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Abstract 

Metabolomic and proteomic analyses of human plasma and serum samples harbour the power 

to advance our understanding of disease biology. Pre-analytical factors may contribute to 

variability and bias in the detection of analytes, especially when multiple labs are involved, 

caused by sample handling, processing time, and differing operating procedures. To better 

understand the impact of pre-analytical factors that are relevant to implement a unified 

proteomic and metabolomic approach in a clinical setting, we assessed the influence of 

temperature, sitting times, and centrifugation speed on the plasma and serum metabolomes 

and proteomes from six healthy volunteers.  

We used targeted metabolic profiling (497 metabolites) and data-independent acquisition 

(DIA) proteomics (572 proteins) on the same samples generated with well-defined pre-

analytical conditions to evaluate criteria for pre-analytical SOPs for plasma and serum 

samples. Time and temperature showed the strongest influence on the integrity of plasma and 

serum proteome and metabolome. While rapid handling and low temperatures (4°C) are 

imperative for metabolic profiling, the analysed proteome showed variability when exposed to 

temperatures of 4°C for more than 2 hours, highlighting the need for compromises in a 

combined analysis. We formalised a quality control scoring system to objectively rate sample 

stability and tested this score using external data sets from other pre-analytical studies. 

Stringent and harmonised standard operating procedures (SOPs) are required for pre-

analytical sample handling when combining proteomics and metabolomics of clinical samples 

to yield robust and interpretable data on a longitudinal scale and across different clinics. To 

ensure an adequate level of practicability in a clinical routine for metabolomics and proteomics 

studies we suggest to keep blood samples up to 2 hours on ice (4°C) prior to snap-freezing 

as a compromise between stability and operability. Finally, we provide the methodology as an 

open source R package allowing the systematic scoring of proteomics and metabolomics 

datasets to assess the stability of plasma and serum samples. 
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Introduction 

Mass spectrometry-based metabolomics and proteomics are emerging technologies that are 

increasingly employed in laboratory and clinical settings to refine our understanding of disease 

biology, vulnerabilities, and resistance mechanisms. Liquid biopsies, such as blood, provide 

the opportunity to collect information on a patient’s metabolome and proteome status on a 

longitudinal scale to track disease progression or response to a treatment (Tsonaka et al., 

2020; Gummesson et al., 2021). For instance, longitudinal metabolomic profiling of plasma 

collected from patients suffering from COVID-19 was linked to disease progression, including 

a panel of metabolites collected at the onset of the disease that may predict the disease 

severity (Sindelar et al., 2021). Similarly, proteomic analysis of COVID-19 patients revealed 

protein signatures associated with survival, tissue-specific inflammation, and disease severity 

(Filbin et al., 2021). The independent analysis of such complex diseases yields promising 

findings, highlighting that the present technologies are not the limiting factors for the broader 

use of mass spectrometry (MS) in clinical workflows.   

MS-based technologies have matured over the past years, allowing the investigation of 

analytically challenging but highly informative samples such as blood plasma and serum. 

Technical advances comprise of but are not limited to: i) Increased reproducibility and 

automation in sample preparation, ii) faster, more sensitive, and robust MS instruments, and 

iii) improved data analysis algorithms, multi-omics and integrative workflows. While these 

developments reduce technical noise in the data sets and improve the detection of true 

biological variability, their efficacy may be compromised if the quality of the starting material 

is not strictly controlled and standardised. 

Although standard operating procedures (SOPs) for blood collection are often in place to suit 

clinical routine, they may not be harmonised between clinics, and they usually are not 

optimised to preserve proteins and metabolites for subsequent omics analyses. In particular, 

differences in sample handling (e.g., temperature, sitting time, use of anticoagulants) may alter 

the observable protein and metabolite patterns. In biomarker discovery studies, these pre-

analytical factors are crucial and have to be considered by clinicians and analysts (Lippi et al., 

2020). 

Previous studies have highlighted the effects of such pre-analytical factors and recommend 

best practices often for metabolomic analyses (Yin, Lehmann and Xu, 2015) or proteomic 

analyses  (Hassis et al., 2015) independently. While either technique already produced a suite 

of potential quality markers related to blood samples, to our knowledge, few studies analysed 

the effect sizes of varying pre-analytical parameters in a combined proteomic and 
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metabolomic analysis on the same samples, to harmonise the requirements for both 

techniques with such a comprehensive set of features (Cao et al., 2019). Critically, sample 

collection and handling requirements differ between metabolomics and proteomics and need 

to be adjusted accordingly for a combined clinical SOP. 

Here, we assess how pre-analytical factors impact on metabolite and protein levels in plasma 

and serum samples caused by differences in sitting time, temperature regimes (4°C room 

temperature (RT), only RT for serum), and centrifugal acceleration levels. Using targeted 

metabolic profiling and a single-shot, data-independent acquisition (DIA) proteomics 

approach, we determine that keeping blood samples on ice (4°C) for up to 2 hours prior to 

snap-freezing are the optimal conditions to preserve metabolites and proteins for a combined 

metabolomics/proteomics workflow. We introduce an open-source scoring system to assess 

the quality of plasma and serum samples (Figure 1B). 
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Results 

To assess how sample handling and treatment affects the stability of protein and metabolite 

levels in human plasma and serum samples, we selected four time points between 

centrifugation and snap-freezing to quench samples, as follows: 0 h as the baseline of 

metabolite and protein levels immediately after sampling, 2 h as the clinically feasible time 

point to quench samples, 4 h as a middle point, and 8 h (quenching at the end of a typical 

working day) (Figure 1A). Furthermore, samples were kept at different temperatures during 

these sitting times (on ice/4°C and at RT) to investigate their influence on altering metabolome 

and proteome composition. Additionally, we included two centrifugation schemes for plasma 

samples (2000 g and 4000 g). However, we could not attribute any significant changes in the 

plasma metabolome and proteome between different centrifugation conditions, and therefore 

only applied 2000 g in the following sections. 
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Figure 1: Experimental setup and analyses to assess effects of sample handling or 

treatment on metabolite and protein levels. A: Plasma and serum samples from six healthy 

individuals were subjected to different sample treatment and handling conditions: sitting time 

of 0, 2, 4, and 8 h; incubation temperature of 4°C and 24°C (RT); and two different centrifugal 

levels (2000 and 4000 g) for the plasma samples. Due to quality reasons, the metabolomics 

data set only consisted of data from five individuals (see Methods). B: Following the factorial 

outline, metabolite and protein levels were obtained by mass spectrometry. Next, proteomic 

and metabolomic data were analysed using linear models. The significant features were 

extracted and used to build scores to assess sample quality. 
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Identifying metabolites and proteins affected by temperature and sitting 

time 

Analysis of plasma and serum samples by targeted metabolic profiling and a single-shot, data-

independent acquisition (DIA) proteomics yielded quantitative information for in total 497 

metabolites and 572 proteins. An initial LIMMA analysis (Table 1) showed a high number of 

features that differed between individual blood donors (α < 0.05, after FDR correction using 

the Benjamini-Hochberg, BH, method). In addition, PCA (Supplementary Figure 1A) of the 

proteomic and metabolomics data sets indicated individual-specific effects, a finding that was 

further supported by t-SNE and UMAP analyses (Supplementary Figure 2) and multi-omics 

factor analysis on both data modalities (MOFA, Supplementary Figure 3). Especially for the 

metabolomics data set there was a clear separation between individuals, while for the 

proteomics data set we found less pronounced effects (Supplementary Figure 2D). This 

analysis suggests that there are dominating individual effects that are reflected in the 

metabolomics data set and to a lesser extent in the proteome. To gain further insight into this, 

we next performed classification by Partial least square - discriminant analysis (PLS-DA) and 

sparse PLS-DA (sPLS-DA) to discriminate the individuals based on the metabolite and 

proteomics profiles. Indeed, it was possible to classify the individuals using the metabolite and 

protein levels with a low classification error (Supplementary Figure 1C), suggesting that there 

are features in the metabolomics and proteomics data where individual-specific effects are 

prevalent. The metabolites and proteins in Supplementary Table 1 were selected by sPLS-DA 

to explain the variance using the individual as the class vector (Supplementary Figure 1B). 

