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Abstract 14 

Sexual dimorphism is challenging to detect among fossils, due to a lack of statistical representativeness. 15 

The Angeac-Charente Lagerstätte (France) represents a remarkable “snapshot” from a Berriasian (Early 16 

Cretaceous) ecosystem and offers a unique opportunity to study intraspecific variation among a herd of 17 

at least 61 coeval ornithomimosaurs. Herein, we investigated the hindlimb variation across the best-18 

preserved specimens from the herd through 3D Geometric Morphometrics and Gaussian Mixture 19 

Modelling. Our results based on complete and fragmented femora evidenced a dimorphism 20 

characterized by variations in the shaft curvature and the distal epiphysis width. Since the same features 21 

vary between sexes among modern avian dinosaurs, crocodilians, and more distant amniotes, we 22 

attributed this bimodal variation to sexual dimorphism based on the extant phylogenetic bracketing 23 

approach. Documenting sexual dimorphism in fossil dinosaurs allows a better characterization and 24 

accounting of intraspecific variations, which is particularly relevant to address ongoing taxonomical 25 

and ecological questions relative to dinosaur evolution. 26 

Introduction 27 

Dimorphism has been reported in every major dinosaur clade and has often been attributed to sex-28 

specific variation (Dodson, 1976; Chapman et al., 1997; Bunce et al., 2003; Padian and Horner, 2011; 29 

Knell and Sampson, 2011; Knell et al., 2013; Mallon, 2017; Saitta et al., 2020). However, recent studies 30 

have demonstrated that most of the documented cases of sexual dimorphism in extinct dinosaurs were 31 

most likely biased by ontogenetic changes, taphonomic deformations and small sample sizes, which 32 
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substantially affect the representativeness of the inter- and intraspecific diversity, and undermine 33 

statistical analyses (Griffin and Nesbitt, 2016; Hone and Mallon, 2017; Saitta et al., 2020). For example, 34 

a discrete and binary variation between gracile and robust morphologies of bone scars, mostly at the 35 

level of the lesser trochanter, has frequently been inferred, with more or less confidence, as sexual 36 

dimorphism in various ceratosaurian theropods and non-dinosaurian dinosauriforms (Colbert, 1990; 37 

Raath et al., 1990; Benton et al., 2000; Britt et al., 2000; Carrano et al., 2002; Piechowski et al., 2014). 38 

More recently, Griffin & Nesbitt  (2016) demonstrated that this feature no longer appeared dimorphic 39 

when accounting for ontogenetic series in the silesaurid Asilisaurus. At a larger scale, Mallon (2017) 40 

performed a statistical investigation on a large set of studies that hypothesized sexual dimorphism based 41 

on a wide diversity of anatomical proxies across the major clades of non-avian dinosaurs. However, 42 

among the 48 described occurrences, only nine datasets were suitable for statistical test, among which 43 

only one was considered to rigorously demonstrate dimorphism. Indeed, the combination of a principal 44 

component analysis and a mixture modelling analysis highlighted that the shift in posterior inclination 45 

between the 8th and 9th dermal plates of Stegosaurus mjosi was best explained by a bimodal distribution. 46 

Yet, there is not robust evidence to postulate that the dimorphism shown in dermal plates would be sex-47 

specific (Saitta, 2015). As a consequence, it appears that no dataset enabled to rigorously demonstrate 48 

the presence of sexual dimorphism in non-avian dinosaurs (Hone et al., 2020).  According to  Mallon 49 

(2017), one should review three issues when demonstrating sexual dimorphism on extinct organisms: 50 

1) sample size in order to ensure population representativeness; 2) methodology in order to use only 51 

suitable analyses to study sexual dimorphism, such as mixture modelling; (3) any other intraspecific 52 

morphological variation such as ontogeny and pathology, as well as taphonomy. 53 

Here, we studied the intraspecific femoral variability among a remarkable population of 54 

ornithomimosaurs (Allain et al., 2022, 2014) from the Angeac-Charente Lagerstätte (Lower Cretaceous 55 

of France). Rozada et al. (2021, 2014) demonstrated that at least 61 ornithomimosaur individuals 56 

belonged to the same herd and were deposited in a mass mortality event relying on several evidences 57 

(e.g., very limited transport; quality of bone preservation; abundance of individuals with a high skeletal 58 

representation preserved in a restricted spatial distribution; catastrophic age profile of the group; 59 

deposition of sediment and bones under coeval; poorly oxygenated burial and diagenesis conditions 60 

given by their rare earth elements and Yttrium profiles). Thus, the ornithomimosaur herd of Angeac-61 

