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Abstract

The use of prior knowledge to guide perception is fundamental to human vision, especially under
challenging viewing circumstances. Underpinning current theories of predictive coding, prior
knowledge delivered to early sensory areas via cortical feedback connections can reshape
perception of ambiguous stimuli, such as ‘two-tone’ images. Despite extensive interest and
ongoing research into this process of perceptual reorganisation in the adult brain, it is not yet
fully understood how or when the efficient use of prior knowledge for visual perception develops.
Here we show for the first time that adult-like levels of perceptual reorganisation do not emerge
until late childhood. We used a behavioural two-tone paradigm to isolate the effects of prior
knowledge on visual perception in children aged 4 - 12 years and adults, and found a clear
developmental progression in the perceptual benefit gained from informative cues. Whilst photo
cueing reliably triggered perceptual reorganisation of two-tones for adults, 4- to 9-year-olds’
performed significantly poorer immediately after cueing than within-subject benchmarks of
recognition. Young childens’ behaviour revealed perceptual biases towards local image features,
as has been seen in image classification neural networks. We tested three such models
(AlexNet, CorNet and NASNet) on two-tone classification, and while we found that network depth
and recurrence may improve recognition, the best-performing network behaved similarly to
young children. Our results reveal a prolonged development of prior-knowledge-guided vision
throughout childhood, a process which may be central to other perceptual abilities that continue
developing throughout childhood. This highlights the importance of effective reconciliation of
signal and prediction for robust perception in both human and computational vision systems.

Introduction

The mature human visual system is unique in its capacity to accurately recognise objects across
a wide range of viewing circumstances. This flexibility and versatility are as yet unmatched by
the best computer vision algorithms to date (Geirhos et al., 2020; Huber et al., 2022; Lindsay,
2021; Pei et al., 2021). However, robust object perception also poses a major challenge to the
developing human system, whose recognition of familiar objects in clutter, noise, abstraction,
and unusual lighting or orientations does not become adult-like until at least 10 years of age
(Bova et al., 2007; Dekker et al., 2011; Nishimura et al., 2009). Current predictive coding models
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of human vision assign a crucial role to prior knowledge, delivered via top-down pathways in the
brain, for parsing such ambiguous objects (Bar, 2004; Friston, 2010; Kersten et al., 2004).
Meanwhile, structural and functional MRI measures of long-range neural connectivity that may
mediate these feedback signals have been shown to increase continuously over the first decade
of life (Baum et al., 2020; Fair et al., 2007). We therefore predict that recognition of
hard-to-recognise objects may develop gradually as long-range neural connections become
more established across childhood, and improve knowledge-based parsing. To track this
development, we asked children aged four to twelve years old to identify ‘two-tone’ image
stimuli, which allow us to disentangle the presence of object knowledge from the ability to use
this knowledge to inform perceptual inference.

Following their conception by artist Giorgio Kienerk (1869 - 1948) and introduction to psychology
by Craig Mooney (1957), two-tone images have offered a famous example of the importance of
prior knowledge for recognition. By subjecting greyscale images to Gaussian smoothing and
binarisation, visual information is reduced and object boundaries are ambiguated in the resulting
black-and-white two-tone (Moore and Cavanagh, 1998). These images are not easily
recognisable when viewed naively, but have the intriguing property that once additional cues are
made available, recognition becomes near-mandatory in subsequent viewings. This process,
referred to as perceptual reorganisation, is thought to involve feedback to low-level visual cortex
from higher-order brain areas, including the lateral occipital and prefrontal cortex (Bona et al.,
2016; Flounders et al., 2019; González-García et al., 2018; Hardstone et al., 2021; Hsieh et al.,
2010; Imamoglu et al., 2012; Teufel et al., 2018). Pharmacological interference of top-down
pathways reduces the similarity of responses in primary visual cortex (V1) to two-tone and
greyscale images, suggesting a causal role of these feedback connections in perceptual
reorganisation (van Loon et al., 2016). This top-down information processing may operate by
enhancing visual sensitivity to low-level image features of the two-tones computed in V1, such
as orientation and edge information (Teufel et al., 2018). This is consistent with Bayesian models
of perceptual inference, where priors are propagated to lower areas via top-down processes and
combined with bottom-up information to shape perception (Kersten et al., 2004; Lee and
Mumford, 2003).