 

Table 1: Number of features with a significant effect from the factor individual. Shown 

is the number of significant features after FDR (α < 0.05). The total number of features are 

497 (metabolites) and 572 (proteins). 

 plasma serum 

metabolites 470 435 

proteins 221 151 

  

 

We also performed PLS-DA to discriminate for time and the combination of time and 

temperature (Supplementary Figure 4). Both binary classification problems yielded models 

with high classification rate error and lower values for the explained variance for both the 
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proteomics and metabolomics data set (Supplementary Figure 4A and C) compared to 

individual as the class vector (Supplementary Figure 1). The sPLS-DA analysis yielded a list 

of features that were used to explain the class vectors of the data and could be regarded as 

features that change along the time and time/temperature axes (Supplementary Figure 4B 

and D). We included this list as Supplementary Tables 2, 3, and 4. 
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Figure 2: Stability of metabolites and proteins along the sitting time and temperature 

axes. A: Number of significant metabolites or proteins that show changes according to pre-

analytical factors time, temperature and the interaction time/temperature (raw p-values and p-

values after FDR correction, α < 0.05). B: Absolute change of transformed 
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concentrations/intensities of significant metabolites and proteins along the time axis (after FDR 

correction). The changes to the time point 2 h, 4 h, and 8 h are displayed as the mean changes 

of the individuals (intensity at time point 0 h is 0). For plasma, the features are included that 

are significant for the pre-analytical factors time, temperature or the interaction 

time/temperature (𝛼 < 0.05, FDR correction). For serum, the features are included that are 

significant to the pre-analytical factor time (𝛼 < 0.05, FDR correction). C: Examples of 

metabolites and proteins that show a significant association with the pre-analytical factor time 

(hypoxanthine, lactate, CA2, HBB, HBA1) or interaction time/temperature (lactate, arginine) 

(𝛼 < 0.05, after FDR correction). 

 

In a next step, we looked into the changes of metabolite and protein levels when considering 

inter-individual differences. Motivated by the results of the previous analyses (initial LIMMA 

analysis, dimension reduction analysis, PLS-DA, MOFA), showing that metabolome and 

proteome variation is influenced by inter-individual differences, we decided to use mixed linear 

models to determine the features that will change according to sitting time, temperature or a 

combination of time and temperature. We modelled as fixed effects time, temperature, and 

the interaction term time/temperature (plasma) and time (serum). The information on the blood 

donor (individual) was included for both groups as a random effect (Figure 2A). An overview 

of the absolute change of the significant metabolites and proteins can be found in Figure 2B 

(see also Figure 2C for exemplary metabolites and proteins). We provide the metabolite- and 

protein-associated p-values for plasma and serum samples in the Supplementary Information. 

Looking at metabolomics- and proteomics-specific differences, the analysis revealed that 

metabolite concentrations were less stable at RT, while protein abundances were less stable 

at 4°C (Figure 2 and Supplementary Figure 5). For the affected features the absolute change 

was in most cases more prominent after 8 h than 2 h, yet they were not significant 

(Supplementary Figure 5). 

Scoring plasma and serum sample quality using proteomic and 

metabolomic signatures 

We next investigated whether patterns of potential protein and metabolite deregulation (with 

respect to time and temperature) could be used as a quality metric for samples obtained under 

the tested conditions. We selected the top 20 proteins and metabolites ranked by p-value to 

generate signatures of the following handling conditions: plasma kept on ice (4°C) or RT for 8 

hours, and serum at RT for 8 hours (Supplementary Figure 6). While it may be difficult to draw 
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conclusions regarding the significance of individual metabolites or proteins due to limited 

sample size, their combined signal may hold enough information to score the relative quality 

of samples with respect to sitting time and temperature. Thus, to confirm that these signatures 

could yield sensible insight into sample integrity, we computed an average normalised 

enrichment score (NES, see Methods) for each signature in the respective sample pre-

analytical conditions. If the signatures are indeed informative, we should expect to observe a 

steady increase of enrichment of the respective signature for each condition. Coherently, each 

signature showed higher scores for samples that matched the respective conditions from 

which they were derived (Figure 3A). This showed notably that the plasma protein signature 

at RT over time already scored highly in samples stored at RT for 4 h, as opposed to the 

signature of plasma/4°C/8 h which only scored high in the samples obtained at low 

temperature and after 8 h, as expected. This pattern was inverted for metabolic signatures of 

plasma samples. This indicates that the changes are more pronounced at the metabolomic 

level when samples are stored at 4°C compared to RT, while changes are more pronounced 

at the proteomic level for plasma samples kept at RT.  

Finally, while the NES can take both positive and negative values, here, we focused only on 

the positive values to simplify the interpretation of the results. Since the data was normalised 

in a way that each measurement is scaled relative to other samples of the cohort, the scores 

will be drawn from a distribution where a NES of 0 represents samples that have average 

levels of degradation compared to the overall cohort, and any value above that represent 

samples that show higher degradation compared to the rest of the cohort. It is worth noting 

that this scoring can only score samples in a relative manner to the rest of the cohort, and 

cannot provide absolute quantification of sample degradation. 

 

To validate this approach, we used the signatures to score metabolomic results from an 

external study (Heiling et al., 2021), where plasma and serum samples were kept at RT for 2 

h (Figure 3B). The plasma/RT/8 h metabolic signatures got a higher score (NES = 5.1) than 

plasma/4°C/8 h (NES = 2.6) and serum/RT/8 h (NES = 2.9) signatures. However, the 

serum/RT/8 h signature score was similar to the plasma/RT/8 h signature score (NES = 6.1 

and NES = 6.4, respectively). Thus, the serum RT/8 h and plasma/RT/8 h metabolic signature 

appears less discriminant than the plasma/4°C/8 h metabolic signature. Nevertheless, the best 

scores overall matched with the actual experimental conditions that were used, indicating that 

the scoring system holds beyond the data set that was used for training. 