Charente represents a unique occasion to study subtle parameters such as intraspecific variability in 62 

extinct dinosaurs. Moreover, the exceptionally high minimal number of individuals among the herd 63 

offers a singular opportunity to test for the presence of dimorphism and characterize its variation. 64 

We used a 3D Geometric Morphometric (3D GMM) approach that combines anatomical landmarks and 65 

sliding semilandmarks along curves and surfaces on both complete and fragmented femora and tibiae 66 

(Fig. S1A-B) (Gunz et al., 2005; Gunz and Mitteroecker, 2013). This method is well suited to study 67 

biological objects, including limb bones, and to detect subtle intraspecific shape variations (Zelditch et 68 
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al., 2012; Botton-Divet et al., 2016) such as dimorphism (Fabre et al., 2014). We then investigated the 69 

resulting dataset using Principal Component Analyses (PCA) and Gaussian Mixture (GM) modelling 70 

as clustering analyses. This clustering analysis calculates the number of Gaussian distributions present 71 

in a dataset by maximum likelihood estimations and has been demonstrated as a well-suited method for 72 

the identification of dimorphism (Godfrey et al., 1993; Dong, 1997; Fabre et al., 2014; Manin et al., 73 

2016; Mallon, 2017; Saitta et al., 2020) 74 

Institutional abbreviation: ANG: Angeac-Charente Collection, Musée d’Angoulême, Angoulême, FR 75 

Results 76 

We highlight a dimorphic variation in femora from the ornithomimosaur herd of Angeac-Charente (Fig. 77 

1A-B). This dimorphic variation is localized along the diaphysis (i.e., lateromedial curvature) and 78 

toward the distal epiphysis (i.e., lateromedial width) of the femur (Fig. 1C-D). Distributions along the 79 

PC1 of complete femora (28.8%) and distal epiphyses (27.9%) are best described by two clusters with 80 

a ratio close to 1:1 according to mixture modelling analyses (see Table S1 for details). PC1 scores from 81 

both analyses are not significantly correlated to the log centroid size, indicating that size-related effects 82 

have no impact on the observed dimorphism (p-value > 0.1 for complete femora and distal epiphyses, 83 

Table S1). 84 
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 85 

Figure 1: The two first axes of the PCA for A) complete femora and B) distal epiphyses; Minimal (left) 86 
and maximal (right) mean shapes per group for C) complete femora in posterior view and D) distal 87 
epiphyses in posterior (top) and distal (bottom) views. Abbreviations: L, lateral; P, Posterior; Pr, 88 
proximal. 89 

The most important morphological variation of complete femora is a medial to lateral curvature of the 90 

femur (Fig. 1C). The proximal third of the femur appears deviated toward the lateral side in specimens 91 

on the negative part of the axis, whereas specimens located on the positive part have straight to medially 92 

curved femora (Fig. 1C). Coincidentally, the femoral head is directed medially in the negative cluster 93 

while it is inclined ventromedially in the positive one (Fig. 1C). Regarding distal epiphyses, we selected 94 

six (out of 10) epiphyses from complete femora because the other four were taphonomically altered or 95 

pyrite encrusted only in the distal area, which would appear relatively more important in analyses 96 

restricted only to this area rather than on the complete morphology (Table S2). Nevertheless, for distal 97 

epiphyses the most important morphological variation along PC1 is the expansion of the lateromedial 98 

width relative to the anteroposterior length, which is greater in specimens on the positive part of the 99 

PC1 axis than on the negative one (Fig. 1D). In addition, we highlight that the six distal epiphyses from 100 

complete femora are consistently attributed to the same clusters between the two analyses (Fig. 1A-B; 101 
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Table S2). Hence, our study shows that the straighter the shaft is, the more robust the epiphysis is, and 102 

that this relationship is dimorphic. 103 

However, there is no robust bimodal distribution on proximal epiphyses, as shown by the GM analyses 104 

(Fig. S2; no consistency in the specimen attribution between complete femora and proximal epiphyses). 105 

Similarly, there is no dimorphism in the morphological variation of complete tibiae (Fig. S3) along PC1 106 

(24.1%) and PC2 (20.0%). 107 

Discussion 108 

The closest extant relatives of non-avian dinosaurs are known to display sexual dimorphism with more 109 

or less visibility: birds display variation in their plumage and skeleton (Schnell et al., 1985; Owens and 110 

Hartley, 1998; Dunn et al., 2001; Székely et al., 2007; Clarke, 2013; Duggan et al., 2015; Manin et al., 111 

2016; Hone and Mallon, 2017; Elzanowski and Louchart, 2022), whereas the variation is restricted to 112 

skeleton in crocodilians (Fitch, 1981; Farlow et al., 2005; Cox et al., 2007; Prieto-Marquez et al., 2007; 113 

