

- ✓What is a "star"?
- ✓ How hot is the surface of the Sun? How is this known? The Sun is gaseous, so how come it has a "surface"?
- ✓ How hot is the center of the Sun? How is this known?
- ✓ How long can the Sun remain as a shining body? How is this known?
- ✓ Describe the radial structure of the Sun. How is this know?

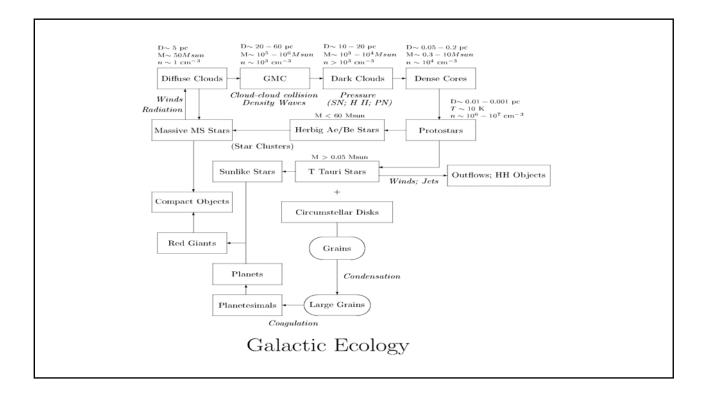
Stellar Formation and Evolution Syllabus
Instructor: Professor Wen-Ping Chen Office: 906 Class Time: Tuesday evening 5 to 8 scheduled (subject to change) Class venue: Room 914
This course deals with the time variations of the structures of a star's interior and atmosphere. We will discuss the important physical processes governing the life of a star from its birth out of a dense, cold molecular cloud core, to shining with the star's own thermonuclear fuels, to rapid changes in structures when these fuels are no longer available, to the end of a star's life, with matter in extremely compact states.
What it may take for a star billions of years, will take us one semester to cover the following subjects:
 Observational Properties of Stars Molecular Clouds and the Interstellar Medium Cloud Collapse and Fragmentation Stars and Statistical Physics Protostars and Jets Circumstellar Disks and Planet Formation Evolution onto the Main Sequence Binaries and Star Clusters On the Main Sequence Nuclear Reactions Effects of Rotation Instabilities Thermally, Dynamically and Convectively Post-MS Evolution of Low-Mass Stars RG, AGB, HB, PNe Post-MS Evolution of Copheid Variables Compact Objects White Dwarfs, Neutron Stars, and Black holes
Text:
"An Introduction to the Theory of Stellar Structure and Evolution", by Dina Prialnik, Cambridge, 2 nd Ed. 2009

References

All the references you have found useful for the course Stellar Atmosphere and Structure will be also of use in this course. The following are the ones I have been using or were published in recent years Physics of Stellar Evolution and Cosmology, by H. Goldberg & Michael Scadron, 1982, Gordon and Breach Stellar Structure and Evolution, by R. Kippenhahn & W. Weigert, 1990, Springer-Verlag Introduction to Stellar Astrophysics, Vol 3 --- Stellar Structure and Evolution, by Erika Bohm-Vitense, 1992, Cambridge Stellar Structure and Evolution, by Huang, R.Q. 黃潤乾, Guoshin, 1990 This book, originally in Chinese, has an English version, and has recently been revised. The Chinese version (恆星物理) has also been revised The Physics of Stars, by A.C. Phillips, 1994, John Wiley & Sons ✓ Stellar Evolution, by Amos Harpaz, A K Peters, 1994 The Stars --- Their Structure and Evolution, R. J. Tayler, 1994, Cambridge Theoretical Astrophysics, Vol II: Stars and Stellar Systems by Padmanabhan, T., a hefty, mathematical 3 volume set; comprehensive coverage of basic astrophysical processes in vol. 1, stars in vol. 2, and galaxies and cosmology in vol. 3, 2001, Cambridge Evolution of Stars and Stellar Populations, by Maurizio Salaris and Santi, Cassisi, 2005, Wiley ✓ The Formation of Stars, by Steven W. Stahler & Francesco Palla, 2004, Wiley From Dust to Stars, by Norbert S. Schulz, 2005, Spinger ✓ Stellar Physics, 2: Stellar Evolution and Stability, by Bisnovatyi-Kogan, 2nd Ed., 2010, Springer (translated from Russian) For star formation, the book "Molecular Clouds and Star Formation", edited by Chi Yuan (麦拆) & Junhan You (尤峻漢) and published by World Scientific in 1993, should be a good reference. Unfortunately this book is currently out of print, but Prof Yuan kindly donated his editor copy In addition to written midterm (30% grade) and final (30%) exams, there will be homework assignments, plus in-class exercises or projects (35%). For an extensive listing of books on "stars" ... http://www.ericweisstein.com/encyclopedias/books/Stars.html

- To know the properties of various phases of the interstellar matter:
- To understand how stars form out of molecular clouds; under what conditions:
- To understand the physical properties of stars, and to know how these properties change with time as a star evolves;
- To understand the basic physics underlying complex stellar evolution models:
- To know how to interpret observational parameters of stars;
- To understand how stars of different masses evolve and what the end products of their evolution are.

Stellar structure: balance of forces

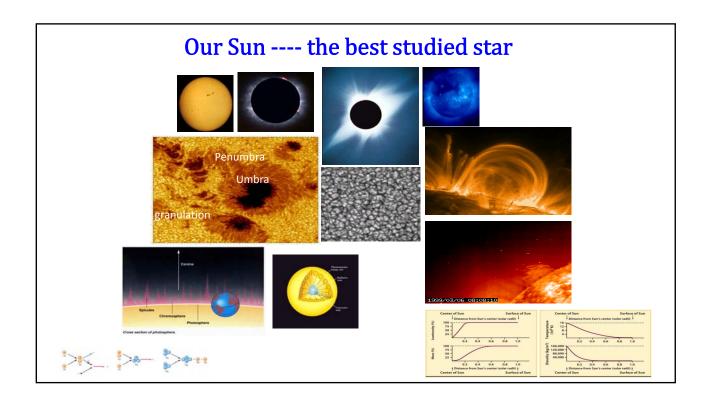

Stellar evolution: (con)sequence of thermonuclear reactions in different parts of a star

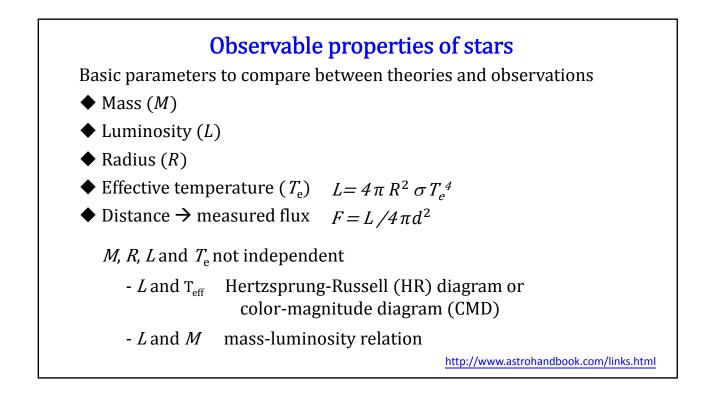
Often used fundamental constants Physical radiation density constant $~~7.55 \times 10^{\text{-16}} \, J \, \text{m}^{\text{-3}} \, \text{K}^{\text{-4}}$ а $3.00 \times 10^8 \text{ m s}^{-1}$ velocity of light С $6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ G gravitational constant 6.62×10^{-34} J s Planck's constant h $1.38 \times 10^{\text{--}23} \, \text{J K}^{\text{--}1}$ Boltzmann's constant k 9.11×10^{-31} kg m_e mass of electron m_H mass of hydrogen atom 1.67×10^{-27} kg *N_A* Avogardo's number $6.02 \times 10^{23} \text{ mol}^{-1}$ Stefan Boltzmann constant 5.67×10^{-8} W m⁻² K⁻⁴ (= ac/4) σ 8.26×10^3 J K^{-1} kg^{-1} gas constant (k/m_H) R $1.60 \times 10^{-19} \,\mathrm{C}$ charge of electron е

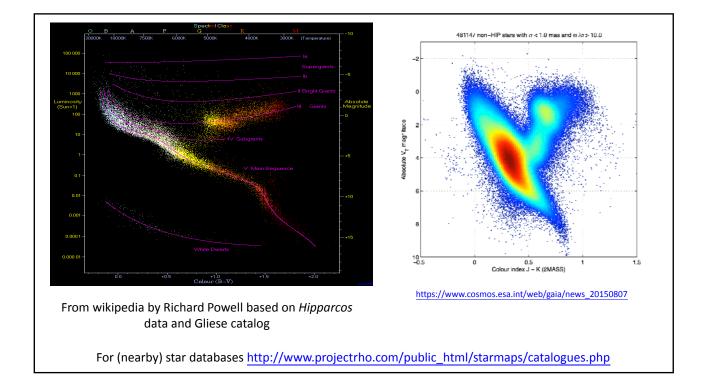
Check out http://pdg.lbl.gov/2006/reviews/astrorpp.pdf

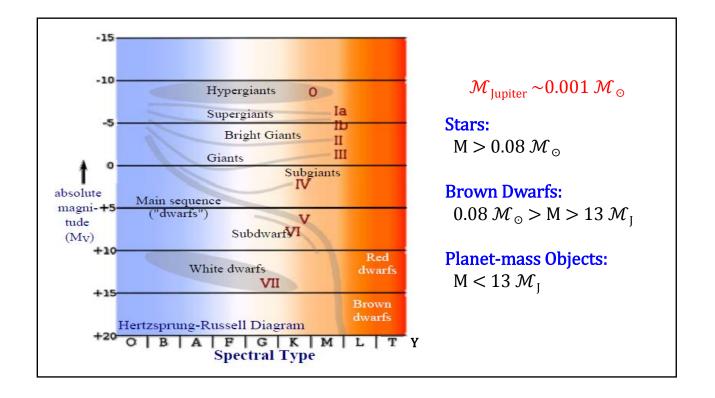
Astronomical

L_{\odot}	Solar luminosity	3.86 x 10 ²⁶ W
M _☉	Solar mass	1.99 x 10 ³⁰ kg
T_{eff}	Solar effective temperature	6
$T_{c \odot}$	Solar Central temperature	$1.6 \ge 10^7 \text{ K}$ (theoretical)
R_{\odot}	Solar radius	6.96 x 10 ⁸ m
m₀	apparent mag of Sun	-26.7 mag (V)
M₀	absolute mag of Sun	+4.8 mag (V)
θ	apparent size of Sun	32'
$< \rho >$	mean density of Sun	1.4 g cm ⁻³
(B-V)	$_{\odot}$ Color of the Sun	0.6 mag
Parse	c (unit of distance)	$3.09 \ge 10^{16} \text{ m}$

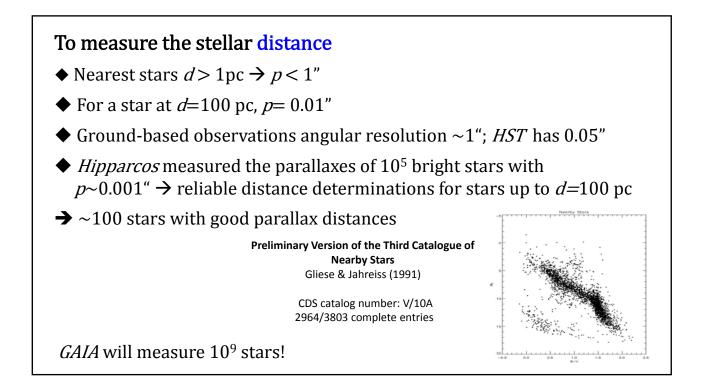

Properties of Stars

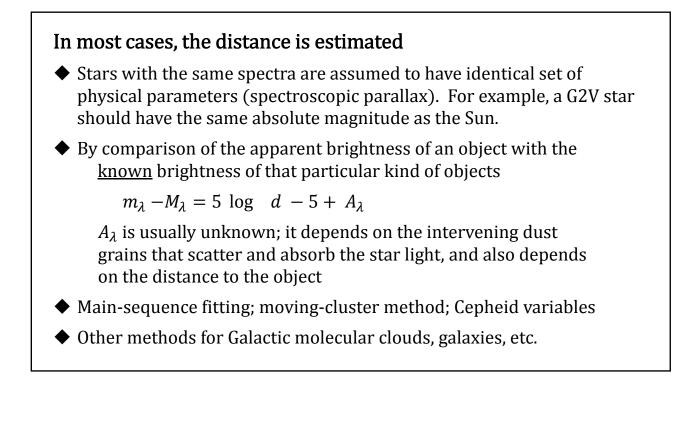

Vocabulary

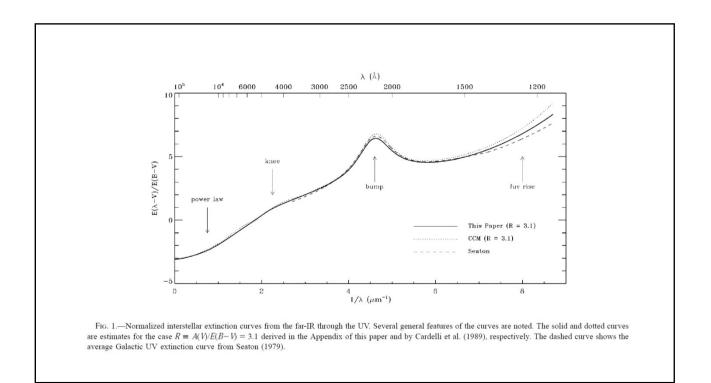

- **Luminosity** [erg s⁻¹] L = bolometric luminosity = power
- Spectral luminosity [erg s⁻¹ μ m⁻¹] L_{λ} $d\lambda = -(c/v^2) dv$
- **flux** [erg s⁻¹ cm⁻²] **f**
- flux density [erg s⁻¹ cm⁻² μ m⁻¹] f_{λ} or f_{ν} 1 Jansky (Jy) = 10⁻²³ [erg s⁻¹ cm⁻² Hz⁻¹] f(v=0)=3640 Jy
- Brightness/intensity [erg s⁻¹ cm⁻² sr⁻¹] B
- Specific intensity [erg s⁻¹ cm⁻² sr⁻¹ Hz⁻¹] I_{ν}
- Energy density [erg cm⁻³] $\boldsymbol{u} = (4 \pi/c) J$ J=mean intensity = $(1/4\pi) \int I d \Omega$

