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1. Summary 
 

Mesophotic Coral Ecosystems (MCEs) develop on a unique environment, where abrupt environmental 

changes take place. Using a time-calibrated molecular phylogeny (mtDNA: mtMutS), we examined the lineage 

membership of mesophotic gorgonian corals (Octocorallia: Cnidaria) in comparison to shallow and deep-sea 

lineages of the wider Caribbean-Gulf of Mexico and the Tropical Eastern Pacific. Our results show mesophotic 

gorgonians originating multiple times from old deep-sea octocoral lineages, whereas shallow-water species 

comprise younger lineages. The mesophotic gorgonian fauna in the studied areas are related to their 

zooxanthellate shallow-water counterparts in only two clades (Gorgoniidae and Plexauridae), where the 

shallow-deep gradient could serve as a driver of diversification. Interestingly, mesophotic clades have 

diversified faster than either shallow or deep clades. One of this groups with fast diversification is the family 

Ellisellidae, a major component of the mesophotic gorgonian coral assemblage worldwide. 

 

2. Introduction 

Gorgonian corals (Cnidaria: Octocorallia) generate a unique seascape in the shallow-water communities of the 

Western Atlantic and adjacent seas, including Mesophotic Coral Communities (MCEs). Their tall branching 

colonies, sometimes reaching high densities, form an animal forest of great diversity from shallow to 

mesophotic and deeper ecosystems [1,2]. Dense mesophotic gorgonian assemblages thrives at both coasts of 

tropical and sub-tropical America [3], the IndoPacific [2], Brazil [4], the west coast of Africa [5], and even some 

temperate areas in the Atlantic [6,7] and the Mediterranean Sea [8]. MCEs develop on an exceptional 

environment limiting the growth of many coral species and leading to many depth-specialist adaptation [9]. 

MCEs include a diverse gorgonian fauna, yet it is unknown if this fauna is the extension of shallow or deep-

sea communities or whether mesophotic octocorals comprised different evolutionary lineages [2]; moreover, 

the role of this ecosystem on octocoral diversification is unknown.  
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In this study, we reconstructed a time-calibrated molecular phylogeny for 242 gorgonian coral species using 

mtDNA (mtMutS), including numerous new sequences of mesophotic gorgonian corals from the Caribbean 

Sea (down to ~120 m) and many valuable sequences in Genbank from related species in the Gulf of Mexico 

[10], eastern tropical Pacific [11–13], western Atlantic [14], and  Indo-Pacific [15]. Collectively, this mtMutS 

database comprise a comprehensive set of sampling otherwise impossible to acquire for a single study. We 

tested whether mesophotic lineages descent from a single ancestor from either shallow or deep-water areas or 

if instead have multiple origins. We also compared rates of diversification across shallow, mesophotic and 

deep-water gorgonians. 

 

3. Materials and Methods 

 

Using Closed-Circuit Rebreather-CCR and Trimix, we surveyed gorgonian corals from 115 m up to 45 m in 

MCEs in three locations in the Colombian Caribbean: San Andrés Island (Archipelago of San Andrés, 

Providencia and Santa Catalina), Barú island diapiric banks and the Deep-sea Corals National Park (both near 

Cartagena). A dry voucher for each colony is available at the Museo de Historia Natural ANDES (ANDES-IM 

4132 to ANDES-IM 4802). Research and collection of specimens were approved by the National 

Environmental Licensing Authority (ANLA, Spanish acronym): Collection Framework Agreement granted to 

Universidad de los Andes through resolution 1177 of October 9, 2014 - IBD 0359. Since we did the collections 

during previous studies, detailed information on the sites and study areas is already available [16–18]. 

Together with our new material, we examined their phylogenetic affiliations in comparison to shallow and 

deep-sea lineages of the wider Caribbean-Gulf of Mexico and Tropical Eastern Pacific using the available 

information (See supplementary table 1).  

 

Samples were fixed in both Ethanol 95% and DMSO. Total genomic DNA of each specimen was extracted 

from about 5 mm2 of tissue following a standard CTAB Phenol:Chloroform:Isoamyl Alcohol protocol [19]. 