Bonnan et al., 2008; Hone and Mallon, 2017; Hone et al., 2020). The extant phylogenetic bracket (EPB) 114 

of non-avian dinosaurs (Witmer and Thomason, 1995) thus implies they were sexually dimorphic too 115 

(Hone and Mallon, 2017; Hone et al., 2020). 116 

A femoral dimorphism of the same nature was demonstrated to be sex-specific among populations of 117 

extant tetrapods such as carnivorans and primates. Dimorphism in the femoral obliquity (also termed 118 

“bicondylar angle”) was observed in humans, for which females had higher angles than males (Parsons, 119 

1914; Tardieu et al., 2006; Hunt et al., 2021). Moreover, a higher lateromedial width of the distal 120 

epiphysis (also termed “epicondylar width” or “bicondylar breadth”) was demonstrated to vary between 121 

sexes in grey wolves and other carnivorans, as well as in primates (Alunni-Perret et al., 2008; Gaikwad 122 

and Nikam, 2014; Morris and Brandt, 2014; Cavaignac et al., 2016; Morris and Carrier, 2016). Whereas 123 

no similar sexual dimorphism had been shown – or studied – in non-archosaurian sauropsids to our 124 

knowledge, many relevant examples are available in extant and sub-fossil archosaurs. A higher distal 125 

width in males than females was demonstrated in wild and captive Alligator mississippiensis using 126 

linear and geometric morphometrics (Farlow et al., 2005; Bonnan et al., 2008). Handley et al. (2016) 127 

demonstrated that femoral distal width of the more recently extinct flightless bird Dromornis stirtoni 128 

was also higher in males than females. To do so, they coupled morphometrics and multivariate statistics 129 

with the observation of medullary bone, a sex-specific tissue present in bones of egg-laying female in 130 

archosaurians (Dacke et al., 1993; Schweitzer et al., 2005, 2007; Canoville et al., 2019). The same kind 131 

of sexual dimorphism was observed in modern birds like California gulls (Larus californicus) (Schnell 132 

et al., 1985) and in the two extant species of ostriches (Struthio c. camelus, S. c. molybdophanes), but 133 

with reversed proportions between males and females (Elzanowski and Louchart, 2022). Furthermore, 134 

(Duggan et al., 2015) demonstrated that young male domestic ducks (Anas platyrhynchos) had more 135 

laterally curved femora than females, and that this sexually dimorphic feature disappeared along 136 
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ontogeny. However, to our knowledge and aside Duggan et al. (2015), data about femoral obliquity is 137 

generally unavailable in most studies including sex determination in birds and other sauropsids. 138 

Therefore, because the femoral dimorphic features we highlighted in the Angeac-Charente 139 

ornithomimosaur herd were also demonstrated to vary between sexes in more or less closely related 140 

extant vertebrate clades, we infer it to be sexual. 141 

We found no allometry along the first PC axis (Table S1), which indicates that the dimorphism we 142 

highlighted is not related to size. Ontogenetic allometry was often misinterpreted as sexual dimorphism 143 

in archosaurs, as demonstrated in the early dinosauriform Asilisaurus kongwe, the crocodylian Alligator 144 

mississippiensis and the bird Rhea americana (Griffin and Nesbitt, 2016; Hone and Mallon, 2017; 145 

Hedrick et al., 2021). Furthermore, this indicates no Sexual Size Dimorphism (SSD) in the Angeac-146 

Charente ornithomimosaur. SSD is one of the most documented sexual dimorphism across all living 147 

organisms, whether it is biased toward females or males (Darwin, 1874; Fairbairn et al., 2007). There 148 

are many examples of observations and/or inferences of SSD and allometric relationships in extant and 149 

extinct dinosaurs (Larson, 1994; Bunce et al., 2003; Clarke, 2004; Székely et al., 2007; Remeš and 150 

Székely, 2010; Olson and Turvey, 2013; Handley et al., 2016; Manin et al., 2016; Fajemilehin, 2017). 151 

However, Elzanowski & Louchart (2022) demonstrated that female ostriches had more robust limb 152 

bones but smaller average body size than males. This decoupling between size and shape dimorphism 153 

is concordant with our results and emphasizes that sexual dimorphism is not necessarily reflected by 154 

body size nor allometry between limb segments. Thus, size-independent sexual dimorphism should be 155 

investigated further in extant archosaurs in order to improve inferences about sexual dimorphism in 156 

fossils, which are most often represented only by isolated bones. 157 

We did not identify any other dimorphism in either the proximal part of the femur nor in complete tibia 158 

of the Angeac-Charente ornithomimosaurs (Fig. S2 & S3). However, sexual dimorphism was observed 159 

in the proximal ends of femora in extant ostriches (Charuta et al., 2007; Elzanowski and Louchart, 2022) 160 

and California gulls (Schnell et a l., 1985). In addition, the anteroposterior width of the femoral shaft 161 

was demonstrated to vary between sexes among savannah sparrows (Passerculus sandwichensis; 162 