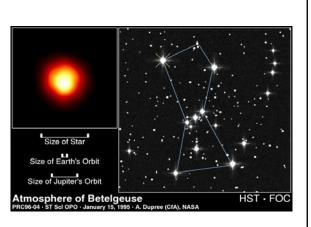

$$S_{\nu} [\mu Jy] = 10^{(23.9-AB)/2.5}$$

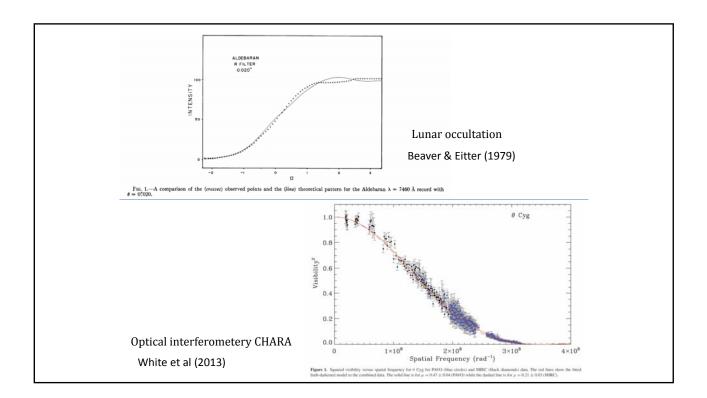
 $m_{AB} = -2.5 \log_{10} \left(\frac{f_{\nu}}{3631 \text{ Jy}} \right)$

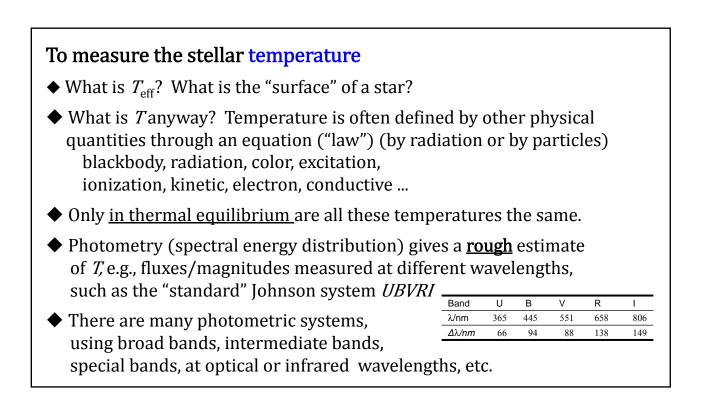

• Magnitude ... apparent, absolute, bolometric, AB

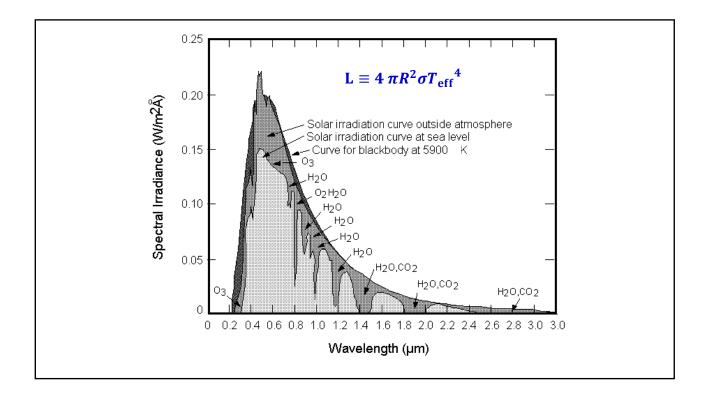




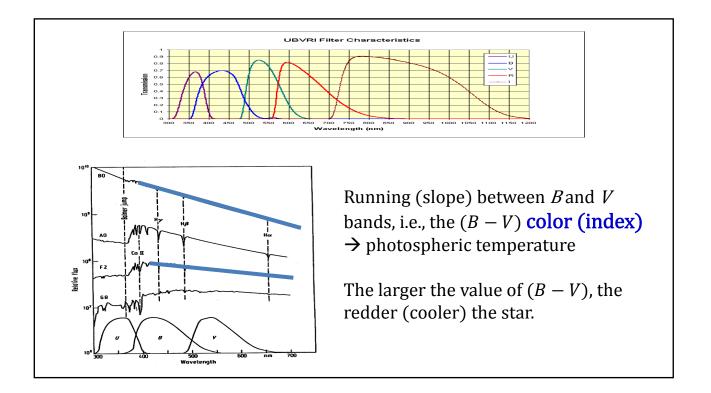


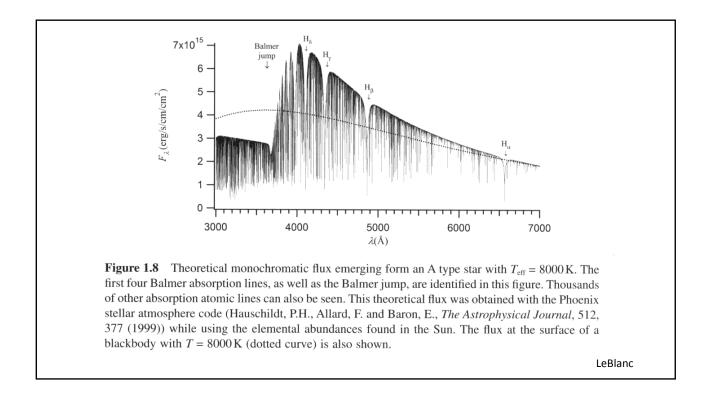


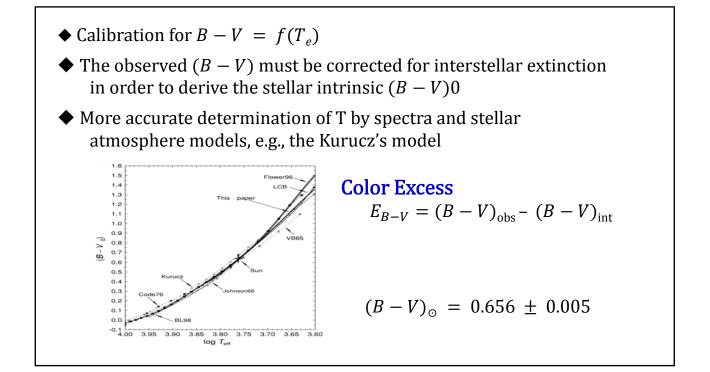


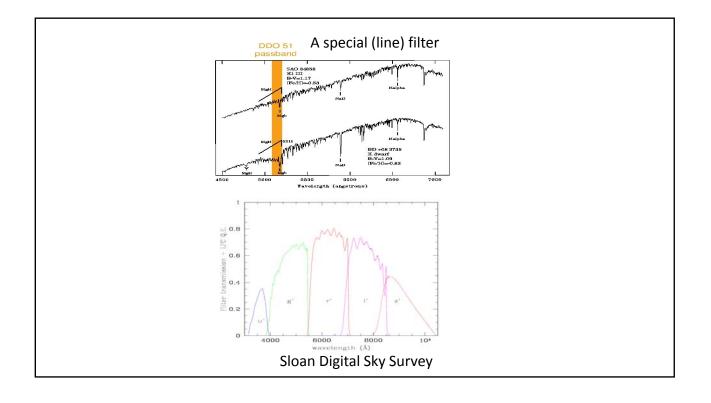

To measure the stellar size

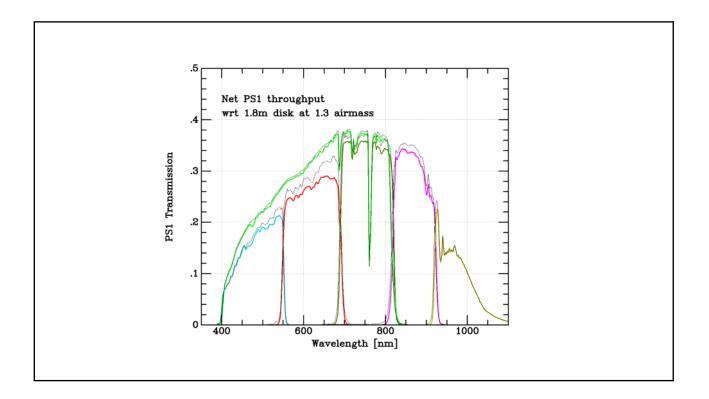

- Angular diameter of sun at 10 pc = $2R_{\odot}/10$ pc = 5×10^{-9} radians = 10^{-3} arcsec
- Even the HST (0.05") barely capable of measuring directly the sizes of stars, except for the nearest supergiants
- Radii of ~600 stars measured with techniques such as interferometry, (lunar) occultation or for eclipsing binaries