DNA quality was assessed in 1% agarose gel electrophoresis in 1X TBE buffer. Gels were dyed with ethidium 

bromide and visualized in a Gel Doc™ XR (Biorad, U.S.). An approximate estimation of concentration in ng •l-

1 and purity (260/280 and 260/230 ratios) of each DNA sample was assessed with a NanoDrop (Thermo 

Scientific, U.S.). The mtMutS region was targeted using the protocols described in the literature [20].  

 

Phylogenetic relationships and times of divergence between shallow and deep-sea gorgonian lineages were 

co-estimated using BEAST ver. 1.8.2. Divergence times were estimated using a relaxed molecular clock with 

log-normal uncorrelated rates and assuming a Birth-Death Incomplete Sampling speciation tree prior. The 

analysis was run four independent times under a GTR model and used 107 generations and default heating 

values on three Metropolis-coupled chains. Trees and parameters were sampled every 1,000 generations and 

the first 10% of the samples were discarded as burn-in. We used Tracer ver. 1.8 to check for adequate 

convergence and confirmed effective sample size (ESS) greater than 200. LogCombiner ver. 1.8 and 

TreeAnnotator ver. 1.8 were used to combine and summarize tree files, obtain a maximum clade credibility 

consensus tree, and calculate 95% credibility intervals. We also ran the analysis on an empty dataset, sampling 

from the prior distribution to evaluate the influence of the priors on the posterior distribution estimates [21]. 

We followed a time-calibrated molecular approach using fossil calibration points [20]. As calibration points, 
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we employed the oldest known fossil for the families Elliseliidae (Kuzmicheva 1987) and Keratoisidinae [22], 

and for the genus Eunicella [23]. The minimum age of each fossil was treated as a minimum constraint on the 

age of the stem group node using a log-normal distributed prior. The standard deviation was calculated in 

such a way that 95% of the probability density lies between the minimum constraint and the oldest date of the 

geological range of the fossil. Letters correspond to monophyletic lineages explained in the text. 

 

To test if clades from different depths (shallow, mesophotic of deep) differ in their diversification rates, we 

used the multi-state character extension (MuSSE) model as implemented in the package diversitree [24]. 

Initially we fit a “null” model, in which all birth and death rates were equal between states, the character 

evolution was ordered (shallow <-> mesophotic <-> deep), and there is a single character transition rate. We 

then fitted models in which only the speciation rate (•) varied between states, only the extinction rate (•) 

varied, and finally, one in which neither • nor • vary, but the transition rates differ between types of 

transitions. We then fitted a more complex model in which all rates of speciation and extinction depended on 

the character state for our multi-state character. To rank and choose among the different models with 

speciation and extinction rates, we used the Akaike information criterion (AIC). Using information theory and 

AIC, we computed the relative weight of evidence in favor of each of our different hypotheses using AIC 

weights and chose the best model [25]. With the best (selected) model, we run a Bayesian MCMC. We run our 

chain with 9,000 steps.  

 

In addition, and to understand the evolution of habitat use among these gorgonians, we estimated habitat use 

values for ancestral nodes in the inferred phylogenetic tree. We modeled our characters using a discrete 

approach using a continuous-time Markov chain model commonly known as the Mk model. We then fitted a 

single-rate model and reconstructed ancestral states at internal nodes in the phylogeny. We used the function 

lik.anc to estimate the marginal ancestral states. As an alternative way to reconstruct states at ancestral nodes, 

we sampled character histories from their posterior probability distribution using an MCMC approach, 

known as the “stochastic character mapping” [26] with the make.simmap function in package “phytools” [27]. In 

this latter approach, we obtained a sample of histories for our discrete character's evolution on the phylogeny 

- rather than a probability distribution for the character at nodes. Since a single reconstruction is meaningless, 

we iterated the process 1,000 times and evaluated the distribution from these stochastic maps. To generate a 

summary of these maps, we estimated the number of changes of each type, the proportion of time spent in 

each state, and the posterior probabilities that each internal node is in each state, under our model. 