Two-tone image recognition thus provides a well-controlled paradigm for studying how the use of
prior knowledge to parse ambiguous images develops. Though Mooney himself already showed
that children are impaired at recognising two-tones of faces naively and that this ability improves
with age (Mooney, 1957), to our knowledge there have been two attempts at testing how prior
knowledge affects two-tone recognition in childhood. In one report, appearing in a book chapter
on the development of binocular rivalry, Kovács and Eisenberg (2005) made the incidental
observation that four- to five-year-old children did not recognise two-tones even after greyscale
cueing, but reported no data. In a 2007 conference paper testing this observation empirically,
Yoon and colleagues showed that three- to four-year-olds made more errors than adults when
asked to name two-tone images and to draw object features on the images after seeing the
original greyscales (Yoon et al., 2007). These initial studies suggest there may be a drastic
difference in how preschool children and adults use knowledge to guide perceptual inference.
These important observations suggest that the neural mechanisms needed for top-down

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.11.21.517321doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.21.517321
http://creativecommons.org/licenses/by-nc-nd/4.0/


modulation of visual inputs may be an underappreciated key constraint on developing adult-like
proficiency in object recognition. However, a comprehensive characterisation of the development
of two-tone perception across childhood is currently lacking.

Here we address this gap by testing perceptual reorganisation and two-tone image processing
more broadly in 72 four- to twelve-year-olds. Crucially, we use methodological and analytical
approaches that systematically account for potential confounding factors besides the ability to
use prior knowledge to parse two-tones which also change with age. These include object
knowledge, task comprehension, and response execution. We explore which computational
mechanisms may underlie shifts from child-like toward adult-like two-tone recognition by
investigating image parsing and feature extraction strategies used at different ages. We compare
human performance to that of Convolutional Neural Networks (CNNs) to investigate the extent to
which the architectural properties of these models, i.e., incorporation of feedback processing or
computational depth, can emulate early stages of human visual development. We find a
qualitative shift in the way that young children, and CNNs, parse ambiguous two-tone images,
whereby adult levels of prior-knowledge-driven perception do not develop until late childhood.
We link this to a more feature-based processing strategy that may also characterise how CNNs
process images.

Results

Four- to five-year-olds (n = 31 including 1 three-year-old), six- to nine-year-olds (n = 23), ten- to
twelve-year-olds (n = 18 including 1 thirteen-year-old) and adults (n = 13) naively viewed
two-tone images and were asked to name the content of each (Figure 1A, stage 1). Each
two-tone was then overlaid with the corresponding greyscale image to cue object knowledge,
and participants were again asked to name the content to confirm they could recognise the
image (Figure 1A, stage 2). To measure perceptual reorganisation, the same two-tone was
presented again and participants were asked to touch the locations of two characteristic object
features (Figure 1A, stage 3). After completing trials for twenty smoothed and thresholded
images (Two-tones) and five easy unsmoothed two-tones (Catch images), participants were
shown each greyscale image, and asked to touch the same target features that were prompted
for the corresponding two-tones (Figure 1A, stage 4).

Accounting for age differences in Greyscale recognition
To account for potential age differences in object knowledge, we first established that Greyscale
naming accuracy was high and matched at all ages (Figure 1B, grey squares, Χ2(3) = 3.58, p =
0.31). Nevertheless, trials in which greyscales were incorrectly named were excluded from all
further analyses (total trials excluded for 4- to 5-year-olds = 15, 7- to 9-year-olds = 2, 10- to
12-year-olds and adults = 0).

