

# Assessment of Biogenic Sand Production, Pakiri Embayment

## October 2019



Consulting Biologists – Established 1972 P.O. Box 2027, Auckland 1140. New Zealand www.Bioresearches.co.nz



## Assessment of Biogenic Sand Production, Pakiri Embayment October 2019

## **DOCUMENT APPROVAL**

| Document title: | Assessment of Biogenic Sand Production, Pakiri Embayment |
|-----------------|----------------------------------------------------------|
| Prepared for:   | McCallum Brothers Limited                                |
| Version:        | Final V6                                                 |
| Date:           | 23 October 2019                                          |
| Document name:  | 62559 Estimate of Biogenic Sand Production v6.docx       |

| Authors:              | Simon West, M.Sc. (Hons)<br>Senior Marine Ecologist                        | Sime unt |
|-----------------------|----------------------------------------------------------------------------|----------|
|                       | Dr. Laureline Meynier<br>Marine Ecologist                                  |          |
| Reviewer:             | Annabelle Coates, M.Sc. (Hons)<br>Ecologist                                | Alouty   |
| Approved for Release: | Chris Wedding, M.Sc. (Hons)<br>Manager – Ecological Services/Business Unit | Mudalz . |

#### **REVISION HISTORY**

| Rev. No. | Date         | Description                                  | Author(s) | Reviewer | Approved |
|----------|--------------|----------------------------------------------|-----------|----------|----------|
| 3        | 6 September  | 1 <sup>st</sup> draft                        | SW & LM   |          |          |
| 4        | 26 September | 2 <sup>nd</sup> draft re comments SE, DT     | SW & LM   |          |          |
| 5        | 15 October   | 3 <sup>rd</sup> draft re comments DT, SE     | SW & LM   |          | CW       |
| 6        | 23 October   | 4 <sup>th</sup> draft re comments DT, SE, AC | SW & LM   | AC       | CW       |

Reference:Bioresearches (2019). Assessment of Biogenic Sand Production, Pakiri Embayment.Report for McCallum Brothers Limited. pp 36

**Cover Illustration:** Seabed sandscape showing Biogenic shell lag (May 2014)

## **CONTENTS**

| 1. | INTRO | DUCTION                                               | 3  |
|----|-------|-------------------------------------------------------|----|
|    | 1.1   | Biogenic Sand                                         | 3  |
|    | 1.2   | Previous Studies                                      | 3  |
|    | 1.3   | Current Study                                         | 4  |
| 2. | METH  | ODS                                                   | 6  |
|    | 2.1   | Density of benthic biota taxa                         | 6  |
|    | 2.2   | Shell weight                                          | 10 |
|    | 2.3   | Annual Growth rate shell production                   | 11 |
|    | 2.4   | Population mortality shell production                 | 11 |
|    | 2.5   | Shell production for the Pakiri – Mangawhai embayment | 12 |
| 3. | RESUL | TS                                                    | 13 |
|    | 3.1   | Density of benthic biota taxa                         | 13 |
|    | 3.2   | Weight and shell production                           | 13 |
| 4. | DISCU | SSION                                                 | 22 |
|    | 4.1   | Shell weight annual production                        | 22 |
|    | 4.2   | Comparison with previous estimated numbers            | 23 |
| 5. | REFER | ENCES                                                 | 25 |
| 6. | APPEN | IDICES                                                | 29 |

## 1. INTRODUCTION

## 1.1 Biogenic Sand

Sands in the Pakiri – Mangawhai embayment are primarily quartzo-feldspathic (Schofield, 1970). The sands also contain varying amounts of carbonate, which is generally of biological origin. Biogenic sand is defined as the fraction of sand formed by dead marine biota, and is mostly composed of molluscs, echinoids, foraminifera and bryozoans (De Falco *et al.*, 2017).

In order to provide input into a sand budget model, an assessment of the annual biogenic sand production in the Pakiri – Mangawhai embayment, has been calculated from population estimates of living shellfish in the benthic biota of the bay. The Pakiri – Mangawhai embayment has been defined for the purpose of this study, as from Bream Tail to Goat Island, based on these locations providing barriers, limiting but not excluding sand transport alongshore (Hume, 2005). The barriers are rocky reefs that extend from low tide, to at least 27m below mean sea level. The 25m below chart datum contour, which equates to 27m below mean sea level, was defined as the depth of closure during the previous consenting process in 2005 (Hilton, 1990; Healy, 1996; Hilton and Hesp, 1996) (Figure 1). All depths used henceforth in this report will be in reference to mean sea level.

The depth of closure (DOC) is an important concept used in coastal engineering as it defines the offshore extent of cross-shore sediment transport. The DOC is a theoretical depth along a beach profile where sediment transport is very small or non-existent. Its location is dependent on wave height and period, and occasionally, sediment grain size. More specifically, Kraus (1998) states that the "depth of closure for a given or characteristic time interval is the most landward depth seaward of which there is no significant change in bottom elevation and no significant net sediment transport between the nearshore and the offshore." Since the wave height and period change seasonally and over shorter time periods such as storm events, the DOC will theoretically change, this is supported by Nicholls *et al.* (1998), Dolbeth *et al.* (2007) and Carvalho *et al.* (2012). Therefore, rather than a specific or average depth, the DOC should be expressed as a depth range or transitional zone. The transport of material across this average DOC "boundary" is not precluded as the actual DOC would vary depending on wave conditions. Therefore, the additional area offshore of the 27m average DOC, covering 27 – 32m has been included as a separate area in the calculations of biogenic sand production.

## 1.2 Previous Studies

Hilton (1990) quantified the carbonate content of surficial sediments south of Te Arai Point. In the fine, very well sorted sands of the upper shoreface, Hilton reported the carbonate was only 2-5% of the total sample in depths less than 27m, however this increased to 20-30% in the area between the 27 – 32m depth contours. Hilton determined that the carbonates consisted mostly of fragments of benthic macrofauna of molluscan origin. Based on the benthic biota data collected in the embayment since 1990 (ASR, 2003, 2006, Bioresearches, 1993, 2011, 2016, 2017, 2019a,b, Grace 1991, 2005) this has not changed with molluscs still dominating the biota.

Hilton (1990), by integrating data from trawls, was able to estimate the total mass of live shell material in the surficial seabed sediments (the top 10-15 cm in this case). He reported an average concentration of shell of 97g/m<sup>2</sup>.



Hilton (1990) assumed that for a shellfish species of a 10-year life expectancy, 10% of the population would die every year and the shell becomes part of the biogenic sand. This assumes a constant population size, and that recruitment and mortality were constant, which they are generally not. It also appears that he assumed all shellfish had a similar life span, which is also not a valid assumption. His assumptions were based on the information available in 1990, greater information on life span is now available but the population size, mortality and recruitment are still not well understood. Based on these assumptions, he calculated that the existing weight of shell material, 5,300 tonnes, would increase to 73,000,000 tonnes after 100 years. This calculation was incorrect. Hilton mistakenly added the dead shell material back to the live shell material each year for a compounding recalculation of dead shell production over the 100-year time frame. This process grossly overestimated the production of dead shell material over time. Based on his assumptions the live shellfish population was not expected to change year to year therefore the production should be the same each year. Even if the shellfish population varied in size between years the expected dead shell production would not approach the tonnage Hilton calculated. Correcting Hiltons dead shell production calculation overtime, results in an annual shell material production of 530 tonnes, translating to 482m<sup>3</sup>/year assuming shell material has a density of 1.1Mg/m<sup>3</sup>. Hume et al. (1999) suggests these values cover half the bay and should be doubled to a corrected value of 964m<sup>3</sup>/year, which is considerably less than that Hilton reported in 1990 of 900,000m<sup>3</sup>/year.

The NIWA sand study (Hume *et al.*, 1999) considered Hilton's original shell production value of 900,000m<sup>3</sup>/year erroneous and suggested biogenic sand production was less than 12,000m<sup>3</sup>/year based on a sediment budget. Barnett in his 2005 environment court evidence suggested it should be near 90,000m<sup>3</sup>/year. Neither of the latter estimates of Barnett or NIWA were based on biological science. Hilton's (1990) corrected estimate of 964m<sup>3</sup>/year is based on actual biological production but was subject to invalid assumptions which could have resulted in greater production. None of the studies have measured annual variation in production or the effects of long-term ecological changes such as species loss on production.

### 1.3 Current Study

This assessment is based on the fauna abundance data collected as part of the assessment of effects of sand extraction from the McCallum Bros Ltd (MBL) consented areas in, and from areas further offshore in 2019 (Bioresearches, 2019a,b); from the assessment of effects of the Auckland Offshore sand extraction by Kaipara Limited in 2017 (Bioresearches, 2017); and from an intertidal seafood resources survey for Auckland Regional Council in 1993 (Bioresearches, 1994). In addition, growth rate equations were obtained from New Zealand and international literature. This estimation can be added to that of the non-biogenic sand (i.e. from river, shore and cliff) to make the total sediment input to the budget of the bay.

The study is initially based on the previously accepted enclosed embayment model with a DOC at 27m below mean sea level. It excludes the Mangawhai estuary as a biogenic sand source as estuaries are considered to be sediment "sinks" rather than sources. In addition to the predefined DOC embayment area, an area offshore has been added to the assessment for biogenic sand production, as have rocky shore habitats not previous assessed, and the results provided for each individual area.

MBL has a current consent to extract a maximum allowance of 76,000m<sup>3</sup>/year of sand in consent defined extraction areas as shown in pink in Figure 1 and Figure 2 within a nominal water depth range of 7 to 12m. If the consent is to be renewed, the assessment of biogenic sand production will likely form part of the assessment determining a suitable volume of sand for extraction.



Figure 1 Pakiri – Mangawhai embayment with bathymetry mean sea level contours (light green: 7m; blue: 12m; orange: 22m; yellow: 27m; white 32m), the extent of the areas within these contours, and the extraction areas (in pink). The surface considered for the rocky shore is presented in dark green in the three inserts. Map produced with Google Earth 2019 ©.



## 2. METHODS

The annual biogenic sand production has been estimated following four major steps:

- a) The estimation of densities of benthic biota taxa in number per 100m<sup>2</sup>
- b) The estimation of the shell weight in g/100m<sup>2</sup>
- c) The estimation of the annual shell production (growth) in g/100m<sup>2</sup> /year
- d) The extrapolation of the 3 parameters above for each area and for the whole bay

### 2.1 Density of benthic biota taxa

The most recent assessment of benthic biota in the Pakiri – Mangawhai embayment, was conducted in early 2019 and used two sampling methods to determine its relative abundance and diversity:

- 1. Benthic Infauna: this involved the collection of 117 samples of benthic biota with a box dredge (18cm wide to a depth of approximately 5-10cm, for a length of approximately 90cm) in a pattern uniformly distributed from the shore to the 27m bathymetric contour on each side of Te Arai point, following a sampling design by Dr Grace. Sample locations are shown in Figure 2 as white squares. Subsamples were screened through a 1mm mesh sieve, and the total sample through a 3.15mm mesh sieve. The 1mm screened samples consisted mostly of polychaetes, amphipods and isopods (Bioresearches 2019a), which are considered a minor source for sand formation. Polychaetes have no calcareous part and small arthropods have a fragile chitin exoskeleton, which would degrade quickly, thus not contributing significantly to biogenic sand production. Therefore, only the 3.15mm screened samples, which contained molluscs and echinoderms, were considered for the biogenic sand production.
- 2. **Benthic Epifauna:** this involved 33 (65cm wide) variable length dredge tows targeting different depths (white thick lines in Figure 2). The dredge was fitted with a 15mm square mesh bag, thus retained larger biota, the majority of which were molluscs and benthic arthropods, for which the individual lengths were measured.

Analyses of benthic biota showed little difference in community composition and densities between the area north of Te Arai point and the area south of Te Arai point (Bioresearches 2019a, b), but revealed significant differences between inshore (< 12m depth) areas and deeper ones, highlighting the importance of depth in shaping the benthic community composition. Based on these results, biota samples were separated into three depth defined areas, 7 to 12m, 12 to 22m and 22 to 27m, then used to estimate the production of biogenic sand in each area, and the calculations subsequently combined to assess sand production at the level of the whole Pakiri – Mangawhai embayment.

The current 2019 study did not sample from much less than 7m depth. It is known from historical studies (Bioresearches, 1994, 2016) that this 0 - 7m zone has potentially high numbers of some taxa which are not present in deeper waters, such as the tuatua *Paphies subtriangulata*. In addition, rocky shores are present north and south of the embayment, and at Te Arai Point, with gastropod communities different from the rest of the Bay which is dominated by soft sediment. Therefore, the 0 - 7m depth zone has been included and the historical data used to define densities of taxa present. The first historical study relevant to the surf zone of Pakiri Beach and the rocky shore is the assessment of intertidal seafood resources in 1993 where quantitative sampling of edible seafood was carried out at every kilometre along the beach (Bioresearches, 1994). Sample sites are marked as yellow diamonds in Figure 2. The second historical study is the assessment of the benthic ecology along the Hawaiki submarine cable route project landing on the northern part of the Pakiri – Mangawhai embayment (Bioresearches, 2016). Subtidal benthic biota was assessed by grab sampling and tow sampling at regular depths along the cable route. The grab samples only provided qualitative information on biota (presence, not densities) at regular depths, as there were only up to three samples per



bathymetry area, and this was considered insufficient to represent the quantity of clumped-distributed species such as molluscs.

While the DOC of the Pakiri – Mangawhai embayment was defined as the 27m depth contour in the 2005 environment court hearing, this does not totally, preclude transport of material across this depth contour as this theoretical boundary is likely the midpoint of a transitional depth range across which limited on-offshore transport intermittently occurs. Therefore, the biogenic sand production from the 27m – 32m depth contours has also been calculated. The samples collected in this area were from three different methods (Table 1): 20 box dredge samples were collected during the 2019 inshore-midshore survey detailed previously (Bioresearches, 2019b). In addition, 31 grab samples were collected with a Ponar grab sampler (229 x 229 mm), and 8 dredge tow samples were also available from a previous study in 2017 (Bioresearches, 2017) orange squares and lines in Figure 2). Data sets from the three samples methods were combined, and the highest average density from either method was retained for each taxon in each depth-defined area.

The four studies use differing sampling methods and also sampled different faunal populations as represented by the differing composition of biota. Therefore the biogenic sand production calculation was based on a combination of the methods, providing representation of all major contributors of sand production. When the data sets were combined, the highest average density from either method was retained for each taxon in each depth-defined area.

The surface area for each of the five areas (0 to 7m, 7 to 12m, 12 to 22m, 22 to 27m, and 27 to 32m) was calculated by defining a polygon constrained by the bathymetry contours relative to mean sea level defined from the Land information New Zealand chart NZ3000522 in Google Earth. The extent of the bay was constrained in the north, to a line between Bream Tail and McGregor Rock, and in the south to a line north from the northern point of Goat Island. A 27m bathymetry contour was interpolated from the 22 and 32m contours using QGIS software. Table 1 presents the surface of each area and identifies the samples collected in each area. The embayment as described has a total surface area of 55,246,242m<sup>2</sup> to the 27m contour, or 71,064,438m<sup>2</sup> to the 32m contour.





Figure 2 Pakiri – Mangawhai embayment with bathymetry contours, benthic infauna samples and epifauna tows. Map produced with Google Earth 2019 ©.

#### <u>Key</u>

bathymetry contours (green: 5m; blue: 10m; orange: 20m; yellow: 25m; white: 30m)
benthic infauna samples (white squares: 2019 box dredge samples; Orange squares: 2017 grab samples; yellow diamonds: 1993 quadrats)
epifauna dredge tows (white lines: 2019 samples; orange lines: 2017 samples)
The sand extraction areas are shaded in pink.