Rising, 1987) and three species of steamer-ducks (Tachyeres pteneres, T. leucocephalus, T. 163 

patachonicus, (Livezey and Humphrey, 1984). Yet, and accordingly with our results, size-independent 164 

dimorphism in the avian tibiotarsus seems less common across the EPB. Indeed, to our knowledge, 165 

occurrences of shape dimorphism in the tibia was demonstrated only in California gulls (e.g., width of 166 

the shaft) (Schnell et al., 1985) and in ostriches [e.g., anteroposterior width of the distal epiphysis; only 167 

in Elzanowski & Louchart (2022) but not in Charuta et al. (2007)]. Furthermore, our observation that 168 

sexual dimorphism could be restricted to the femur in the Angeac-Charente ornithomimosaurs and 169 

modern archosaurs raises the question of the potential co-variation between the femur and the pelvis. 170 

Sexual dimorphism was observed in the ilium of several birds mentioned previously, such as ostriches, 171 

steamer-ducks, savannah sparrows, and California gulls (in the antitrochanter width, acetabular width 172 
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and synsacrum width and length) (Livezey and Humphrey, 1984; Schnell et al., 1985; Rising, 1987; 173 

Charuta et al., 2007). All measurements were higher in male birds than in female birds except for the 174 

width of the ilium, which was higher in female ostriches when measured by Charuta et al. (2007), but 175 

not significantly different between sexes in Elzanowski & Louchart (2022). Additionally, female 176 

alligators had a deeper pelvic canal (i.e., distance between the ventral side of the first sacral vertebra 177 

and the ventral margin of the ischial symphysis) (Prieto-Marquez et al., 2007). The dimorphism was 178 

located preferably on the femur rather than on the tibia in the Angeac-Charente ornithomimosaur, which 179 

suggests that the pelvic area might as well be dimorphic, and that seems to be generally the case in some 180 

modern avian dinosaurs too (Livezey and Humphrey, 1984; Schnell et al., 1985; Rising, 1987; Farlow 181 

et al., 2005; Charuta et al., 2007; Prieto-Marquez et al., 2007; Bonnan et al., 2008; Duggan et al., 2015; 182 

Elzanowski and Louchart, 2022). Could the ability to carry egg restrict the location of sexual 183 

dimorphism closer to the hip region? Sexual dimorphism in the pelvic girdle, the proximal hindlimb 184 

and the morphological integration between the two in female extant archosaurs should be investigated 185 

further to answer this question. 186 

Our results did not permit to confidently sex each morphotype. Most modern occurrences of femoral 187 

sexual dimorphism indicate a wider distal epiphysis among males than females, but Elzanowski & 188 

Louchart (2022) showed that the opposite was also true for modern and subfossils ostriches. 189 

Furthermore, our results indicated that femora with the narrowest distal epiphyses (females in most of 190 

modern occurrences) had a laterally deviated shaft. However, (Duggan et al., 2015) demonstrated that 191 

only juvenile male Pekin ducks had a laterally deviated shaft, which is not congruent with our results 192 

that the widest epiphyses were associated with a straighter morphotype. Paleohistological analyses 193 

could enable to verify sex assignment by assessing the presence of medullary bone, as some gravid 194 

females may have died during their egg-laying cycle at the time of the mass-mortality event recorded 195 

at Angeac-Charente. Indeed, medullary bone was recently demonstrated as probably the most reliable 196 

indicator of sex with an extensive distribution across the skeleton (Canoville et al., 2019). A 197 

paleohistological investigation could also confirm the ontogenetic homogeneity among our femoral 198 

sample, as recommended by Griffin & Nesbitt (2016), Hone & Mallon (2017) and Mallon (2017). 199 

Conclusion 200 

Our results demonstrate that the femoral morphology among a large herd of coeval ornithomimosaurs 201 

is dimorphic. We identify bimodal distributions along size-independent features that were already 202 

reported to vary between sexes in modern archosaurs, and other tetrapods (e.g., the width of the distal 203 

epiphyses and the lateral deviation of the shaft). Therefore, we infer these features to indicate sexual 204 

dimorphism in the Angeac-Charente ornithomimosaurs according to the EPB approach. Our findings 205 

inform about the intraspecific variability in non-avian theropods and emphasize the need for description 206 

of size-independent dimorphism in modern and closely related taxa with a priori knowledge of the sex. 207 
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In the future, our results should be completed by paleohistological studies to 1) sex each morphotype 208 

and 2) identify the extent of ontogenetic variations within our sample. Additionally, we show that the 209 

sex-ratio of the Angeac-Charente ornithomimosaur is close to 1:1 and thus, likely Fisherian (Fisher, 210 

