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12 Abstract
13 In this study, the complete mitogenome of Lysmata vittata (Crustacea: Decapoda: 
14 Hippolytidae) has been determined. The genome sequence was 22003 base pairs (bp) 
15 and it included thirteen protein-coding genes (PCGs), twenty-two transfer RNA genes 
16 (tRNAs), two ribosomal RNA genes (rRNAs) and three putative control regions 
17 (CRs). The nucleotide composition of AT was 71.50%, with a slightly negative AT 
18 skewness (-0.04). Usually the standard start codon of the PCGs was ATN, while cox1, 
19 nad4L and cox3 began with TTG, TTG and GTG. The canonical termination codon 
20 was TAA, while nad5 and nad4 ended with incomplete stop codon T, and cox1 ended 
21 with TAG. We compared the order of genes of Decapoda ancestor and found that the 
22 positions of the two tRNAs genes (trnA and trnR) of the L. vittata were translocated. 
23 The phylogenetic tree showed that L. vittata was an independent clade, namely 
24 Hippolytidae.

25 Introduction
26 Lysmata vittata (Crustacea: Decapoda: Hippolytidae) belongs to a small marine 
27 ornamental shrimp, commonly known as peppermint shrimp, which is popular in the 
28 marine aquarium trade. The species has a special sexual system, ie, protandric 
29 simultaneous hermaphrodite (PSH) [1]. It is a member of the clean shrimp family, a 
30 common marine ornamental species that originated in the Indian Ocean-Pacific region, 
31 including coastal areas such as China, Japan, Philippines and Australia [2-4]. L. 
32 vittata prefers to move in the range of 2~50 m below the sea surface, usually hiding in 
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33 the reef during the day and activating at night [5]. In view of the research needs of L. 
34 vittata, we sequenced its mitogenome sequence.
35 The mitogenome is a significant tool for studying identification and phylogenetic 
36 relationships in the different species [6]. In shrimps, the mitochondria is maternally 
37 inherited, usually is circular and approximately 15 to 20 kb in length, including 
38 thirteen PCGs, two rRNAs, twenty-two tRNAs and one CR. The mitogenome is a 
39 complete system, which not only contains abundant information, but also the 
40 phylogenetic tree based on the genome has the advantages of stable and reliable 
41 structure.
42 Decapoda includes the largest number of species in crustaceans (8000 ~ 10000 
43 species), with the greatest economic value and the most widely known invertebrates 
44 [7]. It includes many aquatic products with important economic value, such as 
45 lobsters, prawns and crabs. Therefore, the phylogeny and classification of decapod 
46 crustaceans have been the focus of research for many years. The classification of 
47 Hippolytidae was the most controversial family in Decapoda, especially the 
48 monophyly of Hippolytidae and the position of the genus Lysmata [1, 8]. The 
49 Hippolytidae is an important group of marine benthic organisms and a common group 
50 in shallow sea biomes. Most species of the Hippolytidae are small shrimps living in 
51 shallow water, which are distributed worldwide. It occupies an important position in 
52 the animal classification system. However, we are the first to publish the 
53 mitochondrial genome sequence of the Hippolytidae species in the GenBank database, 
54 which is of great significance for us to expand the database of Hippolytidae.
55 In this study, the mitogenome of L. vittata has been successfully determined, which 
56 helps us to understand the characteristics of mtDNA of L. vittata. Furthermore, 
57 phylogenetic analysis using the nucleotide and amino acid sequences of thirteen PCGs 
58 helps us to reconstruct the phylogenetic relationship between L. vittata and related 
59 species. The addition of newly determined mitogenome complements the record of 
60 the mitochondrial gene library of Hippolytidae from scratch.

61 Materials and methods

62 Mitochondria DNA sequencing and genome assembly
63 Specimens of L. vittata were collected in Xiamen, Fujian province, China. The 
64 morphological characteristics of the species follow the previous description of 
65 Abdelsalam [9]. Approximately 5g of fresh leaves was harvested for mtDNA isolation 
66 using an improved extraction method [10]. After DNA isolation, the isolated DNA 
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67 was purified according to manufacturer’s instructions (Illumina), and then 1 μg was 
68 taken to create short-insert libraries, whose insertion size was 430 bp, followed by 
69 sequencing on the Illumina Hiseq 4000 [11] (Shanghai BIOZERON Co., Ltd). The 
70 high molecular weight DNA was purified and used for PacBio library prep, 
71 BluePippin size selection, then sequenced on the Sequel Squencer.
72 The raw data obtained by sequencing was processed and then the duplicated 
73 sequences were assembled. The mitogenome was reconstructed using a combination 
74 of the PacBio Sequel and the Illumina Hiseq data. Assemble the genome framework 
75 by the both Illumina and PacBio using SOAPdenovo2.04 [12]. Verifying the 
76 assembly and completing the circle or linear characteristic of the mitogenome, filling 
77 gaps if there were. Finally, the clean data were mapped to the assembled draft 
78 mitogenome to correct the wrong bases, and the most of the gaps were filled through 
79 local assembly.