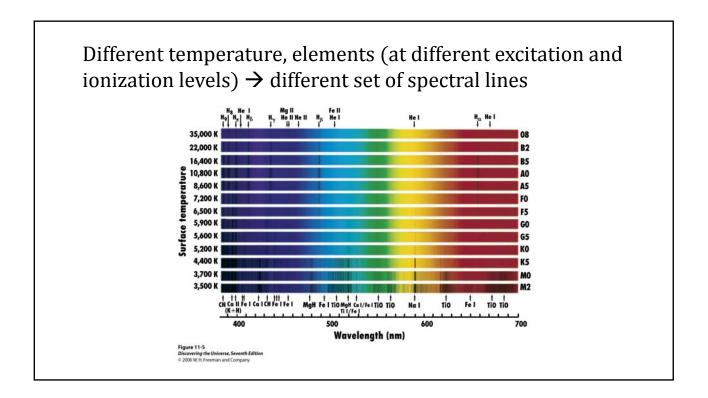


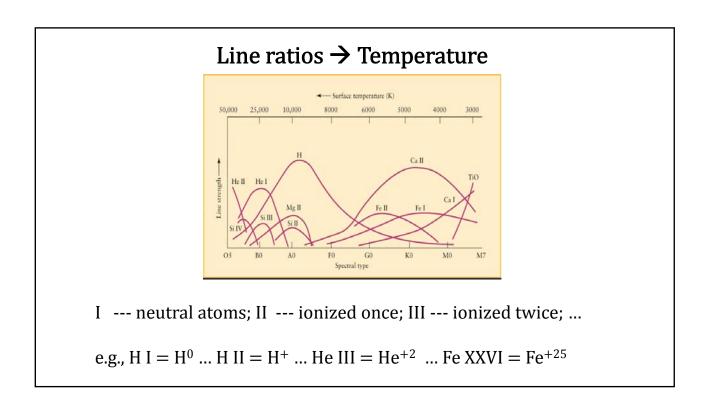


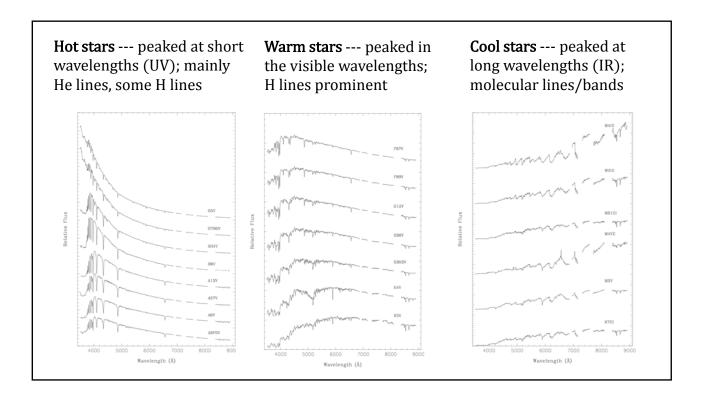


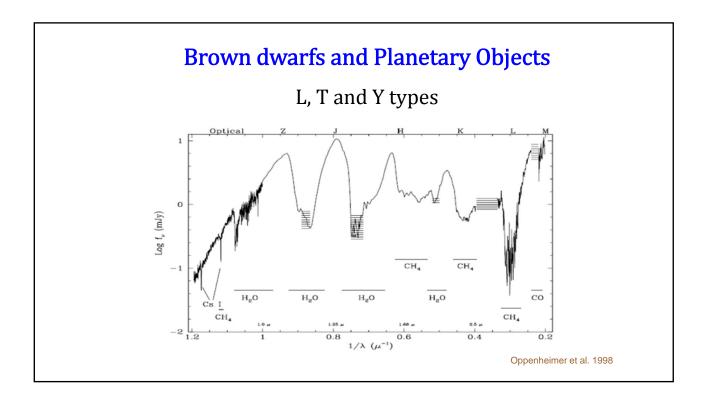


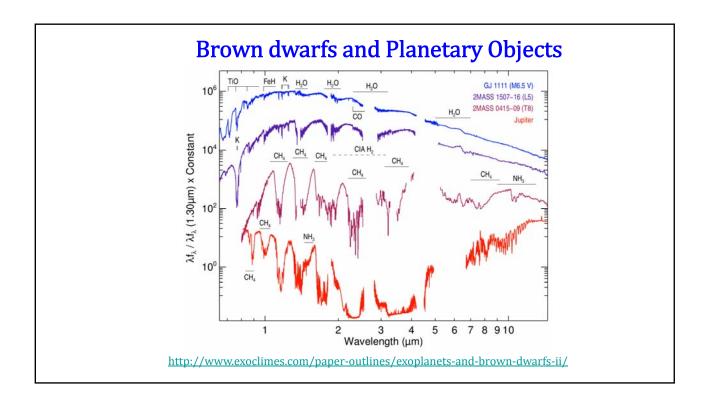


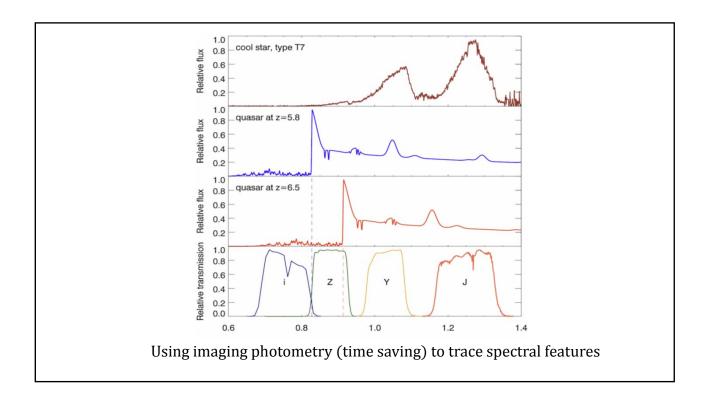


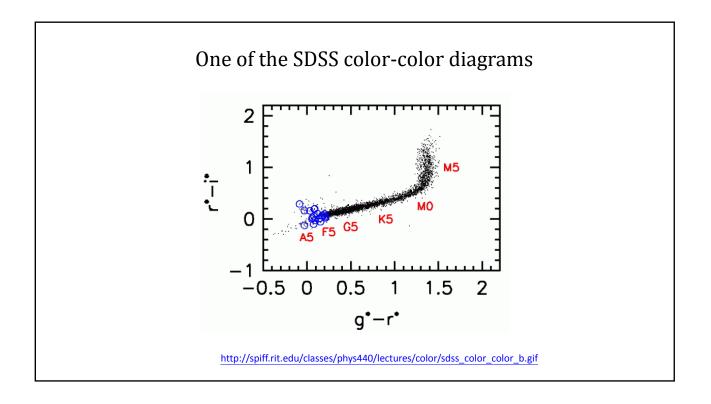


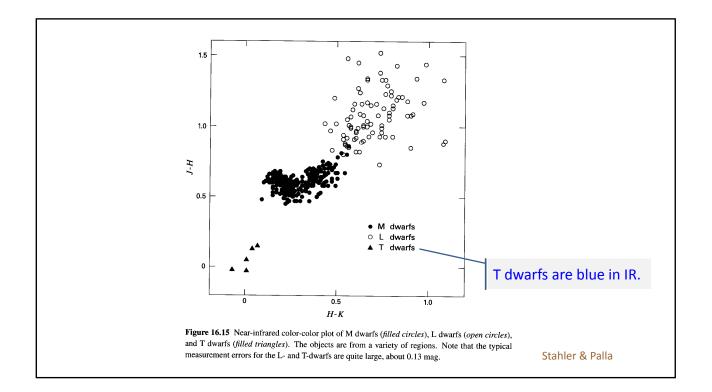


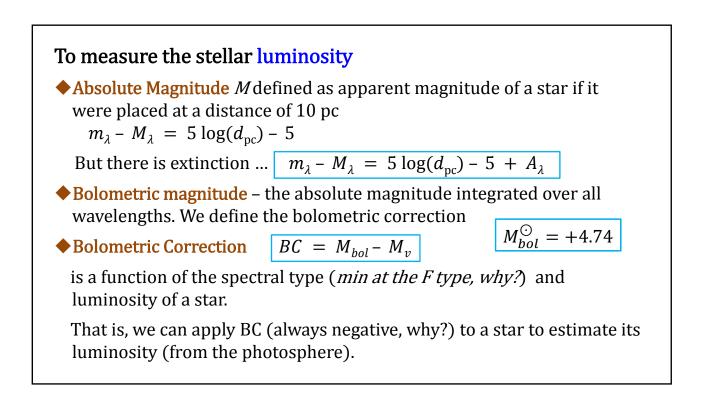












Apparent Magnitude $m = -2.5 \log (Flux) + ZeroPoint$

- The Vega system: 0.0 mag (latest ~0.3 mag) at every Johnson band
- Gunn system: no Vega; use of F subdwarfs as standards (metal poor so smooth spectra), e.g., BD + 17 4708
- The AB system: $AB_{\nu} = -2.5 \log_{10} f_{\nu} 48.60$
- STMAG system: used for HST photometry STMAG_{λ} = -2.5 log₁₀ f_{λ} - 21.1

	1	Table 15.7.	. Calibratio	on of MK s	pectral typ	pes.				1	able 15.7	(Continue	ed.)				
Sp	M(V)	B - V	U - B	V - R	R - I	$T_{\rm eff}$	BC	Sp	M(V)	B - V	U - B	V - R	R - I	Teff	BC		
MAI	N SEQUEN	ICE, V						SUP	ERGIANT	S, I						•	
05	-5.7	-0.33	-1.19	-0.15	-0.32	42 000	-4.40	09	-6.5	-0.27	-1.13	-0.15	-0.32	32 000	-3.18		
09	-4.5	-0.31	-1.12	-0.15	-0.32	34 000	-3.33	B2	-6.4	-0.17	-0.93	-0.05	-0.15	17 600	-1.58		
B 0	-4.0	-0.30	-1.08	-0.13	-0.29	30 000	-3.16	B5	-6.2	-0.10	-0.72	0.02	-0.07	13 600	-0.95		
B2	-2.45	-0.24	-0.84	-0.10	-0.22	20 900	-2.35	B8	-6.2	-0.03	-0.55	0.02	0.00	11 100	-0.66		
B5	-1.2	-0.17	-0.58	-0.06	-0.16	15 200	-1.46	A0 A2	-6.3 -6.5	-0.01	-0.38	0.03	0.05	9 980	-0.41		
B8	-0.25	-0.11	-0.34	-0.02	-0.10	11 400	-0.80	A2 A5	-6.6	+0.03 +0.09	-0.25 -0.08	0.07	0.07	9 380 8 610	-0.28 -0.13		
A0	+0.65	-0.02	-0.02	0.02	-0.02	9 7 9 0	-0.30	F0	-6.6	+0.09	+0.08	0.12	0.13	7 460	-0.13		
12	+1.3	+0.05	+0.05	0.08	0.01	9 000	-0.20	F2	-6.6	+0.23	+0.13	0.26	0.20	7 0 3 0	-0.01		
A5	+1.95	+0.15	+0.10	0.16	0.06	8 180	-0.15	F5	-6.6	+0.32	+0.27	0.35	0.23	6 370	-0.03		
FO	+2.7	+0.30	+0.03	0.30	0.17	7 300	-0.09	F8	-6.5	+0.56	+0.41	0.45	0.27	5 750	-0.09		
F2	+3.6	+0.35	0.00	0.35	0.20	7 000	-0.11	G0	-6.4	+0.76~		0.51	0.33	5 3 7 0	-0.15		
F5	+3.5	+0.44	-0.02	0.40	0.24	6 6 5 0	-0.14	G2	-6.3	+0.87	+0.63	0.58	0.40	5 1 9 0	-0.21		
F8	+4.0	+0.52	+0.02	0.47	0.29	6250	-0.16	G5	-6.2	+1.02	+0.83	0.67	0.44	4930	-0.33		
G0.	+4.4	+0.58	+0.06	0.50	0.31	5940	-0.18	G8 K0	-6.1 -6.0	+1.14	+1.07	0.69	0.46	4 700	-0.42		
G2	+4.7	+0.63	+0.12	0.53	0.33	5 790	-0.20	K0 K2	-6.0	+1.25 +1.36	+1.17	0.76 0.85	0.48	4 550 4 310	-0.50		
G5	+5.1	+0.68	+0.20	0.54	0.35	5 560	-0.21	K5	-5.8	+1.50 +1.60	+1.32 +1.80	1.20	0.55	3 990	-0.61 -1.01		
G8	+5.5	+0.74	+0.30	0.58	0.38	5 310	-0.40	MO	-5.6	+1.67	+1.90	1.23	0.94	3 620	-1.29		
KO	+5.9	+0.81	+0.45	0.64	0.42	5 150	-0.31	M2	-5.6	+1.71	+1.95	1.34	1.10	3 370	-1.62		
K2	+6.4	+0.91	+0.64	0.74	0.48	4 830	-0.42	M5	-5.6	+1.80	+1.60:	2.18	1.96	2880	-3.47		
K5	+7.35	+1.15	+1.08	0.99	0.63	4410	-0.72										
M0	+8.8	+1.40	+1.22	1.28	0.91	3 840	-1.38										
M2	+9.9	+1.49	+1.18	1.50	1.19	3 520	-1.89										
M5	+12.3	+1.64	+1.24	1.80	1.67	3 170	-2.73										
GIA	NTS, III																
G5	+0.9	+0.86	+0.56	0.69	0.48	5 0 5 0	-0.34										
G8	+0.8	+0.94	+0.70	0.70	0.48	4800	-0.42										
K0	+0.7	+1.00	+0.84	0.77	0.53	4 6 6 0	-0.50										
K2	+0.5	+1.16	+1.16	0.84	0.58	4 3 9 0	-0.61										
K5	-0.2	+1.50	+1.81	1.20	0.90	4 0 5 0	-1.02										
M0	-0.4	+1.56	+1.87	1.23	0.94	3 690	-1.25							Α	llen's	Astroph	vsic
M2	-0.6	+1.60	+1.89	1.34	1.10	3 540	-1.62										
M5	-0.3	+1.63	+1.58	2.18	1.96	3 380	-2.48							<u> </u>	iantiti	ies (4th eo	ditic

٦

	Tabl	e 15.8. Ca	libration of M	K spectral type	s. ^a							
Sp	${\cal M}/{\cal M}_{\odot}$	R/R_{\odot}	$\log(g/g_{\odot})$	$\log(\bar{\rho}/\bar{\rho}_{\odot})$	$v_{\rm rot}~({\rm kms^{-1}})$	Sp	${\cal M}/{\cal M}_{\odot}$	R/R_{\odot}	$\log(g/g_{\odot})$	$\log(\bar{\rho}/\bar{\rho}_{\odot})$	$v_{\rm rot}~({\rm kms^{-1}})$	
MAI	N SEQUENC	CE, V					NTS, III					
03	120	15	-0.3	-1.5		B0	20	15	-1.1	-2.2	120	
05	60	12	-0.4	-1.5		B5	7	8	-0.95	-1.8	130	
06	37	10	-0.45	-1.45		A0	4	5		-1.5	100	
08	23	8.5	-0.5	-1.4	200	G0	1.0	6	-1.5	-2.4	30	
B0	17.5	7.4	-0.5	-1.4	170	G5 K0	1.1 1.1	10	-1.9	-3.0	< 20	
B3	7.6	4.8	-0.5	-1.15	190	K5	1.1	15 25	-2.3 -2.7	-3.5 -4.1	< 20	
B5	5.9	3.9	-0.4	-1.00	240	MO	1.2	23 40	-2.7	-4.1 -4.7	< 20	
B8	3.8	3.0	-0.4	-0.85	220	MIU	1.2	40	-3.1	-4.7		
A0	2.9	2.4	-0.3	-0.7	180	SUP	ERGIANTS,	I				
A5	2.0	1.7	-0.15	-0.4	170	05	70	30:	-1.1	-2.6		
FO	1.6	1.5	-0.1	-0.3	100	06	40	25:	-1.2	-2.6		
F5	1.4	1.3	-0.1	-0.2	30	08	28	20	-1.2	-2.5	125	
GO	1.05	1.1	-0.05	-0.1	10	B 0	25	30	-1.6	-3.0	102	
G5	0.92	0.92	+0.05	-0.1	< 10	B5	20	50	-2.0	-3.8	40	
KO	0.79	0.85	+0.05	+0.1	< 10	A0	16	60	-2.3	-4.1	40	
K5	0.67	0.72	+0.05	+0.25	< 10	A5	13	60	-2.4	-4.2	38	
MO	0.51	0.60	+0.15	+0.35		F0	12 10	80	-2.7	-4.6	30	
M2	0.40	0.50	+0.13	+0.55		F5 G0	10	100 120	-3.0	-5.0	< 25	
M5	0.21	0.27	+0.2	+1.0		G5	10	120	-3.1 -3.3	-5.2 -5.3	< 25 < 25	
M8	0.06	0.10	+0.5	+1.0 +1.2		KO	12	200	-3.5	-5.5 -5.8	< 25 < 25	
1410	0.00	0.10	+0.5	71.2		K5	13	400	-4.1	-6.7	< 25	
						MO	13	500	-4.3	-7.0	< 25	
						M2	19	800	-4.5	-7.4		
						Note ^a A o	olon indicate	es an uncer	tain value.		llen's <i>Astroj</i> antities (4 th	