1930). It was demonstrated that in extant archosaurs, Fisherian populations are only observed among 211 

clutches and hatchlings (Mayr, 1939; Clutton-Brock, 1986; Liker et al., 2013), and become generally 212 

biased toward females in sub-adult and adult populations, as demonstrated on crocodilians (Woodward 213 

and Murray, 1993; González et al., 2019) and ratites (Magige, 2012; Prokopenko et al., 2021). 214 

Therefore, paleohistological investigations could help characterize the variation of sex ratio along 215 

ontogeny in an extinct dinosaur population, and inform if it was truly Fisherian, unlike their extant 216 

relatives, or if it also experienced skewness along aging. More broadly, understanding how sex 217 

impacted the morphology of an extinct species could shed light on complex evolutionary mechanism 218 

such as trade-off between sexually dimorphic features, ecological adaptations and life-history traits. 219 

Material and Methods 220 

Sample and data acquisition 221 

Table 1. Number of femora and tibiae from the Angeac-Charente ornithomimosaur discovered between 222 

2010 and 2020. Minimum Number of Elements (MNE) and Minimum Number of Individuals (MNI) 223 

are given for each fragmented and complete femora. 224 

 Femur Tibia 

Left proximal (MNE) 31 31 

Right proximal (MNE) 35 35 

Left distal (MNE) 18 48 

Right distal (MNE) 22 46 

Left complete (MNE) 8 13 

Right complete (MNE) 11 12 

MNI 46 61 

 225 

Several complete and fragmented femora and complete tibiae from the Angeac-Charente 226 

ornithomimosaur were discovered between 2010 and 2020 (Table 1). We removed 158 specimens that 227 

were too fragmented and altered by too much oxidized pyrite and trampling (femora: six complete, 37 228 

proximal and 19 distal epiphyses; tibiae: four complete, 36 proximal and 56 distal epiphyses). We 229 

selected only fragmented femora that preserved: 1) the most proximal point of the fourth trochanter for 230 

proximal epiphyses; 2) the most proximal point of the anteromedial flange for distal epiphyses (Figure 231 

a). In total, we digitized 152 specimens (femora: 13 complete, 29 proximal and 21 distal epiphyses; 232 

tibiae: 21 complete, 30 proximal and 38 distal epiphyses) using the Artec EVA with Artec Studio 233 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 21, 2022. ; https://doi.org/10.1101/2022.09.20.508522doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.20.508522
http://creativecommons.org/licenses/by-nc/4.0/


Professional v. 12.1.1.12 (Artec 3D, Luxembourg, Luxembourg) and the NextEngine with Scan Studio 234 

Pro v. 2.0.2 (Next Engine inc., Santa Monica, United States) for a few specimens (Table S3). After re-235 

examination of digitized specimens, we removed three complete femora, 14 proximal and eight distal 236 

epiphyses, and four complete tibiae that were distorted. We thus integrated 10 complete femora, 13 237 

distal and 15 proximal femoral epiphyses, and 17 complete tibiae. 238 

3D geometric morphometrics 239 

3D GMM is a well-established method for quantifying biological shape variations and has already 240 

enabled to identify sexual dimorphism in past studies (Kaliontzopoulou et al., 2007; Cavaignac et al., 241 

2016). We followed a high-density morphometrics approach using a combination of single anatomical 242 

landmarks and sliding semilandmarks along curves and surfaces (Bookstein, 1997; Gunz et al., 2005). 243 

Indeed, most anatomical landmarks are usually concentrated on both ends of limb bones, hence why 244 

the use of sliding semilandmarks on surface was justified on the shaft (Gunz and Mitteroecker, 2013; 245 

Botton-Divet et al., 2016). We digitized 619 landmarks on complete femora (25 anatomical landmarks, 246 

99 sliding semilandmarks on curves and 495 on surfaces), 479 on proximal (11 anatomical landmarks, 247 

26 sliding semilandmarks on curves and 442 on surfaces) and distal epiphyses (10 anatomical 248 

landmarks, 45 sliding semilandmarks on curves and 424 on surfaces) and 725 on complete tibiae (23 249 

anatomical landmarks, 219 sliding semilandmarks on curves and 483 on surfaces; see details in Figure 250 