80 Validation of mitogenome data
81 In order to ensure the accuracy of the L. vittata mitogenome data, we resequenced the 
82 samples on the Illumina HiSeq X10 platform (Nanjing Genepioneer Biotechnologies 
83 Co. Ltd).

84 Genome annotation and sequence analysis
85 Mitogenome sequences were annotated using homology-based prediction and de novo 
86 prediction, and the EVidenceModeler v1.1 [13] was used to integrate the complete 
87 genetic structure. Twenty-two tRNAs and two rRNAs were predicted by 
88 tRNAscan-SE [14] and rRNAmmer 1.2 [15]. The circular of the complete L. vittata 
89 mitogenome graphical map was drawn using OrganellarGenomeDRAW v1.2 [16]. 
90 The RSCU of thirteen PCGs (remove incomplete codons) was calculated using 
91 MEGA 5.0 [17]. The composition skewness of each component of the genome was 
92 calculated according to the following formulas: AT-skew = (A-T) / (A+T); GC-skew 
93 = (G-C) / (G+C) [18]. The secondary cloverleaf structure of tRNAs was examined 
94 with MITOS WebServer (http://mitos2.bioinf.uni-leipzig.de/index.py) [19].

95 Phylogenetic analysis
96 To reconstruct the phylogenetic relationship among shrimp, the PCGs sequences of 
97 the 51 Decapoda species were downloaded from GenBank database (S1 Table). The 
98 PCGs sequences of Euphausia superba (NC_040987.1) were used as outgroup. The 
99 nucleotide and amino acid sequences of 13 PCGs were aligned using MEGA 5.0 [17]. 
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100 Gblocks was used to identify and selected the conserved regions [20]. Subsequently, 
101 Bayesian inference (BI) and Maximum likelihood (ML) analysis were utilized for 
102 reconstructing phylogenetic tree by MrBayes v3.2.6 [21] and PhyML 3.1 [22]. 
103 According to the Akaike Information Criterion (AIC) [23], GTR + I + G model was 
104 considered as the best-fit model for analysis with nucleotide alignments using 
105 jModeltest [24], and MtArt + I + G + F model was the optimal model for the amino 
106 acid sequence dataset using ProtTest 3.4.2 [25]. In BI analysis, two simultaneous runs 
107 of 10000000 generations were conducted for the matrix. Sampling trees every 1000 
108 generations, and diagnostics were calculated every 5000 generations, with three 
109 heated and one cold chains to encourage swapping among the Markov-chain Monte 
110 Carlo (MCMC) chains. Additionally, the standard deviation of split frequencies was 
111 below 0.01 after 10000000 generations, and the potential scale reduction factor (PSRF) 
112 was close to 1.0 for all parameters. Posterior probabilities over 0.9 or bootstrap 
113 percentage over 75%, the results were regarded as credible [26, 27]. The resulting 
114 phylogenetic trees were visualized in Fig Tree v1.4.0.

115 Results and discussion

116 Genome structure, organization and composition
117 The mitogenome of L. vittata was a typical circular molecule of 22003 bp in size. It 
118 contained 37 mitochondrial genes (thirteen PCGs, twenty-two tRNAs, two rRNAs and 
119 three CRs) (Fig 1 and S2 Table). Among the 37 genes, the coding direction of the 
120 twenty-three genes was clockwise (F-strand), and the coding direction of the 
121 remaining fourteen genes was counterclockwise (R-strand) (Fig 1 and S2 Table). The 
122 nucleotide composition of the mitogenome was biased toward A and T (T=37.15%, 
123 A=34.35%, C=16.69%, G=11.80%) (Table 1). The relatively AT contents of the 
124 complete mitogenome were calculated [mitogenome (71.50%), PCGs (69.79%), 
125 tRNAs (69.58%) and rRNAs (69.29%)] (Table 1). The AT-skew values (-0.04) and 
126 GC-skew values (-0.17) for the entire mitogenome were negative, showing that there 
127 were higher Ts than As and Cs than Gs (Table 1). All original sequence data in this 
128 study were submitted to the NCBI database under accession number MT478132.