	Table	e 15.9. Zero-	age main sequence	2.		
$(B-V)_0$	$(U-B)_0$	M _v	$(B-V)_0$	$(U-B)_0$	M _v	
-0 ^m 33	-1 ^m 20	-5 ^m 2	+0.40	-0.01	+ 3.4	
-0.305	-1.10	-3.6	+0.50	0.00	+ 4.1	
-0.30	-1.08	-3.25	+0.60	+0.08	+ 4.7	
-0.28	-1.00	-2.6	+0.70	+0.23	+ 5.2	
-0.25	-0.90	-2.1	+0.80	+0.42	+ 5.8	
-0.22	-0.80	-1.5	+0.90	+0.63	+ 6.3	
-0.20	-0.69	-1.1	+1.00	+0.86	+ 6.7	
-0.15	-0.50	-0.2	+1.10	+1.03	+ 7.1	
-0.10	-0.30	+0.6	+1.20	+1.13	+ 7.5	
-0.05	-0.10	+1.1	+1.30	+1.20	+ 8.0	
0.00	+0.01	+1.5	+1.40	+1.22	+ 8.8	
+0.05	+0.05	+1.7	+1.50	+1.17	+10.3	
+0.10	+0.08	+1.9	+1.60	+1.20	+12.0	
$(B-V)_0$	$(U-B)_0$	M_v	$(B-V)_0$	$(U-B)_0$	M_v	
+0.15	+0.09	+2.1	+1.70	+1.32	+13.2	
+0.20	+0.10	+2.4	+1.80	+1.43	+14.2	
+0.25	+0.07	+2.55	+1.90	+1.53	+15.5	
+0.30	+0.03	+2.8	+2.00	+1.64	+16.7	Allen's Astrophysi
+0.35	0.00	+3.1	1			<i>Quantities</i> (4 th editi

		Mai	n-Sequen	ce Stars (I	Luminosi	ty Class V	V)				
Sp.	T_e										
Туре	(<i>K</i>)	L/L_{\odot}	R/R_{\odot}	M/M_{\odot}	$M_{\rm bol}$	BC	M_V	U - B	B - V	_	
05	42000	499000	13.4	60	-9.51	-4.40	-5.1	-1.19	-0.33	-	
06	39500	324000	12.2	37	-9.04	-3.93	-5.1	-1.17	-0.33		
07	37500	216000	11.0	_	-8.60	-3.68	-4.9	-1.15	-0.32		
08	35800	147000	10.0	23	-8.18	-3.54	-4.6	-1.14	-0.32		
B0	30000	32500	6.7	17.5	-6.54	-3.16	-3.4	-1.08	-0.30		
B 1	25400	9950	5.2		-5.26	-2.70	-2.6	-0.95	-0.26		
B 2	20900	2920	4.1		-3.92	-2.35	-1.6	-0.84	-0.24		
B 3	18800	1580	3.8	7.6	-3.26	-1.94	-1.3	-0.71	-0.20		
B5	15200	480	3.2	5.9	-1.96	-1.46	-0.5	-0.58	-0.17		
B6	13700	272	2.9		-1.35	-1.21	-0.1	-0.50	-0.15		
B7	12500	160	2.7		-0.77	-1.02	+0.3	-0.43	-0.13		
B 8	11400	96.7	2.5	3.8	-0.22	-0.80	+0.6	-0.34	-0.11		
B9	10500	60.7	2.3	_	+0.28	-0.51	+0.8	-0.20	-0.07		
A0	9800	39.4	2.2	2.9	+0.75	-0.30	+1.1	-0.02	-0.02		
A1	9400	30.3	2.1	-	+1.04	-0.23	+1.3	+0.02	+0.01		
A2	9020	23.6	2.0	_	+1.31	-0.20	+1.5	+0.05	+0.05		
A5	8190	12.3	1.8	2.0	+2.02	-0.15	+2.2	+0.10	+0.15		
A8	7600	7.13	1.5	_	+2.61	-0.10	+2.7	+0.09	+0.25		
F0	7300	5.21	1.4	1.6	+2.95	-0.09	+3.0	+0.03	+0.30		
F2	7050	3.89	1.3	_	+3.27	-0.11	+3.4	+0.00	+0.35		
F5	6650	2.56	1.2	1.4	+3.72	-0.14	+3.9	-0.02	+0.44		
F8	6250	1.68	1.1	_	+4.18	-0.16	+4.3	+0.02	+0.52		

		Mair	n-Sequen	ce Stars (I	uminosit	ty Class V	7)			
Sp.	T_e									
Туре	(K)	L/L_{\odot}	R/R_{\odot}	M/M_{\odot}	Mbol	BC	M_V	U - B	B-V	
GO	5940	1.25	1.06	1.05	+4.50	-0.18	+4.7	+0.06	+0.58	
G2	5790	1.07	1.03		+4.66	-0.20	+4.9	+0.12	+0.63	
Sun ^a	5777	1.00	1.00	1.00	+4.74	-0.08	+4.82	+0.195	+0.650	
G8	5310	0.656	0.96	-	+5.20	-0.40	+5.6	+0.30	+0.74	
K0	5150	0.552	0.93	0.79	+5.39	-0.31	+5.7	+0.45	+0.81	
K1	4990	0.461	0.91	_	+5.58	-0.37	+6.0	+0.54	+0.86	
K3	4690	0.318	0.86	-	+5.98	-0.50	+6.5	+0.80	+0.96	
K4	4540	0.263	0.83		+6.19	-0.55	+6.7	_	+1.05	
K5	4410	0.216	0.80	0.67	+6.40	-0.72	+7.1	+0.98	+1.15	
K7	4150	0.145	0.74		+6.84	-1.01	+7.8	+1.21	+1.33	
M0	3840	0.077	0.63	0.51	+7.52	-1.38	+8.9	+1.22	+1.40	
M1	3660	0.050	0.56	_	+7.99	-1.62	+9.6	+1.21	+1.46	
M2	3520	0.032	0.48	0.40	+8.47	-1.89	+10.4	+1.18	+1.49	
M3	3400	0.020	0.41		+8.97	-2.15	+11.1	+1.16	+1.51	
M4	3290	0.013	0.35	_	+9.49	-2.38	+11.9	+1.15	+1.54	
M5	3170	0.0076	0.29	0.21	+10.1	-2.73	+12.8	+1.24	+1.64	
M6	3030	0.0044	0.24		+10.6	-3.21	+13.8	+1.32	+1.73	
M7	2860	0.0025	0.20		+11.3	-3.46	+14.7	+1.40	+1.80	

			Giant St	ars (Lumi	nosity Cl	ass III)			
Sp. Туре	T_e (K)	L/L_{\odot}	R/R_{\odot}	M/M_{\odot}	M _{bol}	BC	M _V	U - B	B - V
05	39400	741000	18.5	_	-9.94	-4.05	-5.9	-1.18	-0.32
06	37800	519000	16.8	_	-9.55	-3.80	-5.7	-1.17	-0.32
07	36500	375000	15.4		-9.20	-3.58	-5.6	-1.14	-0.32
08	35000	277000	14.3	—	-8.87	-3.39	-5.5	-1.13	-0.31
B0	29200	84700	11.4	20	-7.58	-2.88	-4.7	-1.08	-0.29
BI	24500	32200	10.0		-6.53	-2.43	-4.1	0.97	-0.26
B2	20200	11100	8.6		-5.38	-2.02	-3.4	-0.91	-0.24
B3	18300	6400	8.0		-4.78	-1.60	-3.2	-0.74	-0.20
B5	15100	2080	6.7	7	-3.56	-1.30	-2.3	-0.58	-0.17
B 6	13800	1200	6.1		-2.96	-1.13	-1.8	-0.51	-0.15
B7	12700	710	5.5	0	-2.38	-0.97	-1.4	-0.44	-0.13
B8	11700	425	5.0		-1.83	-0.82	-1.0	-0.37	-0.11
B9	10900	263	4.5	_	-1.31	-0.71	-0.6	-0.20	-0.07
A0	10200	169	4.1	4	-0.83	-0.42	-0.4	-0.07	-0.03
A1	9820	129	3.9		-0.53	-0.29	-0.2	+0.07	+0.01
A2	9460	100	3.7	_	-0.26	-0.20	-0.1	+0.06	+0.05
A5	8550	52	3.3		+0.44	-0.14	+0.6	+0.11	+0.15
A8	7830	33	3.1	_	+0.95	-0.10	+1.0	+0.10	+0.25

F0	7400	27	3.2	_	+1.17	-0.11	+1.3	+0.08	+0.30	
F2	7000	24	3.3		+1.31	-0.11	+1.4	+0.08	+0.35	
F5	6410	22	3.8	_	+1.37	-0.14	+1.5	+0.09	+0.43	
G0	5470	29	6.0	1.0	+1.10	-0.20	+1.3	+0.21	+0.65	
G2	5300	31	6.7		+1.00	-0.27	+1.3	+0.39	+0.77	
G8	4800	44	9.6		+0.63	-0.42	+1.0	+0.70	+0.94	
K0	4660	50	10.9	1.1	+0.48	-0.50	+1.0	+0.84	+1.00	
K1	4510	58	12.5		+0.32	-0.55	+0.9	+1.01	+1.07	
К3	4260	79	16.4	-	-0.01	-0.76	+0.8	+1.39	+1.27	
K4	4150	93	18.7	<u></u>	-0.18	-0.94	+0.8		+1.38	
К5	4050	110	21.4	1.2	-0.36	-1.02	+0.7	+1.81	+1.50	
K 7	3870	154	27.6		-0.73	-1.17	+0.4	+1.83	+1.53	
M0	3690	256	39.3	1.2	-1.28	-1.25	+0.0	+1.87	+1.56	
M1	3600	355	48.6	_	-1.64	-1.44	-0.2	+1.88	+1.58	
M2	3540	483	58.5	1.3	-1.97	-1.62	-0.4	+1.89	+1.60	
M3	3480	643	69.7		-2.28	-1.87	-0.4	+1.88	+1.61	
M4	3440	841	82.0		-2.57	-2.22	-0.4	+1.73	+1.62	
M5	3380	1100	96.7		-2.86	-2.48	-0.4	+1.58	+1.63	
M6	3330	1470	116		-3.18	-2.73	-0.4	+1.16	+1.52	
										Carroll & Ostelie

		Supergia	nt Stars (I	uminosit	y Class Ap	proximat	ely Iab)		
Sp.	T_e (K)	1/1	R/R_{\odot}	M/M_{\odot}	M _{bol}	BC	M_V	U - B	B - V
Туре		L/L_{\odot}							
05	40900	1140000	21.2	70	-10.40	-3.87	-6.5	-1.17	-0.31
06	38500	998000	22.4	40	-10.26	-3.74	-6.5	-1.16	-0.31
07	36200	877000	23.8	_	-10.12	-3.48	-6.6	-1.14	-0.31
08	34000	769000	25.3	28	-9.98	-3.35	-6.6	-1.13	-0.29
B 0	26200	429000	31.7	25	-9.34	-2.49	-6.9	-1.06	-0.23
B 1	21400	261000	37.3	_	-8.80	-1.87	-6.9	-1.00	-0.19
B2	17600	157000	42.8	_	-8.25	-1.58	-6.7	-0.94	-0.17
B 3	16000	123000	45.8	_	-7.99	-1.26	-6.7	-0.83	-0.13
B5	13600	79100	51.1	20	-7.51	-0.95	-6.6	-0.72	-0.10
B6	12600	65200	53.8	-	-7.30	-0.88	-6.4	0.69	-0.08
B7	11800	54800	56.4		-7.11	-0.78	-6.3	-0.64	-0.05
B 8	11100	47200	58.9	_	-6.95	-0.66	-6.3	-0.56	-0.03
B9	10500	41600	61.8		-6.81	-0.52	-6.3	-0.50	-0.02
A0	9980	37500	64.9	16	-6.70	-0.41	-6.3	-0.38	-0.01
Al	9660	35400	67.3	_	-6.63	-0.32	-6.3	-0.29	+0.02
A2	9380	33700	69.7	_	-6.58	-0.28	-6.3	-0.25	+0.03
A5	8610	30500	78.6	13	-6.47	-0.13	-6.3	-0.07	+0.09
A8	7910	29100	91.1		-6.42	-0.03	-6.4	+0.11	+0.14
AU	7910	29100	91.1		0.42	5.05	0.4	, 5.11	10.14