Age differences in Naive Two-tone recognition
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In contrast to the accurate naming of the Grayscale images at all ages, a logistic mixed-effects
model (see Methods for details) revealed that naive naming accuracy for the two-tone versions
of these Grayscales was lower (Figure 1B), and improved substantially with age (Χ2(3)=89.88,
p=2.2e-16; Figure 2, coloured circles). Wald tests on model coefficients revealed that 4- to
5-year-olds (z = -9.6; p < 2.0e-16) and 7- to 9-year-olds (z = -3.2; p < 1.38e-3) were less
accurate than adults, while 10- to 12-year-olds performed similarly to adults (z = -0.70, p = 0.48).
This age difference is unlikely due to failure to comprehend or comply with the task since
performance for easily recognisable Catch images was high for all ages (see Supplementary
Figure 2A). Mean naming accuracy per image for naively viewed two-tones was correlated
between all age groups (rpearson's > 0.7, p < 5.71e-4, see Supplementary Figure 4 for all
correlations). Together this suggests that up to at least 7 to 9 years of age, recognition of familiar
objects is more impaired by two-tone transformation than in adulthood, but that the features that
make a two-tone hard to recognise at first sight remain qualitatively consistent across age.

Figure 1: Experimental trial schema and Naive Two-tone recognition accuracy
A) An example trial for one image, stages 1-3 (naming of Naive Two-tone [1] and Greyscale cue [2], and
pointing to 2 targets on Cued Two-tone [3]) are sequential, and stage 4 (pointing to 2 targets on Greyscale
control) occurs separately after the main task. B) Naming accuracy of Naive Two-tones (coloured circles;
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see stage 1 in A), and greyscale images (grey squares; see stage 2 in A). Small markers show participant
means, large markers show age group means, error bars show bootstrapped 95% Confidence Intervals.

Age differences in perceptual re-organisation
Perceptual reorganisation was assessed by measuring two-tone recognition immediately after
presenting participants with the Greyscale cue. To minimise memory load and make clear that
greyscales and two-tones were different versions of the same image, all images were ‘morphed’
into one another by fading from the greyscale to the overlaid two-tone with position and
dimensions maintained. Participants were then asked to touch two predetermined features on
each two-tone on the touchscreen (Figure 1A, stage 3). To ensure participants could correctly
recognise and point out all targets, they were also asked to locate the corresponding features on
the original greyscale images in a control task after the main experiment (Figure 1A, stage 4).
Touched coordinates were scored by two methods; first, the percentage of touched points falling
within researcher-defined regions gives ‘pointing accuracy’, and second, the distance between
corresponding touched coordinates on two-tone and greyscale images gives ‘pointing distance’
(see Figure 2A).

There were large age-related changes in cued two-tone recognition, with Pointing Accuracy and
Distance both improving substantially with age (Figure 2B & 2C, coloured circles). In contrast, for
greyscale and Catch images, Pointing Accuracy was high across all ages (Figure 3a, grey
squares, and Supplementary Figure 2B, white circles), so this age difference is unlikely to reflect
general changes in task comprehension. However, it is possible that these age differences are
driven by factors unrelated to perceptual reorganisation, such as adults having recognised more
two-tones naively, or children exhibiting greater imprecision or different pointing strategies
despite recognising the content. Therefore, to test for perceptual reorganisation whilst
accounting for naive Two-tone recognition and pointing skills, we compared pointing
performance within subjects for trials in which two-tones were naively recognised before cueing
(and therefore likely still recognised after) to trials in which they were not. If greyscale cueing
effectively induced perceptual re-organisation, pointing performance should be equivalently high
across these two trial groups, irrespective of initial recognition. Furthermore, in our mixed-effects
modelling analysis (see Methods for details) we accounted for random effects of participants,
individual images, ROI size, and unequal numbers of trials.