129

130 Fig 1. Mitogenome map of Lysmata vittata. The genes outside the map were coded on the F 
131 strand, whereas the genes on the inside of the map are coded on the R strand. The middle black 
132 circle displays the GC content and the inside purple and green circle displays the GC skew.
133
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134 Table 1. Composition and skewness of Lysmata vittata mitogenome. 

Lysmata vittata Size(bp) T (%) C (%) A (%) G (%) A+T (%) AT-skew GC-skew

Mitogenome 22003 37.15 16.69 34.35 11.80 71.50 -0.04 -0.17

PCGs 11144 41.09 15.25 28.70 14.96 69.79 -0.18 -0.01

atp6 675 40.15 19.41 28.30 12.15 68.44 -0.17 -0.23

atp8 165 43.64 15.76 35.15 5.45 78.79 -0.11 -0.49

cob 1137 39.40 20.14 27.88 12.58 67.28 -0.17 -0.23

cox1 1614 37.73 17.91 27.76 16.60 65.49 -0.15 -0.04

cox2 693 37.95 19.77 28.43 13.85 66.38 -0.14 -0.18

cox3 756 39.29 18.25 27.91 14.55 67.20 -0.17 -0.11

nad1 927 44.01 10.79 27.29 17.91 71.31 -0.23 0.25

nad2 1005 43.28 18.01 29.05 9.65 72.34 -0.20 -0.30

nad3 354 42.66 18.93 26.27 12.15 68.93 -0.24 -0.22

nad4 1336 43.11 9.51 28.59 18.79 71.70 -0.20 0.33

nad4l 246 45.12 7.72 26.02 21.14 71.14 -0.27 0.46

nad5 1732 41.17 9.82 31.64 17.38 72.81 -0.13 0.26

nad6 504 44.64 17.06 28.57 9.72 73.21 -0.22 -0.27

tRNAs 1512 33.27 14.02 36.31 16.40 69.58 0.04 0.08

rRNAs 2315 32.40 11.88 36.89 18.83 69.29 0.06 0.23

CR1 650 42.15 9.85 38.31 9.69 80.46 -0.05 -0.01

CR2 3821 38.50 14.39 33.73 13.37 72.23 -0.07 -0.04

CR3 888 42.34 13.51 34.91 9.23 77.25 -0.10 -0.19

135

136 PCGs and codon usage
137 The PCGs region was 11144 bp long, and accounted 50.6% of the L. vittata 

138 mitogenome. Nine of thirteen PCGs (atp6, atp8, cob, cox1-3, nad2-3 and nad6) were 

139 encoded on the light (F) strand, while the other four genes (nad1, nad4L and nad4-5) 

140 were encoded on the heavy (R) strand (Table 1). Each PCG was initiated by a 
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141 canonical ATN codon (ATG for atp6, atp8, nad2-5 and cob; ATT for cox2 and nad1; 

142 ATC for nad6), except for cox1 (TTG), nad4L (TTG) and cox3 (GTG) (S2 Table). 

143 Two of the thirteen PCGs (nad5 and nad4) terminated with incomplete stop codon T, 

144 one PCG (cox1) terminated with stop codon TAG, and the other ten PCGs terminated 

145 with the canonical termination codon TAA (S2 Table).

146 The RSCU values of L. vittata mitogenome were analyzed and the results were shown 

147 in Table 2. The total number of codons in thirteen PCGs was 3714 except eleven 

148 canonical stop codons and two incomplete stop codons and the most common amino 

149 acids were Ile (AUR) (499), Phe (UUR) (357) and Leu2 (UUR) (315), whereas 

150 codons encoding Cys (UGR) (41) and Met (AUR) (24) were rare (Fig 2). The overall 

151 A + T content of thirteen PCGs was 69.79%, the AT-skews and GC-skews were 

152 negative which implied a higher occurrence of Ts and Cs than As and Gs (Table 1).

153

154 Table 2. The codon number and relative synonymous codon usage (RSCU) in L. vittata 
155 mitochondrial protein coding genes.