 

In order to further characterise the changes that we observed in the plasma and serum 

samples over time, we investigated if proteomic signatures could be associated with 

contamination by proteins originating from specific blood cells. We obtained proteomic 
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markers of coagulation, erythrocyte, and platelet contamination from (Geyer et al., 2019) 

Plasma samples kept on ice (4°C) for 4 h and 8 h showed the highest enrichment of 

erythrocyte contamination markers (Figure 3C) mainly driven by CAT, CA2, BLVRB, PRDX2, 

and ALDOA (Supplementary Figure 6A, B). Interestingly, the plasma/4°C/8h seems to be also 

specifically driven by a lower abundance of the VWF protein, a blood glycoprotein involved in 

platelet adhesion (Supplementary Figure 6C). The contamination scores were lower in plasma 

samples that were kept at RT, although they still showed a progressive increase over time. 

On the other hand, serum samples exhibited no significant increase in erythrocyte 

contamination score, instead showing a consistently high (albeit slightly decreasing) score for 

coagulation markers over time, as expected. This signature was mainly driven by increased 

PPBP and THBS1 and decreased F13A1 (Supplementary Figure 6A and D). In a similar 

fashion, we displayed the main drivers of the metabolomic-derived signatures such as 

hypoxanthine, lactate, ornithine and aspartate (Supplementary Figure 6A, E, F, G). Taken 

together, these results show that the scoring provides a quantitative metric for the quality 

control for proteomic and metabolomic data of plasma and serum samples. This should be a 

helpful tool to exclude low-scoring samples for further analysis.  
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Figure 3: Systematic evaluation of sample quality and contamination with proteomic 

and metabolomic signatures. A: Proteomic/Metabolic pre-analytical condition signature 

scores for each sample group (as averaged from individual samples). Signature scores are 

normalised enrichment scores, representing the number of standard deviations away from the 

mean of an empirical null distribution of scores. A high score means that the sample displays 

an enrichment of markers of the corresponding signature, compared to other samples. While 

the scores generated can be both positive and negative, we focus exclusively on positive 

scores in this figure. B: Metabolic pre-analytical signature applied to score samples from an 

external study (Heiling et al., 2021). C: Coagulation, erythrocyte, and platelet signatures were 

used to score contamination of proteomic plasma and serum samples. Signatures were taken 

from (Geyer et al., 2019). 
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Discussion 

The progress of MS-based technologies over the past years has enabled the characterization 

and quantification of analytically challenging but clinically accessible samples such as blood 

plasma and serum. Although SOPs for individual metabolic and proteomic analyses have been 

developed (Pasella et al., 2013; Yin, Lehmann and Xu, 2015; Tuck, Turgeon and Brenner, 

2019; Lippi et al., 2020), there is no consensus on their combined application for the molecular 

characterization of blood samples in a clinical setting. 

Here, we performed a comprehensive analysis on the stability of 497 and 572 metabolites and 

proteins in blood plasma and serum to scrutinise the effects of various treatment regimes 

(sitting time and incubation at different temperatures) to simulate different sample handling 

scenarios. Notably, our experiment aimed to define an SOP trade-off regarding the different 

requirements for metabolomics and proteomics, to effectively apply both approaches to the 

same blood samples. In addition, we aimed to implement an objective quality scoring as a 

metric for sample quality and potential contamination. Although this study was performed on 

a small cohort of healthy volunteers, the findings have implications on the sampling procedure 

of clinical blood collection as well as the bioinformatics analysis for quality control.  

Measuring the change of the metabolome and proteome 

By our statistical analyses, we detected changes in numerous features that may affect the 

biological interpretation of clinical metabolomics and proteomics data sets. Some metabolites 

(e.g. hypoxanthine, xanthine, lactate, arginine, ornithine, cystine) and proteins (e.g. CA1, CA2, 

HBB, HBD, HBA1) showed a profound dependency on sitting time and temperature (or a 

combination thereof) (Figure 2 and Figure 4A). 

Metabolite classes such as amino acids, purines, and carbohydrates vary in abundance and 

are therefore usually investigated to answer biological questions. Yet, these well-known 

metabolites affected by the conditions represent only 10% of our data set, and we have 

increased the panel of temperature-time sensitive metabolites due to the broad metabolite 

coverage. In fact, lipids are the largest observed class of metabolites, most of which were 

stable across the tested conditions (Supplementary File 1). 

 

Temperature and time are well known to affect metabolite and protein levels (Kamlage et al., 

2014; Cao et al., 2019; Daniels et al., 2019; Stevens et al., 2019). Elevated levels of 

hypoxanthine and amino acids over time (Ferreira et al., 2019) and the deregulation of 

cholesterol metabolism were also previously documented (Ryu et al., 2016). Association of 

these and other metabolites to a pathological condition, therefore, needs to be evaluated with 
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caution, to exclude that they emerge inadvertently by sample handling or technical bias. Strict 

pre-analytical measures help to gain confidence in the subsequent biological and clinical 

interpretation based on the measured features.  

 

For most of the features in our data sets, we only found minor changes under the experimental 

conditions applied (Figure 2). There, 90% of metabolites and 97% of proteins only varied 

slightly over time. Other metabolome studies reported similar proportions where 91% of the 

metabolite remained stable over several pre-analytical conditions (Ferreira et al., 2019) . This 

implies that in clinical research studies where large effect sizes from biological differences are 

known or expected and large cohorts were used, the contribution to feature level variation 

stemming from sample handling might be partially alleviated. The integration of several data 

sets, i.e., proteomic and metabolomic, from the same sample may also mitigate bias. 

 

Rapid handling and cold storage of up to 2 h as SOP 

Although the increased stability of the metabolome at 4°C was expected, we observed a 

contrary effect for proteins, showing higher variance at low temperature (Figure 2 and 3A), 

suggesting that proteomics and metabolomics require different pre-analytical conditions to 

obtain optimal results. Therefore, we propose that keeping plasma and serum samples on ice 

for up to 2 h is an acceptable trade-off to maintain adequate stability of both the proteome and 

metabolome (Figure 2 and Supplementary Figure 5). In addition, this should be a condition 

that can be conformed to in clinical practice (Figure 4B). 

 

Similarly, considerations may be made regarding the storage time of samples in biological 

repositories such as biobanks. Previous studies showed that long-term storage at -80°C over 

seven years only introduces minimal variation, and that significant changes occur upon longer 

storage times (Wagner-Golbs et al., 2019). This highlights the potential to address clinical 

questions using metabolomics and proteomics from biological repositories under the 

prerequisite that the sampling collection is comparable. While biobank samples are an 

essential resource for discovery studies, prospective samples enable the enforcement of 

SOPs during collection that are more suitable for metabolomic analyses, e.g., by storing 

samples at 4°C for under 2 hours and then quench by snap-freezing in liquid nitrogen. 

 

Quality control signatures to score plasma and serum samples 

Designing formal criteria for data curation and analysis is crucial to ensure data robustness. 

To this end, we devised a scoring system using the significantly altered proteins and 
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metabolites as signatures to evaluate the impact of pre-analytical conditions on proteome and 

metabolome integrity of a given sample. Provided as an R package 

(https://github.com/saezlab/plasmaContamination), this tool can be used for quality control 

after pre-analytical handling, and in addition, the proteome signatures enable to distinguish 

the severity and the source of contamination, i.e. from platelets, erythrocytes or resulting from 

coagulation (Figure 3C and 4C). We showed that the changes in protein abundance in 

samples stored on ice were mainly related to protein markers of erythrocytes in plasma 

samples, likely resulting from hemolysis occurring under this condition (Figure 4C). As 

expected, coagulation signatures scored exclusively high in serum samples.  