S4; Table S4 & S5) using the IDAV Landmark software v. 3.0.0.6 (Wiley et al., 2005). We digitized 251 

anatomical landmarks and sliding semilandmarks along curves on each specimen and sliding semi-252 

landmarks along surfaces on one specimen (ANG 10 90), referred to as “the template” hereafter 253 

(Cornette et al., 2013). We then automatically projected the sliding semilandmarks along surfaces of 254 

the template onto every other specimen following the spline relaxation of semilandmarks along curves 255 

using the function “placePatch” of the Morpho package v. 2.8 (Schlager, 2017). Then, we performed 256 

five iterations of another spline relaxation between landmark configurations of the template and the 257 

ones from every other specimen using the function “relaxLM” of Morpho. Finally, we performed a 258 

partial Procrustes fitting in order to compute a Procrustes consensus of every configuration and used it 259 

as a target for the two last iterations of spline relaxation using the function “slideLM” of Morpho. These 260 

three steps of spline relaxations ensured that every semilandmark position was geometrically 261 

homogeneous in all specimens (Gunz et al., 2005). Finally, we performed a Generalized Procrustes 262 

Analysis (GPA) using the function “gpagen” of the R package geomorph v. 3.3.1 (Adams and Otárola-263 

Castillo, 2013) in order to align each femur in the Cartesian coordinate system by superimposing them 264 

based on their landmark configuration and to rule out the effect of size, location and orientation of the 265 

different landmark configurations (Gower, 1975; Rohlf and Slice, 1990; Zelditch et al., 2012). 266 

Statistical analyses and clustering 267 
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We performed a Principal Component Analysis (PCA) in order to reduce dimensionalities of the 268 

variation and isolate different components of shape variation (Gunz and Mitteroecker, 2013). The 269 

quantification of repeatability was performed by digitizing landmarks iteratively (n = 10) on three close 270 

specimens for complete femora and tibiae, which resulted in 30 configurations for each bone. We then 271 

computed a PCA for the two bones (30 configurations each), which showed that all 10 repetitions for 272 

each specimen were grouped together and isolated from those of the other specimens along the first two 273 

PC axes (Figure S5 & S6). This ensured that that biological variability was greater than the operator 274 

effect, which refers to the ability to reproduce accurately the same landmark configuration multiple 275 

times on the same specimen. As recommended by Mallon (Mallon, 2017), we performed mixture 276 

modelling analyses without a-priori knowledge about the number of groups in order to estimate how 277 

many morphological clusters would stand out in our dataset, if any, along each PC axis. Gaussians are 278 

well-suited functions to describe a biological population, especially when applied to a morphometric 279 

dataset (Baylac et al., 2003). We used the R package Mclust v. 5.4.7, which calculates the most-probable 280 

number of clusters in a dataset based on the detection of Gaussian distributions by maximum likelihood 281 

estimations (Scrucca et al., 2016). Bayesian Information Criteria (BIC; e.g., an approximation of Bayes 282 

factors for comparing likelihood) were used to choose which model, among the several ones available, 283 

fitted best with our dataset (i.e., the model with the highest BIC), while simultaneously estimating the 284 

number of Gaussian distributions (Fraley and Raftery, 2007). We computed 3D visualizations that 285 

highlighted which feature varied the most along each axis, and between clusters when dimorphism was 286 

identified. To do so, we first computed a 3D consensual mesh of all specimens of the sample by using 287 

the function “tps3d” from the R package Morpho v. 2.8 (Schlager, 2017) which performed a spline 288 

relaxation that minimized the bending energy of a Thin Plate Spline (TPS) between the template 289 

landmark configuration and a mean landmark configuration (obtained during the GPA). Then, the 290 

function used the resulting TPS deformation to warp the 3D mesh of the template onto the mean shape 291 

in order to compute a 3D consensual mesh (Bardua et al., 2019). Next, we calculated the mean 292 

coordinates of every specimen in each cluster along the PC axis identified as dimorphic by the mixture 293 

modelling analysis. Finally, we warped the mean shape, and its associated 3D mesh, onto the mean 294 

landmark configurations of each cluster by using the “shape.predictor” function of geomorphv. 3.3.1 295 

(Adams and Otárola-Castillo, 2013) in order to visualize the 3D shape variation associated with the 296 

dimorphic PC axis. We studied the allometry within our sample [i.e., the size-related morphological 297 

variation (Klingenberg, 2016)], using Pearson’s correlation between each PC scores and the log-298 

transformed centroid sizes using the R function “cor.test”.   299 
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 563 