## Table 1Benthic samples used to determine the number, weight and growth of biota for biogenic sand calculation.

|                             | Area                  | Rocky shore     | 0 – 7m depth                                          | 7m - 12m depth                                                                     | 12m - 22m depth                                                                                                                                                   | 22m - 27m depth                                                                                                                                                             | 27m – 32m depth                                                                                                                                                |
|-----------------------------|-----------------------|-----------------|-------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Su                          | rface (m²)            | 1,011,139 m²    | 11,549,658 m²                                         | 5,754,054 m²                                                                       | 20,968,451 m²                                                                                                                                                     | 16,558,156 m²                                                                                                                                                               | 15,818,196 m²                                                                                                                                                  |
| Infauna<br>(Box dredge)     | Sample codes<br>(PIB) | -               | -                                                     | 1, 4, 5, 11, 18, 19, 27,<br>39, 44, 45, 46, 62, 68,<br>75, 82, 88, 94, 100,<br>114 | 2, 3, 8, 9, 10, 16, 17,<br>25, 26, 32, 33, 52, 53,<br>54, 60, 61, 66, 67, 73,<br>74, 80, 81, 86, 87, 92,<br>93, 101, 103, 104, 105,<br>106, 108, 111, 117,<br>121 | 6, 7, 13 to 15, 22 to 24,<br>30, 31, 36 to 38, 42,<br>43, 50, 51, 57 to 59,<br>64, 65, 70 to 72, 78,<br>79, 84, 85, 90, 91, 95,<br>96, 102, 107, 112, 115,<br>116, 119, 120 | 12, 20, 21, 28, 29, 34,<br>35, 40, 41, 49, 56, 63,<br>69, 76, 77, 83, 89, 110,<br>113, 118                                                                     |
|                             | Total (year sampled)  | -               | -                                                     | <b>19</b> (2019)                                                                   | <b>35</b> (2019)                                                                                                                                                  | <b>40</b> (2019)                                                                                                                                                            | <b>20</b> (2019)                                                                                                                                               |
| Infauna<br>(grab<br>sample) | Sample codes          | -               | Extrapolated from<br>historical studies (see<br>text) | -                                                                                  | -                                                                                                                                                                 | -                                                                                                                                                                           | TN(W), T0(W, 0, 1),<br>T1(W), T2(W, 0, 1),<br>T3(W), T4(0, 1, 2),<br>T5(W,M), T6(1, 2, 3),<br>T7(W, M), T8(1, 2, 3),<br>T9(1, 2, 3, 4), TC(M,<br>W), T10(1, 2) |
|                             | Total (year sampled)  | -               |                                                       | -                                                                                  | -                                                                                                                                                                 | -                                                                                                                                                                           | <b>31</b> (2017)                                                                                                                                               |
| Epifauna                    | Tow codes             | -               | -                                                     | 22 to 35                                                                           | 8, 9, 11 to 21                                                                                                                                                    | 1 to 7, 10                                                                                                                                                                  | T2A, T4A, T6A, T6B,<br>T8A, T8B, TCA, TCB                                                                                                                      |
| (10w dieuge)                | Total (year sampled)  | -               | -                                                     | <b>14</b> (2019)                                                                   | <b>13</b> (2019)                                                                                                                                                  | 8 (2019)                                                                                                                                                                    | 8 (2017)                                                                                                                                                       |
| Intertidal                  | Sample codes          | 7, 21 to 24     | 1 to 6, 8 to 20                                       |                                                                                    |                                                                                                                                                                   |                                                                                                                                                                             |                                                                                                                                                                |
| seafood                     | Total (year sampled)  | <b>5</b> (1993) | <b>19</b> (1993)                                      |                                                                                    |                                                                                                                                                                   |                                                                                                                                                                             |                                                                                                                                                                |



The surface area sampled by the infauna box dredge was assumed to be relatively constant between samples and estimated to be 0.162m<sup>2</sup> based on a width of 0.18m and a tow length of approximately 0.9m. The length of each epifauna dredge tow was more variable and calculated surfaces are displayed in Table A 1. The surface area sampled by the infauna grab sampler was calculated as 0.05m<sup>2</sup> based on a length of 0.229m either side. The biota data from all sampling methods were tabulated, and abundance standardised to numbers per 100m<sup>2</sup>.

Previous analyses of the 94 infauna box dredge samples (3.15mm size mesh) within the 27m depth contour found a total of 104 taxa (Table A 2). To simplify the calculation of shell growth, the original number of taxa was reduced following two steps:

- The taxa with little or no "shell" component (grey text in Table A 2) were discarded for the shell weight and gross calculation.
- The species with a significant "shell" part but with no information on weight and growth, were combined to a higher taxonomic level for which equations from the international literature existed.

Previous analyses of the 35 epifauna dredge tow samples within the 27m depth contour found a total of 29 taxa (Table A 3). Like the infauna samples, the number of taxa were reduced by eliminating those with little or no "shell" component, and in addition, those taxa for which only one individual over the 35 tows were recorded.

Historical intertidal data at Pakiri found tuatua *P. subtriangulata* to be common all along the beach (Table A 4) (Bioresearches 1994). The average density and size of *P. subtriangulata* were used for the estimation of biogenic sand production in the 0 to 7m area. During the study along the Hawaiki cable route (Bioresearches, 2016), two samples of benthic biota were collected within the 7m depth zone: a benthic grab sample at 4m depth, and a 100m long dredge tow centred on the grab sampling location. The sand dollar *Fellaster zelandiae* was found in both samples, while the paddle crab *Ovalipes catharus* was only present in the tow sample. Densities of these two species for the 0 to 7m zone were extrapolated from the densities calculated from the 7 to 12m area. The wheel shell *Zethalia zelandica* was added to the densities of tuatua, paddle crabs and sand dollars, as its distribution is common in shallow depths of soft-bottomed systems and can have dense beds (Hayward & Morley, 2004). Its distribution is clumped thus the high probability of being missed by the 4m grab sample along the cable route.

For the area 27m to 32m with three different types of samples, reduction of taxa followed the same steps as above (removal of taxa with little or "no shell" component and grouping of taxa with one individual only for the whole dataset). The original taxa are presented in Table A 5 (grab samples), Table A 6 (tow samples) and Table A 7 (box samples).

## 2.2 Shell weight

Of those taxa identified as present in sufficient density, estimates of shell weight /100m<sup>2</sup> were calculated from individual green weights<sup>1</sup> for each retained taxon. Individual green weights were estimated from the average length measured from tow samples using length-weight equations from the literature (Table A 8). The paddle crab *O. catharus*, the bivalves *Dosinia subrosea*, *Perna canaliculus* and *P. subtriangulata*, and the urchin *Evechinus chloroticus* were the only species with specific information from New Zealand. The green weights of other species found in the Pakiri – Mangawhai embayment samples were estimated from

Assessment of Biogenic Sand Production, Pakiri Embayment 62559 Estimate of Biogenic Sand Production v6.docx Final V6 23 October 2019

<sup>&</sup>lt;sup>1</sup> The weight of fish, aquatic life, or seaweed before any processing commences and before any part is removed.



equations of related species from same genera or families (Table A 8). When taxa had no measured length associated (*i.e.* only collected in box dredge samples), the maximum length found in the literature was used.

## 2.3 Annual Growth rate shell production

The production of green weight per year was estimated by using taxa specific growth curves from the literature. In most cases, the growth curves correlate age (year) with length (mm), not weight. Therefore, individual lengths at different ages were first calculated with growth equations, then converted to green weight using length-weight equations. Individual growth rates (weight gained per year) were calculated by subtracting the green weights between two consecutive ages. They were averaged to make an average individual green weight growth.

The estimated individual green weight growth was then converted to an individual shell weight growth by applying an estimated percentage of shell weight to green weight (see note 3 in Table A 8). The term "shell" here is not limited to the shell calcium carbonate of molluscs but is also used as a general term for the chitin of arthropods, the test of echinoderms, and the notochord of cephalochordates.

Finally, the individual shell weight growth was multiplied by the number of individuals per  $100m^2$  to calculate annual shell weight growth in g  $/100m^2$  per year for each taxon.

The methodology presented above uses the average length of each taxon to calculate weight, and the average growth rate over the life span of the animal. However, growth rate can change significantly through life with a rapid growth in the first years and a slow growth when animals reach maturity. Here, the average length of each taxon was used as one age cohort only. Ideally, age-specific growth rates would be used on an age distribution, but for most taxa, growth-specific information was not available. Therefore, the estimation of biogenic production from non-specific averaged growth rates has uncertainties which could not be quantified. In order to check the magnitude of the calculated biogenic production, another method was used by using maximum biomass and maximum age for each taxon and is described below.

### 2.4 Population mortality shell production

An alternative methodology employed in part by Hilton in 1990, relies on a percentage of the population, based on the maximum age of each taxon, dying each year. This method assumes that recruitment will be the same each year, and that mortality will only occur at maximum age. Both of these assumptions are not likely to be met as such population data is not generally available for the taxon included in this study. However, if these assumptions were true then the production can be given by the equation below, where p= annual shell production;  $w_i$  = the weight of the maximum length for the i<sup>th</sup> taxon (calculated using the lengthweight equations from the literature);  $d_i$  = the population density (No./100m<sup>2</sup>) for the i<sup>th</sup> taxon;  $a_i$  = the maximum age for the i<sup>th</sup> taxon; and N = the total number of taxa in the sample.

$$p = \sum_{i=1}^{i=N} \frac{(w_i \times d_i)}{a_i}$$



If the assumption of zero juvenile mortality is not met, then this method would overestimate the shell production as fewer individuals will reach maximum size. If the assumption of equal recruitment is not met, then the production will vary between years leading to both over and underestimations. If more detailed information were available on size specific mortality, then the calculation could be modified to reflect this. Similarly, if the variation in recruitment were known then production could be expressed as a range. The method also assumes no variation in growth rates between individuals. Growth rates do vary between individuals as commonly shown by population size frequency plots, in which older age cohorts tend to have a wider size range spread, than younger age cohorts.

The maximum age of a taxon is required for this calculation method, and this basic information is not currently known for many species. Hilton assumed that all biota lived to 10 years of age, which is now known not to be valid. Thus, if taxon were shorter lived than 10 years his method underestimated mortality biomass production. Hilton also used the average population size rather than maximum size in his calculation of the mortality biomass. Again, this will have underestimated the mortality biomass production. This study has used more taxa specific maximum age and size estimates than employed in Hilton (1990) and is therefore a better reflection of actual production.

### 2.5 Shell production for the Pakiri – Mangawhai embayment

To determine the annual shell production for depth defined areas the equation below was used. Here, P = total production of shell per year (Mg) for the embayment as defined to the 27m depth contour;  $G_i = the$  annual shell weight growth (g/100m<sup>2</sup>/yr) for the *i*<sup>th</sup> taxon; SA = the surface area of the depth-defined area; and N = the total number of taxa in the area. The production from the adjacent deeper 27 - 32m area has also been calculated separately to allow its inclusion if it is determined as relevant based on the wave climate.

$$P = \sum_{i=1}^{i=N} \frac{(G_i \times SA)}{100}$$

To convert shell production from weight to volume (m<sup>3</sup>) the density of the shell material is required. The literature suggests compacted shell density ranges between about 1.1Mg/m<sup>3</sup> and 1.4Mg/m<sup>3</sup> depending on the species (Eziefula *et al.*, 2018, Mo *et al.*, 2018). A previous study by NIWA on sand budget in the bay assumed a shell density of 1.6Mg/m<sup>3</sup> (Hume *et al.*, 1999), however this was not substantiated. A range of values between 1.1 to 1.4Mg/m<sup>3</sup> has been used to provide estimates of the likely range in the volume of biogenic sand produced.

## 3. **RESULTS**

## 3.1 Density of benthic biota taxa

Table A 2 to Table A 7 in the appendices, summarise the original number of taxa and individuals found in the soft sediment, and on the rocky shore. After the reduction of taxa to those likely to produce carbonate shell content, numbers were converted to densities per 100m<sup>2</sup>. The data from the infauna and epifauna surveys were then pooled and separated into habitat type and depth-defined areas. Table 2 to Table 7 provide summaries of data divided by habitat and depth range.

For taxa appearing in both the infauna and epifauna surveys, the data from the survey with the highest density was retained. This was always the box dredge infauna method. However, the epifauna method recorded some taxa not found in the infauna survey, and similarly the reverse also occurred.

Each of these tables consists of two parts: the first, defined by white heading text, is based on the annual growth rate calculations. The second, defined by yellow heading text, is based on the population mortality calculation method.

### 3.2 Weight and shell production

For the annual growth rate part (blue heading white text) of Table 2 to Table 7, each table is divided by thicker lines into three sections across the table;

- a) Left: This covers population density and average length.
- b) Middle: This uses formula to estimate green weight based on length, then applies an estimate of percentage shell and density to calculate shell weight per area.
- c) Right: This summarises the results of calculations for annual shell growth

The length-weight equations and growth rate equations used for each taxon are listed in Table A 8.

For the mortality part (blue heading yellow text) of Table 2 to Table 7, each table is divided by thicker lines into three sections across the table;

- a) Left: This covers population density and maximum size.
- b) Middle: This uses formula to estimate green weight based on maximum length, then applies an estimate of percentage shell and density to calculate shell weight of maximum-sized individual per area.
- c) Right: This presents a maximum age per taxa and calculates annual weight of shell released by mortality.

Table 8 presents the area of each habitat and depth area and summarises the shell production data from both methods. A total weight of shell production from each method for the entire Pakiri – Mangawhai embayment to the predefined 27m below mean sea level DOC, is presented as bold red numbers. The bold italic red numbers show the range of total volume produced per year by each method. The row of blue numbers at the bottom represent the area 27m - 32m depth, located just offshore of the DOC to the embayment.



## Table 2Weight and growth estimated for the rocky shore area 0m – 7m deep following two methodologies

| Tovonomia   |                         | Doncity                | Cumunu  | Average |                         | Actual We        | eight                   |                        | Annual growth     |                         |              |  |
|-------------|-------------------------|------------------------|---------|---------|-------------------------|------------------|-------------------------|------------------------|-------------------|-------------------------|--------------|--|
| raxonomic   | Таха                    | Density                | Survey  | length  | Individual Green weight | Percentage Shell | Individual shell weight | Shell weight           | Individual growth | Individual shell growth | Shell growth |  |
| group       |                         | No. /100m <sup>2</sup> | methou  | (mm)    | (g)                     | %                | (g)                     | (g/100m <sup>2</sup> ) | (g/y)             | (g/y)                   | (g/100m²/y)  |  |
|             | Nerita melanotragus     | 10680                  | quadrat | 16      | 0.4                     | 85               | 0.34                    | 3631                   | 0.94              | 0.80                    | 8533         |  |
|             | Cellana ornate          | 5567                   | quadrat | 18      | 0.4                     | 70               | 0.28                    | 1559                   | 0.94              | 0.66                    | 3663         |  |
|             | Cellana radians         | 3240                   | quadrat | 26      | 0.7                     | 70               | 0.49                    | 1588                   | 0.94              | 0.66                    | 2132         |  |
|             | Lepsiella scobina       | 42625                  | quadrat | 15      | 0.4                     | 85               | 0.34                    | 14493                  | 3.69              | 3.14                    | 133693       |  |
| Gastropods  | Melagraphia aethiops    | 4767                   | quadrat | 15      | 3.0                     | 85               | 2.55                    | 12155                  | 0.94              | 0.80                    | 3809         |  |
|             | Turbo smaragdus         | 4400                   | quadrat | 26      | 4.0                     | 85               | 3.40                    | 14960                  | 0.94              | 0.80                    | 3516         |  |
|             | Cookia sulcata          | 1450                   | quadrat | 58      | 14.0                    | 85               | 11.90                   | 17255                  | 0.94              | 0.80                    | 1159         |  |
|             | Haustrum haustorium     | 550                    | quadrat | 41      | 5.3                     | 85               | 4.51                    | 2478                   | 10.00             | 8.50                    | 4675         |  |
|             | Thais orbita            | 3750                   | quadrat | 41      | 5.3                     | 85               | 4.51                    | 16894                  | 20.00             | 17.00                   | 63750        |  |
| Bivalves    | Perna canaliculus       | 3100                   | quadrat | 69      | 32.0                    | 65               | 20.80                   | 64480                  | 10.00             | 6.50                    | 20150        |  |
| Echinoderms | Evechinus chloroticus   | 3125                   | quadrat | 60      | 65.0                    | 20               | 13.00                   | 40625                  | 9.00              | 1.80                    | 5625         |  |
| Arthropods  | Leptograpsus variegatus | 1800                   | quadrat | -       | 5.0                     | 20               | 1.00                    | 1800                   | 0.50              | 0.10                    | 180          |  |
| Total       |                         | 85054                  |         |         |                         |                  |                         | 191919                 |                   |                         | 250885       |  |

| Tavanamia   |                         | Density                | C       | Maximum |                         | Maximum V               | Veight                  |                        | Annual mortality  |                 |
|-------------|-------------------------|------------------------|---------|---------|-------------------------|-------------------------|-------------------------|------------------------|-------------------|-----------------|
| raxonomic   | Таха                    | Density                | mothod  | length  | Individual Green weight | <b>Percentage Shell</b> | Individual shell weight | Shell weight           | Maximum age       | Shell mortality |
| group       |                         | No. /100m <sup>2</sup> | methou  | (mm)    | (g)                     | %                       | (g)                     | (g/100m <sup>2</sup> ) | (y)               | (g/100m²/y)     |
|             | Nerita melanotragus     | 10680                  | quadrat | 30      | 1.1                     | 85                      | 0.94                    | 9986                   | 6                 | 1664            |
|             | Cellana ornate          | 5567                   | quadrat | 50      | 2.0                     | 70                      | 1.40                    | 7793                   | 6                 | 1299            |
|             | Cellana radians         | 3240                   | quadrat | 50      | 2.0                     | 70                      | 1.40                    | 4536                   | 6                 | 756             |
|             | Lepsiella scobina       | 42625                  | quadrat | 34      | 7.8                     | 85                      | 6.63                    | 282604                 | 9                 | 31400           |
| Gastropods  | Melagraphia aethiops    | 4767                   | quadrat | 30      | 7.1                     | 85                      | 6.04                    | 28767                  | 6                 | 4794            |
|             | Turbo smaragdus         | 4400                   | quadrat | 91      | 100.0                   | 85                      | 85.00                   | 374000                 | 8                 | 46750           |
|             | Cookia sulcata          | 1450                   | quadrat | 119     | 117.0                   | 85                      | 99.45                   | 144203                 | 8                 | 18025           |
|             | Haustrum haustorium     | 550                    | quadrat | 65      | 30.4                    | 85                      | 25.84                   | 14212                  | 8                 | 1777            |
|             | Thais orbita            | 3750                   | quadrat | 110     | 200.0                   | 85                      | 170.00                  | 637500                 | 8                 | 79688           |
| Bivalves    | Perna canaliculus       | 3100                   | quadrat | 160     | 110.0                   | 65                      | 71.50                   | 221650                 | 4                 | 55413           |
| Echinoderms | Evechinus chloroticus   | 3125                   | quadrat | 160     | 230.0                   | 20                      | 46.00                   | 143750                 | 15                | 9583            |
| Arthropods  | Leptograpsus variegatus | 1800                   | quadrat | 50      | 10.0                    | 20                      | 2.00                    | 3600                   | 4                 | 900             |
| Total       |                         | 85054                  |         |         |                         |                         |                         | 1872604                | 7 (mean max. age) | 252050          |