 

4. Results 

 

The obtained time-calibrated phylogeny showed high support values for all studied lineages at the genus level 

and major recognized clades (See supplementary Fig. 1). Overall, there were trends separating shallow, 

mesophotic, and deep gorgonian species but multiple shifts to different depth ranges occurred. Colonization 

of Caribbean MCEs happened even at the oldest octocoral lineages, i.e., stem age >~100 MYA, such as 

Trychogorgia lyra (Chrysogorgiidae) a species within the deep-sea clade of highly calcified octocorals 

(Calcaxonia) (Fig. 1, clade A). Despite gorgonian corals forming similar branching tree-like colonies and 

habitat-forming characteristics, they are a polyphyletic group including old deep-sea lineages lacking hard or 
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proteinaceous skeletons, also known as scleraxonians (Fig. 1, clades B and C) closely related with soft corals, 

which include common Caribbean MCE members such as Iciligorgia and Diodogorgia [28,29]. Preceded by a 

clade of deep-sea stoloniferous octocorals, the true gorgonian corals (Fig. 1, clade D), i.e., with an axial 

proteinaceous skeleton, grouped in a large younger clade (< 100 MYA stem age), contained modest 

phylogenetic resolution with several patterns that we describe below.  

 

First, we find a clade including Acanthogorgiidae (Acanthogorgia spp.), Hypnogorgia and the family 

Keroeididae (Thelogorgia) (Fig. 1, clade E), along with two shallow-water groups, Muriceopsis and Pterogorgia, 

that are usually attracted to disparate clades in the octocoral phylogeny probably due to long branch 

attraction [28,30]. Second, part of the paraphyletic family Plexauridae in the clade known as ‘Stenogorgiinae’ 

[31] arises in the tree, most reaching mesophotic depths, but also found at depths below 200 m such as Lytreia, 

Muriceides, Heterogorgia (only shallow-water), Caliacis, Echinomuricea and Eunicella singularis (Fig. 1, clade F). 

Third, we notice Ellisellidae clade, a major component of the mesophotic gorgonian coral assemblage, 

attaining high densities in the upper MCE range [2,18,32], and the only group where MCEs promoted its 

entire diversification (Figure 1, clade G). This group, extending also to deeper ecosystems, is the only one 

found in MCEs worldwide [33], and its simultaneous parallel evolution [15] suggests that MCEs could be an 

important factor in their diversification.  

 

Last, we see the shallow-water gorgonian corals, including all zooxanthellate species from the Caribbean, and 

the azooxanthellate, including aposymbiotic Muricea [33], from the Tropical Eastern Pacific, appear in two 

clades that we can assign to the families Plexauridae (in part) and Gorgoniidae, major components of the 

shallow-water communities (Fig. 1, clades H and I). Plexauridae includes mesophotic-associated genera such 

as Scleracis, Swiftia (in part), and Thesea, some groups including shallow and mesophotic groups like 

Leptogorgia and Eugorgia [34], azooxanthellate shallow-water Pacifigorgia and Psammogorgia, the zooxanthellate 

Plexaurella, Gorgonia, Phyllogorgia and Antillogorgia, the latter includes some mesophotic gorgonian corals (Fig. 

1, clade H). The Plexauridae clade has the Caribbean Swiftia exserta as sister clade, with species in both 

Caribbean and the Tropical Eastern Pacific, and diverse Caribbean zooxanthellate shallow-water groups, 

Pseudoplexaura, Plexaura, Muricea and Eunicea (Fig. 1, clade I), which includes mostly mesophotic species [2]. 

Some of these symbiotic mesophotic species (e.g., Muricea laxa and Antillogorgia hystrix), are likely the product 

of shallow-deep ecological divergence, similar to the incipient cases of Eunicea flexuosa and Antillogorgia 

bipinnata [35,36], but today reaching depths below 40 m. There were multiple unresolved relationships in the 

octocoral phylogeny observed recurrently, even with the largest amount of phylogenetic information [37], 

which together with the placement of Ellisellidae, are beyond the scope of this article and deserve further 

systematic revision [29].     