Figure S1: Template of A) right complete femur of ANG10 90 and B) mirrored left distal epiphysis of 564 

ANG14 3188 with anatomical landmarks (orange), sliding semilandmarks along curves (dark grey) and 565 

surfaces (light grey).  566 
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 567 

Figure S2: The two first axes of the PCA for proximal epiphyses of femora 568 
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 570 

Figure S3: The two first axes of the PCA for complete tibiae.  571 
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 572 

Figure S4: Landmark configuration on the templates A) femur; B) tibia, with numerotation following 573 

the scheme shown in Tables S4 & S5, Abbreviations: s, anatomical landmarks; c, sliding semilandmarks 574 

on curves. 575 
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 576 

Figure S5: The two first axes of the PCA showing the quantification of the repeatability for the landmark 577 

configuration on femora. 578 
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 579 

Figure S6: The two first axes of the PCA showing the quantification of the repeatability for the landmark 580 

configuration on tibiae.  581 

 582 

Table S1: Statistical parameters used in this study for size-effect and cluster attribution 583 

Parameters Complete femora Distal epiphyses 

Log centroid size vs. PC1 scores r²: 0.12; p-value > 0.1 r² : 0.07 ; p-value > 0.1 

Model selected by the EM univariate, equal variance univariate, equal variance 

Number of components 2 2 

BIC 46.54 48.47 

Log-likelihood 27.87 30.12 

Mixing probabilities for each 

cluster 
0.61; 0.39 0.52; 0.48 

Highest uncertainty for cluster 

attribution/specimen 
0.0001 0.02 
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Table S2: Cluster attribution for complete femora studied in analyses for both complete femora and 585 
distal epiphyses 586 

Specimen 
Morph attribution for 

complete femora 

Morph attribution for 

distal epiphyses 

ANG 10 84 A A 
ANG 10 90 B B 

ANG 11 1271 B B 
ANG 13 2780 A A 
ANG 14 R392 B  
ANG 15 3865 A A 
ANG 15 4182 A  
ANG 16 5017 A  
ANG 16 5140 A  
ANG 16 5120 B B 

 587 

Table S3: Specimens used in this study. * refers to specimens digitized with the NextEngine, other 588 
specimens were digitized using the Artec EVA. Abbreviations: Col. Nb., collection number; L, left; 589 
R, right 590 

Col. Nb. Bone Integrity Side 

ANG 10 43 Femur Proximal L 
ANG 10 53 Femur Proximal R 
ANG 10 84 Femur Complete R 
ANG 10 86 Femur Proximal L 
ANG 10 90 Femur Complete L 

ANG 10 171 Femur Distal L 
ANG 11 735 Femur Distal R 
ANG 11 811a Femur Proximal R 
ANG 11 811b Femur Distal R 
ANG 11 1107 Femur Distal R 
ANG 11 1209 Femur Proximal L 
ANG 11 1271 Femur Complete R 
ANG 12 1844 Femur Distal L 
ANG 13 2282 Femur Proximal L 
ANG 13 2381 Femur Proximal R 
ANG 13 2428 Femur Distal L 
ANG 13 2451 Femur Distal R 
ANG 13 2749 Femur Proximal L 
ANG 13 2757 Femur Proximal R 
ANG 13 2780 Femur Complete L 
ANG 13 2807 Femur Distal R 
ANG 14 R392 Femur Complete R 
ANG 14 3188 Femur Distal L 
ANG 14 3488 Femur Proximal L 
ANG 14 3516 Femur Proximal R 
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ANG 14 3570 Femur Proximal R 
ANG 15 3865 Femur Complete R 
ANG 15 4182 Femur Complete L 
ANG 16 5017 Femur Complete L 
ANG 16 5106 Femur Proximal R 
ANG 16 5120 Femur Proximal R 
ANG 16 5140 Femur  Complete R 
ANG 16 5077 Femur Distal R 
ANG 16 5120 Femur Complete R 
ANG 17 5704 Femur Proximal L 
ANG 17 5709 Femur Distal L 

ANG 19 6825* Femur Distal L 
ANG 20 7346* Femur Distal R 

ANG 10 158 Tibia Complete L 
ANG 10 1024.25 Tibia Complete R 

ANG 11 1000 Tibia Complete R 
ANG 12 1893 Tibia Complete R 
ANG 13 2405 Tibia Complete L 
ANG 13 2538 Tibia Complete R 
ANG 13 2588 Tibia Complete L 
ANG 13 2589 Tibia Complete L 
ANG 13 2599 Tibia Complete L 
ANG 13 2699 Tibia Complete L 
ANG 14 3031 Tibia Complete L 
ANG 14 3611 Tibia Complete L 
ANG 15 4038 Tibia Complete L 
ANG 15 4070 Tibia Complete R 
ANG 16 1349 Tibia Complete R 
ANG 16 5030a Tibia Complete R 
ANG 17 2207 Tibia Complete L 