Codon Count RSCU Codon Count RSCU Codon Count RSCU Codon Count RSCU

UUU(F) 300 1.68 UCU(S) 129 2.46 UAU(Y) 101 1.57 UGU(C) 32 1.56

UUC(F) 57 0.32 UCC(S) 29 0.55 UAC(Y) 28 0.43 UGC(C) 9 0.44

UUA(L) 283 3.13 UCA(S) 92 1.76 UAA(*) 10 0.29 UGA(W) 92 2.68

UUG(L) 32 0.35 UCG(S) 12 0.23 UAG(*) 1 0.03 UGG(W) 15 1

CUU(L) 131 1.45 CCU(P) 101 2.71 CAU(H) 53 1.47 CGU(R) 12 0.4

CUC(L) 33 0.36 CCC(P) 14 0.38 CAC(H) 19 0.53 CGC(R) 2 0.07

CUA(L) 59 0.65 CCA(P) 28 0.75 CAA(Q) 55 1.62 CGA(R) 38 1.26

CUG(L) 5 0.06 CCG(P) 6 0.16 CAG(Q) 13 0.38 CGG(R) 11 0.36

AUU(I) 266 1.6 ACU(T) 85 1.95 AAU(N) 108 1.65 AGU(S) 45 0.86

AUC(I) 42 0.25 ACC(T) 23 0.53 AAC(N) 23 0.35 AGC(S) 7 0.13

AUA(I) 191 1.15 ACA(T) 61 1.40 AAA(K) 83 1.77 AGA(S) 93 3.08

AUG(M) 24 1 ACG(T) 5 0.11 AAG(K) 11 0.23 AGG(S) 25 0.83

GUU(V) 95 1.82 GCU(A) 93 2.14 GAU(D) 56 1.51 GGU(G) 61 1.06
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GUC(V) 8 0.15 GCC(A) 25 0.57 GAC(D) 18 0.49 GGC(G) 20 0.35

GUA(V) 87 1.67 GCA(A) 50 1.15 GAA(E) 64 1.35 GGA(G) 106 1.84

GUG(V) 19 0.36 GCG(A) 6 0.14 GAG(E) 31 0.65 GGG(G) 43 0.75

156

157 Fig 2. RSCU and Codon distribution in the mitogenome of L. vittata. The left ordinate 
158 represents RSCU, and the right ordinate represents the number of the Codon distribution.
159

160 Transfer RNAs and Ribosomal RNAs
161 The mitogenome of L. vittata contained twenty-two tRNAs and these genes ranged 
162 from 60 (trnA) to 77 bp (trnN) (S2 Table). The tRNAs showed a strong A +T bias 
163 (69.58%), while they also exhibited positive AT-skew (0.04) and GC-skew (0.08) 
164 (Table 1). Eight tRNAs [trnQ (CAA), trnC (UGC), trnY (UAC), trnF (UUC), trnH 
165 (CAC), trnP (CCA), trnL1 (CUA) and trnV (GUA)] were present on the R strand and 
166 the remaining fourteen were present on the F strand (S2 Table). The examined 
167 secondary structure of twenty-two tRNAs was shown in S1 Fig. The other twenty-one 
168 tRNAs had typical cloverleaf secondary structure except that trnS1 (AGA) lacked the 
169 dihydropyridine (DHU) arm [18, 19, 27, 28] (S1 Fig). In the secondary structure of 
170 the tRNAs, the most common non-Watson–Crick base pair was G–U (e.g. trnC, trnE), 
171 followed by U–U (e.g. trnA, trnC) [19]. In addition, several mismatches were 
172 common in tRNAs, such as A–C (e.g. trnA), C–U (e.g. trnA, trnG) and A–A (e.g. 
173 trnM, trnS1) (S1 Fig).
174 Two rRNA genes were found on the R strand. The rrnL was 1494 bp and rrnS was 
175 821 bp, one located between trnL1 and trnV and another located between trnV and 
176 CR1 (S2 Table and Fig 1). The total A+T content of the two rRNAs was 69.29%, with 
177 a positive AT-skew (0.06) (Table 1).

178 Overlapping and intergenic regions
179 The mitogenome of L. vittata contained four overlapping regions, these four pairs of 
180 genes were presented: atp8 / atp6, trnE / trnF, nad4 / nad4L and trnL1 / rrnL, with 
181 the longest 23 bp overlap located between trnL1 and rrnL (S2 Table). The 27 
182 intergenic regions were found with a length varying from 2 ~ 3821 bp (S2 Table). 
183 Three putative CRs had been identified in L. vittata mitogenome. The CR1 was 
184 located between rrnS and trnI, with a length of 650 bp, and the A+T content was 
185 80.46%. The CR2 was located between cox1 and trnL2, with a length of 3821 bp, and 
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186 the A+T content was 72.23%. The CR3 was located between trnL2 and cox2, with a 
187 length of 888 bp, and the A+T content was 77.25% (Table 1 and S2 Table).
188 To our knowledge, this study is the first reported mitogenome from the genus 
189 Lysmata. How multiple CRs were generated and evolved in the mitogenome of 
190 Lysmata is a novel problem that has not yet been solved, and more mitogenomes of 
191 Lysmata are still needed to clarify the mechanism forming this phenomenon.

