

to radiation (no change in acceleration, recall Equation 5.2).
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11.2 Cyclotron line features

Figure 11.2:  Hercules 
X-1 X-ray spectrum from 
Trumper et al, 1978

Cyclotron line has energy:

𝜖 = ℎ𝜈𝐿 =
ℎ𝑒𝐵
2𝜋𝑚 ≃ 10−7𝐵, [ keV Tesla−1]

Cyclotron lines are observed in X-ray binaries due to 

resonant scattering of the line of sight X-ray photons 

against electrons embedded in magnetic fields.

For e.g. Her X-1 (X-ray binary) has such feature near 

37 keV, (discovered by Trumper et al, 1978 see also 

Furst et al, 2013) so can diagnose magnetic field:

𝐵 ≃ 3.7 × 108, [ Tesla]

Note that the strong magnetic fields are expected near to a neutron star.
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11.3 Synchrotron Radiation

Consider now a highly relativistic electron 𝑣⟶ 𝑐, and 𝛾 ≫ 1.

Radiation is known as synchrotron and is strongly Doppler shifted and for-

ward beamed due to relativistic aberration (Figure 11.3).

Figure 11.3: Cartoon showing relativistic beaming of synchrotron radiation
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11.4 Synchrotron frequency and single electron spectrum

Figure 11.4:  Synchrotron spectrum of a single 
electron

Typical frequency of synchrotron 

radiation is

𝜈𝑠 =
3
2𝛾

2𝜈𝐿 =
3
2𝛾

2 ( 𝑒𝐵
2𝜋𝑚)
(11.2)

Synchrotron radiation is emit-

ted over a wide range of fre-

quencies (Figure 11.4).

Peak occurs at ∼ 0.3𝜈𝑠, but av-
erage frequency value ⟨𝜈⟩ ≃ 𝜈𝑠. 

At low frequencies, 𝜈 ≪ 𝜈𝑠, the spectrum grows ∝ 𝜈1/3 (Figure 11.4).
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11.5 Synchrotron luminosity

We can estimate the power radiated by a single electron using Equation 5.2:

𝑃 = 𝑒2 ̇𝑣2

6𝜋𝜖0𝑐3

where the acceleration ̇𝑣 can be determined by transforming to the electron’s 

rest frame, in which electric field is:

𝐄′ = 𝛾�⃗� × �⃗�

From Newton’s 2nd law

𝑑 ⃗𝐯′
𝑑𝑡′ =

𝑒
𝑚𝐄

′ = 𝑒𝛾
𝑚�⃗� × �⃗�

We can estimate the power radiated by a single electron is

(𝑑𝐸
′

𝑑𝑡′ )𝑆
= 𝑒2 ̇𝑣′2

6𝜋𝜖0𝑐3
= 𝑒2

6𝜋𝜖0𝑐3
(
𝑒𝑣𝛾𝐵 sin(𝜃)

𝑚 )
2

(11.3)
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where 𝑑𝐸′/𝑑𝑡′ is the power in electron rest’s frame. But the power is an 

Lorentz invariant, e.g.
𝑑𝐸′
𝑑𝑡′ =

𝑑𝐸
𝑑𝑡

Hence the observed power radiated per electron is also given by the formula 

11.3.

If �⃗� is randomly oriented in 3-D, then ⟨sin2(𝜃)⟩ = 2
3
.

Also, the magnetic energy density is defined to be

𝑈𝐵 =
𝐵2
2𝜇0

where 𝜇0 is permeability constant. Recalling Thomson cross-section (Equa-

tion 5.4)

𝑄𝑇 =
8𝜋
3 ( 𝑒2

4𝜋𝜖0𝑚𝑐2
)
2

= 8𝜋
3 𝑟

2
𝑒
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The power emitted by an electron (Equation 11.3) can be re-written:

(𝑑𝐸𝑑𝑡 )𝑆
= 𝑒2

6𝜋𝜖0𝑐3
2
3 (

𝑒𝑣𝛾𝐵
𝑚 )

2
= 4
3𝑄𝑇𝑐𝛾

2𝑈𝐵 (11.4)

where we took 𝑣 = 𝑐 and 𝜇0𝜖0 = 1/𝑐2.

If we compare this formula (Equation 11.4) with our result for the Inverse 

Compton luminosity (Equation 10.3), one finds:

(𝑑𝐸
𝑑𝑡
)
𝐼𝐶

(𝑑𝐸
𝑑𝑡
)
𝑆

= 𝑈𝜈
𝑈𝐵

(11.5)

The ratio of Inverse Compton and Synchrotron luminosity from a source 

is given by the ratio of its radiation to magnetic energy density.
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11.6 Synchrotron radiation from electron distribution

For a homogeneous volume, 𝑉 , of uniform magnetic field, �⃗�, containing 𝑁𝑒
electrons - all of energy 𝐸 = 𝛾𝑚𝑐2 then (as for the Inverse Compton case) 

the total luminosity for 𝑁𝑒 electrons is given by

𝐿𝑆 =
4
3𝑄𝑇𝑐𝑁𝑒𝛾

2𝑈𝐵 [ W] (11.6)

As we considered in the Inverse Compton case, in a real situation the electrons 

would have a distribution of energies, and their number density would be a 

function of position. We need to take this into account when we calculate 

the synchrotron spectrum - i.e. the luminosity as a function of photon energy. 