This analysis showed that a difference in cued pointing performance for naively recognised and
unrecognised two-tones was largest for 4- to 5-year-olds and decreased with age (for pointing
accuracy: Χ2(3)=13.85, p<3.11e-3, Figure 2D; for pointing distance: Χ2(3)=16.24, p=1e-3, Figure
2E), with greater benefits of cueing for older participants on both recognition indices. Wald tests
on model coefficients showed that in adults, feature localisation was equivalently accurate for
naively recognised and unrecognised two-tones (pointing accuracy: z=-1.24; p=0.21; pointing
distance: z=0.25; p=0.8), in line with pervasive perceptual reorganisation in the mature system.
For pointing accuracy, the Greyscale cue was significantly less beneficial for 4- to 5-year-olds
than for adults (z=3.22, p=1.26e-3), marginally less beneficial for 7- to 9-year-olds (z=1.71,
p=0.08), and adult-like for 10- to 12-year-olds (z=1.46, p=0.14). For pointing distance, no
pairwise age group comparisons reached statistical significance, potentially because this
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Figure 2: Cued Two-tone recognition measured by Pointing Accuracy and Distance
A) Circular and square markers show example two-tone and greyscale cued pointing responses for one of
two targets respectively. Touched points were scored via two methods; the dashed polygon shows the
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example ‘correct’ feature location used to determine ‘pointing accuracy’ (green outlined marker scored as
correct and red outlined marker scored as incorrect). The dashed line represents the distance between
touched points for the corresponding target in the two-tone and greyscale conditions, defining the ‘pointing
distance’ measure. B) Pointing accuracy for two-tones (coloured circles) following greyscale exposure,
and greyscales (grey squares), as measured by percentage of touched locations falling within the
predefined correct area for each target (Pointing Accuracy). Small markers show participant means, large
markers show age group means, error bars show bootstrapped 95% Confidence Intervals. C) Pointing
Distance between touched locations on Cued Two-tone and Greyscale conditions of each image in mm
(coloured circles; all images were displayed at a fixed height of 273.9 mm). Markers and error bars are as
in Panel B. D) Pointing accuracy of previously recognised (white circles) and previously unrecognised
(coloured circles) two-tones following greyscale exposure. Markers and error bars are as in Panel B. E)
Pointing distance of previously recognised (white circles) and previously unrecognised (coloured circles)
two-tones following greyscale exposure. Markers and error bars are as in Panel B.

measure was more variable. Image difficulty (number of errors for naming accuracy or pointing
accuracy per image) was significantly correlated across naive and cued conditions for 4- to
5-year-olds only (rpearson's= 0.50, p = 0.02; p > 0.09 for all other groups, see Supplementary
Figure 4 for all correlations). Together, these data reveal that processes supporting adult-like
perceptual reorganisation, in which two-tone parsing is qualitatively altered when prior
knowledge is made available, develop gradually over the first 10 years of life.

What drives age differences in two-tone processing?