F0	7460	28800	102	12	-6.41	-0.01	-6.4	+0.15	+0.17	
F2	7030	28700	114	_	-6.41	0.00	-6.4	+0.18	+0.23	
F5	6370	29100	140	10	-6.42	-0.03	-6.4	+0.27	+0.32	
F8	5750	29700	174	_	-6.44	-0.09	-6.4	+0.41	+0.56	
G0	5370	30300	202	10	-6.47	-0.15	-6.3	+0.52	+0.76	
G2	5190	30800	218		-6.48	-0.21	-6.3	+0.63	+0.87	
G8	4700	32400	272	_	-6.54	-0.42	-6.1	+1.07	+1.15	
ко	4550	33100	293	13	-6.56	-0.50	-6.1	+1.17	+1.24	
K1	4430	34000	314		-6.59	-0.56	-6.0	+1.28	+1.30	
K3	4190	36100	362		-6.66	-0.75	-5.9	+1.60	+1.46	
K4	4090	37500	386		-6.70	-0.90	-5.8	_	+1.53	
K5	3990	39200	415	13	-6.74	-1.01	-5.7	+1.80	+1.60	
K7	3830	43200	473		-6.85	-1.20	-5.6	+1.84	+1.63	
M0	3620	51900	579	13	-7.05	-1.29	-5.8	+1.90	+1.67	
M 1	3490	60300	672	_	-7.21	-1.38	-5.8	+1.90	+1.69	
M2	3370	72100	791	19	-7.41	-1.62	-5.8	+1.95	+1.71	
M3	3210	89500	967		-7.64	-2.13	-5.5	+1.95	+1.69	
M4	3060	117000	1220		-7.93	-2.75	-5.2	+2.00	+1.76	
M5	2880	165000	1640	24	-8.31	-3.47	-4.8	+1.60	+1.80	
M6	2710	264000	2340		-8.82	-3.90	-4.9	_	_	

	Ad	unted colik	ration of N	TABL		osolute mag	nitudae M.			Ad	opted temp	eratures an	d bolometr	ic correction	s for MK	spectral typ	bes	
				•						$\log T_{\rm eff}$				Bol. Corr	ection			
Sp	ZAMS	v	IV	ш	П	Ib	Iab	Ia	Sp	v		Ш	I–II	v		III	I–II	
05	-4.6	-5.6	-5.8	-6.0	-6.3	-6.6	-6.9	-7.2	05		4.626		4.618		-4.15		-3.80	
06 07	-4.0 -3.9	-5.4 -5.2	-5.7 -5.5	-5.9 -5.8	-6.3 -6.2	-6.6 -6.5	-6.9 -6.8	-7.2 -7.2	06		4.593		4.585		-3.90		-3.55	
08	-3.9	- 5.2	-5.5	-5.8	-6.2	-6.5	-6.8	-7.2	07		4.568		4.556		-3.65		-3.30	
09	-3.5	-4.5	-4.9	-5.3	-5.9	-6.3	-6.6	-7.2	08		4.550		4.535		-3.40		-3.15	
B0	-3.1	-4.0	-4.4	-4.9	-5.6	-6.1	-6.5	-7.2	09		4.525		4.512		-3.15		-2.95	
B1	-2.3	-3.3	-3.9	-4.5	-5.2	-5.9	-6.4	-7.2	B0		4.498		4.431		-2.95		-2.50	
B2	-1.6	-2.5	-3.1	-3.7	-5.0	-5.9	-6.4	-7.2	B1		4.423		4.371		-2.60		-2.15	
B3	-1.0	-1.7	-2.3	-3.0	-4.8	-5.9	-6.4	-7.2	B2 B3		4.362 4.286		4.307 4.243		-2.20		-1.75 -1.40	
B5	-0.1	-0.8	-1.2	-1.7	-4.6	-5.9	-6.4	-7.2	B5 B5		4.286		4.245		-1.85		-0.90	
B6	0.3	-0.5	-0.9	-1.3	-4.4	-5.8	-6.4	-7.2	B5 B6		4.166		4.137		-1.05		-0.90	
B7	0.6	-0.2	-0.6	-1.0	-4.2	-5.8	-6.4	-7.2	B0 B7		4.132		4.068		-0.80		-0.60	
B8	1.0	0.1	-0.3	-0.7	-3.9	-5.8	-6.4	-7.2	B8		4.061		4.041		-0.55		-0.45	
B9	1.4	0.5	0.1	-0.4	-3.6	-5.7	-6.4	-7.2	B9		4.017		4.013		-0.35		-0.35	
A0	1.6	0.8	0.4	-0.1	-3.4	-5.5	-6.4	-7.2	A0		3.982		3.991		-0.25		-0.25	
A1	1.7	1.1	0.7	0.2	-3.2	-5.3	-6.4	-7.2	A1		3.973		3.978		-0.16		-0.16	
A2	1.8	1.3	0.9	0.4	-3.1	-5.2	-6.4	-7.3	A2		3.961		3.964		-0.10		-0.10	
A3 A5	1.9 2.3	1.5 1.9	1.0	0.5 0.8	-3.0 -2.9	-5.1	-6.4	-7.3 -7.5	A3		3.949		3.949		-0.03		-0.03	
A5 A7	2.5	2.3	1.4 1.7	0.8	-2.9	-5.0 -5.0	-6.5 -6.7	-7.7	A5		3.924		3.919		0.02		0.05	
F0	3.0	2.8	2.2	1.5	-2.8	-5.0	-6.9	-7.9	A7 F0		3.903 3.863		3.897 3.869		0.02 0.02		0.09 0.13	
F2	3.2	3.1	2.4	1.5	-2.6	-4.9	-7.0	-8.0	F0 F2		3.865		3.869		0.02		0.13	
F5	3.7	3.6	2.6	2.0	-2.6	-4.8	-7.1	-8.0	F5		3.843		3.813		-0.02		0.08	
F8	4.2	4.1	2.8		-2.5	-4.7	-7.2	-8.1	F8	3.789	51015	3.782	3.778		-0.03		0.03	
G0	4.5	4.4	2.9		-2.4	-4.6	-7.2	-8.2	GÖ	3.774		3,763	3.756		-0.05		0.00	
G2		4.7	3.0	1.1:	-2.4	-4.5	-7.2	-8.2	G2	3.763		3.740	3.732		-0.07		-0.05	
G5		5.1	3.1	1.0	-2.4	-4.4	-7.2	-8.2	G5	3.740		3.712	3.699	-0.09		-0.22	-0.13	
G8		5.6	3.2	0.9	-2.5	-4.3	-7.0	-8.1	G8	3.720		3.695	3.663	-0.13		-0.28	-0.22	
K0		6.0	3.2	0.8	-2.5	-4.3	-6.8	-7.9	K0	3.703		3.681	3.643	-0.19		-0.37	-0.29	
K1		6.2	3.2	0.8	-2.5	-4.3	-6.7	-7.7	K1	3.695		3.663	3.633			-0.43	-0.35	
K2		6.5		0.7	-2.5	-4.3	-6.6	-7.6	K2	3.686		3.648	3.623	-0.30		-0.49	-0.42	
K3		6.7		0.6	-2.5	-4.3	-6.5	-7.5	K3 K4	3.672 3.663		3.628 3.613	3.613			-0.66 -0.86	-0.57 -0.75	
K4		7.0		0.5	-2.6	-4.4	-6.4	-7.4	K4 K5	3.643		3.602	3.585	-0.62		-1.15	-1.17	
K5		7.3		0.3	-2.6	-4.4	-6.2	-7.2	K7	3.602		51002	5.565	-0.89		-1.15	-1.17	
K7 M0		8.1 8.9		0.0 -0.6	-2.7 -2.8	-4.5 -4.6	-6.0 -5.8	-7.0 -6.9	MO	3.591		3.591	3.568	-1.17		-1.25	-1.25	
M0 M1		8.9 9.4		-0.8	-2.8	-4.6	-5.8	-6.9	M1	3.574		3.580	3.556	-1.45		-1.45	-1.40	
M2		10.0		-0.9	-3.0	-4.0	-5.8	-6.7	M2	3.550		3.574	3.544	-1.71		-1.65	-1.60	
M3		10.0		-0.9	-3.0	-4.7	-5.8	-6.7	M3	3.531		3.562	3.518	-1.92		-1.95	-2.0	Straižys &
M4		11.5		-0.6	-3.1	-4.7	-5.8	-6.7	M4	3.512		3.550	3.491	-2.24		-2.4	-2.6	Sti uizys a
M5		13.5		-0.1	-3.1	-4.7	-5.8	-6.7	M5	3.491		3.531	3.470	-2.55		-3.1	-3.3	Kuriliene (198
				0.1	5.1	4.7	5.0	0.7	M6			3.512		-4.4		-4.0		municile (170