### Table 3 Weight and growth estimated for the Sandy area 0m – 7m deep following two methodologies

| Tavanamia   |                        | Doncity                | <b>C</b> | Average |                         | Actual We        |                         | Annual growth          |                   |                         |              |
|-------------|------------------------|------------------------|----------|---------|-------------------------|------------------|-------------------------|------------------------|-------------------|-------------------------|--------------|
| raxonomic   | Таха                   | Density                | Survey   | length  | Individual Green weight | Percentage Shell | Individual shell weight | Shell weight           | Individual growth | Individual shell growth | Shell growth |
| group       |                        | No. /100m <sup>2</sup> | methou   | (mm)    | (g)                     | %                | (g)                     | (g/100m <sup>2</sup> ) | (g/y)             | (g/y)                   | (g/100m²/y)  |
| Arthropods  | Ovalipes catharus      | 130                    | Box      | 37      | 11.4                    | 20               | 2.28                    | 296                    | 69.00             | 13.80                   | 1794         |
| Gastropods  | Zethalia zelandica     | 9617                   | Box      | 10      | 2.0                     | 80               | 1.60                    | 15387                  | 0.94              | 0.75                    | 7232         |
| Bivalves    | Paphies subtriangulata | 1244                   | quadrat  | 28      | 15.0                    | 65               | 9.75                    | 12129                  | 0.20              | 0.13                    | 162          |
| Echinoderms | Fellaster zelandiae    | 422                    | Box      | 47      | 10.0                    | 90               | 9.00                    | 3798                   | 3.10              | 2.79                    | 1177         |
| Total       | -                      | 11413                  |          |         |                         |                  |                         | 31610                  |                   |                         | 10365        |

| Tovonomia   |                        | Density                | C       | Maximum |                         | Maximum V               |                         | Annual mortality       |                   |                 |
|-------------|------------------------|------------------------|---------|---------|-------------------------|-------------------------|-------------------------|------------------------|-------------------|-----------------|
| raxonomic   | Таха                   | Density                | mothod  | length  | Individual Green weight | <b>Percentage Shell</b> | Individual shell weight | Shell weight           | Maximum age       | Shell mortality |
| group       |                        | No. /100m <sup>2</sup> | methou  | (mm)    | (g)                     | %                       | (g)                     | (g/100m <sup>2</sup> ) | (y)               | (g/100m²/y)     |
| Arthropods  | Ovalipes catharus      | 130                    | Box     | 130     | 378.0                   | 20                      | 75.60                   | 9825                   | 4                 | 2456            |
| Gastropods  | Zethalia zelandica     | 9617                   | Box     | 26      | 6.0                     | 80                      | 4.80                    | 46162                  | 6                 | 7694            |
| Bivalves    | Paphies subtriangulata | 1244                   | quadrat | 80      | 74.0                    | 65                      | 48.10                   | 59836                  | 5                 | 11967           |
| Echinoderms | Fellaster zelandiae    | 422                    | Box     | 100     | 18.0                    | 90                      | 16.20                   | 6836                   | 10                | 684             |
| Total       |                        | 11413                  |         |         |                         |                         |                         | 122659                 | 6 (mean max. age) | 22801           |



## Table 4Weight and growth estimated for the Sandy area 7m – 12m deep following two methodologies

| Tovonomia   |                          | Doncity                | Cumuou | Average |                         | Actual We        | eight                   |                        | Annual growth     |                         |              |  |
|-------------|--------------------------|------------------------|--------|---------|-------------------------|------------------|-------------------------|------------------------|-------------------|-------------------------|--------------|--|
| raxonomic   | Таха                     | Density                | Survey | length  | Individual Green weight | Percentage Shell | Individual shell weight | Shell weight           | Individual growth | Individual shell growth | Shell growth |  |
| group       |                          | No. /100m <sup>2</sup> | methoa | (mm)    | (g)                     | %                | (g)                     | (g/100m <sup>2</sup> ) | (g/y)             | (g/y)                   | (g/100m²/y)  |  |
| Arthropods  | Pagurus setosus          | 65                     | box    | 9       | 0.2                     | 20               | 0.04                    | 3                      | 0.30              | 0.06                    | 4            |  |
|             | Ovalipes catharus        | 130                    | box    | 24      | 3.4                     | 20               | 0.68                    | 88                     | 69.0              | 13.80                   | 1793         |  |
|             | other arthropods         | 487                    | box    | 10      | 0.3                     | 20               | 0.06                    | 29                     | 0.30              | 0.06                    | 29           |  |
|             | Cominella adspersa       | 3                      | tow    | 35      | 5.3                     | 80               | 4.24                    | 11                     | 3.69              | 2.95                    | 8            |  |
| Castropada  | Zethalia zelandica       | 9617                   | box    | 10      | 2.0                     | 80               | 1.60                    | 15387                  | 0.94              | 0.75                    | 7232         |  |
| Gastropous  | Amalda australis         | 227                    | box    | 30      | 3.3                     | 80               | 2.64                    | 600                    | 3.69              | 2.95                    | 671          |  |
|             | other gastropod          | 97                     | box    | 25      | 2.0                     | 80               | 1.60                    | 156                    | 2.77              | 2.22                    | 216          |  |
| Bivalves    | Myadora spp.             | 162                    | box    | 28      | 9.0                     | 50               | 4.50                    | 731                    | 3.50              | 1.75                    | 284          |  |
|             | Dosinia subrosea         | 227                    | box    | 40      | 30.0                    | 65               | 19.50                   | 4435                   | 7.00              | 4.55                    | 1035         |  |
| Echinoderms | Fellaster zelandiae      | 422                    | box    | 47      | 8.0                     | 90               | 7.20                    | 3041                   | 3.10              | 2.79                    | 1178         |  |
|             | Amphiura sp.             | 2                      | tow    | 80      | 5.0                     | 90               | 4.50                    | 7                      | 1.50              | 1.35                    | 2            |  |
|             | Astropecten polyacanthus | 6                      | tow    | 130     | 16.0                    | 90               | 14.40                   | 82                     | 3.10              | 2.79                    | 16           |  |
| Chordates   | Epigonichthys hectori    | 422                    | box    | 40      | 0.3                     | 20               | 0.06                    | 25                     | 0.20              | 0.04                    | 17           |  |
| Total       |                          | 11867                  |        |         |                         |                  |                         | 24595                  |                   |                         | 12485        |  |

| Taxanamia   |                          | Doncity                | Survey | Maximum |                         |                         | Annual mortality        |                        |                   |                 |
|-------------|--------------------------|------------------------|--------|---------|-------------------------|-------------------------|-------------------------|------------------------|-------------------|-----------------|
| raxonomic   | Таха                     | Density                | mothod | length  | Individual Green weight | <b>Percentage Shell</b> | Individual shell weight | Shell weight           | Maximum age       | Shell mortality |
| group       |                          | No. /100m <sup>2</sup> | methou | (mm)    | (g)                     | %                       | (g)                     | (g/100m <sup>2</sup> ) | (y)               | (g/100m²/y)     |
| Arthropods  | Pagurus setosus          | 65                     | box    | 15      | 10.0                    | 20                      | 2.00                    | 130                    | 4                 | 32              |
|             | Ovalipes catharus        | 130                    | box    | 130     | 378.0                   | 20                      | 75.60                   | 9825                   | 4                 | 2456            |
|             | other arthropods         | 487                    | box    | 15      | 10.0                    | 20                      | 2.00                    | 975                    | 4                 | 244             |
|             | Cominella adspersa       | 3                      | tow    | 65      | 32.0                    | 80                      | 25.60                   | 67                     | 9                 | 8               |
| Castropode  | Zethalia zelandica       | 9617                   | box    | 26      | 6.0                     | 80                      | 4.80                    | 46160                  | 6                 | 7693            |
| Gastropods  | Amalda australis         | 227                    | box    | 40      | 7.8                     | 80                      | 6.24                    | 1419                   | 9                 | 142             |
|             | other gastropod          | 97                     | box    | 44      | 15.0                    | 80                      | 12.21                   | 1190                   | 8                 | 149             |
| Bivalves    | Myadora spp.             | 162                    | box    | 42      | 30.0                    | 50                      | 15.00                   | 2437                   | 11                | 244             |
|             | Dosinia subrosea         | 227                    | box    | 57      | 68.0                    | 65                      | 44.20                   | 10052                  | 11                | 1005            |
| Echinoderms | Fellaster zelandiae      | 422                    | box    | 100     | 18.0                    | 90                      | 16.20                   | 6842                   | 10                | 684             |
|             | Amphiura sp.             | 2                      | tow    | 80      | 5.0                     | 90                      | 4.50                    | 7                      | 15                | 0               |
|             | Astropecten polyacanthus | 6                      | tow    | 200     | 20.0                    | 90                      | 18.00                   | 103                    | 15                | 7               |
| Chordates   | Epigonichthys hectori    | 422                    | box    | 80      | 1.0                     | 20                      | 0.20                    | 84                     | 8                 | 11              |
| Total       |                          | 11867                  |        |         |                         |                         |                         | 79291                  | 9 (mean max. age) | 12578           |



## Table 5Weight and growth estimated for the Sandy area 12m – 22m deep following two methodologies

| <b>-</b> i-      |                           | Donoitu                | Survey | Average |                         | Actual We        | eight                   |                        | Annual growth     |                         |              |  |
|------------------|---------------------------|------------------------|--------|---------|-------------------------|------------------|-------------------------|------------------------|-------------------|-------------------------|--------------|--|
| Taxonomic        | Таха                      | Density                | Survey | length  | Individual Green weight | Percentage Shell | Individual shell weight | Shell weight           | Individual growth | Individual shell growth | Shell growth |  |
| group            |                           | No. /100m <sup>2</sup> | methou | (mm)    | (g)                     | %                | (g)                     | (g/100m <sup>2</sup> ) | (g/y)             | (g/y)                   | (g/100m²/y)  |  |
|                  | Pagurus setosus           | 194                    | box    | 16      | 0.8                     | 20               | 0.15                    | 29                     | 0.30              | 0.06                    | 12           |  |
| Arthropods       | Crabs other than Ovalipes | 282                    | box    | 15      | 0.9                     | 20               | 0.18                    | 51                     | 1.00              | 0.20                    | 56           |  |
|                  | other arthropods          | 317                    | box    | 10      | 0.3                     | 20               | 0.06                    | 19                     | 0.30              | 0.06                    | 19           |  |
|                  | Zethalia zelandica        | 53                     | box    | 10      | 2.0                     | 80               | 1.60                    | 85                     | 0.94              | 0.75                    | 40           |  |
|                  | Sigapatella tenuis        | 247                    | box    | 5       | 0.01                    | 50               | 0.005                   | 1                      | 0.10              | 0.05                    | 12           |  |
|                  | Austrofusus glans         | 1                      | tow    | 33      | 4.4                     | 80               | 3.54                    | 4                      | 3.69              | 2.95                    | 3            |  |
| Gastropods       | Cominella adspersa        | 176                    | box    | 29      | 3.0                     | 80               | 2.42                    | 426                    | 3.69              | 2.95                    | 521          |  |
|                  | Amalda spp.               | 141                    | box    | 25      | 2.0                     | 80               | 1.56                    | 220                    | 3.69              | 2.95                    | 417          |  |
|                  | Struthiolaria papulosa    | 2                      | tow    | 60      | 25.9                    | 80               | 20.70                   | 34                     | 3.69              | 2.95                    | 5            |  |
|                  | other gastropods          | 229                    | box    | 37      | 6.2                     | 80               | 4.96                    | 1137                   | 3.69              | 2.95                    | 677          |  |
|                  | Myadora spp.              | 1728                   | box    | 23      | 5.0                     | 50               | 2.50                    | 4321                   | 3.50              | 1.75                    | 3025         |  |
|                  | Dosinia subrosea          | 88                     | box    | 25      | 10.0                    | 65               | 6.50                    | 573                    | 7.00              | 4.55                    | 401          |  |
| Rivalvos         | Nucula nitidula           | 494                    | box    | 13      | 0.2                     | 50               | 0.10                    | 49                     | 0.10              | 0.05                    | 25           |  |
| Divalves         | Glycymeris modesta        | 35                     | box    | 26      | 6.3                     | 65               | 4.11                    | 145                    | 1.44              | 0.94                    | 33           |  |
|                  | Atrina zelandica          | 1                      | tow    | 45      | 8.7                     | 65               | 5.68                    | 4                      | 12.60             | 8.19                    | 6            |  |
|                  | Gari convexa              | 459                    | box    | 25      | 0.5                     | 65               | 0.33                    | 152                    | 1.43              | 0.93                    | 426          |  |
| Colsin o do um o | Fellaster zelandiae       | 212                    | box    | 47      | 8.0                     | 90               | 7.20                    | 1524                   | 3.10              | 2.79                    | 590          |  |
| Echinoderms      | Astropecten polyacanthus  | 9                      | tow    | 125     | 16.0                    | 90               | 14.40                   | 136                    | 3.10              | 2.79                    | 26           |  |
| Total            | otal                      |                        |        |         |                         |                  |                         | 8910                   |                   |                         | 6294         |  |

| <b>T</b>                                                                                                                                                       |                           | Density                | <b>C</b> | Maximum |                         | Maximum V               | Veight                  |                        | Annual mortality  |                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|----------|---------|-------------------------|-------------------------|-------------------------|------------------------|-------------------|-----------------|
| Taxonomic                                                                                                                                                      | Таха                      | Density                | Survey   | length  | Individual Green weight | <b>Percentage Shell</b> | Individual shell weight | Shell weight           | Maximum age       | Shell mortality |
| Taxonomic<br>group     Pa       Arthropods     Cr       Gastropods     Cr       Gastropods     Cr       M     Cr       Bivalves     M       Gi     Arthropodic |                           | No. /100m <sup>2</sup> | methou   | (mm)    | (g)                     | %                       | (g)                     | (g/100m <sup>2</sup> ) | (y)               | (g/100m²/y)     |
|                                                                                                                                                                | Pagurus setosus           | 194                    | box      | 15      | 10.0                    | 20                      | 2.00                    | 388                    | 4                 | 97              |
| Arthropods                                                                                                                                                     | Crabs other than Ovalipes | 282                    | box      | 100     | 200.0                   | 20                      | 40.00                   | 11287                  | 4                 | 2822            |
|                                                                                                                                                                | other arthropods          | 317                    | box      | 15      | 10.0                    | 20                      | 2.00                    | 635                    | 4                 | 159             |
|                                                                                                                                                                | Zethalia zelandica        | 53                     | box      | 26      | 6.0                     | 80                      | 4.80                    | 254                    | 6                 | 42              |
|                                                                                                                                                                | Sigapatella tenuis        | 247                    | box      | 5       | 0.0                     | 50                      | 0.01                    | 1                      | 6                 | 0               |
|                                                                                                                                                                | Austrofusus glans         | 1                      | tow      | 65      | 32.0                    | 80                      | 25.60                   | 26                     | 9                 | 3               |
| Gastropods                                                                                                                                                     | Cominella adspersa        | 176                    | box      | 65      | 32.0                    | 80                      | 25.60                   | 4515                   | 9                 | 502             |
|                                                                                                                                                                | Amalda spp.               | 141                    | box      | 40      | 7.8                     | 80                      | 6.24                    | 880                    | 9                 | 98              |
|                                                                                                                                                                | Struthiolaria papulosa    | 2                      | tow      | 65      | 32.0                    | 80                      | 25.60                   | 42                     | 9                 | 5               |
|                                                                                                                                                                | other gastropods          | 229                    | box      | 52      | 22.0                    | 80                      | 17.57                   | 4028                   | 9                 | 448             |
|                                                                                                                                                                | Myadora spp.              | 1728                   | box      | 42      | 30.0                    | 50                      | 15.00                   | 25926                  | 11                | 2357            |
|                                                                                                                                                                | Dosinia subrosea          | 88                     | box      | 57      | 68.0                    | 65                      | 44.20                   | 3898                   | 11                | 354             |
| Divalves                                                                                                                                                       | Nucula nitidula           | 494                    | box      | 13      | 0.2                     | 50                      | 0.10                    | 49                     | 8                 | 6               |
| Bivalves                                                                                                                                                       | Glycymeris modesta        | 35                     | box      | 26      | 5.0                     | 65                      | 3.25                    | 115                    | 10                | 11              |
|                                                                                                                                                                | Atrina zelandica          | 1                      | tow      | 300     | 88.0                    | 65                      | 57.20                   | 40                     | 15                | 3               |
|                                                                                                                                                                | Gari convexa              | 459                    | box      | 58      | 4.0                     | 65                      | 2.60                    | 1192                   | 8                 | 149             |
|                                                                                                                                                                | Fellaster zelandiae       | 212                    | box      | 100     | 18.0                    | 90                      | 16.20                   | 3429                   | 10                | 343             |
| Echinoderms A                                                                                                                                                  | Astropecten polyacanthus  | 9                      | tow      | 200     | 20.0                    | 90                      | 18.00                   | 170                    | 15                | 11              |
| Total                                                                                                                                                          |                           | 4668                   |          |         |                         |                         |                         | 56875                  | 9 (mean max. age) | 7411            |