Thus, synchrotron luminosity spectrum is

𝑑𝐿𝑆
𝑑𝜖 = ∫∫ 4

3𝑐𝛾
2𝑑𝑛𝑒
𝑑𝛾 𝑈𝐵

𝑑𝑄𝑆
𝑑𝜖 𝑑𝛾𝑑𝑉 (11.7)
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11.7 Synchrotron luminosity spectrum

To simplify matters, we make a similar approximation as in the Inverse Comp-

ton case (see Lecture 9): we assume that synchrotron emission only occurs 

at the mean synchroton frequency

𝜈𝑠 =
3
2𝛾

2𝜈𝐿

and all synchrotron photons have energy:

𝜖 = ℎ𝜈𝑠 =
3
2𝛾

2ℎ𝜈𝐿

This means that we assume the synchrotron differential cross-section takes 

the form:
𝑑𝑄𝑆
𝑑𝜖 = 8

3𝜋𝑟
2
𝑒 𝛿 (

3
2𝛾

2ℎ𝜈𝐿 − 𝜖) (11.8)

Hence, we can write the differential synchrotron spectrum as

𝑑𝐿𝑆
𝑑𝜖 = 4

3𝑐∫∫𝛾2
𝑑𝑛𝑒
𝑑𝛾 𝑈𝐵

8
3𝜋𝑟

2
𝑒 𝛿 (

3
2𝛾

2ℎ𝜈𝐿 − 𝜖) 𝑑𝛾𝑑𝑉
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and integrating over 𝛾, one finds 7

the differential luminocity

𝑑𝐿𝑆
𝑑𝜖 = 4

3𝑐𝑄𝑇∫ (
𝛾

3ℎ𝜈𝐿
𝑑𝑛𝑒
𝑑𝛾 )

|||𝛾=
√

2𝜖
3ℎ𝜈𝐿

𝑈𝐵𝑑𝑉 (11.9)

Note the similarity to IC expression.

7Here one can use another property of Dirac delta function

𝛿(𝑓(𝑥)) = 1
f'(a)

𝛿(𝑥 − 𝑎),

where 𝑎 is the root of 𝑓(𝑥) i.e. 𝑓(𝑎) = 0.
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11.8 Radiation from a power-law electron spectrum

Suppose we have a power-law electron spectrum independent of position 

i.e.
𝑑𝑛𝑒
𝑑𝛾 = 𝐾𝛾−𝛼, 𝛼 > 0

Then assuming uniform distribution of electrons and uniform �⃗�:

𝑑𝐿𝑆
𝑑𝜖 = 4

3𝑐𝑄𝑇 (
𝛾

3ℎ𝜈𝐿
𝐾𝛾−𝛼)|||𝛾=

√
2𝜖

3ℎ𝜈𝐿

∫𝑈𝐵𝑑𝑉 (11.10)

or
𝑑𝐿𝑆
𝑑𝜖 ∝ 𝜖−

𝛼−1
2

which is the same result as for Inverse Compton Scattering.
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11.9 Typical energies of synchrotron electrons and photons

We saw previously that, for extremely high magnetic fields (e.g. near to a 

pulsar), we can obtain X-ray cyclotron emission/absorption:

𝜖 = ℎ𝜈𝐿 =
ℎ𝑒𝐵
2𝜋𝑚 ≃ 10−7𝐵 [keV/Tesla]

since 𝜈𝑠 = 3/2𝛾2𝜈𝐿 we could in principle achieve X-ray synchrotron energies 

for more modest magnetic fields, provided 𝛾 is large enough.

For e.g. the Solar corona, fields of about 10-100 Gauss 8 have been measured. 

Thus to observe X-ray synchrotron emission, with e.g. 10 keV, from the corona 

would in this case require

3
2𝛾

210−710−2 = 10

8Note that 1 Gauss =10−4 Tesla
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hence

𝛾2 ≃ 1010 ⟹𝑣 = 0.99999999995𝑐

so 𝑣 should be very close to 𝑐!

Suppose instead we take a more modest 𝑣 = 0.5𝑐

𝛾2 = (1 − 0.25)−1 = 4
3

𝜖 = 1.5𝛾2ℎ𝜈𝐿 ≃ 2 × 10−7𝐵 [keV/Tesla]

Thus for 𝐵 = 10−2 Tesla=100 Gauss, 𝜖 = 2 × 10−6 eV or

𝜈𝐿 =
2 × 10−6 × 1.6 × 10−19

6.63 × 10−34 ≃ 480 [ MHz]

This is in the radio part of the E-M spectrum. Indeed, gyro-synchrotron 

emission peaking near ∼ 10 GHz is often observed during solar flares (e.g. 

Figure 11.5), indicating mildly relativistic particles 0.1-1 MeV.
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11.10 Solar energetic particles and gyro-synchrotron emission

Figure 11.5: Simulations (centre) of the spectrum (right) and the images (left) of radio 
emission provides strong evidence that the emission mechanism is (gyro-) synchrotron 
radiation - due to the acceleration of charged particles in the Sun’ s magnetic field. From 
Nita et al, 2015

Astronomy 345: High Energy Astrophysics I

http://adsabs.harvard.edu/abs/2015ApJ...799..236N

	Introduction to High Energy Astrophysics
	Observing X-rays in Astrophysics
	X-ray emission mechanisms, Black-body emission
	Reaction cross-section
	Thomson scattering
	Bremsstrahlung
	Thermal and multi-thermal bremsstrahlung
	Photon spectrum interpretation
	Inverse Compton Scattering
	Inverse Compton Luminosity and Spectrum
	Synchrotron radiation: luminosity and spectrum