192 Gene rearrangement
193 Compared with the gene order of a Decapoda ancestor [20, 29], two tRNA gene (trnA 
194 and trnR) positions of L. vittata had translocated, which indicates that the L. vittata 
195 was quite unconserved in its evolution (Fig 3). In fact, gene rearrangement was a very 
196 common phenomenon in the mitogenome and the rearrangement mainly occurred in 
197 tRNA genes. Gene arrangement was stable, and it could be used as an important 
198 phylogenetic marker in the analysis of evolutionary perspective on shrimp. At present, 
199 no other species in the Hippolytidae have been tested for mitogenome, and the 
200 common characteristics of gene order were not easy to determine.

201

202 Fig 3. Comparison of the order of mitochondrial genes of Lysmata vittata and the ancestor of 
203 Decapoda.
204

205 Phylogenetic analysis
206 Using ML and BI analysis methods, phylogenetic analysis was performed based on 
207 the nucleotide and amino acid sequences of thirteen PCGs of the species in S1 Table, 
208 and the analysis results were presented (Fig 4 and Fig 5). The phylogenetic tree based 
209 on the nucleotide sequence of thirteen PCGs showed that the monophyly of each 
210 family was basically well supported, especially the clade of the Hippolytidae was 
211 strongly supported (ML BP = 100%; BI PP = 1). A basal split separates two clades, 
212 with insignificant support (Fig 4). The first clade revealed the two phylogenetic 
213 relationships: (Hippolytidae + (Atyidae + (Alpheidae + Palaemonidae))) and 
214 (Palinuridae + (Astacidae + (Nephropsidae + Enoplometopidae))). The second clade 
215 revealed the one phylogenetic relationship: (Sergestidae + (Solenoceridae + 
216 Penaeidae)) (Fig 4). The phylogenetic tree based on the amino acid sequence of 13 
217 PCGs revealed that the phylogenetic relationship between Hippolytidae and Atyidae 
218 has changed as follows: (Atyidae + (Hippolytidae + (Alpheidae + Palaemonidae))). 
219 However, the clade of the Hippolytidae was very weak support (ML BP = 52%; BI PP 
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220 = 0) (Fig 5). We could still reach a conclusion that the Hippolytidae was an older 
221 family than Atyidae, and the Atyidae formed a sister group to Alpheidae – 
222 Palaemonidae. The Caridea were dominated by Palaemonidae, followed by Alpheidae, 
223 Atyidae and Hippolytidae [30]. At present, the phylogenetic study of the Hippolytidae 
224 was limited to the partial fragments of mitochondrial genes 16S or 12S of individual 
225 species in several genera (such as Lysmata, Exhippolysmata, Ligur, Mimocaris and 
226 Lysmatella) [31-34]. The successful determination of the mitogenome of L. vittata 
227 could provide a deeper understanding of the phylogenetic status of the Hippolytidae.
228

229 Fig 4. Phylogenetic tree inferred from nucleotide sequences of 13 PCGs of the mitogenome 
230 using ML and BI methods (BP / PP).

231

232 Fig 5. Phylogenetic tree inferred from amino acid sequences of 13 PCGs of the mitogenome 
233 using ML and BI methods (BP / PP).
234

235 Conclusion
236 In this study, we successfully obtained the mitogenome sequence of the L. vittata, 
237 which was also the first species of the Hippolytidae to publish the mitogenome 
238 sequence in the GenBank database. The genome sequence was 22003 base pairs (bp) 
239 and it included 37 genes and three CRs. Each PCGs was initiated by a canonical ATN 
240 codon, except for cox1, nad4L and cox3, which were initiated by a TTG, TTG and 
241 GTG. Two of the thirteen PCGs (nad5 and nad4) terminated with incomplete stop 
242 codon T, and one (cox1) terminated with stop codon TAG. The AT-skew (-0.04) and 
243 the GC-skew (-0.17) were both negative in the mitogenomes of L. vittata. Compared 
244 with the gene order of a Decapoda ancestor, the gene arrangement order of the L. 
245 vittata has changed. Futhermore, phylogenetic analyses showed that L. vittata was not 
246 in the clades of other families, but was an independent clade, namely the 
247 Hippolytidae.
248

249 Supporting information
250 S1 Table. List of species used to construct the phylogenetic tree.
251 (DOC)
252 S2 Table. Summary of Lysmata vittata mitogenome.
253 (DOC)
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254 S1 Fig. Predicted secondary structure for the tRNAs of Lysmata vittata 
255 mitogenome.
256 (TIF)
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