 

Both the scores for metabolite and protein contamination enable the quality assessment of 

plasma and serum samples of unknown origin. Of note, the erythrocyte, platelet, and 

coagulation signatures were obtained from a large external cohort of samples (>70 samples), 

while the signatures derived from our own samples were estimated from a comparatively small 

number of samples (n=6). Although this may affect their discriminative power, the derived 

signatures and bioinformatic tools are publicly accessible and can therefore be updated and 

expanded easily when more data become available. Still, those signatures yielded coherent 

scores when they were tested with our own samples and were validated with samples from an 

external study. The expansion of such signatures towards other pre-analytical factors, such 

as storage conditions, enables the development of further quality control metrics. This may be 

achieved through similarly structured experimental set-ups with small sample sizes or the 

analysis of bigger cohorts with the inclusion of metadata. We anticipate that a quality score for 

proteome and metabolome integrity can have great practical utility, enabling the exclusion of 

low-scoring samples for further analysis. This will be particularly important if clinical decisions 

are to be made based on metabolic or proteomic data from such samples. At this point, it is 

premature to suggest a cut-off score here, since the number of samples in our study is low, 

and since the choice for such a cut-off may depend on the setting of the analysis (e.g., 

biomarker discovery, clinical decision). Finally, although a quality score is helpful, it cannot 

replace rigorous SOPs. In addition, this must be evaluated in the context of other available 

metadata that should be applied in combination with other quality control strategies (Naake 

and Huber, 2022) .  
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Figure 4: Considerations for the joint proteomic and metabolomic analysis of plasma 

and serum samples. A: Most influential factors on the proteome and proteome in our data. 

B: Recommendations for clinical blood sampling. C Change over time in blood plasma and 

serum samples and the resulting quality and contamination scores. 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 27, 2022. ; https://doi.org/10.1101/2022.04.26.489520doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.26.489520
http://creativecommons.org/licenses/by/4.0/


 

Summary 

In this study we assessed the influence of controllable pre-analytical parameters on protein 

and metabolite levels in plasma and serum samples, to define or improve SOPs for concerted 

metabolomic and proteomic analyses.  While only a subset of metabolites and proteins 

changed, the ability to identify features that are prone to alteration increases the confidence 

in such broadly acquired data sets. We propose to store blood samples for maximum 2 h on 

ice (4°C) before quenching the samples, as a compromise between stability and practical 

operability. Additionally, the metabolomic and proteomic signatures can be applied routinely 

in bioinformatics workflows to review and evaluate the sample quality of plasma and serum 

samples. Due to its accessibility, such signatures may be expanded over time to improve the 

assessment of qualitative differences between blood samples. Lastly, bigger sample sizes and 

additional metadata of volunteers and/or available metadata from clinics may extend these 

scores to include signatures capturing other sources of variability important to clinical studies, 

such as storage, medication, or lifestyle.  
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Methods 

Sampling and sample treatment /design 

Peripheral blood samples were collected from 6 male healthy volunteers (age 22-37 years, 

median age 29.83 years) with written informed consent in accordance with the Declaration of 

Helsinki and approved by the Ethics Committee of the Medical Faculty of the University of 

Heidelberg (S-254/2016). All samples were taken in the early morning in fasting condition 

using Serum and EDTA S-Monovette tubes (Sarstedt AG, Nümbrecht, Germany). Serum 

samples were allowed to coagulate for 30 min after collection, were kept at RT for the indicated 

time points and centrifuged at 400 x g for 10 min. Plasma samples were kept at RT or at 

4°C/on ice for the indicated time points, followed by centrifugation for 10 min. at 2000 x g and 

4000 x g, respectively. Subsequently, samples were divided into single-use aliquots, snap-

frozen in liquid nitrogen and stored at -80°C until analysis. Thus, metabolomic and proteomic 

analyses were performed from the same original samples. 

  

Metabolomics  

For the metabolomics analysis of up to 630 metabolites the Biocrates MxP® Quant 500 kit 

(Biocrates, Austria) was used following the manufacturer’s protocol. Briefly, 10 µl of plasma or 

serum was semi-automated pipetted on a 96 well-plate containing internal standards using a 

pipetting robot (epMotion 5057, Eppendorf, Germany) and subsequently dried under a 

nitrogen stream using a positive pressure manifold (Waters, Germany). Afterwards, 50 µl 

phenyl isothiocyanate 5% (PITC) was added to each well to derivatize amino acids and 

biogenic amines. After 1 h incubation time at RT, the plate was dried again. To resolve all 

extracted metabolites 300 µl 5 mM ammonium acetate in methanol were pipetted to each filter 

and incubated for 30 min. The extract was eluted into a new 96-well plate using positive 

pressure. For the LC-MS/MS analyses 150 µl of the extract was diluted with an equal volume 

of water. Similarly, for the FIA-MS/MS analyses 10 µl extract was diluted with 490 µl of FIA 

solvent (provided by Biocrates). After dilution, LC-MS/MS and FIA-MS/MS measurements 

were performed in positive and negative mode on subsequent days. For chromatographic 

separation an UPLC I-class PLUS (Waters, Germany) system was used coupled to a QTRAP 

6500+ mass spectrometry system (Sciex, Germany) in electrospray ionisation (ESI) mode. 

Data was recorded using the Analyst software suite (version 1.7.2, Sciex, Germany) and 

transferred to the MetIDQ software (version Oxygen-DB110-3005, Biocrates, Austria) which 

was used for further data processing, i.e., technical validation, quantification and data export. 
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Low-abundant metabolites that were not measured in more than 66% of the samples as 10-

times the levels over the limit of detection (LOD) or above the lower limit of quantification 

(LLOQ) (both according to the MetIDQ software) were removed from the subsequent analysis. 

Using the MatrixQCvis package (Naake and Huber, 2021; version 1.1.0), low-quality samples 

were removed leading to the exclusion of all samples belonging to individual 1 from the further 

analysis. To prepare the data sets for statistical analysis, the raw intensity values were 

transformed via vsn (vsn2 function from vsn package, version 3.59.1). which yields a matrix 

with feature values being approximately homoskedastic (features have constant variance along 

the range of mean values). Missing values were imputed via the impute.MinDet function 

(imputeLCMD package, version 2.0). While for MOFA analysis, the transformed data set was 

used, for all other analyses (dimension reduction, PLS-DA, limma analyses, mixed linear 

models), the imputed data set was used.  

 

Proteomics 

Sample preparation: Plasma and serum aliquots were diluted 1:10 in ddH2O to perform a 

bicinchoninic acid assay (BCA, Pierce – Thermo Scientific) protein quantification. 

