Earth-Sun relationships

~ Why do different locations (latitudes) on the Earth receive different amounts of solar energy throughout the year?

Earth-Sun relationships

~ Why do different locations (latitudes) on the Earth receive different amounts of solar energy throughout the year?

~ Because the Earth is a sphere only one location will receive the most direct (90° angle) and intense rays on any given day.

Earth-Sun relationships

~ Why do different locations (latitudes) on the Earth receive different amounts of solar energy throughout the year?

~ Because the Earth is a sphere only one location will receive the most direct (90° angle) and intense rays on any given day.

\sim Each location north and south of the direct rays will have a smaller Sun angle and a receive spread out, less intense beam.

~ Each location north and south of the direct rays will have a smaller Sun angle and a receive spread out, less intense beam.
~ The angle of incoming solar energy determines the distance the beam must travel through the atmosphere to reach the surface.
\sim When the Sun's rays travel through more atmosphere, the chance they will be absorbed, reflected, or scattered by the gases and aerosols in the atmosphere increases.

~When the Sun's rays travel through more atmosphere, the chance they will be absorbed, reflected, or scattered by the gases and aerosols in the atmosphere increases.

~ So if the angle of the incoming solar radiation is key in determining the intensity of the rays, what causes the angle of the Sun to change?

\sim The Earth is tilted at a constant $\sim 23.5^{\circ}$ from the vertical and as it revolves, its orientation to the Sun constantly changes.

\sim The Earth is tilted at a constant $\sim 23.5^{\circ}$ from the vertical and as it revolves, its orientation to the Sun constantly changes.
~ On 2 I or 22 June, the Northern Hemisphere is tilted towards the Sun.

\sim The Earth is tilted at a constant $\sim 23.5^{\circ}$ from the vertical and as it revolves, its orientation to the Sun constantly changes.
~ On 2 I or 22 June, the Northern Hemisphere is tilted towards the Sun.
~ This is the summer solstice (first day of summer) in the Northern Hemisphere and the direct (90°) rays of the Sun are pointed at $23.5^{\circ} \mathrm{N}$ latitude (the Tropic of Cancer).

~ On 21 or 22 December, the Northern Hemisphere is tilted away from the Sun (winter solstice) and the most intense rays are directed at $23.5^{\circ} \mathrm{S}$, the Tropic of Capricorn.

~ On 21 or 22 December, the Northern Hemisphere is tilted away from the Sun (winter solstice) and the most intense rays are directed at $23.5^{\circ} \mathrm{S}$, the Tropic of Capricorn.
\sim At the midpoint between the solstices (21 or 22 March and September), the Earth is neither tilted towards or away from the Sun and the direct
 rays are pointed at the equator.

\sim In addition to the angle of Sun's rays, the length of daylight is determined by the Earth's position around the Sun.

\sim In addition to the angle of Sun's rays, the length of daylight is determined by the Earth's position around the Sun.

\sim In addition to the angle of Sun's rays, the length of daylight is determined by the Earth's position around the Sun.

~ The length of day is determined by comparing the fraction of a latitude circle on the illuminated side of the Earth to the fraction that's on the dark side.
\sim In addition to the angle of Sun's rays, the length of daylight is determined by the Earth's position around the Sun.

~ For example, on winter solstice (2l or 22 December), the length of day is greater than the length of night everywhere in the Southern Hemisphere.
\sim It is colder in the Northern Hemisphere because the Sun angle is $\mathbf{2 9 0 ^ { \circ }}$ and the length of day is shorter.

\sim It is colder in the Northern Hemisphere because the Sun angle is $\mathbf{2 9 0 ^ { \circ }}$ and the length of day is shorter.

\sim We can also appreciate the true meaning of an ${ }^{66}$ equinox (equal night) as the length of the night (and day) is $\mathbf{I} 2$ hours everywhere as neither hemisphere points towards the Sun.