 

Overall speciation was faster in mesophotic and shallow-water gorgonian clades. Yet, less extinction was 

detected in the deep-sea lineages. Remarkable, net diversification rates were faster in mesophotic lineages 

followed by shallow and deep clades (Fig. 2). In addition, mesophotic gorgonian corals had multiple deep-sea 

origins. Shallow-water gorgonian lineages, which are more abundant in the sampling and apparently more 

speciose, were restricted to less clades than mesophotic gorgonians, which revolutionize from several deep-

sea ancestors (Figs. 1-2).  
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5. Discussion 

 

The little genetic divergence within species from shallow-water genera in the Caribbean and Tropical Eastern 

Pacific have been noted by several authors [12,30,31,38–41]. Apart from the families Plexauridae and 

Gorgoniidae, where ecological divergence is suspected as the gorgonian assemblage colonizes the upper 

MCEs (30-60 m), the relationship between shallow-mesophotic species was rarely observed in closely related 

species in most clades. This pattern is also found in reef fishes and scleractinian corals [42]. Although reef-

building scleractinian corals can colonize deeper into MCEs [16,43,44], the azooxathellate cup corals replaces 

the hermatypic coral assemblage [18] and belongs to very old (>77 MYA) Scleractinian lineages, dominating 

this environment and even deeper waters [45]. Our study also supports the notion that gorgonian corals 

(“branching holaxonians”) had the fast evolutionary rates among all anthozoans [46].  

 

The families Plexauridae and Gorgoniidae showed replicated patterns of sister species segregated by shallow 

and mesophotic habitats consistent with recent research showing how depth plays a major role in the 

diversification of reef organisms [36,47]. The shallow-deep gradient creates an intermediate scenario between 

adaptive plasticity and local adaptation, which is common several Caribbean species [3,35].  Estimates of 

young diversification between pairs of habitat-segregated pairs of species is consistent with recent 

demographic models inferred from genomic data [48]. Our phylogenetic reconstruction suggests that such a 

shallow-mesophotic diversification has occurred at least nine times in these two families, pointing out by the 

first time, to the major role and the macroevolutionary magnitude of depth/light promoting the formation of 

new species in the Caribbean.  We suspect that ecological specialization mediated by immigrant inviability, as 

suggested previously [36], mediates the formation of these young pairs of segregated species in shallow and 

mesophotic habitats. 

 

Mesophotic gorgonian corals in the Caribbean, also excluding Plexauridae and Gorgoniidae, have close 

memberships with deep-sea groups and can be located at the shallower records of those lineages [1,49]. 

Gorgonians living at mesophotic depths (45-182 m) exceed the geographical/latitudinal bounds of shallow-

water species [50], which supports the idea of their independent evolutionary history. Two families, which 

most species distribute within the MCE range, Keroeididae, with all species of the genus Thelogorgia [51] and 

Ellisellidae, which suggest the MCE depth range and environment can be considered an important feature for 

octocoral diversification. Previous observations in the upper mesophotic zone (30-60m) from Caribbean reefs 

suggested that younger gorgonian species lineages are replaced by older lineages characterized by 

phylogenetically dispersed species, which have thinner branches and smaller polyps than shallow-water 

species [14]. Likewise, polyp density decreases with depth in gorgonian corals [52], which has been 

hypothesized as a response to an increasing microbial metabolism due low water-motion and anoxia with 

depth [2]. In general, mesophotic gorgonian corals in the Caribbean are not related to their shallow-water 

counterparts and consequently, mesophotic depths do not serve as a refuge for shallow gorgonians excluding 

Plexauridae and Gorgoniidae, where MCEs are being colonized back. Interestingly, mesophotic clades seem to 

have faster diversification rates than both shallow and deep-water gorgonians (Fig. 2). 
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Figure 1. Time-calibrated phylogeny from 242 gorgonian coral species from shallow-, mesophotic-, and deep
water gorgonian corals from the Caribbean-Gulf of Mexico and the eastern tropical Pacific (mtMutS). Branch
line width represents posterior probability support; thicker lines are supports >0.9. Important clades are 
labeled A-I correspond, which correspond to monophyletic lineages explained in the text. (See supplementa
Figure 1 for the chronogram with error bars) 
 
 

 
Figure 2. A. The phylogeny with a discreate character map based on a summary of 1,000 stochastic maps 
generated from modeling of the evolution of habitat use. Branches are colored depending on the habitat 
utilization by the different gorgonians. B. Rates of net diversification for shallow, mesophotic and deep-wat
gorgonians. Probability density plots are based on 9,000 MCMC samples of the full MuSSE model. 

eep-
nch 

tary 

 

ater 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2021. ; https://doi.org/10.1101/2020.12.17.422867doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.422867
http://creativecommons.org/licenses/by/4.0/