Subsequently, 10 μg protein per sample were further processed in a 1 μg/μL concentration 

and 100 mM ammonium bicarbonate (ABC, Sigma-Aldrich) using a Covaris LE220plus for 

AFA-based ultrasonication in a 96-well format. The plate was transferred to a Bravo pipetting 

system (Agilent Technologies, USA) for autoSP3 processing as described elsewhere (Müller 

et al., 2020) . In brief, 10 mM TCEP, 40 mM chloroacetamide (CAA), 100 mM ABC, and 1x 

protease inhibitor cocktail (PIC, cOmplete, Sigma-Aldrich) were added to each sample, 

followed by incubation at 95°C for 5 minutes. Protein binding to Sera-Mag Speed Beads 

(Fisher Scientific, Germany) was induced by increasing the buffer composition to 50% 

acetonitrile (ACN, Pierce – Thermo Scientific). The bead stock was prepared as follows: 20 

μL of Sera-Mag Speed Beads A and 20 μL of Sera-Mag Speed Beads B were combined and 

rinsed with 1x 160 μL ddH2O, 2x with 200 μL ddH2O, and re-suspended in 20 μL ddH2O for a 

final working stock. The bead stock was prepared for all samples. The autoSP3 protein clean-

up was performed with 2x ethanol (EtOH, VWR International GmbH, Germany) and 2x ACN 

washes. Reduced and alkylated proteins were digested on-beads and overnight at 37°C in a 

lid-heated PCR cycler (CHB-T2-D ThermoQ, Hangzhou BIOER Technologies, China) in 100 

mM ABC with sequencing-grade modified trypsin (Promega, USA). Upon overnight protein 

digestion each sample was acidified to a final concentration of 1% trifluoroacetic acid (TFA, 

Biosolve Chimie). MS injection-ready samples were stored at -20°C. 
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Data acquisition: Peptide samples were measured using a timsTOF Pro mass spectrometer 

(Bruker Daltonics, Germany) coupled with a nanoElute liquid chromatography system (Bruker 

Daltonics, Germany). Peptides were separated using an analytical column (Aurora Series 

Emitter Column with CSI fitting, C18, 1.6 μm, 75 μm x 25 cm) (Ion Optics, Australia). The outlet 

of the analytical column with a captive spray fitting was directly coupled to the mass 

spectrometer using a captive spray source. Solvent A was ddH2O (Biosolve Chimie), 0.1% 

(v/v) FA (Biosolve Chimie), 2% acetonitrile (ACN) (Pierce, Thermo Scientific), and solvent B 

was 100% ACN in ddH2O, 0.1% (v/v) FA. The samples were loaded at a constant maximum 

pressure of 900 bar. Peptides were eluted via the analytical column at a constant flow of 0.4 

μL per minute at 50°C. During the elution, the percentage of solvent B was increased in a 

linear fashion from 2 to 17% in 22.5 minutes, then from 17 to 25% in 11.25 minutes, then from 

25 to 37% in a further 3.75 minutes, and then to 80% in 3.75 minutes. Finally, the gradient 

was finished with 3.75 minutes at 80% solvent B. Peptides were introduced into the mass 

spectrometer via the standard Bruker captive spray source at default settings. The glass 

capillary was operated at 3500 V with 500 V end plate offset and 3 L/minute dry gas at 180°C. 

Data were acquired in data-independent acquisition (DIA) mode using full scan MS spectra 

with mass range m/z 100 to 1700 and a 1/k0 range from 0.6 to 1.6 V*s/cm2 with 100 ms ramp 

time were acquired with a rolling average switched on (10x). The duty cycle was locked at 

100% and the TIMS mode was enabled. All timsTOF Pro and nanoElute methods were default 

provided by Bruker. Data were acquired in data-independent acquisition (DIA) mode using 

DIA method details: For the DIA scans, resolution was set to 30,000 FWHM, with an automatic 

gain control (AGC) target of 3 x 106 ions, a fixed first mass of 200 m/z, a stepped collision 

energy of 27, and a loop count of 34 with an isolation window of 24.3 m/z. 

Data processing: Raw files were processed in Biognosys Spectronaut version 14.11. The 

search parameters were set to default as specified by the developer of the software. In brief, 

enzyme was set to trypsin/P with up to 2 missed cleavages. Carbamidomethylation (C) was 

selected as a fixed modification; oxidation (M), acetylation (protein N-term) were set as 

variable modification. 

Data quality was checked by the MatrixQCvis package (Naake and Huber, 2021, version 

1.1.0), leading to the exclusion of several low-quality samples. Further data processing was 

done according to the metabolomics data set using vsn transformation and imputation of 

missing values by the impute.MinDet function.  
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LIMMA analysis to test for individual effects  

For the metabolomics and proteomics data set, the transformed intensities were taken. 

Separately for the plasma and serum samples, a linear model was fitted to the data (using 

lmFit from limma, version 3.50.0). For plasma samples, information on the individual, time, 

temperature and the interaction between time and temperature were included as terms into 

the model. For serum samples, information on the individual and time were included as  terms 

into the model. t-statistics and moderated F-statistics were computed by empirical Bayes 

moderation of the standard errors towards a global value (using eBayes from limma). The 

corresponding p-values to the effects for all individuals were adjusted via FDR using the 

Benjamini-Hochberg method (α < 0.05). The code for the analysis can be found here: 

https://github.com/tnaake/SMARTCARE_preanalytical_processing/tree/main/LIMMA 

 

Multi-omics factor analysis (MOFA) of the combined metabolomics and proteomics 

data sets 

The vsn-transformed data sets (no imputed missing values) were used for running MOFA. For 

the proteomics data set, the mean intensities between duplicates were calculated. 

Subsequently, only the overlapping samples (intersection) of the metabolomics and 

proteomics data sets were retained (40 plasma samples and 14 serum samples). MOFA 

(using the MOFA2 package, version 1.1.21) was run using the metabolomics and proteomics 

data sets as views and Plasma and Serum as groups. The data options were set to default 

values (scale_views = FALSE, scale_groups = FALSE, center_groups = TRUE, use_float32 

= FALSE), the model options were set to default (gaussian likelihood for views, maximum 

number of factors = 15, spikeslab_factors = FALSE, spikeslab_weights = TRUE, ard_factors 

= TRUE, ard_weights = TRUE), and the training options were set to default (maximum of 

iterations = 10000, convergence mode = „slow“, drop_factor_threshold = 0.01, startELBO = 1, 

freqELBO = 5, stochastic = FALSE, gpu_mode = FALSE, seed = 42, weight_views = FALSE). 

The code for the analysis can be found here:  

https://github.com/tnaake/SMARTCARE_preanalytical_processing/tree/main/MOFA/ 

 

Dimension reduction analysis 

The dimensions of the metabolomics and proteomics data sets were reduced to two/three 

dimensions using principal components analysis (PCA), t-distributed stochastic neighbour 

embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP). Prior to 
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performing PCA, the transformed and imputed intensity values were feature-wise scaled and 

centred before calculating PCs using prcomp (from the stats package, version 4.1.0). t-SNE 

was run using the Rtsne function and the following parameters: initial dimensions = 10, 

maximum number of iterations = 100, final dimensions = 3, perplexity = 3 (Rtsne package, 

version 0.15). UMAP was run using the umap function and the following parameters: minimum 

distance = 0.1, number of neighbours = 15, spread = 1 (umap package, version 0.2.7.0).  