<s< th=""><th>nary track</th><th>the evolut</th><th>lerived fror</th><th>LE VI tral types</th><th></th><th>for differe</th><th>log M/M⊙</th><th>llar masses</th><th>Ste</th><th colspan="9">Bolometric absolute magnitudes M_{tot} for MK spectral types</th></s<>	nary track	the evolut	lerived fror	LE VI tral types		for differe	log M/M⊙	llar masses	Ste	Bolometric absolute magnitudes M_{tot} for MK spectral types								
	Ia	Iab	Ib	п	III	IV	v	ZAMS	Sp	Ia	Iab	Ib	П	ш	IV	v	ZAMS	Sp
		1.99	1.92	1.90	1.89	1.85	1.81	1.60	05	-11.0	-10.7	-10.4	-10.3	-10.2	-10.0	-9.8	-8.7	O5
	2.00	1.91	1.87	1.80	1.80	1.76	1.70	1.48	06	-10.8	-10.4	-10.2	-9.9	-9.8	-9.6	-9.3	-8.0	06
	1.92	1.83	1.76	1.71	1.68	1.65	1.59	1.40	07	-10.5	-10.1	-9.8	-9.5	-9.3	-9.1	-8.8	-7.5	07
	1.90	1.76	1.72	1.65	1.60	1.54	1.48	1.34	08	-10.4	-9.8	-9.6	-9.2	-8.9	-8.6	-8.3	-7.2	08
	1.83	1.72	1.66	1.58	1.49	1.45	1.38	1.28	09	-10.2	-9.6	-9.3	-8.9	-8.4	-8.1	-7.6	-6.7	09
	1.70	1.56	1.48	1.40	1.40	1.34	1.30	1.20	B0	-9.7	-9.0	-8.6	-8.1	-7.9	-7.4	-7.0	-6.2	B0
	1.64	1.46	1.38	1.28	1.23	1.18	1.11	1.04	B1	-9.4	-8.6	-8.0	-7.4	-6.8	-6.3	-5.8	-4.9	BI
	1.54	1.38	1.30	1.18	1.08	1.04	0.99	0.92	B2	-9.0	-8.2	-7.6	-6.8	-5.9	-5.3	-4.7	-4.0	B2
	1.45	1.32	1.23	1.11	0.94	0.88	0.84	0.78	B3	-8.6	-7.8	-7.3	-6.2	-4.7	-4.1	-3.6	-2.8	B3
	1.40	1.26	1.18	1.00	0.75	0.72	0.68	0.62	B5	-8.1	-7.3	-6.8	-5.4	-3.0	-2.5	-2.1	-1.4	B5
	1.38	1.26	1.15	0.94	0.68	0.64	0.61	0.56	B6	-7.9	-7.2	-6.6	-5.2	-2.4	-2.0	-1.6	-0.9	B6
	1.36	1.23	1.11	0.91	0.60	0.57	0.53	0.49	B7	-7.8	-7.0	-6.4	-4.8	-1.8	-1.4	-1.0	-0.2	B7
	1.34	1.20	1.08	0.88	0.52	0.49	0.48	0.43	B8	-7.6	-6.9	-6.2	-4.4	-1.2	-0.8	-0.4	0.4	B8
	1.32	1.20	1.04	0.85	0.49	0.45	0.41	0.36	B9	-7.5	-6.8	-6.0	-4.0	-0.8	-0.2	0.1	1.0	B9
	1.30	1.18	1.04	0.81	0.43	0.39	0.35	0.32	A0	-7.4	-6.6	-5.7	-3.6	-0.3	0.2	0.7	1.4	A0
	1.30	1.18	1.00	0.78	0.41	0.36	0.34	0.31	A1	-7.4	-6.6	-5.5	-3.3	-0.1	0.5	0.9	1.6	A1
	1.30	1.15	0.98	0.75	0.39	0.34	0.32	0.29	A2	-7.4	-6.5	-5.3	-3.1	0.1	0.7	1.2	1.7	A2
	1.30	1.11	0.97	0.75	0.36	0.32	0.30	0.27	A3	-7.4	-6.4	-5.2	-3.0	0.4	1.0	1.5	1.9	A3
	1.30	1.11	0.95	0.74	0.33	0.29	0.26	0.23	A5	-7.4	-6.4	-5.0	-2.8	0.8	1.4	1.9	2.3	A5
	1.32	1.15	0.94	0.73	0.30	0.26	0.22	0.20	A7	-7.6	-6.5	-4.9	-2.7	1.1	1.4	2.3	2.6	A7
	1.38	1.20	0.93	0.72	0.23	0.20	0.16	0.16	F0	-7.8	-6.7	-4.8	-2.6	1.6	2.2	2.9	3.0	F0
	1.40	1.20	0.93	0.72	0.20	0.16	0.13	0.13	F2	-7.9	-6.8	-4.8	-2.5	1.8	2.4	3.1	3.2	F2
	1.40	1.26	0.93	0.72	0.18	0.13	0.08	0.08	F5	-7.9	-7.0	-4.7	-2.5	2.0	2.6	3.6	3.7	F5
	1.41	1.28	0.93	0.72		0.11	0.04	0.04	F8	-8.0	-7.1	-4.6	-2.4	2.0	2.8	4.1	4.2	F8
	1.43	1.30	0.93	0.72		0.10	0.02	0.02	G0	-8.1	-7.2	-4.6	-2.4		2.9	4.4	4.4	G0
	1.45	1.30	0.93	0.72	0.33	0.10	0.00	0.00	G2	-8.2	-7.2	-4.6	-2.4	1.0	2.9	4.6	4.6	G2
	1.46	1.32	0.94	0.73	0.39	0.08	-0.02		G5	-8.3	-7.3	-4.5	-2.5	0.8	3.0	5.1		G5
	1.46	1.32	0.94	0.76	0.42	0.08	-0.04		G8	-8.3	-7.2	-4.5	-2.7	0.6	3.1	5.5		G8
	1.45	1.30	0.96	0.78	0.46	0.11	-0.07		K0	-8.2	-7.1	-4.6	-2.8	0.5	3.0	5.8		KO
	1.45	1.30	0.96	0.78	0.46	0.13	-0.10		K1	-8.1	-7.1	-4.6	-2.9	0.4	3.0	5.9		K1
	1.43	1.28	0.98	0.79	0.45		-0.10		K2	-8.0	-7.0	-4.7	-3.0	0.2		6.0		K2
	1.43	1.30	1.00	0.80	0.38		-0.12		K3	-8.0	-7.0	-4.9	-3.1	-0.1		6.2		K3
					0.36		-0.15		K4	-0.0	7.0	7.2	5.1	-0.4		6.4		K4
	1.45	1.30	1.08	0.83	0.37		-0.19		K5	-8.0	-7.0	-5.4	-3.7	-0.9		6.7		K5
							-0.22		K 7	.0.0	7.0	2.4	5.7	0.0		7.3		K7
	1.46	1.32	1.15	0.83	0.48		-0.26		M0	-8.1	-7.0	-5.8	-4.0	-1.8		7.5		M0
	1.48	1.34	1.18	0.83	0.54		-0.30		M1	-8.1	-7.0	-6.0	-4.0	-2.4		7.9		MI
	1.50	1.36	1.18	0.81	0.54		-0.35		M2	-8.2	-7.4	-6.2	-4.5	-2.6		8.3		M2
Charles A	1.56	1.38	1.20	0.84	0.52		-0.40		M3	-8.5	-7.8	-6.7	-4.5	-2.9		8.8		M3
Straižys & Kuriliene (198					0.51		-0.52		M4	-8./ -9.3	-7.8	-0.7	-5.7	-2.9		9.3		M4
17 11 (400					(0.41)		(-0.82)		M5	-9.3	-8.4 -9.1	-7.3	-6.3	-3.2		11.0		M5
Kuriliene (198					(0.40)				M6	-10.0	~9.1	-0.0	-0.5	-3.6		11.0		M6

05	ZAMS		TABLE VII IABLE VII Calibration of MK spectral types in surface gravities (log g) Stellar radii log R/R₀ for different MK spectral types															
	ZAM5	v	IV	ш	п	Ib	Iab	Ia	Sp	ZAMS	v	IV	III	п	Ib	Iab	Ia	
	4.12	3.90	2.96	2.62	3.76	3.74	3.69		05	0.95	1.17	1.21	1.25	1.28	1.30	1.36		
	4.13 4.16	3.90	3.86 3.80	3.82 3.76	3.69	3.74	3.69	3.53	Ŭ6	0.87	1.13	1.19	1.23	1.27	1.33	1.37	1.45	
	4.18	3.85	3.80	3.76	3.64	3.57	3.52	3.45	07	0.82	1.08	1.14	1.18	1.25	1.31	1.37	1.45	
	4.18	3.87	3.80	3.74	3.62	3.53	3.49	3.39	08	0.80	1.02	1.08	1.14	1.23	1.31	1.35	1.47	
	4.17	3.95	3.82	3.74	3.58	3.50	3.49	3.31	09	0.75	0.93	1.03	1.09	1.22	1.30	1.36	1.48	
	4.22	4.00	3.88	3.74	3.39	3.27	3.19	3.05	BO	0.70	0.86	0.94	1.04	1.20	1.32	1.40	1.54	
	4.28	4.00	3.86	3.71	3.31	3.17	3.01	2.87	B1	0.59	0.77	0.87	0.97	1.20	1.32	1.44	1.60	
	4.28	4.06	3.88	3.68	3.19	3.00	2.84	2.68	B2	0.54	0.68	0.80	0.92	1.21	1.37	1.49	1.65	
	4.31	4.06	3.89	3.71	3.12	2.79	2.68	2.49	B3	0.45	0.61	0.71	0.83	1.21	1.43	1.53	1.69	
	4.32	4.10	3.98	3.81	2.90	2.52	2.40	2.22	B5	0.36	0.50	0.58	0.68	1.27	1.55	1.65	1.81	
	4.32	4.09	3.96	3.84	2.77	2.42	2.29	2.13	B6	0.34	0.48	0.56	0.64	1.30	1.58	1.70	1.84	
	4.35	4.07	3.95	3.82	2.77	2.33	2.21	2.02	B7	0.29	0.45	0.53	0.61	1.28	1.60	1.72	1.88	
	4.34	4.07	3.92	3,79	2.79	2.27	2.11	1.97	B8	0.26	0.42	0.50	0.58	1.26	1.62	1.76	1.90	
B9	4.34	4.03	3.94	3.75	2.81	2.20	2.04	1.88	B9	0.23	0.41	0.47	0.59	1.23	1.63	1.79	1.93	
A0	4.32	4.07	3.91	3.75	2.85	2.23	2.01	1.81	A0	0.22	0.36	0.46	0.56	1.20	1.62	1.80	1.96	
A1	4.35	4.10	3.96	3.78	2.88	2.22	1.96	1.76	A1	0.19	0.33	0.41	0.53	1.16	1.60	1.82	1.98	
A2	4.32	4.16	3.98	3.78	2.87	2.23	1.92	1.71	A2	0.20	0.30	0.40	0.52	1.15	1.59	1.83	2.01	
A3	4.34	4.20	4.03	3.83	2.85	2.20	1.86	1.65	A3	0.18	0.26	0.36	0.48	1.16	1.60	1.84	2.04	
	4.36	4.22	4.06	3.86	2.81	2.14	1.74	1.53	A5	0.15	0.23	0.33	0.45	1.18	1.62	1.90	2.10	
	4.36	4.26	4.10	3.86	2.75	2.08	1.65	1.38	A7	0.13	0.19	0.29	0.43	1.21	1.65	1.97	2.19	
	4.32	4.28	4.05	3.83	2.67	2.00	1.51	1.25	F0	0.13	0.15	0.29	0.41	1.24	1.68	2.06	2.28	
	4.30	4.26	4.01	3.81	2.63	1.92	1.39	1.15	F2	0.13	0.15	0.29	0.41	1.26	1.72	2.12	2.34	
	4.32	4.28	3.93	3.74	2.48	1.81	1.22	1.00	F5	0.09	0.11	0.31	0.43	1.30	1.77	2.23	2.41	
	4.39	4.35	3.89		2.38	1.71	1.06	0.83	F8	0.04	0.06	0.33		1.38	1.82	2.32	2.50	
	4.39	4.39	3.84		2.29	1.62	0.95	0.72	G0	0.03	0.03	0.34		1.43	1.87	2.39	2.57	
	4.40	4.40	3.77	3.20	2.20	1.53	0.86	0.61	G2	0.01	0.01	0.38	0.78	1.48	1.92	2.44	2.64	
G5		4.49	3.71	3.07	2.04	1.45	0.71	0.45	G5		-0.04	0.41	0.88	1.56	1.96	2.52	2.72	
G8 K0		4.55 4.57	3.64 3.57	2.95 2.89	1.84 1.74	1.30 1.20	0.60	0.30 0.25	G8		-0.08	0.43	0.95	1.67	2.03	2.57	2.79	
KI KI		4.57	3.57	2.89	1.74	1.16	0.54	0.25	K0		-0.11	0.48	1.00	1.73	2.09	2.59	2.81	
K1 K2		4.55	5.55	2.78	1.59	1.10	0.34	0.23	K1		-0.11	0.50	1.05	1.77	2.11	2.61	2.81	
K2 K3		4.55		2.65	1.59	1.00	0.48	0.19	K2		-0.11		1.12	1.81	2.15	2.61	2.81	
K3 K4		4.56		2.36	1.52	1.00	0.40	0.17	K3		-0.12		1.22	1.85	2.21	2.63	2.83	
K4 K5		4.57		1.93	1.20	0.77	0.35	0.10	K4 K5		-0.15		1.31		0.07	a (a	2.00	
K7		4.62		1.70	1.40	v.,,	0.00	0.10			-0.17		1.44	2.03	2.37	2.69	2.89	
MO		4.61		1.63	1.01	0.61	0.30	0.00	K7		-0.20						2.02	
MI		4.67		1.41	0.84	0.51	0.19	-0.07	M0 M1		-0.22 -0.27		1.64 1.78	2.12 2.21	2.48 2.55	2.72 2.78	2.92 2.99	
M2		4.69		1.31	0.70	0.39	0.09	-0.13						2.21				
M3		4.71		1.12	0.38	0.10	-0.16	-0.34	M2 M3		-0.30		1.83	2.27	2.61	2.85 2.98	3.03 3.16	
M4		4.77		0.98					M3 M4		-0.36 -0.42		1.92	2.44	2.76	2.98	5.10	Straižvs &
M5		5.06		(0.76)					M4 M5		-0.42		(2.04)					Straižys & Kuriliene (198
M6				(0.52)					M6		-0.72		(2.04)					Kuriliene (198

Filter name	λ_{iso}^{b} (μ m)	Δλ ^c (μm)	$(W m^{-2} \mu m^{-1})$	<i>F</i> _ν (Jy)	(photons s ⁻¹ m ⁻² μ m ⁻¹)
V	0.5556 ^d		3.44×10^{-8}	3 540	9.60×10^{10}
J	1.215	0.26	3.31×10^{-9}	1 630	2.02×10^{10}
H	1.654	0.29	1.15×10^{-9}	1050	9.56×10^{9}
Ks	2.157	0.32	4.30×10^{-10}	667	4.66×10^{9}
K	2.179	0.41	4.14×10^{-10}	655	4.53×10^{9}
L	3.547	0.57	6.59×10^{-11}	276	1.17×10^{9}
L'	3.761	0.65	5.26×10^{-11}	248	9.94×10^{8}
M	4.769	0.45	2.11×10^{-11}	160	5.06×10^{8}
8.7	8.756	1.2	1.96×10^{-12}	50.0	8.62×10^{7}
N	10.472	5.19	9.63×10^{-13}	35.2	5.07×10^{7}
11.7	11.653	1.2	6.31×10^{-13}	28.6	3.69×10^{7}
Q	20.130	7.8	7.18×10^{-14}	9.70	7.26×10^{6}
	10-23		$\mathrm{cm}^{-2}\mathrm{Hz}^{-1}$		

Band	λ_0	$d\lambda/\lambda$	$f_{v} (m=0)$	Reference
	μm		Ју	
U	0.36	0.15	1810	Bessel (1979)
В	0.44	0.22	4260	Bessel (1979)
V	0.55	0.16	3640	Bessel (1979)
R	0.64	0.23	3080	Bessel (1979)
Ι	0.79	0.19	2550	Bessel (1979)
J	1.26	0.16	1600	Campins, Reike, & Lebovsky (1985)
Н	1.60	0.23	1080	Campins, Reike, & Lebovsky (1985)
К	2.22	0.23	670	Campins, Reike, & Lebovsky (1985)
g	0.52	0.14	3730	Schneider, Gunn, & Hoessel (1983)
r	0.67	0.14	4490	Schneider, Gunn, & Hoessel (1983)
i	0.79	0.16	4760	Schneider, Gunn, & Hoessel (1983)
Z	0.91	0.13	4810	Schneider, Gunn, & Hoessel (1983)

Notes

^aCohen et al. [1] recommend the use of Sirius rather than Vega as the photometric standard for $\lambda > 20 \ \mu m$ because of the infrared excess of Vega at these wavelengths. The magnitude of Vega depends on the photometric system used, and it is either assumed to be 0.0 mag or assumed to be 0.02 or 0.03 mag for consistency with the visual magnitude.