## Table 6Weight and growth estimated for the area Sandy 22m – 27m deep following two methodologies

| Tavanamia      |                           | Doncity                | Current | Average |                         | Actual We               | ight                    |                        | Annual growth     |                         |              |  |
|----------------|---------------------------|------------------------|---------|---------|-------------------------|-------------------------|-------------------------|------------------------|-------------------|-------------------------|--------------|--|
| raxonomic      | Таха                      | Density                | Survey  | length  | Individual Green weight | <b>Percentage Shell</b> | Individual shell weight | Shell weight           | Individual growth | Individual shell growth | Shell growth |  |
| group          |                           | No. /100m <sup>2</sup> | methou  | (mm)    | (g)                     | %                       | (g)                     | (g/100m <sup>2</sup> ) | (g/y)             | (g/y)                   | (g/100m²/y)  |  |
|                | Pagurus setosus           | 633                    | box     | 13      | 0.6                     | 20                      | 0.12                    | 76                     | 0.30              | 0.06                    | 38           |  |
| Arthropods     | Crabs other than Ovalipes | 201                    | box     | 15      | 0.9                     | 20                      | 0.18                    | 37                     | 1.00              | 0.20                    | 40           |  |
|                | other arthropods          | 340                    | box     | 10      | 0.3                     | 20                      | 0.06                    | 20                     | 0.30              | 0.06                    | 20           |  |
| Polyplacophora | Leptochiton sp.           | 93                     | box     | 10      | 0.1                     | 50                      | 0.05                    | 5                      | 0.30              | 0.15                    | 14           |  |
|                | Stiracolpus pagoda        | 170                    | box     | 24      | 0.5                     | 80                      | 0.40                    | 68                     | 1.00              | 0.80                    | 136          |  |
|                | Sigapatella tenuis        | 293                    | box     | 5       | 0.01                    | 50                      | 0.003                   | 1                      | 0.10              | 0.05                    | 15           |  |
| Gastropods     | Cominella quoyana         | 355                    | box     | 21      | 1.16                    | 80                      | 0.93                    | 329                    | 3.69              | 2.95                    | 1048         |  |
|                | Amalda spp.               | 154                    | box     | 25      | 2.0                     | 80                      | 1.56                    | 241                    | 3.69              | 2.95                    | 456          |  |
|                | other gastropods          | 556                    | box     | 28      | 2.7                     | 80                      | 2.18                    | 1209                   | 0.20              | 0.16                    | 89           |  |
|                | Myadora spp.              | 401                    | box     | 23      | 5.0                     | 50                      | 2.50                    | 1003                   | 3.50              | 1.75                    | 702          |  |
|                | Dosinia subrosea          | 247                    | box     | 25      | 10.0                    | 65                      | 6.50                    | 1605                   | 7.00              | 4.55                    | 1123         |  |
| Bivalves       | Nucula nitidula           | 509                    | box     | 13      | 0.2                     | 50                      | 0.10                    | 204                    | 0.10              | 0.05                    | 25           |  |
|                | Glycymeris modesta        | 31                     | box     | 26      | 6.3                     | 65                      | 4.11                    | 127                    | 1.44              | 0.94                    | 29           |  |
|                | Gari convexa              | 340                    | box     | 25      | 0.5                     | 65                      | 0.33                    | 113                    | 1.43              | 0.93                    | 316          |  |
| Echinoderms    | Amphiura sp.              | 123                    | box     | 80      | 5.0                     | 90                      | 4.50                    | 556                    | 1.50              | 1.35                    | 167          |  |
| Chordates      | Epigonichthys hectori     | 201                    | box     | 40      | 0.3                     | 20                      | 0.06                    | 12                     | 0.20              | 0.04                    | 8            |  |
| Total          |                           | 4647                   |         |         |                         |                         |                         | 6322                   |                   |                         | 4226         |  |

| <b>T</b> i-                                                                                                                                                             |                           | Density                | Survey | Maximum |                         | Maximum V               | Veight                  |                        | Annual mortality  |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|--------|---------|-------------------------|-------------------------|-------------------------|------------------------|-------------------|-----------------|
| raxonomic                                                                                                                                                               | Таха                      | Density                | Survey | length  | Individual Green weight | <b>Percentage Shell</b> | Individual shell weight | Shell weight           | Maximum age       | Shell mortality |
| Taxonomic group       //         Arthropods       //         Polyplacophora       //         Gastropods       //         Bivalves       //         Echinoderms       // |                           | No. /100m <sup>2</sup> | methou | (mm)    | (g)                     | %                       | (g)                     | (g/100m <sup>2</sup> ) | (y)               | (g/100m²/y)     |
|                                                                                                                                                                         | Pagurus setosus           | 633                    | box    | 15      | 10.0                    | 20                      | 2.00                    | 1265                   | 4                 | 316             |
| Arthropods                                                                                                                                                              | Crabs other than Ovalipes | 201                    | box    | 100     | 200.0                   | 20                      | 40.00                   | 8025                   | 4                 | 2006            |
|                                                                                                                                                                         | other arthropods          | 340                    | box    | 15      | 10.0                    | 20                      | 2.00                    | 679                    | 4                 | 170             |
| Polyplacophora                                                                                                                                                          | Leptochiton sp.           | 93                     | box    | 30      | 4.0                     | 50                      | 2.00                    | 185                    | 15                | 12              |
|                                                                                                                                                                         | Stiracolpus pagoda        | 170                    | box    | 24      | 0.5                     | 80                      | 0.40                    | 68                     | 3                 | 23              |
|                                                                                                                                                                         | Sigapatella tenuis        | 293                    | box    | 5       | 0.01                    | 50                      | 0.01                    | 1                      | 6                 | 0               |
| Gastropods                                                                                                                                                              | Cominella quoyana         | 355                    | box    | 21      | 1.2                     | 80                      | 0.96                    | 341                    | 9                 | 38              |
|                                                                                                                                                                         | Amalda spp.               | 154                    | box    | 40      | 7.8                     | 80                      | 6.24                    | 963                    | 9                 | 107             |
|                                                                                                                                                                         | other gastropods          | 556                    | box    | 43      | 13.4                    | 80                      | 10.75                   | 5970                   | 7                 | 853             |
|                                                                                                                                                                         | Myadora spp.              | 401                    | box    | 42      | 30.0                    | 50                      | 15.00                   | 6019                   | 11                | 547             |
|                                                                                                                                                                         | Dosinia maoriana          | 247                    | box    | 57      | 68.0                    | 65                      | 44.20                   | 10914                  | 11                | 992             |
| Bivalves                                                                                                                                                                | Nucula nitidula           | 509                    | box    | 13      | 0.2                     | 50                      | 0.10                    | 51                     | 8                 | 6               |
|                                                                                                                                                                         | Glycymeris modesta        | 31                     | box    | 26      | 5.0                     | 65                      | 3.25                    | 100                    | 10                | 10              |
|                                                                                                                                                                         | Gari convexa              | 340                    | box    | 58      | 4.0                     | 65                      | 2.60                    | 883                    | 8                 | 110             |
| Echinoderms                                                                                                                                                             | Amphiura sp.              | 123                    | box    | 80      | 5.0                     | 90                      | 4.50                    | 556                    | 15                | 37              |
| Chordates                                                                                                                                                               | Epigonichthys hectori     | 201                    | box    | 80      | 1.0                     | 20                      | 0.20                    | 40                     | 8                 | 5               |
| Total                                                                                                                                                                   |                           | 4647                   |        |         |                         |                         |                         | 31497                  | 8 (mean max. age) | 4580            |



## Table 7Weight and growth estimated for the Sandy area 27m – 32m deep following two methodologies

| <b>T</b> i-        |                           | Density                | Survev | Average |                         | Actual We        | ight                    |                        | Annual growth     |                         |              |
|--------------------|---------------------------|------------------------|--------|---------|-------------------------|------------------|-------------------------|------------------------|-------------------|-------------------------|--------------|
| Taxonomic          | Таха                      | Density                | Survey | length  | Individual Green weight | Percentage Shell | Individual shell weight | Shell weight           | Individual growth | Individual shell growth | Shell growth |
| group              |                           | No. /100m <sup>2</sup> | methou | (mm)    | (g)                     | %                | (g)                     | (g/100m <sup>2</sup> ) | (g/y)             | (g/y)                   | (g/100m²/y)  |
| Arthropods         | Pagurus setosus           | 22467                  | grab   | 13      | 0.6                     | 20               | 0.12                    | 2696                   | 0.30              | 0.06                    | 1348         |
| Arthropous         | Crabs other than Ovalipes | 1400                   | grab   | 15      | 0.9                     | 20               | 0.18                    | 252                    | 1.00              | 0.20                    | 280          |
| Polyplacophora     | Leptochiton sp.           | 1200                   | grab   | 10      | 0.1                     | 50               | 0.05                    | 60                     | 0.30              | 0.15                    | 180          |
|                    | <i>Epitonium</i> sp.      | 200                    | grab   | 14      | 0.2                     | 80               | 0.16                    | 32                     | 1.00              | 0.80                    | 160          |
|                    | Turritellidae             | 2067                   | grab   | 24      | 0.5                     | 80               | 0.40                    | 827                    | 1.00              | 0.80                    | 1653         |
|                    | Rissoina fictor           | 154                    | box    | 5       | 0.1                     | 80               | 0.04                    | 6                      | 1.00              | 0.80                    | 123          |
|                    | <i>Sigapatella</i> sp.    | 2667                   | grab   | 5       | 0.0                     | 50               | 0.01                    | 13                     | 0.10              | 0.05                    | 133          |
|                    | Amalda sp.                | 1067                   | grab   | 25      | 2.0                     | 80               | 1.60                    | 1707                   | 3.69              | 2.95                    | 3149         |
|                    | Austrofusus glans         | 133                    | grab   | 33      | 4.4                     | 80               | 3.54                    | 471                    | 3.69              | 2.95                    | 394          |
|                    | Cominella quoyana         | 988                    | box    | 20      | 1.0                     | 80               | 0.80                    | 790                    | 3.69              | 2.95                    | 2916         |
| Gastropods         | Antimelatoma buchanani    | 62                     | box    | 20      | 1.0                     | 80               | 0.80                    | 49                     | 3.69              | 2.95                    | 182          |
|                    | Zeatrophon ambiguus       | 200                    | grab   | 30      | 3.3                     | 80               | 2.67                    | 534                    | 3.69              | 2.95                    | 590          |
|                    | Xymenella pusilla         | 62                     | box    | 25      | 2.0                     | 80               | 1.56                    | 96                     | 3.69              | 2.95                    | 182          |
|                    | Cantharidus sp.           | 133                    | grab   | 10      | 2.0                     | 80               | 1.60                    | 213                    | 0.94              | 0.75                    | 100          |
|                    | Antisolarium egenum       | 401                    | box    | 5       | 0.7                     | 80               | 0.59                    | 238                    | 0.94              | 0.75                    | 302          |
|                    | Roseaplagis rufozona      | 93                     | box    | 10      | 2.0                     | 80               | 1.60                    | 148                    | 0.94              | 0.75                    | 70           |
| ۲<br>۲<br>۲        | Solariella tryphenensis   | 93                     | box    | 5       | 0.7                     | 80               | 0.59                    | 55                     | 0.94              | 0.75                    | 70           |
| S<br>C<br>         | Other gastropods          | 1600                   | grab   | 10      | 2.0                     | 80               | 1.60                    | 2560                   | 2.22              | 1.78                    | 2846         |
|                    | Hunkydora & Myadora       | 400                    | grab   | 23      | 5.0                     | 50               | 2.50                    | 1000                   | 3.50              | 1.75                    | 700          |
|                    | Corbula zelandica         | 401                    | box    | 12      | 5.0                     | 50               | 2.50                    | 1003                   | 3.50              | 1.75                    | 702          |
|                    | Glycymeris modesta        | 216                    | box    | 26      | 6.3                     | 65               | 4.10                    | 885                    | 1.44              | 0.94                    | 202          |
|                    | Pratulum pulchellum       | 400                    | grab   | 25      | 5.6                     | 65               | 3.61                    | 1446                   | 1.44              | 0.94                    | 374          |
|                    | Gari & Hiatula            | 2933                   | grab   | 25      | 0.5                     | 65               | 0.33                    | 953                    | 1.43              | 0.93                    | 2727         |
|                    | Pleuromeris sp.           | 467                    | grab   | 8       | 5.6                     | 65               | 3.61                    | 1687                   | 1.44              | 0.94                    | 437          |
|                    | Purpurocardia purpurata   | 123                    | box    | 26      | 6.3                     | 65               | 4.10                    | 506                    | 1.44              | 0.94                    | 116          |
| Divoluos           | Limatula maoria           | 333                    | grab   | 8       | 0.0                     | 50               | 0.01                    | 2                      | 0.10              | 0.05                    | 17           |
| Bivalves           | Nucula nitidula           | 3533                   | grab   | 8       | 0.0                     | 50               | 0.01                    | 18                     | 0.10              | 0.05                    | 177          |
|                    | Atrina zelandica          | 333                    | grab   | 45      | 8.7                     | 65               | 5.68                    | 1894                   | 12.60             | 8.19                    | 2730         |
|                    | Dosinia sp.               | 267                    | grab   | 25      | 10.0                    | 65               | 6.50                    | 1733                   | 7.00              | 4.55                    | 1213         |
|                    | Tawera sp.                | 1267                   | grab   | 24      | 10.0                    | 65               | 6.50                    | 8233                   | 7.00              | 4.55                    | 5763         |
|                    | Zemysina globus           | 62                     | box    | 25      | 10.0                    | 65               | 6.50                    | 401                    | 7.00              | 4.55                    | 281          |
|                    | Lasaeidae                 | 1333                   | grab   | 1       | 0.0                     | 50               | 0.01                    | 7                      | 0.10              | 0.05                    | 67           |
|                    | Pecten novaezelandiae     | 15                     | tow    | 84      | 55.7                    | 65               | 36.19                   | 550                    | 50.00             | 32.50                   | 494          |
|                    | Other bivalves            | 667                    | grab   | 23      | 10.0                    | 65               | 6.50                    | 4333                   | 5.00              | 3.25                    | 2167         |
|                    | Echinocardium sp.         | 1733                   | grab   | 30      | 10.0                    | 20               | 2.00                    | 3467                   | 10.00             | 2.00                    | 3467         |
| Echinoderms        | Astropecten polycanthus   | 4                      | tow    | 114     | 14.0                    | 90               | 12.60                   | 53                     | 3.10              | 2.79                    | 12           |
| Echinoderms A<br>A | Amphiura sp.              | 533                    | grab   | 80      | 5.0                     | 90               | 4.50                    | 2400                   | 1.50              | 1.35                    | 720          |
| Chordates          | Epigonichthys hectori     | 5467                   | grab   | 40      | 0.3                     | 20               | 0.06                    | 328                    | 0.20              | 0.04                    | 219          |
| Total              |                           | 55474                  |        |         |                         |                  |                         | 41646                  |                   |                         | 37263        |