 

Partial least square - discriminant analysis 

To discriminate the samples based on the class vector Y, partial least square-discriminate 

analysis was performed. Y is here a vector of length n that indicates the class of each samples, 

i.e. a vector containing information on the time, temperature, time/temperature or the individual 

identifier. X is a n x p matrix containing the normalised+transformed+imputed intensities. To 

find the optimal number of components, plsda from the mixOmics package (version 6.15.45) 

was run with a maximum of 20 components (ncomp = 20), followed by evaluation of the 

performance of the fitted PLS using the perf function (validation = „Mfold“, folds = 3, nrepeat 

= 30). The overall classification error rate was taken as a measure to select the number of 

components and the number of components and distance method was selected by the 

maximum of the determined component number of the distances “centroids.dist”, 

“mahalanobis.dist” and “max.dist”. In a next step, the optimal number of variables was 

determined using a grid-based search ranging from 5 to 100 variables by the tune.splsda 

function (number of components, ncomp, and distance method, dist, as previously determined 

by the perf function, validation = “Mfold”, folds = 3, nrepeat = 30, measure = “BER”). The final 

model, using the optimal number of components based on t-tests on the error rate and the 

corresponding number of selected variables, was selected using the splsda function (scale = 

TRUE). All functions were taken from the mixOmics package (version 6.15.45). The code for 

the analysis can be found here: 

https://github.com/tnaake/SMARTCARE_preanalytical_processing/tree/main/MLM/metabolo

mics and 

https://github.com/tnaake/SMARTCARE_preanalytical_processing/tree/main/MLM/proteomic

s 
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‚Stability‘ analysis using mixed linear models 

For the mixed linear model, for plasma samples, the time, temperature and the interaction 

between time and temperature were included as fixed effects and individual as a random effect 

into the model. For serum samples, time was included as a fixed effect and individual as a 

random effect. When fitting the actual model, the lmer function from the lmerTest package 

(version 3.1-3) was used. If the mixed linear model was singular, an analysis of variance model 

was fitted with the same terms as for the mixed linear model except the random effects. The 

corresponding p-values to the fixed effects (time, temperature, and interaction between time 

and temperature) and the intercept were adjusted via FDR using the Benjamini-Hochberg 

method (α < 0.05). The code for the analysis can be found here: 

https://github.com/tnaake/SMARTCARE_preanalytical_processing/tree/main/MLM/metabolo

mics   

and 

https://github.com/tnaake/SMARTCARE_preanalytical_processing/tree/main/MLM/proteomic

s   

 

Pathway analysis of proteomic data 

Pathway sets were obtained from the hallmark pathway set collection of Molecular Signature 

Database of the Broad Institute (MSigDB), with gene symbol identifiers. Pathway enrichment 

analysis was performed using the FGSEA R package (Version: fgsea_1.18.0), using the 

proteomic t-values (from ‚Stability‘ analysis using mixed linear models part) as input 

statistics.  We set the number of permutations to 10.000 and only considered pathway sets 

with at least 10 protein members. All codes for this part is available at: 

https://github.com/saezlab/SMARTCARE_pilot_serum_prot_metab  

 

Proteomic and metabolomic signatures of plasma and serum samples 

The pre-analytical quality signatures were made by selecting the top 20 p-values from the 

limma differential analysis output for serum and plasma samples stored for 8 h compared to 0 

h on ice (4°C) or at RT. The contamination signatures were taken from Geyer et al. (2019). In 

order to estimate the normalised enrichment score, we used the weighted mean method from 

the decoupleR R package. The weights were either the t-values of the limma differential 

analysis for the storage quality signatures, the -1*t-values differences for the coagulation 

signature from Geyer et al. (2019) and 1 otherwise (for erythrocyte and platelet contamination, 
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since no continuous weights were available). The signatures and method to estimate scores 

for plasma and serum samples are provided in the form of an open-source R package, that 

can be downloaded here: https://github.com/saezlab/plasmaContamination. The code for the 

analysis of the sample and computing the scores can be found here: 

https://github.com/saezlab/SMARTCARE_pilot_serum_prot_metab   
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Supplementary Information 

 

 

Supplementary Figure 1: Individual-specific effects in the metabolomics and 

proteomics data set. A: Principal component analysis for metabolomics and proteomics data 

set identify individual-specific effects driving the variation within the individual data sets. The 

effect is more pronounced for the metabolomics data set. Biobank data points refer to long-

term reference proteomics plasma samples. B: Sparse partial least squares - discriminant 
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analysis classification using the set of features shown in Supplementary Table 1. The set of 

features leads to clear separation of individuals in the case of metabolomics, while for the 

proteomics data set a clear separation is not possible, indicating that it is more difficult to 

predict the individual based on proteins than on metabolites. C: Classification error rate of 

Partial least squares - discriminant analysis. Both analyses yield low classification error rates, 

indicating in general a separability according to the individuals. 
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Supplementary Figure 2: Dimension reduction analysis by t-SNE and UMAP of the 

metabolomics and proteomics data set. t-SNE and UMAP reveals for the metabolomics 

data set individual-specific effects, while for the proteomics data set t-SNE and UMAP 

separate the data according to plasma and serum. Biobank data points refer to long-term 

reference proteomics plasma samples. 
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Supplementary Figure 3: Multi-omics factor analysis (MOFA) of the metabolomics and 

proteomics data set. MOFA infers (hidden) factors that explain biological and technical 

sources of variability. The factors capture major sources of variation across the proteomics 

and metabolomics data sets (Argelaguet et al., 2018)). The MOFA model consisted of eight 

orthogonal axes of heterogeneity (factors 1 to 8) using the 40 and 14 joint samples for 

metabolomics and proteomics from plasma and serum. A: Variance explained for the 

metabolomics and proteomics data set for the plasma and serum groups. The fitted model 

explained 76.6 and 81.5% (R2
total) of the variance in plasma and serum for the metabolomics 

data set, while for the proteomics data set, it explained 33.36% and 36.1% (R2
total) of the 

variance in plasma and serum, respectively. B: Factor-wise explanation of variance. The 

metabolomics data set explains for most of the factors more variance than the proteomics data 

set. Factor 1 explains 29.9% and 7.5% (R2
total) of the variance in plasma and 32.7% and 9.9% 

in serum for metabolomics and proteomics, respectively. Factor 8 explains 1.1% and 0.27% 