 591 

Table S4: Landmark scheme of the femur according to the numerotation shown in Figure S4. 592 

Abbreviations: s, anatomical landmarks; c, sliding semilandmarks on curves.  593 

N. Description 
0 Most distal point of the fovea 
1 Most anterior point of the ALT 
2 Maximum of concavity on the lateral part of the ALT 
3 Intersection between the most proximal point of the fovea and the lateral border of the AMT 
4 Most posterior point of the proximal border of the greater trochanter 
5 Most anterior point of the proximal border of the greater trochanter 
6 Most distal point of the anterior border of the greater trochanter 
7 Most posterior point of the proximal border of the lesser trochanter (anterior trochanter) 
8 Most distal point of the anterior border of the lesser trochanter (accessory trochanter) 
9 Foramen in the depression between the lesser trochanter and the femoral head 

10 Most proximal point of the 4th trochanter 
11 Maximum of concavity of the distal part of the 4th trochanter 
12 Most distal part of the 4th trochanter  
13 Most proximal point of the CFL-BR fossa 
14 Most distal point of the CFL-BR fossa 
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15 Most proximal point of the ectocondylar tuberosity 
16 Intersection between the most distal part of the MDC (mediodistal crest) and the most proximal 

part of the MF (medial flange) 
17 Most posterior point of the MF 
18 Maximum of concavity on the most proximal point of the medial condyle 
19 Maximum of concavity between the medial condyle and the posterior intercondylar fossa 
20 Maximum of concavity between the crista tibiofibularis and the posterior intercondylar fossa 
21 Maximum of concavity on the most proximal point of the crista tibiofibularis 
22 Maximum of concavity between the crista tibiofibularis and the lateral condyle 
23 Maximum of concavity in the anterior intercondylar fossa 
24 Maximum of concavity on the most distal surface of the distal epiphyses.  

c0; c1 Medial border of the fovea 
c2; c3 Proximal and anterior border of the greater trochanter 
c4; c5 Proximal and anterior border of the lesser trochanter 
c6; c7 Outline of the CFL-BR fossa 
c8; c9  Posterior border of the 4th trochanter 

c10; c13 Outline of the medial flange 
c14 c15 Outline of the distal border of the lateral condyle 

 594 

Table S5: Landmark scheme of the tibia according to the numerotation shown in Figure S5. 595 

Abbreviations: s, anatomical landmarks; c, sliding semilandmarks on curves. 596 

N. Description 
0 Most proximal point of the maximum of concavity in the intercondylar groove on the tibial head 
1 Most proximal point of the medial side of the cnemial crest 
2 Maximum of concavity along the distal part of medial side of the cnemial crest 
3 Most distal point of the lateral condyle 
4 Most anterior point of the distal border of the lateral condyle 
5 Most posterior point of the proximal border of the lateral side of the cnemial crest 
6 Most anterior point of the proximal border of the lateral side of the cnemial crest 
7 Most anterior point of the anterior border of the lateral side of the cnemial crest 
8 Most posterior point of along the anterior border of the lateral side of the cnemial crest 
9 Most distal point of the anterior border of the lateral side of the cnemial crest 

10 Most proximal point of the fibular crest  
11 Maximum of concavity of the distal part of the fibular crest 
12 Most distal point of the fibular crest  
13 Foramen on the posterior side of the fibular crest 
14 Most distal point of the surface of contact with the fibula 
15 Maximum of concavity on the proximal border of the lateral malleolus 
16 Maximum of concavity along the lateral border of the posterior distal tuberosity  
17 Most medial point of the medial malleolus 
18 Maximum of concavity on the proximal border of the medial malleolus 
19 Maximum of concavity along the medial border of the anterior distal tuberosity 
20 Most anterior point of the anterior distal tuberosity 
21 Maximum of concavity along the lateral border of the anterior distal tuberosity 
22 Maximum of depression on the distal surfaces of the distal epiphysis 

c0; c1 Most distal border of the lateral side of the lateral condyle 
c2; c9 Outline of the fossa fibularis/insicular tibialis 
c4; c5 Proximal and anterior border of the lesser trochanter 
c6; c7 Outline of the CFL-BR fossa 
c8; c9  Posterior border of the 4th trochanter 

c10; c11 Outline of the fibular crest 
c12; c17 Outline of the surface of contact with the fibula 
c18; c28 Outline of the articular surface of the distal epiphysis 

 597 
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