| Taxonomic<br>group |                           | Density                |        | Maximum |                         | Maximum V        | Veight                  |                        | Annual Mortality  |                 |
|--------------------|---------------------------|------------------------|--------|---------|-------------------------|------------------|-------------------------|------------------------|-------------------|-----------------|
|                    | Таха                      | Density                | Survey | length  | Individual Green weight | Percentage Shell | Individual shell weight | Shell weight           | Maximum age       | Shell mortality |
| group              |                           | No. /100m <sup>2</sup> | method | (mm)    | (g)                     | %                | (g)                     | (g/100m <sup>2</sup> ) | (y)               | (g/100m²/y)     |
| A                  | Pagurus setosus           | 22467                  | grab   | 15      | 10.0                    | 20               | 2.00                    | 44933                  | 4                 | 11233           |
| Arthropods         | Crabs other than Ovalipes | 1400                   | grab   | 100     | 200.0                   | 20               | 40.00                   | 56000                  | 4                 | 14000           |
| Polyplacophora     | Leptochiton sp.           | 1200                   | grab   | 30      | 4.0                     | 50               | 2.00                    | 2400                   | 15                | 160             |
|                    | Epitonium sp.             | 200                    | grab   | 14      | 0.2                     | 80               | 0.16                    | 32                     | 3                 | 11              |
|                    | Turritellidae             | 2067                   | grab   | 24      | 0.5                     | 80               | 0.40                    | 827                    | 3                 | 276             |
|                    | Rissoina fictor           | 154                    | box    | 5       | 0.1                     | 80               | 0.04                    | 6                      | 3                 | 2               |
|                    | <i>Sigapatella</i> sp.    | 2667                   | grab   | 8       | 0.2                     | 50               | 0.10                    | 267                    | 2                 | 134             |
|                    | Amalda sp.                | 1067                   | grab   | 40      | 7.8                     | 80               | 6.24                    | 6656                   | 10                | 666             |
|                    | Austrofusus glans         | 133                    | grab   | 65      | 32.0                    | 80               | 25.60                   | 3413                   | 8                 | 427             |
|                    | Cominella quoyana         | 988                    | box    | 20      | 1.0                     | 80               | 0.80                    | 790                    | 8                 | 99              |
| Gastropods         | Antimelatoma buchanani    | 62                     | box    | 20      | 1.0                     | 80               | 0.80                    | 49                     | 8                 | 6               |
|                    | Zeatrophon ambiguus       | 200                    | grab   | 30      | 3.3                     | 80               | 2.67                    | 534                    | 8                 | 67              |
|                    | Xymenella pusilla         | 62                     | box    | 25      | 2.0                     | 80               | 1.56                    | 96                     | 8                 | 12              |
|                    | Cantharidus sp.           | 133                    | grab   | 26      | 6.0                     | 80               | 4.80                    | 640                    | 6                 | 107             |
|                    | Antisolarium egenum       | 401                    | box    | 7       | 0.8                     | 80               | 0.64                    | 257                    | 6                 | 43              |
|                    | Roseaplagis rufozona      | 93                     | box    | 26      | 6.0                     | 80               | 4.80                    | 444                    | 6                 | 74              |
|                    | Solariella tryphenensis   | 93                     | box    | 5       | 0.7                     | 80               | 0.59                    | 55                     | 6                 | 9               |
|                    | Other gastropods          | 1600                   | grab   | 10      | 2.0                     | 80               | 1.60                    | 2560                   | 6                 | 401             |
|                    | Hunkydora & Myadora       | 400                    | grab   | 42      | 10.0                    | 50               | 5.00                    | 2000                   | 10                | 200             |
|                    | Corbula zelandica         | 401                    | box    | 12      | 5.0                     | 50               | 2.50                    | 1003                   | 10                | 100             |
|                    | Glycymeris modesta        | 216                    | box    | 26      | 5.0                     | 65               | 3.25                    | 702                    | 5                 | 140             |
|                    | Pratulum pulchellum       | 400                    | grab   | 26      | 5.0                     | 65               | 3.25                    | 1300                   | 5                 | 260             |
|                    | Gari & Hiatula            | 2933                   | grab   | 58      | 11.0                    | 65               | 7.15                    | 20973                  | 10                | 2097            |
|                    | Pleuromeris sp.           | 467                    | grab   | 8       | 5.6                     | 65               | 3.64                    | 1699                   | 5                 | 340             |
|                    | Purpurocardia purpurata   | 123                    | box    | 35      | 5.0                     | 65               | 3.25                    | 401                    | 5                 | 80              |
| Bivalves           | Limatula maoria           | 333                    | grab   | 8       | 0.2                     | 50               | 0.10                    | 33                     | 2                 | 17              |
| Diraires           | Nucula nitidula           | 3533                   | grab   | 8       | 0.2                     | 50               | 0.10                    | 353                    | 2                 | 177             |
|                    | Atrina zelandica          | 333                    | grab   | 300     | 88.0                    | 65               | 57.20                   | 19067                  | 15                | 1271            |
|                    | Dosinia sp.               | 267                    | grab   | 52      | 40.0                    | 65               | 26.00                   | 6933                   | 10                | 693             |
|                    | Tawera sp.                | 1267                   | grab   | 24      | 10.0                    | 65               | 6.50                    | 8233                   | 10                | 823             |
|                    | Zemysina globus           | 62                     | box    | 24      | 10.0                    | 65               | 6.50                    | 401                    | 10                | 40              |
|                    | Lasaeidae                 | 1333                   | grab   | 2       | 0.2                     | 50               | 0.10                    | 133                    | 2                 | 67              |
|                    | Pecten novaezelandiae     | 15                     | tow    | 116     | 128.0                   | 65               | 83.20                   | 1265                   | 10                | 127             |
|                    | Other bivalves            | 667                    | grab   | 30      | 10.0                    | 65               | 6.50                    | 4333                   | 9                 | 495             |
|                    | Echinocardium sp.         | 1733                   | grab   | 30      | 10.0                    | 20               | 2.00                    | 3467                   | 10                | 347             |
| Echinoderms        | Astropecten polycanthus   | 4                      | tow    | 200     | 20.0                    | 90               | 18.00                   | 76                     | 15                | 5               |
|                    | Amphiura sp.              | 533                    | grab   | 80      | 5.0                     | 90               | 4.50                    | 2400                   | 15                | 160             |
| Chordates          | Epigonichthys hectori     | 5467                   | grab   | 80      | 1.0                     | 20               | 0.20                    | 1093                   | 8                 | 137             |
| Total              |                           | 55474                  |        |         |                         |                  |                         | 195824                 | 7 (mean max. age) | 35303           |



## Table 8Summary of shell production by area in the Pakiri – Mangawhai embayment.

|                                                         | Surface    | Dominant | Average               | Actual Shal         | luvoiaht | Annı      | ual Shel | Growth |       | Annual Shell Morality |       |        |       |
|---------------------------------------------------------|------------|----------|-----------------------|---------------------|----------|-----------|----------|--------|-------|-----------------------|-------|--------|-------|
| Area                                                    | Aroa       | Dominant | Average               | Actual Shel         | weight   | Weigh     | it       | Volume |       | Weight                |       | Volume |       |
| Alea                                                    | Alea       | mothod   | uensity               | Average             | Total    | Average   | Total    | Lower  | Upper | Average               | Total | Lower  | Upper |
|                                                         | (m²)       | methou   | No./100m <sup>2</sup> | g/100m <sup>2</sup> | Mg       | g/100m²/y | Mg/y     | m³/y   | m³/y  | g/100m²/y             | Mg/y  | m³/y   | m³/y  |
| Rocky shore 0m – 7m                                     | 1,011,139  | quadrat  | 85,054                | 191,919             | 1,941    | 250,885   | 2,537    | 1,812  | 2,306 | 252,050               | 2,549 | 1,821  | 2,317 |
| Shoreline 0m – 7m                                       | 11,119,839 | box      | 11,413                | 31,610              | 3,515    | 10,365    | 1,153    | 823    | 1,048 | 22,802                | 2,536 | 1,811  | 2,305 |
| Shallow 7m - 12m                                        | 5,701,399  | box      | 11,867                | 24,595              | 1,402    | 12,485    | 712      | 508    | 647   | 12,578                | 717   | 512    | 652   |
| Mid 12m - 22m                                           | 20,855,709 | box      | 4,668                 | 8,910               | 1,858    | 6,294     | 1,313    | 938    | 1,193 | 7,411                 | 1,600 | 1,143  | 1,455 |
| Deep 22m - 27m                                          | 16,558,156 | box      | 4,647                 | 5,606               | 928      | 4,226     | 700      | 500    | 636   | 4,580                 | 1,059 | 757    | 963   |
| Pakiri – Mangawhai embayment<br>within depth of Closure | 55,246,242 | box      | 8,234*                | 17,457*             | 9,645    | 11,609*   | 6,414    | 4,581  | 5,831 | 14,671*               | 8,106 | 5,790  | 7,369 |
| Offshore 27m – 32m                                      | 15,818,196 | grab     | 41,646                | 56,231              | 8,895    | 37,263    | 5,894    | 4,210  | 5,358 | 35,303                | 5,584 | 3,989  | 5,076 |

#### Note:

A range of densities was used for the shell volume with upper defined as 1.1 Mg/m<sup>3</sup> and lower as 1.4 Mg/m<sup>3</sup> (see text).

It was not possible to estimate errors with the methodologies used.

\* area weighted average

## 4. **DISCUSSION**

## 4.1 Shell weight annual production

The majority of the calculations of growth rates of taxa present were not based on taxa specific equations as no such equations have been developed for most New Zealand species. Therefore, similar local or international taxa growth rate equations were substituted. The use of non-specific equations and extrapolations provides an estimate of the production albeit with an increased measure of uncertainty. The present estimation assumed a single cohort per taxa (no size distribution of biota available for box dredge) with no migration in or out the system. Until more data on the biology of the biota become available (population dynamics), building more complex growth models of current biota is pointless.

The annual shell production in the Pakiri – Mangawhai embayment (0m - 27m) was estimated to be around 7,200 tonnes depending on the methodology used (by growth rate 6,414 tonnes or by mortality 8,106 tonnes). This was equivalent to a range in volume of 4,600 – 5,800m<sup>3</sup> by growth rate or between 5,800 – 7,400m<sup>3</sup> by mortality, depending on different crushed shell densities of 1.1 - 1.4 Mg/m<sup>3</sup> used (Eziefula *et al.*, 2018). Given the number of estimations, assumptions and substitutions it was not possible to provide an estimation of the error associated with the results produced by either method.

In general, subtidal marine invertebrate communities can support a high diversity of species with different ecological and life history traits. Species with different adaptations, occupy different niches along a depth gradient, which among other factors, varies with sediment texture and with their ability to cope with the physical environment (Dolbeth *et al.*, 2007). The environmental severity conditioning the fauna is determined by the bottom disturbance, which in turn potentially affects sediment texture, food availability and biotic interactions. Both wave climate and morphological parameters showed that the higher the energy to which the community is subjected, the lower the species number and density in the inhabited area (Dolbeth *et al.*, 2007). Therefore, both increased food availability and reduced disturbance may allow for the existence of richer and denser assemblages beyond the DOC (Carvalho *et al.*, 2012).

The benthic biota data collected in the Pakiri embayment for both the McCallum Brothers Limited and Kaipara Limited consents and in the past (Hilton, 1990, Bioresearches, 2016) show variations in the species composition and abundance with increased depth. The current data shows the inshore areas (0-12m) are dominated by biota adapted to high wave energy such as wheel shells and sand dollar, both of which can occur in high densities. Further offshore between 12 and 27m depth the biota was diverse, but low in abundance. Here, communities were dominated by a few species of polychaete worms and contained moderate numbers of amphipods, hermit crabs, the bivalves *Nucula* and *Myadora* and the Lancelet, *Epigonichthys hectori*. Beyond the predefined 27m DOC, the biota was still diverse with similar species to those present in the mid shore (12 - 27m) but numbers of individuals, particularly bivalves, were greater beyond the 27m depth.

Table 8 shows the average biomass of biota per 100m<sup>2</sup> decreased with increasing depth to the 27m depth contour. The highest numbers were recorded in the rocky shore areas. The higher numbers recorded in the shallow sandy environments were mostly due to the high abundances of the wheel shells and sand dollars. The decreasing numbers were the result of fewer biota present and their smaller sizes. Beyond the 27m depth contour, the biomass increased again due to increased numbers of bivalves and echinoderms (Table 7).



As there are uncertainties on the amount of sediment and shell material moving to and from the Pakiri – Mangawhai embayment (0m – 27m) across the predefined 27m DOC, the calculation of annual shell production in the 27m - 32m area is also presented. The production in the 27m - 32m area alone (4,000 - 5,400m<sup>3</sup> depending on the methodology) is marginally lower but comparable to that of the whole Pakiri – Mangawhai embayment (0m – 27m) (4,600 – 7,400m<sup>3</sup> depending on the methodology). Thus, the inclusion of the 27m - 32m area in the biogenic sand budget of the Pakiri – Mangawhai embayment (0m – 32m) gives figures of approximately 8,800 to 12,400m<sup>3</sup> of annual biogenic sand production.

Based on the data included in this study the different sampling methods; grab sampler, box dredge, quadrat and dredge tow, appear to produce different densities of biota. The grab sampler samples the smallest area, but the area sampled is standardised. The box dredge samples a similar volume, but a larger area and the area sample varies depending on how well the dredge operates in the sediment. The quadrat again samples a standardised area. The dredge tow samples are very different to the other two samplers in that the area sampled is much greater and is selective for the larger biota only.

Of the six defined areas sampled, only the 27m -32m area was sampled with the grab sampling method and this method systematically produced greater densities in comparison with box dredge or tow dredge samples in the same area. Nonetheless, the higher densities recorded beyond the 27m depth contour are not solely a bias of sampling methodology. Seabed images recorded in four transects in 2019 reported in Bioresearches (2019b) showed increased proportions of shell fragments on the seabed in areas beyond 25m depth (as recorded at the time of sampling), and corroborates the increased biota recorded in the samples. In the absence of data to directly compare the different sampling methods it has been assumed neither sampling method has any greater bias.

### 4.2 <u>Comparison with previous estimated numbers</u>

Sands in the Pakiri-Mangawhai embayment are primarily quartzo-feldspathic (Schofield, 1970). They also contain varying amounts of carbonate, as sand material.

Based on the 2019 soft shore calciferous biota densities the estimated average concentration of shell is 142g/m<sup>2</sup>, ranging between 56 and 316g/m<sup>2</sup>, which is comparable with Hilton's estimate or 97g/m<sup>2</sup>, albeit for slightly different areas. Hilton's transect areas extended beyond the 27m depth contour and did not include the rocky shore biota, making direct comparison with the current study problematic. When rocky shore biota was included the average concentration of shell increased to 175g/m<sup>2</sup>, due the estimated rocky shore shell biomass of 1920g/m<sup>2</sup>.

Hilton (1990) assumed that for a shellfish species of a 10-year life expectancy, 10% of the population would die every year and the shell becomes part of the biogenic sand. This assumes a constant population size, and that recruitment and mortality were constant, which they are generally not. It also appears that he assumed all shellfish had a similar life span, which is also not a valid assumption. We now know biota range in lifespan from 3 to 15 years. Longer lived species would contribute a lesser percentage of the population per year than a short-lived species. His assumptions were based on the information available in 1990, greater information on life span is now available but the population size, mortality and recruitment are still not well understood. We do know from monitoring data (Grace, 1991, 2005, Bioresearches 2019) that the populations of wheel shell and several other species have varied between years which suggested either mortality or more likely recruitment are not constant.



Based on Hilton's assumptions, he calculated that the existing weight of shell material 5,300 tonnes would increase to 73,000,000 tonnes after 100 years. This calculation was incorrect. Hilton mistakenly added the dead shell material back to the live shell material each year for a compounding recalculation of dead shell production over the 100-year time frame. This process grossly overestimated the production of dead shell material over time. One of the major assumptions is that the live shellfish population does not change year to year therefore the production should be the same each year. To quantify any changes year to year or between seasons would require repeated surveys of taxa abundance and sizes, which is beyond the scope needed for this project. Given that mortality and recruitment vary between years and between species the live shellfish population will vary over time. However even if the shellfish population varied in size between years the expected dead shell production overtime, results in an annual shell material production of 530 tonnes, translating to 482m<sup>3</sup>/year assuming shell material has a density of 1.1Mg/m<sup>3</sup>. Hume *et al.* (1999) suggests these values cover half the bay and should be doubled to a corrected value of 964m<sup>3</sup>/year, which is considerably less than that Hilton reported in 1990 of 900,000m<sup>3</sup>/year.

The NIWA sand study (Hume *et al.*, 1999) considered Hilton's original shell production value of 900,000 m<sup>3</sup>/year erroneous and suggested the biogenic sand product was less than 12,000 m<sup>3</sup>/year based on a sediment budget. Barnett in his 2005 environment court evidence suggested it should be near 90,000 m<sup>3</sup>/year, neither of the latter estimates were based on biological science.

Of these estimates only the Hilton (1990) corrected estimate of 964m<sup>3</sup>/year is based on actual biological production, but it was based on invalid assumptions and missing significant sources.

In an ideal world with data on distribution and abundance, growth curves, population structure, recruitment and mortality variability available on each of the specific taxa the total shell production could be refined as the sum of each component taxa per area. The estimate produced in this report has attempted to further refine Hilton's assessment by segregating the seabed into five zones based on species composition and abundance and defined by depth. In addition, rather than assuming that all shellfish grow in the same way, taxa specific growth has been applied to each taxon within each zone. Species-specific growth data, age, population structure, recruitment etc, do not generally exist for the species recorded. Therefore, data from similar taxa have been used as estimates for growth and age. Detailed population structure data was generally not available for any of the taxa recorded, therefore the annual growth of the average known size for each taxon was used to provide one estimate of growth. A second estimate of growth was based on the similar method to Hilton of the annual population mortality as estimated by the reciprocal of maximum age. Variability in recruitment and mortality were not available for in the production estimate. Nonetheless, the similarity of the two estimates produced for the rocky and soft shore environments of the Pakiri-Mangawhai embayment to the 27m depth contour (annual growth 4,581 – 5,831 m<sup>3</sup>/year, and population mortality 5,790  $-7,369 \text{ m}^3/\text{year}$ ), provides some confidence in the calculations, and fits within the 12,000m<sup>3</sup> net shoreward transport of material proposed by Hume et al (1999).

Addition of the results of biogenic sand production from the 27-32 m contour (Table 8), would increase the production by a further  $4,200 - 5,400 \text{ m}^3$ /year under the annual growth methodology, and  $4,000 - 5,000 \text{ m}^3$ /year under the population mortality methodology.

## 5. **REFERENCES**



#### Allen, J.A. (1954)

A comparative study of the British species of *Nucula* and *Nuculana*. *Journal of Marine Biology Association UK* 33, 457–472.

#### Allmon, W.D. (2011)

Natural history of Turritelline gastropods (Cerithiodea: Turritellidae): a status report. *Malacologia* 54(1–2), 159–202.