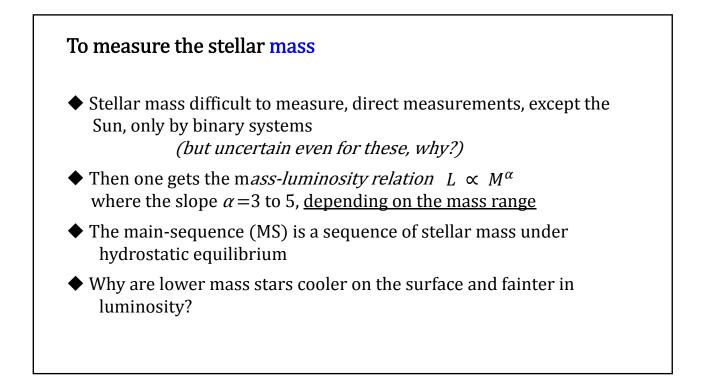
^bThe infrared isophotal wavelengths and flux densities (except for K_s) are taken from Table 1 of [1], and they are based on the UKIRT filter set and the atmospheric absorption at Mauna Kea. See Table 2 of [1] for the case of the atmospheric absorption at Kitt Peak. The isophotal wavelength is defined by $F(\lambda_{iso}) = \int F(\lambda)S(\lambda) d\lambda / \int S(\lambda) d\lambda$, where $F(\lambda)$ is the flux density of Vega and $S(\lambda)$ is the (detector quantum efficiency) × (filter transmission) × (optical efficiency) × (atmospheric transmission) [2]. λ_{iso} depends on the spectral shape of the source and a correction must be applied for broadband photometry of sources that deviate from the spectral shape of the standard star [3]. The flux density and λ_{iso} for K_s were calculated here. For another filter, K', at 2.11 μ m, see [4].

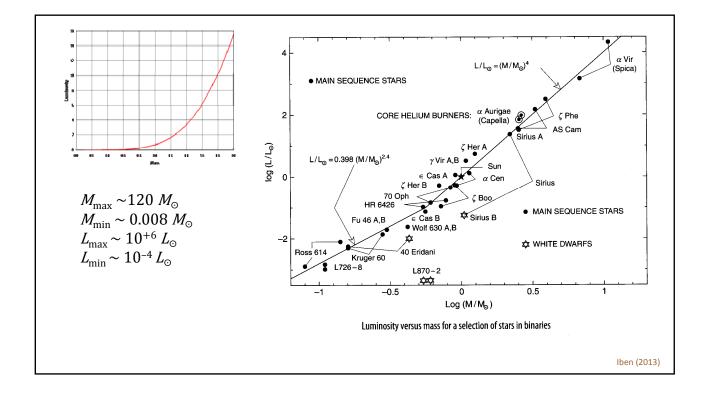
^cThe filter full width at half maximum.

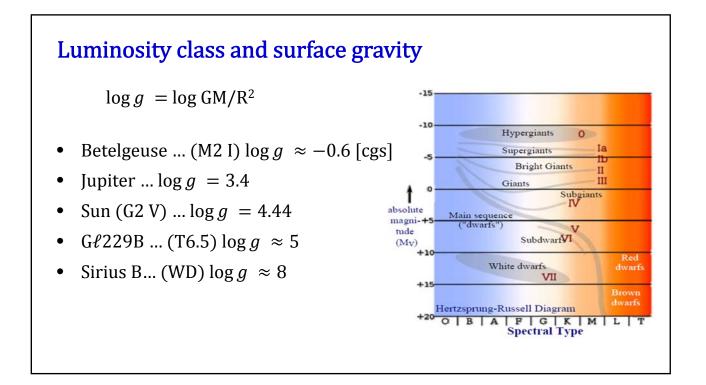
^d The wavelength at V is a monochromatic wavelength; see [5].

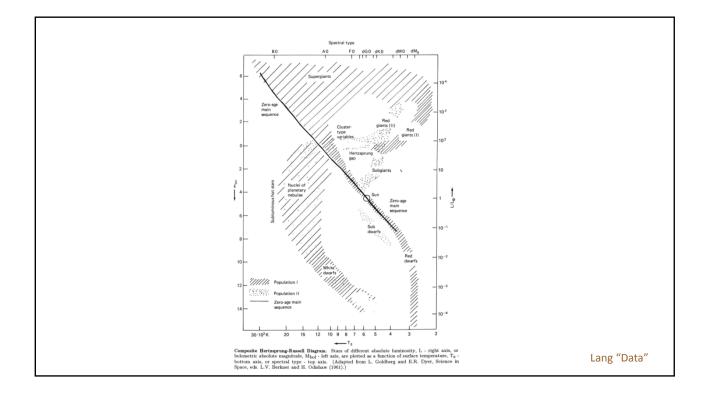
References

- 1. Cohen, M. et al. 1992, AJ, 104, 1650
- 2. Golay, M. 1974, Introduction to Astronomical Photometry (Reidel, Dordrecht), p. 40
- 3. Hanner, M.S., et al. 1984, AJ, 89, 162
- 4. Wainscoat, R.J., & Cowie, L.L. 1992, AJ, 103, 332
- Hayes, D.S. 1985, in Calibration of Fundamental Stellar Quantities, edited by D.S. Hayes, et al., Proc. IAU Symp. No. 111 (Reidel, Dordrecht), p. 225

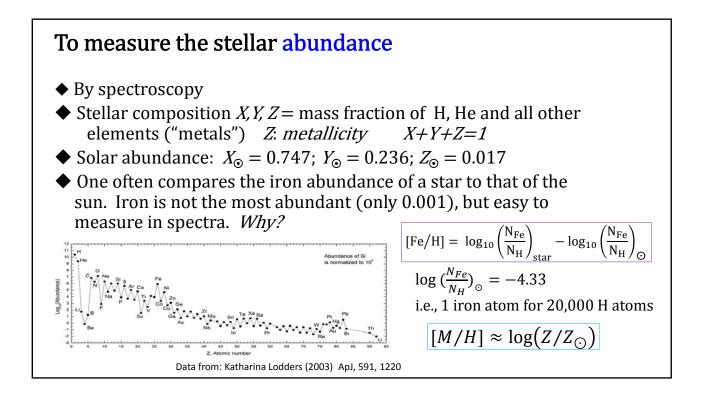

Allen's *Astrophysical Quantities* (4th edition)

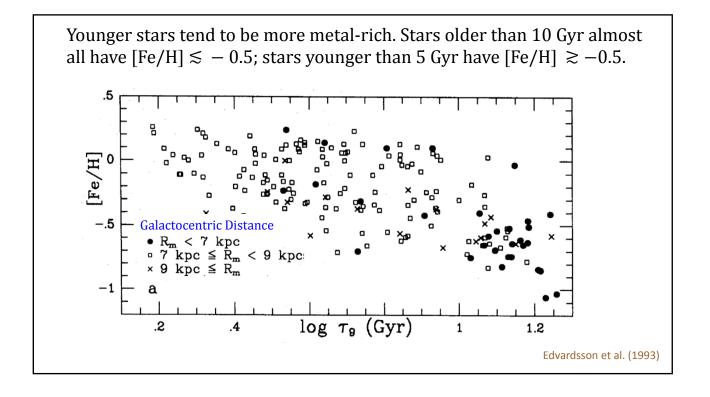

Exercise

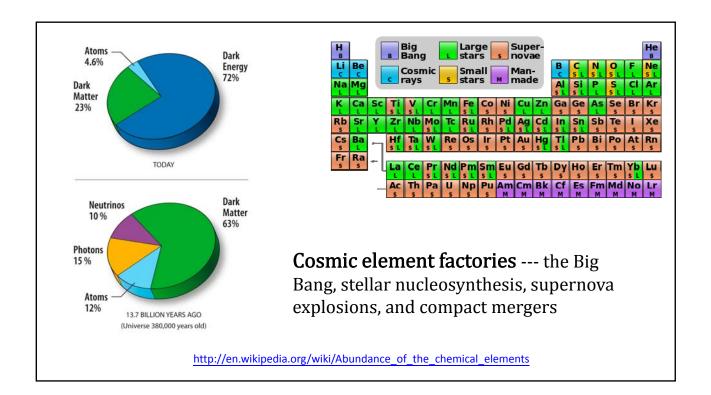

Sirius, the brightest star in the night sky, has been measured $m_B = -1.47$, $m_V = -1.47$. The star has an annual parallax of 0.379"/yr.


- 1. What is its distance in parsec?
- 2. What is its absolute V-band magnitude?
- 3. From the absolute magnitude, what spectral type can be inferred for Sirius?
- 4. From the observed (B-V) color, what spectral type can be inferred?
- 5. What kinds of uncertainties/assumptions are associated with the above estimations?

	2015/4/21		sirius
	Portal Simbad	VizieR Aladin X-Match Other Help	
			sirius
	other query Identifier Coordin modes : query quer		put Help ms
	Query : sirius		
	Available data : Basic data • Ider	ntifiers. • Plot & images. • Bibliography. • Measurements	• External archives • Notes • An
	Basic data :		
	* alf CMa Double of	or multiple star	
	Other object types:	<pre>* (* ,BD,GC,HD,HIC,HIP,HR,SAO,UBV) , IR (AKARI ,IR) , PM* (LHS) , V* (NSV) , UV (TD1)</pre>	S,IRC,2MASS,RAFGL) ,** (** ,WDS)
	ICRS coord. (ep=J2000) :	06 45 08.91728 -16 42 58.0171 (Optical) [11.70	10.90 90] A 2007A&A474653V
		· 06 45 08.917 -16 42 58.02 [11.70 10.90 90]	
) : 06 42 56.72 -16 38 45.4 [67.39 63.09 0]	
	Gal coord. (ep=J2000) :	227.2303 -08.8903 [11.70 10.90 90]	21/
	Proper motions mas/yr : Radial velocity / Redshift / cz :	-546.01 -1223.07 [1.33 1.24 0] A 2007A&A47465 V(km/s) -5.50 [0.4] / z(~) -0.000018 [0.000001] /	
	Radial velocity / Redshift / cz :	V(km/s) -5.50 [0.4] / z(~) -0.000018 [0.000001] / 2006AstL327596	
	Radial velocity / Redshift / cz : Parallaxes <i>mas</i> :	V(km/s) -5.50 [0.4] / z(~) -0.000013 [0.000001] / 2006Att32.7596 379.21 [1.53] A <u>2007A6474653V</u> A1V0A C <u>2013V(at1.2035</u> U -1.51 [~] C <u>2002v(at.223700</u>	
	Radial velocity / Redshift / cz : Parallaxes <i>mas</i> : Spectral type:	V(km/s) -5.60 [0.1] / τ(-) -0.000013 [0.000001] / 2005AttL.12.77535 379.31 [1.58] A 2007A5A474.653V A1440A C 2033VC4t	
	Radial velocity / Redshift / cz : Parallaxes <i>mas</i> : Spectral type:	V(km/s) -5.50 [0.4] / z(~) -0.000018 [0.000001] / 2006411127550 379.31 [1.53] A 2007A6A474653V A1V+DA C 2013VCat1.20235 U -1.53 [-] C 2002VCat.223700 B -1.46 [-] C 2002VCat.223700 V -1.45 [-] C 2002VCat.223700	
	Radial velocity / Redshift / cz : Parallaxes <i>mas</i> : Spectral type: Fluxes (8) :	V(km/s) -5.60 [0.1] / τ(-) -0.000013 [0.000001] / 2005AttL.12.77535 379.31 [1.58] A 2007A5A474.653V A1440A C 2033VC4t	
http://simbad.u-strasbg.fr/s	Radial velocity / Redshift / cz : Parallaxes <i>mas</i> : Spectral type: Fluxes (8) :	V(km/s) -5.60 [0.1] / x(-) -0.000013 [0.000001] / 2005A511127535 37.31 [1.50] A 2007A6A474653V A1446A C 2013V(cf	