(R2
total) of the variance in plasma and 1.32% and 0.47% (R2

total) in serum for metabolomics and 

proteomics, respectively. C: Association test to check for the association of the eight factors 

with individual, time, group (plasma, serum), and temperature. Factors 1, 3, and 4 were 
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associated with the individual, thereby explaining most of the variance within the data sets, 

and factor 8 was associated with the time variable. D: Visualisation of factors 1 and 8 in latent 

space. Factor 1 is separating the data set according to the individual, while factor 8 is 

separating the data set according to time and temperature. The variability along the x-axis 

includes random jitter. 
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Supplementary Figure 4: Partial least squares - discriminant analysis (PLS-DA) for the 

metabolomics and proteomics data sets. A: Classification error rates for PLS-DA using the 

class vector with time information. B: Sparse PLS-DA using the class vector with time 

information orders the samples along the time axis. C: Classification error rates for PLS-DA 

using the class vector with combined information on time/temperature. D: Sparse PLS-DA 

using the class vector with combined information on time/temperature. For the metabolomics 

data set, there are more distinct clusters for the samples subjected to RT incubation, while the 
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clusters of the samples at 4°C are less distinct, indicating stronger effects on metabolite levels 

under RT. The sparse PLS-DA showed a more cluttered picture for the proteomics data set, 

indicating that the selected protein features are less suitable for classification of the combined 

time/temperature information.  
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Supplementary Figure 5: Absolute change of significantly changing metabolite and 

protein levels (in %) for the time points T2 h and T8 h compared to T0 h. The intensities at 

time point 0 h are set to 0 and the changes to the time point 2 h, 4 h, and 8 h are displayed as 

the mean changes of the individuals (in %). For plasma, the features are included that are 

significant to the pre-analytical factors time, temperature or the interaction time/temperature 

(𝛼 < 0.05, FDR correction). For serum, the features are included that are significant to the pre-

analytical factor time (𝛼 < 0.05, FDR correction).  
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Supplementary Figure 6: Details of signatures included in the plasmaContamination 

package. A: Proteins and metabolites composing the tested signatures. The colour represents 

the weight of each feature of the signature, when available. The signature score is computed 

as a weighted mean of the feature weight * feature measurement, normalised using an 

empirical distribution of score generated through feature shuffling. B, C, D, E, F, G: Scatter 

plot of feature weight against feature measurements for the corresponding samples/contrasts 

(a contrast being the result of a differential analysis between two conditions). B, C, E: relative 

to plasma samples kept at 4°C for 8 h. D, G: relative to serum samples kept at RT for 8 h. F: 

relative to plasma samples kept at RT for 8 h. Red and blue colours represent positive and 

negative contributions to the signature score, respectively. Red corresponds to up/down-

regulated features with positive/negative weights, respectively, and blue corresponds to 

up/down-regulated features with negative/positive weights, respectively. The features that are 

the furthest away from the (0, 0) coordinate have the highest contribution to the score 

(contribution of a single feature being defined as weight * measurement).  
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Supplementary Table 1: Selected features of sparse partial least square - discriminant 

analysis using the individual as the class variable. The intensities of the features are 

ordered in descending order according to the absolute importance values. 

metabolite Value of selected 

metabolite 

protein Value of selected protein 

PC.ae.C36:5          -0.268500768  SAA2 (P0DJI9)  0.58498936 

GDCA  -0.266503328 C9 (P02748) 0.51144060 

PC.ae.C34:3   -0.256407863 IGLV3-21 (P80748)   -0.37696364 

CE(14:0)   -0.229114859 CRP (P02741) 0.28526630 

PC.ae.C36:4 -0.223906293 PON1 (P27169) -0.23718690 

CE(20:4)    -0.223493432 APOC4 (P55056) -0.18297455 

PC.ae.C38:5                 -0.218488828 IGLV2-8 (P01709) 0.17191216 

TG(20:2_34:1)  0.218144999 CFB (P00751) 0.15198452 

PC.aa.C38:4 -0.214187090 F13A1 (P00488) -0.14917795 

TG(20:1_34:2)        0.207074762 GSTO1 (P78417) 0.04788159 

PC.ae.C38:4  -0.204103703 FCGBP (Q9Y6R7) 0.04452931 

TG(16:0_38:2) 0.191128128 PRAP1 

(Q96NZ9;Q96NZ9-2; 

Q96NZ9-3;Q96NZ9-4) 

0.04218922 

TG(20:1_34:1)   0.173650357 TTR (P02766) -0.03921732 

CE(17:1)   -0.172349100 C1S (P09871) -0.01751029 

PC.ae.C32:1   -0.170670334 ALDOB (P05062)     -0.01389305 

PC.ae.C38:6  -0.167923231   

PC.ae.C40:5 -0.161312384   

HexCer(d18:2/24:0) -0.159319689   

 PC.aa.C36:4 -0.158318121   

TDCA   -0.153837447   

HexCer(d18:1/24:0) -0.143365272   

TG(16:0_38:3)  0.132706459   

DCA                 -0.119516370   

PC.aa.C40:5  -0.110879600   

TG(18:1_36:1)  0.109261217   

GUDCA  0.101513121   

lysoPC.a.C20:4   -0.094747816   

 PC.aa.C38:0   -0.086969074   

PC.ae.C34:2            -0.086936894   

TG(18:0_36:3) 0.081121569   

PC.ae.C40:6  -0.080362096   

CE(22:5)                -0.079775441   

TG(18:0_36:2)   0.077673974   

FA(18:2)   0.074525414   

CE(18:0)  -0.069044645   

TG(18:1_34:2)          0.046089288      

HexCer(d18:1/23:0) -0.043501804   

SM.C18:1   -0.040112031   

PC.aa.C38:5  -0.034541815   
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HipAcid -0.033557136   

CE(15:0)  -0.027731165   

Kynurenine  0.027723492   

CE(14:1) -0.026967113   

TrpBetaine 0.026213738   

PC.aa.C40:4   -0.024257807   

lysoPC.a.C28:1 -0.022013954   

PC.ae.C32:2 -0.012042735   

CE(18:1)    -0.003493789   

CE(16:1)     -0.001702684   

PC.ae.C34:1    -0.000103610   
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Supplementary Table 2: Selected features of sparse partial least square - discriminant 

analysis using the time as the class vector. The features are ordered in descending order 

according to the absolute importance values. 

Metabolite Value of selected 

metabolite 

Protein Value of selected protein 

Hypoxanthine 0.86500382 HBA1 (P69905)  0.3051776936 

Xanthine   0.35585116 ECM1 (Q16610;Q16610-

4) 

-0.2790432656 

Lactate 0.33061249 BPGM (P07738) 0.2728424861 

Ornithine 0.12100160 APOA1 (P02647)  -0.2689895678 

Asparagine   0.03453019 CAT (P04040) 0.2574125644 

  CA2 (P00918)  0.2506049009 

  HYOU1 (Q9Y4L1) -0.2468780420 

  SLC4A1 (P02730) 0.2259034325 

  FERMT3 

(Q86UX7;Q86UX7-2) 

0.2201556911 

  HBB (P68871) 0.2103457860 

  BASP1  

(P80723;P80723-2) 

-0.2062149021 

  HBD (P02042) 0.1863074451 

  BLVRB (P30043)  0.1823127035 



  YWHAZ (P63104)  0.1705790612 

  MPO 

(P05164;P05164-2; 

P05164-3)  

0.1635279760 

  GANAB  

(Q14697;Q14697-2) 

0.1397937894 

  GC (P02774)  -0.1394798788 

  F2 (P00734) -0.0955141175 

  C8G (P07360) -0.0934011313 

  CFL1 (P23528)     0.0886430466 

  PRSS3  

(P35030;P35030-2; 

P35030-3;P35030-4) 