#### Aljadani, N. (2013)

The reproductive biology of the surf clams Triangle Shell (*Spisula aequilatera*), Ringed dosinia (*Dosinia anus*) and Deep water Tuatua (*Paphies donacina*) from the North-East of South Island, New Zealand. MSc thesis, Auckland University of Technology, Auckland, NZ.

#### ASR (2003)

Pre-Dredging Assessment: Ecological Component, Infaunal Sampling and Drop-Camera Video Surveys of a 1 x 8 km Area off Pakiri Beach. Report prepared for Kaipara Ltd. pp29.

#### ASR (2006)

Pre-Dredging Assessment: Ecological Component, Infaunal Sampling and Drop-Camera Video Surveys of a 1 x 11 km Area off Pakiri Beach. Report prepared for Kaipara Ltd. pp26.

#### Baeta, M., Galimany, E., and Ramón, M. (2016)

Growth and reproductive biology of the sea star *Astropecten aranciacus* (Echinodermata, Asteroidea) on the continental shelf of the Catalan Sea (northwestern mediterranean). *Helgoland Marine Research* 70(1), 1.

#### Barnett, A.G. (2005)

Statement of evidence of Alastair Gordon Barnett before the environment Court at Auckland ENV A 104/05 and A 105/05. Prepared by Barnett & MacMurray Ltd. Project number BM1-146.

#### **Bioresearches (1994)**

Intertidal seafood resources of the northern east coast of Auckland and Waiheke Island. Contract #93098. Report prepared for Auckland Regional Council. pp 87.

#### **Bioresearches (2011)**

Pakiri Sands Control Area Ecological Characteristics Assessment Report. Report prepared for Kaipara Ltd. pp11.

#### **Bioresearches (2016)**

Hawaiki Submarine Cable NZ, Environment Assessment of the Benthic Ecology of the Cable Route. Contract #16192. Report prepared for Mortimer Consulting. pp49.

#### **Bioresearches (2017)**

Assessment of ecological effects: following sand extraction from the Auckland offshore sand extraction site. December 2017. Bioresearches Contract #16186. Report prepared for Kaipara Limited. pp90.

#### Bioresearches (2019a)

Assessment of ecological effects: following sand extraction in inshore areas. September 2019. Bioresearches Contract #62559. Draft report prepared for McCallum Brothers Limited. pp66.



#### **Bioresearches (2019b)**

Assessment of ecological effects: Midshore areas. September 2019. Bioresearches Contract #62559. Draft report prepared for McCallum Brothers Limited. pp66.

#### Boucetta, S., Derbal, F., Boutiba, Z., and Kara, M.H. (2010)

First Biological Data on the Marine Snails *Monodonta turbinata* (Gastropoda, Trochidae) of Eastern Coasts of Algeria. In H.J. Ceccaldi *et al.* (eds.), *Global Change: Mankind-Marine Environment Interactions, Proceedings of the 13th French-Japanese Oceanography Symposium.* 

#### Carvalho, S., Cunha, M. R., Pereira, F., Pousão-Ferreira, P., Santos, M. N., & Gaspar, M. B. (2012)

The effect of depth and sediment type on the spatial distribution of shallow soft-bottom amphipods along the southern Portuguese coast. *Helgoland Marine Research 66*(4), 489.

#### De Falco, G., Molinaroli, E., Conforti, A., Simeone, S., and Tonielli, R. (2017)

Biogenic sediments from coastal ecosystems to beach-dune systems: implications for the adaptation of mixed and carbonate beaches to future sea level rise. *Biogeosciences* 14, 3191–3205.

#### Dolbeth, M., Ferreira, O., Teixeira, H., Marques, J. C., Dias, J. A., & Pardal, M. A. (2007)

Beach morphodynamic impact on a macrobenthic community along a subtidal depth gradient. *Marine Ecology Progress Series 352*, 113–124.

#### Echem, R.T. (2017)

Morphometric relations of gastropod species: Nerita albicilla and Patella nigra. World News of Natural Sciences, 7, 30–36.

## Escamilla-Montes, R., Granados-Alcantar, S., Diarte-Plata, G., de J. Pacheco-Heredia, P., Fierro-Coronado, J.A., Alvarez-Ruiz, P., Esparza-Leal, H.M. and Valenzuela-Quinonez, W. (2018)

Chapter 6: Biodiversity of Gastropod in the Southeastern Gulf of California, Mexico. In: *Biological Resources of Water*, pp. 119–139. http://dx.doi.org/10.5772/intechopen.72201.

#### Eziefula, U. G., Ezeh, J. C., and Eziefula, B. I. (2018)

Properties of seashell aggregate concrete: A review. *Construction and Building Materials* 192, 287–300.

### Fisheries New Zealand (2014)

Fisheries Assessment Plenary, May 2014: stock assessments and stock status. Vol. 1 to 3. Compiled by the Fisheries Science and Information Group, Fisheries New Zealand, Ministry of Primary Industries, Wellington, NZ. 1674p

#### Fisheries New Zealand (2018)

Fisheries Assessment Plenary, May 2018: stock assessments and stock status. Vol. 1 to 3. Compiled by the Fisheries Science and Information Group, Fisheries New Zealand, Ministry of Primary Industries, Wellington, NZ. 1674p

#### Flores-Campana, L.M., Arzola-Gonzalez, J.F. and de Leon-Herrera, R. (2012)

Body size structure, biometric relationships and density of *Chiton albolineatus* (Mollusca: Polyplacophora) on the intertidal rocky zone of three islands of Mazatlan Bay, SE of the Gulf of California. *Revista de Biologia Marina y Oceanografia* 47(2), 203–211.

#### Jaiswar, A.K., and Kulkarni, B.G. (2002)

Length-Weight relationship of intertidal molluscs from Mumbai, India. *Journal of the Indian Fisheries Association* 29, 55–63.



#### Hayward, B.W. and Morley, M.S. (2004)

Intertidal life around the coast of the Waitakere ranges, Auckland. Report prepared for the Auckland Regional Council, Technical Pub No 298, Auckland.

#### Healy, T., Imminga, D., Mathew, J., Nicholl, S., and Hume, T.M. (1996)

Mangawhai - Pakiri sand study. Module 2 : Technical report marine sands. The Working Party, Mangawhai-Pakiri Sand Study, ARC Environment, Auckland Regional Council, Hamilton.

#### Henmi, Y., and Yamaguchi, T. (2003)

Biology of the amphioxus, *Branchiostoma belcheri* in the Ariake Sea, Japan I. Population structure and growth. *Zoological science* 20(7), 897–906.

## Heude-Berthelin, C., Hégron-Macé, L., Legrand, V., Jouaux, A., Adeline, B., Mathieu, M. and Kellner, K. (2011)

Growth and reproduction of the common whelk *Buccinum undatum* in west Cotentin (Channel), France. *Aquatic Living Resources* 24, 317–327

#### Hilton, M.J. (1990)

Processes of sedimentation in the shoreface and continental shelf and development of facies, Pakiri, New Zealand. PhD thesis, University of Auckland, NZ.

#### Hilton, M.J. and Hesp P. (1996)

Determining the Limits of Beach-Nearshore Sand Systems and the Impact of Offshore Coastal Sand Mining. *Journal of Coastal Research 12*(2), 496-519.

#### Hume, T.M., Bell, R.G., black, K.P., Healy, T.R. and Nichol, S.L. (1999)

Mangawhai-Pakiri Sand study Module 6 Final Report: sand movement and storage nearshore sand extraction in the Mangawhai-Pakiri Embayment. Prepared for "the working party – Mangawhai-Pakiri sand study" NIWA client report ARC60201/10.

#### Hume, T.M. (2005)

Statement of evidence of Terry Martyn Hume before the environment Court at Auckland ENV A 104/05 and A 105/05.

## Idris, M.H, Arshad, A., Amin, S.M.N., Japar, S.B., Daud, S.K., Mazlan, A.G., Zakaria, M.S. and Yusoff, F.M. (2012)

Age, growth and length-weight relationships of *Pinna bicolor* Gmelin (Bivalvia: Pinnidae) in the seagrass beds of Sungai Pulai Estuary, Johor, Peninsular Malaysia. *Journal of Applied Ichthyology* 28, 597–600.

#### Kraus, N. C., Larson, M., & Wise, R. A. (1998)

Depth of Closure in Beach-Fill Design (No. CETN-II-40). Army Engineer Waterways Experiment Station Vicksburg MS Coastal and Hydraulics Lab.

#### Lohavanijaya, P. (1964)

Variation in growth pattern in the sand dollar *Echinarachnius parma* (Lamarck). Doctoral Dissertations. 2339. University of New Hampshire, USA.

#### McLay, C. L. (1985)

Moulting and growth in *Pagurus traversi* and *P. novizealandiae* (Decapoda: Anomura: Paguridae): The effects of neighbours, *New Zealand Journal of Marine and Freshwater Research* 19(3), 327–337.



#### Mo, K. H., Alengaram, U. J., Jumaat, M. Z., Lee, S. C., Goh, W. I., and Yuen, C. W. (2018)

Recycling of seashell waste in concrete: A review. *Construction and Building Materials* 162, 751–764.

#### Nicholls, R. J., Birkemeier, W. A., & Lee, G. H. (1998)

Evaluation of depth of closure using data from Duck, NC, USA. *Marine Geology* 148(3-4), 179–201.

#### Rabi, M. and Maravi, C. (1997)

Growth curves and specific growth rate of *Concholepas concholepas* (Bruguiere, 1789) (Gastropoda: Muricidae) in culture experiments. *Scientia Marina* 61(Supl. 2), 49–53.

## Robinson, L.A., Greenstreet, S.P.R., Reiss, H., Callaway, R., Craeymeersch, J., de Boois, I., Degraer, S., Ehrich,

S., Fraser, H.M., Goffin, A., Kroncke, I., Lindal Jorgenson, L., Robertson, M.R. and Lancaster, J. (2010) Length – weight relationships of 216 North Sea benthic invertebrates and fish. Journal of the Marine Biological Association of the United Kingdom 90(1), 95–104.

#### Schofield, J.C. (1970)

Coastal sands of Northland and Auckland. *New Zealand Journal of Geology and Geophysics* 13:767-824

#### Saleky D., Setyobudiandi I., Toha H.A., Takdir M., and Madduppa H.H. (2016)

Length-Weight relationships and population genetic of two marine gastropod species (Turbinidae: *Turbo sparverius* and *Turbo bruneus*) in the Bird Seascape Papua, Indonesia. *Biodiversitas* 17, 208–217.

#### Sousa R., Vasconcelos J., Delgado J., Riera R., González J.A., Freitas M., and Henriques P. (2019)

Filling biological information gaps of the marine topshell *Phorcus sauciatus* (Gastropoda: Trochidae) to ensure its sustainable exploitation. *Journal of the Marine Biological Association of the United Kingdom* 99, 841–849.

#### Urban, H. J., and Campos, B. (1994)

Population dynamics of the bivalves *Gari solida*, *Semele solida* and *Protothaca thaca* from a small bay in Chile at 36 S. *Marine Ecology Progress Series* 115, 93–93.

### Ventura, C. R. R., and Fernandes, F. D. C. (1995)

Bathymetric distribution and population size structure of paxillosid seastars (Echinodermata) in the Cabo Frio upwelling ecosystem of Brazil. *Bulletin of Marine Science* 56(1), 268–282.



## 6. **APPENDICES**

# Table A 1Surface area calculated for each tow. The width of the dredge was 650mm for the tows up<br/>to a depth of 25m, and 600mm for the tows in the 25 – 30m depth area.

| Tow Code | Depth area | Distance (m) | Surface (m <sup>2</sup> ) |
|----------|------------|--------------|---------------------------|
| 1        | 20 – 25m   | 383          | 248.95                    |
| 2        | 20 – 25m   | 595          | 386.75                    |
| 3        | 20 – 25m   | 514          | 334.1                     |
| 4        | 20 – 25m   | 387          | 251.55                    |
| 5        | 20 – 25m   | 284          | 184.6                     |
| 6        | 20 – 25m   | 334          | 217.1                     |
| 7        | 20 – 25m   | 392          | 254.8                     |
| 8        | 10 – 20m   | 205          | 133.25                    |
| 9        | 10 – 20m   | 289          | 187.85                    |
| 10       | 20 – 25m   | 322          | 209.3                     |
| 11       | 10 – 20m   | 301          | 195.65                    |
| 12       | 10 – 20m   | 347          | 225.55                    |
| 13       | 10 – 20m   | 255          | 165.75                    |
| 14       | 10 – 20m   | 357          | 232.05                    |
| 15       | 10 – 20m   | 317          | 206.05                    |
| 16       | 10 – 20m   | 655          | 425.75                    |
| 17       | 10 – 20m   | 275          | 178.75                    |
| 18       | 10 – 20m   | 157          | 102.05                    |
| 19       | 10 – 20m   | 233          | 151.45                    |
| 20       | 10 – 20m   | 315          | 204.75                    |
| 21       | 10 – 20m   | 258          | 167.7                     |
| 22       | 5 – 10m    | 281          | 182.65                    |

| Tow Code | Depth area | Distance (m) | Surface (m <sup>2</sup> ) |
|----------|------------|--------------|---------------------------|
| 23       | 5 – 10m    | 277          | 180.05                    |
| 24       | 5 – 10m    | 233          | 151.45                    |
| 25       | 5 – 10m    | 272          | 176.8                     |
| 26       | 5 – 10m    | 279          | 181.35                    |
| 27       | 5 – 10m    | 228          | 148.2                     |
| 28       | 5 – 10m    | 254          | 165.1                     |
| 29       | 5 – 10m    | 274          | 178.1                     |
| 30       | 5 – 10m    | 296          | 192.4                     |
| 31       | 5 – 10m    | 270          | 175.5                     |
| 32       | 5 – 10m    | 319          | 207.35                    |
| 33       | 5 – 10m    | 336          | 218.4                     |
| 34       | 5 – 10m    | 315          | 204.75                    |
| 35       | 5 – 10m    | 234          | 152.1                     |
| T2 A     | 25 – 30m   | 100          | 60                        |
| T4 A     | 25 – 30m   | 125          | 75                        |
| T6 A     | 25 – 30m   | 100          | 60                        |
| T6 B     | 25 – 30m   | 100          | 60                        |
| T8 A     | 25 – 30m   | 100          | 60                        |
| T8 B     | 25 – 30m   | 99           | 59.4                      |
| TC A     | 25 – 30m   | 100          | 60                        |
| TC B     | 25 – 30m   | 100          | 60                        |

Bioresearches

## Table A 2Infauna taxa found in the 94 box dredge samples (3.15mm mesh size) collected within 0 to<br/>27m depth (Bioresearches, 2019a,b).

| Таха                               | Total<br>No. | Таха                                   | Total<br>No. | Таха                               | Tota<br>No. |
|------------------------------------|--------------|----------------------------------------|--------------|------------------------------------|-------------|
| Polychaeta: Hydroides sp.          | 7            | Amphipoda: Liljeborgiidae              | 2            | other gastropods                   | 4           |
| Polychaeta: Spionidae              | 2            | Amphipoda: Ampelisca chiltoni          | 3            | Bivalvia: Nucula nitidula          | 61          |
| Polychaeta: Paraprionospio pinnata | 7            | Cumacea: Cyclaspis                     | 7            | Bivalvia: Glycymeris modesta       | 3           |
| Polychaeta: Terebellida            | 11           | Cumacea: Diastylopsis thileniusi       | 2            | Bivalvia: Purpurocardia purpurata  | 1           |
| Polychaeta: Ampharetidae           | 19           | Decapoda: Periclimenes yaldwyni        | 2            | Bivalvia: Galeommatidae            | 3           |
| Polychaeta: ? <i>Lanice</i> sp.    | 2            | Decapoda: Ogyrides delli               | 2            | Bivalvia: Scalpomactra scalpellum  | 2           |
| Polychaeta: Cirratulidae           | 14           | Decapoda: Liocarcinus corrugatus       | 4            | Bivalvia: Gari convexa             | 5           |
| Polychaeta: Eunicidae              | 3            | Decapoda: Ovalipes catharus            | 2            | Bivalvia: Gari lineolata           | 3           |
| Polychaeta: Lumbrineries sp.       | 8            | Decapoda: Ebalia laevis                | 5            | Bivalvia: Gari stangeri            | 4           |
| Polychaeta: Onuphidae              | 4            | Decapoda: Anomura                      | 11           | Bivalvia: <i>Hiatula nitida</i>    | 4           |
| Polychaeta: Goniadidae             | 1            | Decapoda: Pagurus setosus              | 58           | Bivalvia: Zemysina globus          | 6           |
| Polychaeta: Nephtyidae             | 6            | other decapods                         | 3            | Bivalvia: Tawera spissa            | 8           |
| Polychaeta: ?Aglaophamus/Nephtys   | 6            | Arthropoda: Isopods                    | 20           | Bivalvia: Dosinia lambata          | 2           |
| Polychaeta: Nereididae             | 1            | Arthropoda: Mysidae                    | 10           | Bivalvia: Dosinia maoriana         | 5           |
| Polychaeta: Phyllodocidae          | 10           | Arthropoda: Pariliacantha              | 7            | Bivalvia: Dosinia subrosea         | 18          |
| Polychaeta: Polynoidae             | 4            | Arthropoda: Tanaidacea                 | 1            | Bivalvia: Corbula zelandica        | 10          |
| Polychaeta: Sigalionidae           | 21           | Arthropoda: Pycnogonida                | 1            | Bivalvia: Myadora boltoni          | 71          |
| Polychaeta: Magelona cf. dakini    | 3            | Arthropoda: Coleoptera undet.          | 2            | Bivalvia: Myadora striata          | 45          |
| Polychaeta: Capitellidae           | 26           | Polyplacophora: Leptochiton inquinatus | 7            | Bivalvia: Myadora subrostrata      | 13          |
| Polychaeta: Armandia maculata      | 2            | Gastropoda: Zethalia zelandica         | 300          | Bivalvia: Hunkydora novozelandica  | 2           |
| Polychaeta: Maldanidae             | 525          | Gastropoda: Antisolarium egenum        | 10           | other Bivalvia                     | 4           |
| Polychaeta: Travisia olens         | 1            | Gastropoda: Maoricolpus roseus         | 2            | Echinodermata: Amphiura aster      | 15          |
| other polychaeta                   | 59           | Gastropoda: Stiracolpus pagoda         | 11           | Echinodermata: Fellaster zelandiae | 16          |
| Nemertea                           | 9            | Gastropoda: Sigapatella tenuis         | 33           | other echinoderms                  | 2           |
| Calanoida                          | 2            | Gastropoda: Trichosirius inornatus     | 2            | Nematoda                           | 8           |
| Cyclopoida                         | 3            | Gastropoda: Cominella adspersa         | 6            | Foraminifera                       | 7           |
| Amphipoda: Gammaridea undet.       | 9            | Gastropoda: Cominella quoyana          | 28           | Bryozoa: Selenaria concinna        | 68          |
| Amphipoda: Gammaridea sp. 2        | 3            | Gastropoda: Austrofusus glans          | 1            | Porifera                           | 11          |
| Amphipoda: Gammaridea sp. 3        | 22           | Gastropoda: Amalda australis           | 10           | Leptothecata                       | 2           |
| Amphipoda: Gammaridea sp. 5        | 1            | Gastropoda: Amalda depressa            | 2            | Actiniaria                         | 1           |
| Amphipoda: Lysianassidae           | 2            | Gastropoda: Amalda novaezelandiae      | 13           | Epigonichthys hectori              | 67          |
| Amphipoda: Phoxocephalidae sp. 1   | 23           | Gastropoda: Borsoniidae                | 3            | Limnichthys polyactis              | 6           |
| Amphipoda: Phoxocephalidae sp. 2   | 2            | Gastropoda: Euterebra tristis          | 5            | TOTAL                              | 1896        |
| Amphipoda: Phoxocephalidae sp. 3   | 2            | Gastropoda: Pupa affinis               | 20           |                                    | _           |
| Amphipoda: Haustoriidae            | 1            | Gastropoda: Cylichna thetidis          | 3            |                                    |             |