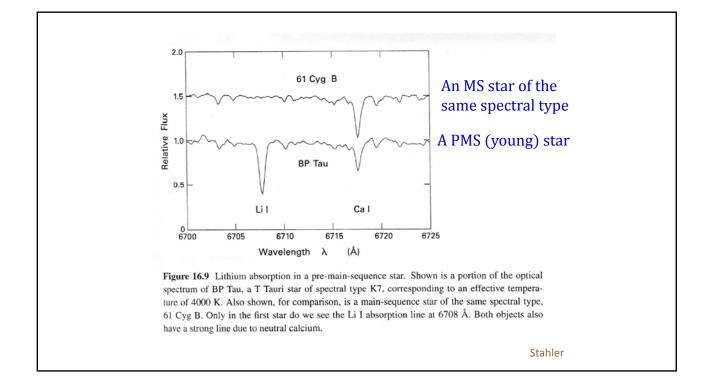


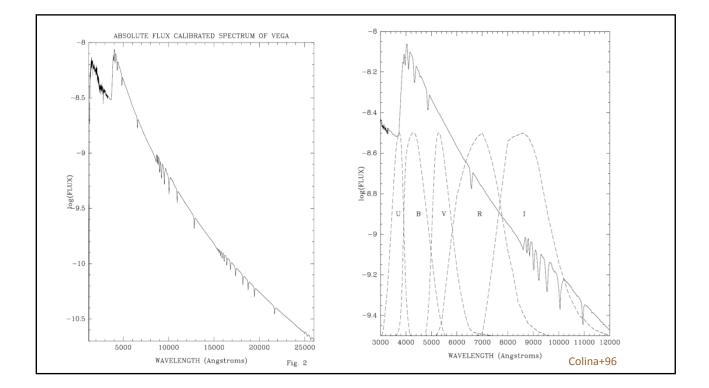

Exercise

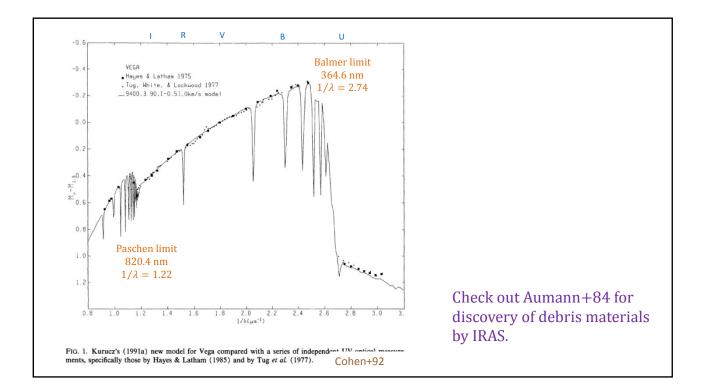
- 1. What is the spectral type of Alpha Scorpii?
- 2. What is its apparent magnitude? Expected absolute magnitude? Bolometric luminosity?
- 3. What is its distance estimated from its apparent magnitude? Measured directly by parallax? Why do these differ?
- 4. What is the expected diameter of the star in km, in R_{\odot} and in AU? What is then the expected angular diameter seen from Earth? Can it be resolved by the *HST*?

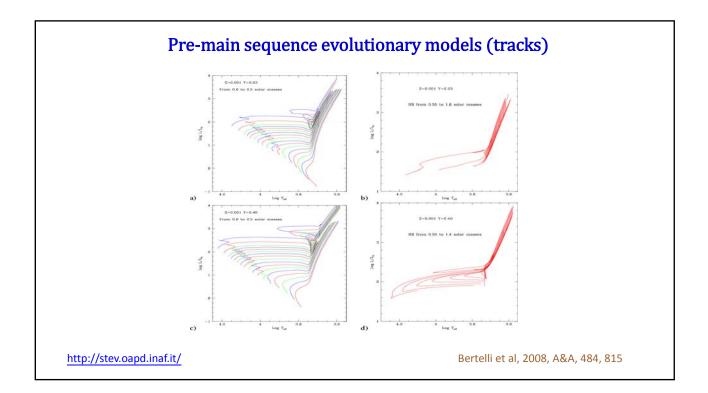
(Always show your work clearly, and cite the references.)

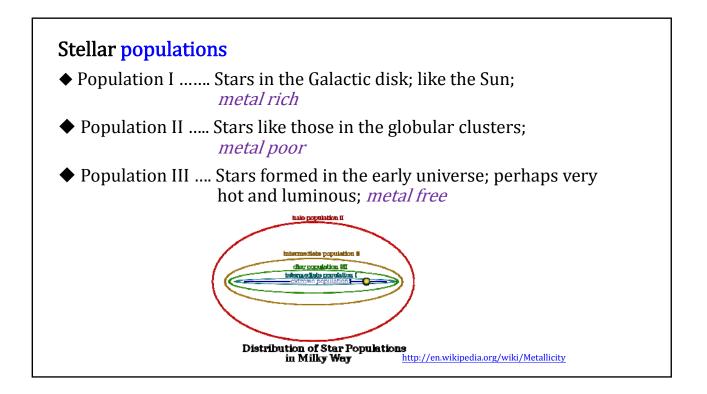
To measure the stellar age

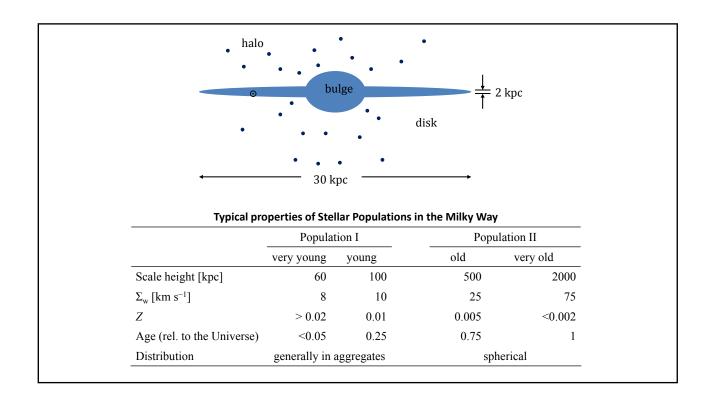

Very tricky. Often one relies on measurements of *Mv*, *T*eff, [Fe/H], and then uses some kind of theoretically computed isochrones to interpolate the age (and mass)

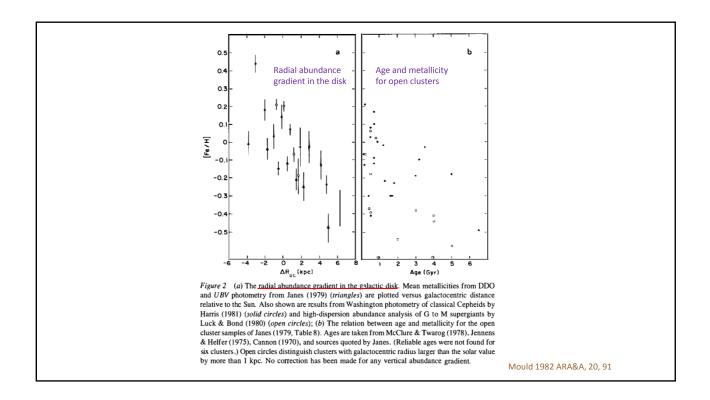

Crude diagnostics include


- ✓ Lithium absorption line, e.g., 6707A
- ✓ Chromospheric activities, e.g., X-ray or Ca II emission
- ✓ Evolving off the main sequence
- ... hence subject to large uncertainties


References:


Edvardsson et al., 1993, A&A, 275, 101 Nordström et al., 2004, A&A, 418, 989

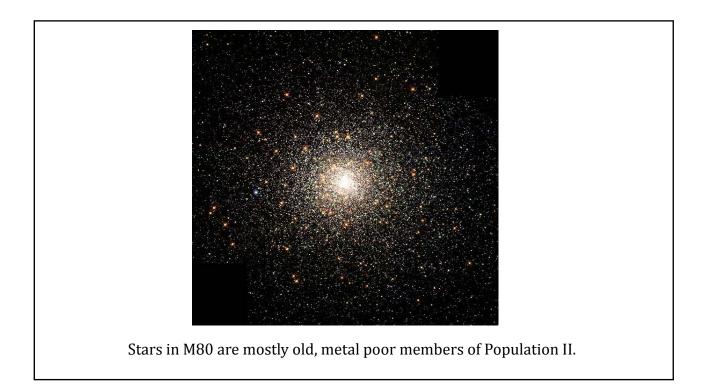


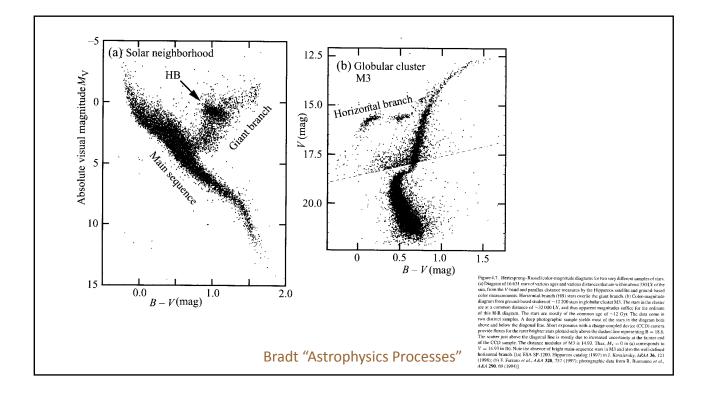


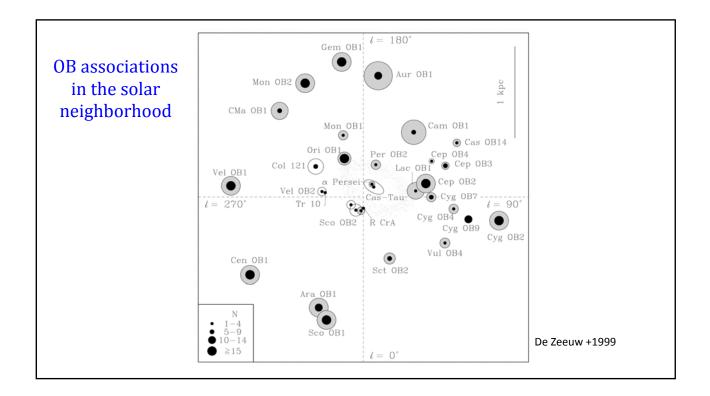
Star clusters are good laboratories to study stellar evolution, because member stars in a star cluster
are (almost) of the same age;
are (almost) at the same distance;
evolve in the same Galactic environments;
have the same chemical composition;
are dynamical bound.
Two distinct classes:

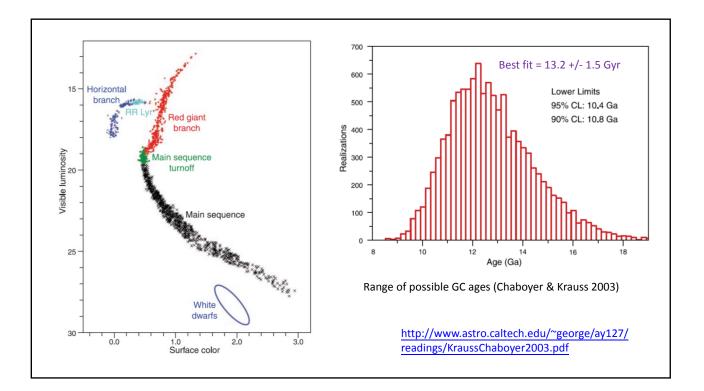
globular clusters (100+ in the MW)
open clusters (a few 10³ known in the MW)

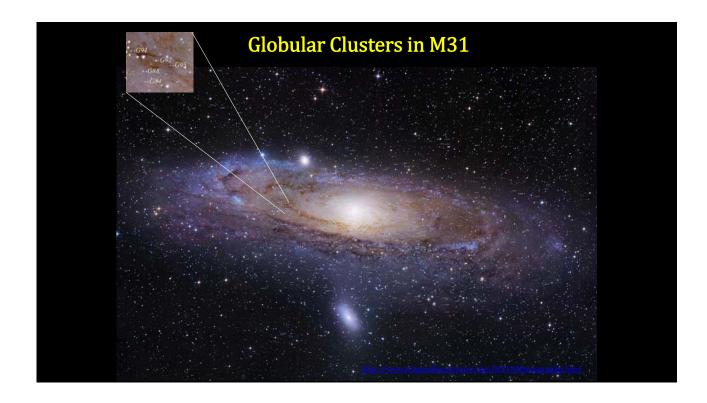
How do these two classes differ in terms of shape, size, spatial distribution, number of member stars, and stellar population?


Open Clusters


 10^2 to 10^3 member stars; ~10 pc across; loosely bound; open shape; young population I; located mainly in spiral arms;


>1000 open clusters known in the MW


Globular Clusters


10⁵ to 10⁶ member stars; up to 100 pc across; tightly bound; centrally concentrated; spherical shape; old population II; located in the Galactic halo; 200 globular clusters known in the MW