0.0864709428 

  PROZ (P22891;P22891-2) 0.0792679857 

  FN1 (P02751;P02751-3) -0.0788933328 

  HPX (P02790)  -0.0709280449 



  ATRN  

(O75882-2;O75882-3) 

0.0650318704 

  PSMA4 (P25789)     -0.0628043092 

  KRT8 (P05787)  -0.0606475289 

  MDH1 (P40925;P40925-2)   0.0599833383 

  IGKV3-20 (P04206)  -0.0587456769 

  EEF1A1 

(P68104;Q5VTE0) 

-0.0584839501 

  PRDX2 (P32119) 0.0578632531 
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  ITIH2 (P19823)  0.0550239670 

  PTPRG  

(P23470;P23470-2) 

0.0438356128 

  EFEMP1 

(Q12805;Q12805-

2;Q12805-3;Q12805-4) 

0.0429530829 

  ITIH3 (Q06033;Q06033-2)  0.0423345831 

  ITGB3 (P05106)  0.0414866691 

  HNRNPK 

(P61978;P61978-2; 

P61978-3) 

-0.0407078585 

  ALDOA (P04075) 0.0406151070 

  GP1BB  

(P13224;P13224-2) 

0.0405218107 

  TPM3 (P06753-2) 0.0397427929 

  IGLC2 (P0CG05)  -0.0388841132 

  IGHG1 (P01857)  0.0387823216 

  TFRC (P02786)  0.0383223128 

  VWF (P04275)  -0.0332107407 

  IGHV3-7 (P80419)  -0.0331100294 

  MRC1 (P22897)  0.0325502649 

  HSPA8  

(P11142;P11142-2) 

0.0324084800 

  PRDX1 (Q06830)  -0.0292653697 

  PGK1 (P00558)  0.0266566339 

  F12 (P00748)  0.0246458975 

  FGL1 (Q08830)  0.0237648829 

  CFI (P05156)  0.0230229098 

  CLU 

(P10909;P10909-2; 

P10909-4;P10909-5)  

0.0223664138 

  PRDX6 (P30041)  0.0182668762 

  IGLV6-57 (P06318)  0.0160594551 

  FLT4  

(P35916;P35916-1; 

P35916-3) 

-0.0159933947 

  TLN1 (Q9Y490)  0.0143133844 

  APOA4 (P06727)  -0.0138128179 

  MASP1  

(P48740-2;P48740-4) 

0.0130026995 

  NME2 (P22392;P22392-2)  0.0122881335 

  ITGA2B (P08514;P08514-

2)  

0.0109002438 

  AHSG (P02765)  -0.0106803269 

  ANGPTL3 (Q9Y5C1)  -0.0102464019 

  AFM (P43652)  -0.0091812995 

  DPP4 (P27487)  0.0081835342 

  IGKV1D-33 (P01593)  -0.0055046478 

  KNG1 (P01042-2)  0.0042764859 

  DSG2 (Q14126)  0.0037493018 
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  C8A (P07357)  -0.0035858940 

  NFX1 (Q12986;Q12986-2) -0.0031747150 

  DSC1 (Q08554;Q08554-2) -0.0030473481 

  HLA-A 

(P01891;P01892;P04439;

P05534;P10314;P10316; 

P13746;P13746-2; 

P16188;P16189;P16190; 

P18462;P30443;P30447; 

P30450;P30453;P30455; 

P30456;P30457;P30459; 

P30508;P30512;Q29960;

Q29960-2;Q95604) 

0.0013763727 

  SAA4 (P35542)  -0.0002944848 
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Supplementary Table 3: Selected features for sparse partial least square – discriminant 

analysis using temperature as the class vector. The features are ordered in descending 

order according to the absolute importance values. 

Metabolite Value of selected 

metabolite 

Protein Value of selected 

protein 

Lactate -0.60085947 THBS1 (P07996) 0.6521617731 

Ornithine  -0.54910269 PF4 (P02776;P10720)  0.6318854387 

Xanthine  -0.36905947 VWF (P04275) 0.3135767399 

Arginine  0.28784931 AMBP (P02760) 0.1908734707 

Cystine  0.27148684 PPBP (P02775)  0.1750974544 

Aconitic acid -0.20830526 FN1 (P02751;P02751-3) 0.0964168595 

Hexosyl ceramide 

(d18:2/16:0)  

0.03599758 TKT (P29401) -0.0231791401 

  KRT6B (P04259) -0.0122508252 

  GP1BB  

(P13224;P13224-2)  

-0.0002753722 
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Supplementary Table 4: Selected features for spare partial least square – discriminant 

analysis using the combined factor time/temperature as the class vector. The features 

are ordered in descending order according to the absolute importance values.                                                                                                        

Metabolite Value of selected 
metabolite 

protein Value of selected 
protein 

Lactate 0.497906200 HBA1 (P69905)  0.390132770 

Xanthine  0.482245661 BPGM (P07738) 0.347052972 

Hypoxanthine  0.385472090 CAT (P04040)  0.336819132 

Ornithine  0.382345986 CA2 (P00918) 0.295104965 

Cystine  -0.315990537 HBB (P68871) 0.259492546 

Arginine  -0.299029707 HBD (P02042) 0.250791582 

lysoPC.a.C14:0 0.117475537 BLVRB (P30043) 0.235249620 

C16  0.109778009 SLC4A1 (P02730) 0.209868590 

Choline  0.066216195 CA1 (P00915) 0.202047270 

H1 -0.061548518 BASP1  
(P80723;P80723-2) 

-0.174176982 

C18  0.022301374 VWF (P04275)  -0.173046419 

Aconitic acid 0.020311751 APOA1 (P02647)  -0.163684244 

lysoPC.a.C16:0  0.017172037 HYOU1 (Q9Y4L1)   -0.160338017 

Aspartic acid 0.013924487 FN1 (P02751;P02751-3) -0.159296043 

TG(20:1_32:2) -0.007704635 CFL1 (P23528) 0.147770162 

  PRDX2 (P32119) 0.140059427 

  FERMT3 
(Q86UX7;Q86UX7-2) 

0.127839385 

  VASN (Q6EMK4) -0.125158205 

  YWHAZ (P63104)               0.090406370 

  GANAB 
(Q14697;Q14697-2) 

0.084510361 

  EFEMP1 
(Q12805;Q12805-2; 
Q12805-3;Q12805-4) 

0.083982491 

  ECM1  
(Q16610;Q16610-4) 

-0.075987107 

  PRSS3  
(P35030;P35030-2; 
P35030-3;P35030-4) 

0.071483516 
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  MDH1 
(P40925;P40925-2) 

0.070693769 

  C8G (P07360)  -0.058401316 

  F2 (P00734)  -0.033569852 

  KRT8 (P05787)               -0.024205527 

  ATRN  
(O75882-2;O75882-3) 

0.021001097 

  GP1BB  
(P13224;P13224-2) 

0.015455550 

  MRC1 (P22897)  0.013485628 

  ALDOA (P04075)  0.012840246 

  C8A (P07357)  -0.012307833 

  GSN (P06396-2) -0.011774569 

  PROZ  
(P22891;P22891-2) 

0.007770302 

  EEF1A1 
(P68104;Q5VTE0) 

-0.001995734 
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