**Note:** The grey text taxa were considered to have no or little "shell" component and were not included into the calculation of shell weight and growth. The highlighted taxa in bold are the species for which information on individual weight and growth at a family level was available in the literature. The other highlighted taxa were combined into a higher taxonomic level.

# Table A 3Epifauna taxa found in the 35 dredge tow samples collected within 0 to 27m depth<br/>(Bioresearches, 2019a,b).

| Таха                           | Total<br>No. | Таха                               | Total<br>No. | Таха                                    | Total<br>No. |
|--------------------------------|--------------|------------------------------------|--------------|-----------------------------------------|--------------|
| Polychaete                     | 21           | Gastropoda: Dicathais orbita       | 1            | Bivalvia: Tawera spissa                 | 1            |
| Amphipods                      | 7            | Gastropoda: Cominella adspersa     | 32           | Bivalvia: Dosinia subrosea              | 9            |
| Nemertea                       | 3            | Gastropoda: Sigapatella tenuis     | 1            | Bivalvia: Myadora striata               | 5            |
| Isopod                         | 2            | Gastropoda: Ranella australasia    | 1            | Bivalvia: Purpurocardia purpurata       | 1            |
| Bryozoa                        | 4            | Gastropoda: Austrofusus glans      | 2            | Bivalvia: Ostrea chilensis              | 1            |
| Porifera                       | 6            | Gastropoda: Amalda australis       | 5            | Bivalvia: Gari convexa                  | 1            |
| Decapoda: Paguridae            | 122          | Gastropoda: Zeatrophon mortenseni  | 1            | Echinodermata: Fellaster zelandiae      | 38           |
| Decapoda: Ovalipes catharus    | 7            | Gastropoda: Struthiolaria papulosa | 4            | Echinodermata: Amphiura sp.             | 3            |
| Decapoda: other than Ovalipes  | 9            | Bivalvia: Atrina zelandica         | 3            | Echinodermata: Astropecten polyacanthus | 30           |
| Gastropoda: Zethalia zelandica | 7            | Bivalvia: Pecten novaezealandiae   | 12           | Total                                   | 339          |

**Note:** The grey text taxa were considered to have no or little "shell" component and were not included into the calculation of shell weight and growth. The taxa with only 1 individual were also excluded before combination of the results with infauna as they would have minimal contribution to sand formation. The highlighted taxa in bold are the species for which information on individual weight and growth at a family level was available in the literature.



### Table A 4 Shellfish collected in the intertidal zone along the Pakiri Beach in 1993 (Bioresearches, 1994)

| Transect | Station | Species                 | Number/m <sup>2</sup> | Average<br>length<br>(mm) |
|----------|---------|-------------------------|-----------------------|---------------------------|
| 1        | 70      | Paphies subtriangulata  | 4                     | 41.3                      |
| 2        | 80      | Paphies subtriangulata  | 22                    | 48.1                      |
| 3        | 90      | Paphies subtriangulata  | 25                    | 51.3                      |
| 4        | 100     | Paphies subtriangulata  | 25                    | 49.0                      |
| 5        | 160     | Paphies subtriangulata  | 11                    | 49.8                      |
| 6        | 120     | Paphies subtriangulata  | 5.3                   | 41.3                      |
| 7        | 10      | Nerita melanotragus     | 21                    | 22.9                      |
| 7        | 20      | Cellana ornata          | 43                    | 19.9                      |
| 7        | 20      | Leptograpsus variegatus | 18                    |                           |
| 7        | 30      | Cellana radians         | 35                    | 32.6                      |
| 7        | 30      | Lepsiella scobina       | 587                   | 15.3                      |
| 7        | 30      | Melagraphia aethiops    | 45                    | 16.2                      |
| 7        | 30      | Turbo smaragdus         | 17                    | 39.4                      |
| 7        | 50      | Haustrum haustorium     | 4                     | 44.3                      |
| 7        | 50      | Thais orbita            | 16                    | 43.0                      |
| 8        | 120     | Paphies subtriangulata  | 11                    | 43.8                      |
| 9        | 100     | Paphies subtriangulata  | 10                    | 42.4                      |
| 10       | 100     | Paphies subtriangulata  | 6                     | 46.4                      |
| 11       | 100     | Paphies subtriangulata  | 16                    | 44.9                      |
| 13       | 60      | Paphies subtriangulata  | 15                    | 50.5                      |
| 14       | 65      | Paphies subtriangulata  | 19                    | 44.2                      |
| 15       | 50      | Paphies subtriangulata  | 13                    | 44.5                      |
| 16       | 60      | Paphies subtriangulata  | 13                    | 46.7                      |
| 17       | 60      | Paphies subtriangulata  | 12                    | 45.5                      |
| 18       | 150     | Paphies subtriangulata  | 5                     | 48.5                      |
| 19       | 60      | Paphies subtriangulata  | 6                     | 46.1                      |
| 19       | 70      | Paphies subtriangulata  | 13                    | 51.8                      |
| 20       | 90      | Paphies subtriangulata  | 5                     | 51.7                      |
|          |         | Average Paphies         | 12                    | 46.7                      |

Note: Transect 7 (grey shaded) was at a rock area at Te Arai Point and was not considered for the 0-5m biota of the biogenic study as the species sampled in 7 are representative of a rock substrate, not of a sand system.

Bioresearches

# Table A 5Infauna taxa found in the 31 grab samples collected within 27 to 32m depth (Bioresearches,<br/>2017).

| Таха                             | Total<br>No. | Таха                                   | Total<br>No. | Таха                                | Total<br>No. |
|----------------------------------|--------------|----------------------------------------|--------------|-------------------------------------|--------------|
| Polychaeta: Euchone pallida      | 46           | Polychaeta: Paraonidae                 | 9            | Gastropoda: Cominella quoyana       | 2            |
| Polychaeta: Sabellidae           | 12           | Polychaeta: <i>Travisia sp.</i>        | 21           | Gastropoda: Cominella virgata       | 9            |
| Polychaeta: Hydroides sp.        | 1            | Hemichordata                           | 7            | Gastropoda: Marginellidae           | 1            |
| Polychaeta: Serpula sp.          | 5            | Phoronida (Phoronis sp.)               | 23           | Gastropoda: Zeatrophon ambiguus     | 3            |
| Polychaeta: Phyllochaetopterus   | 5            | Nemertea                               | 20           | Gastropoda: Cantharidus sp.         | 2            |
| Polychaeta: Boccardia sp.        | 1            | Copepoda                               | 12           | Gastropoda: Adelphotectonica reevei | 3            |
| Polychaeta: Paraprionospio       | 14           | Amphipoda: Caprellidae                 | 20           | Gastropoda Unid. Juv.               | 9            |
| Polychaeta: Prionospio sp.       | 661          | Amphipoda: Haustoriidae                | 96           | Bivalvia: Hunkydora novozelandica   | 1            |
| Polychaeta: Spio sp.             | 13           | Amphipoda: Lysianassidae               | 248          | Bivalvia: Myadora antipodum         | 3            |
| Polychaeta: Spiophanes kroyeri   | 34           | Amphipoda: Oedicerotidae               | 2            | Bivalvia: Myadora striata           | 2            |
| Polychaeta: Spiophanes modestus  | 1634         | Amphipoda: Phoxocephalidae             | 506          | Bivalvia: Glycymeris modesta        | 1            |
| Polychaeta: Ampharetidae         | 109          | Amphipoda: Talitridae                  | 2            | Bivalvia: Glycymeris sp.            | 2            |
| Polychaeta: Cirratulidae         | 49           | other amphipods                        | 4526         | Bivalvia: Pratulum pulchellum       | 6            |
| Polychaeta: Lagis australis      | 3            | Cumacea                                | 502          | Bivalvia: Gari lineolata            | 4            |
| Polychaeta: Terebellidae         | 91           | Decapoda: Pagurus sp.                  | 337          | Bivalvia: Hiatula sp.               | 40           |
| Polychaeta: Dorvilleidae         | 6            | Decapoda: shrimps                      | 4            | Bivalvia: Pleuromeris zelandica     | 5            |
| Polychaeta: Lumbrineridae        | 15           | Decapoda: crabs other than Ovalipes    | 21           | Bivalvia: Pleuromeris sp.           | 2            |
| Polychaeta: Nothria sp.          | 122          | Isopoda                                | 98           | Bivalvia: Limatula maoria           | 5            |
| Polychaeta: Onuphis              | 4            | Mysida                                 | 19           | Bivalvia: Corbula zelandica         | 3            |
| Polychaeta: Onuphidae            | 3            | Podocopida                             | 465          | Bivalvia: Nucula nitidula           | 53           |
| Polychaeta: Glyceridae           | 9            | Tanaidacea                             | 43           | Bivalvia: Atrina zelandica          | 5            |
| Polychaeta: Goniadidae           | 61           | Ostracoda                              | 660          | Bivalvia: Dosinia subrosea          | 2            |
| Polychaeta: Hesionidae           | 17           | Polyplacophora: Ischnochiton maorianus | 18           | Bivalvia: Dosinia sp.               | 2            |
| Polychaeta: Aglaophamus sp.      | 11           | Gastropoda: Epitonium sp.              | 3            | Bivalvia: Notocallista multistriata | 1            |
| Polychaeta: Phyllodocidae        | 87           | Gastropoda: Maoricolpus roseus         | 30           | Bivalvia: Tawera spissa             | 1            |
| Polychaeta: Polynoidae           | 1            | Gastropoda: Zeacolpus sp.              | 1            | Bivalvia: Tawera sp.                | 17           |
| Polychaeta: Sigalionidae         | 64           | Gastropoda: Philine sp.                | 1            | Bivalvia: Myllita vivens            | 1            |
| Polychaeta: Sphaerosyllis sp.    | 39           | Gastropoda: Relichna aupouria          | 2            | Bivalvia: Mysella sp.               | 19           |
| Polychaeta: Syllidae             | 63           | Gastropoda: Caecum digitulum           | 1            | Bivalvia: Scalpomactra scalpellum   | 2            |
| Polychaeta: Magelona dakini      | 11           | Gastropoda: Sigapatella tenuis         | 38           | Bivalvia: Diplodonta zelandica      | 2            |
| Polychaeta: Barantolla lepte     | 9            | Gastropoda: Sigapatella sp.            | 2            | Bivalvia Unid. (juv)                | 3            |
| Polychaeta: Capitella capitata   | 1            | Gastropoda: Tanea sp.                  | 1            | Echinodermata: Echinocardium sp.    | 26           |
| Polychaeta: Notomastus           | 8            | Gastropoda: Rissoidae                  | 4            | Echinodermata: Amphiura sp.         | 8            |
| Polychaeta: Armandia maculata    | 116          | Gastropoda: Struthiolaria pap.         | 1            | Epigonichthys hectori               | 82           |
| Polychaeta: Leodamas cylindrifer | 2            | Gastropoda: Tonna sp.                  | 1            | TOTAL                               | 11634        |
| Polychaeta: Orbinia papillosa    | 6            | Gastropoda: Amalda northlandica        | 13           |                                     |              |
| Polychaeta: Maldanidae           | 194          | Gastropoda: Amalda sp.                 | 3            |                                     |              |
| Polychaeta: Aricidea sp.         | 8            | Gastropoda: Austrofusus glans          | 2            |                                     |              |

**Note:** The grey text taxa were considered to have no or little "shell" component and were not included into the calculation of shell weight and growth. The highlighted taxa in bold are the species for which information on individual weight and growth at a family level was available in the literature.

# Table A 6Epifauna taxa found in the 8 dredge tow samples collected within 27 to 32m depth<br/>(Bioresearches, 2017).

| Таха                          | Total<br>No. | Таха                              | Total<br>No. | Таха                                   | Total<br>No. |
|-------------------------------|--------------|-----------------------------------|--------------|----------------------------------------|--------------|
| Ascidian                      | 38           | Gastropoda: Struthiolaria sp.     | 2            | Bivalvia: Zemysina striatula           | 2            |
| Octopus                       | 1            | Gastropoda: Monoplex parthenopeus | 1            | Bivalvia: Mesopeplum convexum          | 1            |
| Decapoda: Paguridae           | 8            | Gastropoda: Maoricolpus roseus    | 1            | Echinodermata: Astropecten polycanthus | 20           |
| Decapoda: Ovalipes catharus   | 1            | Gastropoda: Murexsul espinosus    | 2            | TOTAL                                  | 154          |
| Polyplacophora                | 2            | Bivalvia: Pecten novaezelandiae   | 73           |                                        |              |
| Gastropod: Cominella adspersa | 1            | Bivalvia: Irus reflexus           | 1            |                                        |              |

**Note:** The grey text taxa were considered to have no or little "shell" component and were not included into the calculation of shell weight and growth. The highlighted taxa in bold are the species for which information on individual weight and growth at a family level was available in the literature.

A Babbage Company

# Table A 7Infauna taxa found in the 20 box dredge samples (3.15mm mesh size) collected within 27 to<br/>32m depth (Bioresearches, 2019).

| Таха                               | Total<br>No. | Таха                                  |    | Таха                              | Total<br>No. |
|------------------------------------|--------------|---------------------------------------|----|-----------------------------------|--------------|
| Polychaeta: <i>Euchone</i> sp.     | 3            | Amphipoda: Haustoriidae               |    | Gastropod: Cylichna thetidis      | 3            |
| Polychaeta: Hydroides sp.          | 17           | Amphipoda: Liljeborgiidae             | 9  | other gastropods                  | 3            |
| Polychaeta: Paraprionospio pin.    | 2            | Cumacea: Cyclaspis                    | 2  | Bivalvia: Nucula nitidula         | 55           |
| Polychaeta: Malacoceros            | 3            | Decapoda: Liocarcinus corrugatus      | 9  | Bivalvia: Glycymeris modesta      | 7            |
| Polychaeta: Terebellida            | 19           | Decapoda: Ebalia laevis               | 7  | Bivalvia: Pleuromeris sp.         | 11           |
| Polychaeta: Ampharetidae           | 24           | Decapoda: Notomithrax minor           | 2  | Bivalvia: Purpurocardia purpurata | 8            |
| Polychaeta: Cirratulidae           | 8            | Decapoda: Anomura                     | 4  | Bivalvia: Galeommatidae           | 1            |
| Polychaeta: Lagis australis        | 2            | Decapoda: Paguridae                   | 55 | Bivalvia: Scalpomactra scalpellum | 1            |
| Polychaeta: Eunicidae              | 3            | Isopods                               | 17 | Bivalvia: Gari stangeri           | 14           |
| Polychaeta: Onuphidae              | 1            | Mysidae                               | 1  | Bivalvia: Hiatula nitida          | 3            |
| Polychaeta: Goniadidae             | 1            | Tanaidacea                            | 1  | Bivalvia: Zemysina globus         | 2            |
| Polychaeta: Nephtyidae             | 1            | Myodocopida                           | 12 | Bivalvia: Tawera spissa           | 2            |
| Polychaeta: Aglaophamus            | 1            | Pycnogonida                           |    | Bivalvia: Dosinia maoriana        | 5            |
| Polychaeta: Nereididae             | 1            | Echinodermata: Leptochiton inquinatus |    | Bivalvia: Dosinia subrosea        | 1            |
| Polychaeta: Phyllodocidae          | 3            | Gastropod: Antisolarium egenum        |    | Bivalvia: Corbula zelandica       | 17           |
| Polychaeta: Polynoidae             | 3            | Gastropod: Roseaplagis rufozona       |    | Bivalvia: Myadora subrostrata     | 6            |
| Polychaeta: Sigalionidae           | 14           | Gastropod: Solariella tryphenensis    |    | Bivalvia: Hunkydora novozelandica | 1            |
| Polychaeta: Syllidae               | 5            | Gastropod: Maoricolpus roseus         | 3  | other bivalvia                    | 6            |
| Polychaeta: <i>Magelona dakini</i> | 5            | Gastropod: Striacolpus pagoda         | 28 | Echinodermata: Amphiura aster     | 6            |
| Polychaeta: Capitellidae           | 18           | Gastropod: Rissoina fictor            | 8  | Echinodermata: Ophiuroidea        | 2            |
| Polychaeta: Cossuridae             | 4            | Gastropod: Pisinna semisulcata        | 3  | other echinoderms                 | 2            |
| Polychaeta: Maldanidae             | 93           | Gastropod: Sigapatella tenuis         | 24 | Nematoda                          | 18           |
| Polychaeta: <i>Travisia olens</i>  | 4            | Gastropod: Seila cincta               |    | Foraminifera                      | 41           |
| other polychaeta                   | 52           | Gastropod: Cominella quoyana          |    | Bryozoa                           | 45           |
| Nemertea                           | 7            | Gastropod: Austrofusus glans          |    | Porifera                          | 35           |
| Cyclopoida                         | 1            | Gastropod: Xymenella pusilla          |    | Ascidiacea                        | 4            |
| Amphipoda: Gammaridea              | 64           | Gastropod: Amalda novaezelandiae      |    | Epigonichthys hectori             | 41           |
| Amphipoda: Phoxocephalidae         | 13           | Gastropod: Antimelatoma buchanani     | 3  | TOTAL                             | 1005         |

**Note:** The grey text taxa were considered to have no or little "shell" component and were not included into the calculation of shell weight and growth. The highlighted taxa in bold are the species for which information on individual weight and growth at a family level was available in the literature.



## Table A 8List of equations used for weight and growth.

| Таха               |                   |                                                     | Allometric equations                  |                                     |                                        | Growth equations                                    |                                                                     |                                        |
|--------------------|-------------------|-----------------------------------------------------|---------------------------------------|-------------------------------------|----------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|----------------------------------------|
| Taxonomic<br>group | Family            | Species                                             | Species used for<br>weight estimation | Equation length –weight<br>(mm - g) | Source                                 | Species used for<br>growth estimation               | Equation age —length<br>(y - mm)                                    | Source                                 |
| Arthropods         | Paguridae         | Pagurus setosus                                     | Ovalipes catharus                     | log(W)=3.32+2.79log(L)              | Fisheries NZ 2018, vol 2,<br>p467      | <i>Pagurus</i> sp.                                  | curve in Fig. 5                                                     | Mc Lay, 1985                           |
| Arthropods         | Portunidae        | Ovalipes catharus                                   | Ovalipes catharus                     | log(W)=3.32+2.79log(L)              | Fisheries NZ 2018, vol 2, p467         | Ovalipes catharus                                   | from info in text                                                   | Fisheries NZ 2018, vol 2, p467         |
| Arthropods         | Grapsidae         | Leptograpsus variegatus                             | Ovalipes catharus                     | log(W)=3.32+2.79log(L)              | Fisheries NZ 2018, vol 2, p467         | Ovalipes catharus                                   | from info in text                                                   | Fisheries NZ 2018, vol 2,<br>p467      |
| Arthropods         |                   | Crabs other than Ovalipes                           | Ovalipes catharus                     | log(W)=3.32+2.79log(L)              | Fisheries NZ 2018, vol 2, p467         | Ovalipes catharus                                   | from info in text                                                   | Fisheries NZ 2018, vol 2, p467         |
| Polyplacophora     | Leptochitonidae   | Leptochiton spp.                                    | Chiton albolineatus                   | W = 0.0002L <sup>2.7097</sup>       | Flores-Campana <i>et al.,</i><br>2012  | Estimated from other molluscs                       |                                                                     |                                        |
| Gastropods         | Trochidae         | Zethalia, Antisolarium,<br>Roseaplagis, Melagraphia | Monodonta turbinata                   | W = 0.5099(L/2)-0.5392              | Boucetta et al., 2010                  | Phorcus sauciatus                                   | L = 31.9 (1-e <sup>-0.31(age)</sup> )                               | Sousa <i>et al.</i> 2019               |
| Gastropods         | Solariellidae     | Solariella tryphenensis                             | Monodonta turbinata                   | W = 0.5099(L/2)-0.5392              | Boucetta et al., 2010                  | Phorcus sauciatus                                   | L = 31.9 (1-e <sup>-0.31(age)</sup> )                               | Sousa <i>et al.</i> 2019               |
| Gastropods         | Neritidae         | Nerita melanotragus                                 | Nerita crepidularia                   | curve                               | Jaiswar & Kulkarni 2002                | Phorcus sauciatus                                   | L = 31.9 (1-e <sup>-0.31(age)</sup> )                               | Sousa <i>et al.</i> 2019               |
| Gastropods         | Nacellidae        | Cellana spp.                                        | Patella nigra                         | from info in text                   | Echem 2017                             | Phorcus sauciatus                                   | L = 31.9 (1-e <sup>-0.31(age)</sup> )                               | Sousa <i>et al.</i> 2019               |
| Gastropods         | Turbinidae        | Turbo, Cookia                                       | Turbo bruneus                         | W = 0.00017L <sup>3.091</sup>       | Saleky <i>et al.,</i> 2016             | Phorcus sauciatus                                   | L = 31.9 (1-e <sup>-0.31(age)</sup> )                               | Sousa <i>et al.</i> 2019               |
| Gastropods         | Buccinidae        | Cominella, Austrofusus                              | Buccinum undatum                      | W = 0.000144L <sup>2.955</sup>      | Heude-Berthelin <i>et al.,</i> 2011    | Buccinum undatum                                    | $L = 73 (1 - e^{-0.221(age)})$                                      | Heude-Berthelin <i>et al.,</i><br>2011 |
| Gastropods         | Muricidae (large) | Haustrum, Thais                                     | Hexaplex nigritus                     | W = 0.000004L <sup>3.7956</sup>     | Escamilla-Montes <i>et al.,</i> 2018   | Concholepas concholepas                             | W = 461.37 (1-e <sup>-</sup><br><sup>0.55(age)</sup> ) <sup>3</sup> | Rabi & Maravi, 1997                    |
| Gastropods         | Muricidae (small) | Lepsiella, Xymenella,<br>Zeatrophon                 | Buccinum undatum                      | W = 0.000144L <sup>2.955</sup>      | Heude-Berthelin <i>et al.,</i><br>2011 | Buccinum undatum                                    | L = 73 (1-e <sup>-0.221(age)</sup> )                                | Heude-Berthelin <i>et al.,</i><br>2011 |
| Gastropods         | Pseudomelatonidae | Antimelatoma                                        | Buccinum undatum                      | W = 0.000144L <sup>2.955</sup>      | Heude-Berthelin <i>et al.,</i><br>2011 | Buccinum undatum                                    | L = 73 (1-e <sup>-0.221(age)</sup> )                                | Heude-Berthelin <i>et al.,</i><br>2011 |
| Gastropods         | Olividae          | Amalda spp.                                         | Buccinum undatum                      | W = 0.000144L <sup>2.955</sup>      | Heude-Berthelin <i>et al.,</i><br>2011 | Buccinum undatum                                    | L = 73 (1-e <sup>-0.221(age)</sup> )                                | Heude-Berthelin <i>et al.,</i><br>2011 |
| Gastropods         | Struthiolaridae   | Struthiolaria papulosa                              | Buccinum undatum                      | W = 0.000144L <sup>2.955</sup>      | Heude-Berthelin <i>et al.,</i> 2011    | Buccinum undatum                                    | L = 73 (1-e <sup>-0.221(age)</sup> )                                | Heude-Berthelin <i>et al.,</i><br>2011 |
| Gastropods         | Turritellidae     | Stiracolpus pagoda                                  | Turritella communis                   | Curve p179                          | Allmon, 2011                           | assumption of 1g/y from gastropod data of same size |                                                                     | a of same size                         |
| Gastropods         | Epitoniidae       | Epitonium spp.                                      | Turritella communis                   | Curve p179                          | Allmon, 2011                           | assumption of 1g/y from gastropod data of same size |                                                                     | a of same size                         |
| Gastropods         | Rissoniidae       | Rissoina fictor                                     | Turritella communis                   | Curve p179                          | Allmon, 2011                           | assumption of 1g/y from gastropod data of same size |                                                                     | a of same size                         |
| Gastropods         | Calyptraeidae     | Sigapatella tenuis                                  |                                       | assumption of 0.005g                |                                        | assumption of 0.10g / y                             |                                                                     |                                        |
| Bivalves           | Myochamidae       | <i>Myadora</i> spp.                                 | 1/2 of Dosinia subrosea               | curve p80 /2                        | Aljadani, 2013                         | <i>Dosinia</i> spp.                                 | L = 58.7 (1-e <sup>-0.13(age)</sup> )                               | Fisheries NZ 2018, vol 3, p342         |
| Bivalves           | Veneridae         | Dosinia, Tawera                                     | Dosinia subrosea                      | curve p80                           | Aljadani, 2013                         | <i>Dosinia</i> spp.                                 | L = 58.7 (1-e <sup>-0.13(age)</sup> )                               | Fisheries NZ 2018, vol 3, p342         |
| Bivalves           | Ungulinidae       | Zemysina globus                                     | Dosinia subrosea                      | curve p80                           | Aljadani, 2013                         | Dosinia spp.                                        | L = 58.7 (1-e <sup>-0.13(age)</sup> )                               | Fisheries NZ 2018, vol 3, p342         |
| Bivalves           | Corbulidae        | Corbula zelandica                                   | ⅓ of Dosinia subrosea                 | curve p80 /2                        | Aljadani, 2013                         | Dosinia spp.                                        | L = 58.7 (1-e <sup>-0.13(age)</sup> )                               | Fisheries NZ 2018, vol 3, p342         |
| Bivalves           | Nuculidae         | Nucula nitidula                                     | Nucula spp.                           | from info in text                   | Allen 1954                             | Nucula spp.                                         | from info in text                                                   | Allen 1954                             |



A Babbage Company

| Таха               |                 |                            | Allometric equations                  |                                     |                                | Growth equations                      |                                                              |                                   |
|--------------------|-----------------|----------------------------|---------------------------------------|-------------------------------------|--------------------------------|---------------------------------------|--------------------------------------------------------------|-----------------------------------|
| Taxonomic<br>group | Family          | Species                    | Species used for<br>weight estimation | Equation length —weight<br>(mm - g) | Source                         | Species used for<br>growth estimation | Equation age –length<br>(y - mm)                             | Source                            |
| Bivalves           | Limidae         | Limatula maoria            | Nucula spp.                           | from info in text                   | Allen 1954                     | Nucula spp.                           | from info in text                                            | Allen 1954                        |
| Bivalves           | Lasaeidae       | Lasaeidae                  | Nucula spp.                           | from info in text                   | Allen 1954                     | Nucula spp.                           | from info in text                                            | Allen 1954                        |
| Bivalves           | Glycymeridae    | Glycymeris modesta         | Austrovenus stutchburyi               | W = 0.00014L <sup>3.29</sup>        | Fisheries NZ 2018, vol 1, p235 | Austrovenus stutchburyi               | $L = 35 (1 - e^{-0.26(age)})$                                | Fisheries NZ 2018, vol 1, p235    |
| Bivalves           | Carditidae      | Purpurocardia, Pleuromeris | Austrovenus stutchburyi               | W = 0.00014L <sup>3.29</sup>        | Fisheries NZ 2018, vol 1, p235 | Austrovenus stutchburyi               | L = 35 (1-e <sup>-0.26(age)</sup> )                          | Fisheries NZ 2018, vol 1, p235    |
| Bivalves           | Cardiidae       | Pratulum pulchellum        | Austrovenus stutchburyi               | W = 0.00014L <sup>3.29</sup>        | Fisheries NZ 2018, vol 1, p235 | Austrovenus stutchburyi               | $L = 35 (1 - e^{-0.26(age)})$                                | Fisheries NZ 2018, vol 1, p235    |
| Bivalves           | Pinnidae        | Atrina zelandica           | Pinna bicolor                         | W = 3.111Lcm-5.397                  | Idris <i>et al.,</i> 2012      | Pinna bicolor                         | Lcm = 34.66 (1-e⁻<br><sup>0.8(age)</sup> )                   | Idris <i>et al.,</i> 2012         |
| Bivalves           | Psammobiidae    | Gari convexa               | <i>Gari solida</i> (Jan 1992)         | logW=-4.32+2.792log(L)              | Urban & Campos, 1994           | <i>Gari solida</i> (Jan 1992)         | L = 89.6 (1-e <sup>-0.307(age-</sup>                         | Urban & Campos, 1994              |
| Bivalves           | Pectenidae      | Pecten novaezelandiae      | Pecten novaezelandiae                 | W = 0.00042L <sup>2.662</sup>       | Fisheries NZ 2014              | Pecten novaezelandiae                 | L = 115.9 (1-e <sup>-1.2(age)</sup> )                        | Fisheries NZ 2014                 |
| Bivalves           | Mytilidae       | Perna canaliculus          | Perna canaliculus                     | From info in text                   | Fisheries NZ 2018, vol 1, p479 | Perna canaliculus                     | From info in text                                            | Fisheries NZ 2018, vol 1, p479    |
| Bivalves           | Psammobiidae    | Paphies subtriangulata     | Paphies subtriangulata                | W = 0.0002L <sup>2.927</sup>        | Fisheries NZ 2018, vol 3, p581 | Paphies subtriangulata                | from info in text                                            | Fisheries NZ 2018, vol 3,<br>p581 |
| Echinoderms        | Arachnoididae   | Fellaster zelandiae        | Echinarachnius                        | from info in text p56               | Lohavanijaya, 1964             | Echinarachnius                        | from info in text p56                                        | Lohavanijaya, 1964                |
| Echinoderms        | Loveniidae      | Echinocardium sp.          | Echinocardium cordatum                | log(W)= -3.449 +3.011log(L)         | Robinson <i>et al.,</i> 2010   | Evechinus chloroticus                 | from info in text p657                                       | Fisheries NZ 2018, vol 2,<br>p651 |
| Echinoderms        | Echinometridae  | Evechinus chloroticus      | Evechinus chloroticus                 | W = 0.000627L <sup>2.88</sup>       | Fisheries NZ 2018, vol 2, p651 | Evechinus chloroticus                 | from info in text p657                                       | Fisheries NZ 2018, vol 2,<br>p651 |
| Echinoderms        | Amphiuridae     | Amphiura sp.               | Assumption of ½ Astropecten           |                                     | Assumption of ½ Astropecten    |                                       |                                                              |                                   |
| Echinoderms        | Astropectinidae | Astropecten polyacanthus   | Echinodermata species                 | from info in text                   | Ventura <i>et al.,</i> 1995    | Astropecten aranciacus                | L = 136.75 (1-e <sup>-0.44(age-</sup><br><sup>0.017)</sup> ) | Baeta <i>et al.,</i> 2016         |
| Cephalochordates   | Brachiostomidae | Epigonichthys hectori      | Branchiostoma belcheri                | range 0.2 to 0.3g<br>at 30 to 40mm  | Henmi & Yamaguchi,<br>2003     |                                       | Assumption of 0.2g / y                                       |                                   |

Note1: Many species have no specific information, and equations from species of the same taxonomic group were used. Calculated growth and weight have numerous biases from these approximations. All results were checked for unreasonable weight ranges and readjusted with other equations if not appropriate.

Note 2: Amalda spp includes three species (A. australis, A. depressa and A. novaezelandiae). Cominella spp includes two species (C. adspersa and C. quoyana). Myadora spp includes two species (M. boltoni and M. striata). Dosinia spp includes 2 species (D. subrosea and D. maoriana).

Note 3: The percentage shell weight to green weight was estimated for the thick bivalves (*Glycymeris, Gari*, and *Dosinia* values (65%) in Aljadani (2013). The percentage shell weight for other taxonomic groups are estimates based on the "shell" volume, thickness and form. 20% was used for the arthropods and Cephalochordates, considering their thin chitin and volume of notochord. 80% was used for the gastropods considering their general thick shell, except for *Sigapatella*. 50% was used for the thin bivalves such as *Myadora, Nucula*, and for *Sigapatella*. 90% was used for echinoderms considering the volume of their test relative to their whole body.