Age differences in cued two-tone parsing strategies
To investigate age differences in image parsing strategies of cued two-tones, we compared 4- to
5-year-olds’ cued pointing responses to those of adults. We have shown above that despite
performing well on greyscales, 4- to 5-year-olds often failed to locate the same targets on cued
two-tones, performing worse on initially unrecognised trials than those they recognised naively.
Adults, however, typically located both targets on the two-tones regardless of performance on
naive viewing. The touched coordinates of these age groups reveal that when failing to locate
the target feature, 4- to 5-year-olds still seem to display a task-oriented strategy, best illustrated
by two-tones with spurious shapes canonically resembling target features. For example, when
asked to locate features of a woman’s face, many children who could not naively name this
two-tone instead located corresponding features of a pareidolic face appearing on the woman’s
forehead, despite performing accurately and precisely on the same task in the greyscale
condition (Figure 3A). Likewise, when asked to point to the cowboy’s hat and horse’s ear, many
erroneously located ‘hat-like’ and ‘ear-like’ shapes, regardless of their distance from the just
seen grayscale target feature (Figure 3B). Similarly, when the outlines of target features were
obscured following two-tone transformation (e.g., the fox’s and panda’s noses in Fig 3C, Target
1; and 3D, Target 2) many children incorrectly selected nearby shapes with more defined
outlines. These qualitative considerations suggest that young children who showed little benefit
of cueing on image recognition made errors consistent with prioritisation of local feature, rather
than holistic, image processing.
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Figure 3: Illustrative examples of 4- to 5-year-olds’ and adults’ cued pointing locations.
Top row: 4- to 5-year-olds’ greyscale pointing for targets 1 (circles) and 2 (crosses), target prompts were
A) ‘the lady’s mouth’ (1) and ‘the lady’s right eye’ (2), B) ‘the cowboy’s hat’(1) and ‘the horse’s left ear’ (2),
C ‘the middle fox’s nose’ (1) and ‘the right fox’s right ear’ (2), and D) ‘the panda’s left eye’ (1) and ‘the
panda’s nose’ (2). Middle and bottom rows show 4- to 5-year-olds’ (yellow) and adults’ (purple) cued
two-tone pointing for targets features 1 and 2 respectively.

Human development versus computational image-recognition models
We next compared human performance on two-tone recognition to that of Convolutional Neural
Networks (CNNs) to test how well different architectures represent sequential developmental
stages. We selected three image recognition models based on their properties and use in the
literature; (1) AlexNet (Krizhevsky et al., 2017) - a comparatively shallow feedforward network
extensively used in computational neuroscience studies (Lindsay, 2021), (2) CorNet-S, a
biologically inspired shallow network that incorporates feedback between late and early-stage
processing layers (Kubilius et al., 2019), and (3) NASNet-Large - a deep feedforward network
with a complex branching architecture designed by auto machine-learning algorithms optimising
for transferable image classification (Zoph et al., 2018). All three models are publicly available
and were pre-trained on 1.3 million images from the ImageNet training set into 1000 different
classes (Deng et al., 2009).
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To assess the possibility of improved two-tone recognition of ‘familiar’ images compared to novel
images (akin to perceptual reorganisation) in these CNNs, models were tested on two image
sets. First, a ‘novel’ image set of the two-tones used above that are not included in ImageNet
(the data set used to train all three models) and second, a ‘trained’ image set of two-tones
created from ImageNet. CNNs with the capacity to benefit from image cueing would be expected
to more accurately classify two-tones from ‘trained’ as opposed to ‘novel’ image sets. This,
however, was not the case for any of the models tested. It is unlikely that this reflects differences
in difficulty levels across the two image sets; image pairs across the sets were matched on
low-level statistics, piloting in humans ensured that adult two-tone recognition performance was
equivalent across the two sets (novel set: 61% naive accuracy, 94% cued accuracy; trained set:
63% naive, 89% cued accuracy), and all CNNs showed comparable performance on the
greyscale images of each set (Figure 4a).

We next tested if CNNs also differed from human adult performance in other aspects of object
recognition. Of the three models, only NASNet reached adult-level accuracy for Greyscales,
whilst both AlexNet and CorNet performed well below human-level recognition for both image
sets. However, while AlexNet failed to recognise any two-tones from either image set, CorNet
reached the range of 4- to 5-year-olds’ naive performance on the ‘novel’ image set. Again,
NASNet outperformed both other models, with recognition performance for naively viewed
two-tones falling within the range of that of 4- to 9-year-olds. Interestingly, NASNet’s
classification confidence for two-tones from the ‘novel’ image set, quantified as the probability
weighting of the highest-scoring correct label, correlated across images with human naive
naming performance for all ages (Figure 4b, plotted for 4- to 5-year-olds, rpearson's = 0.84, p =
4.98e-7; see Supplementary Figure 4 for all correlations). This suggests that despite vastly
different computational implementations, there is a common aspect of these two-tone stimuli that
poses a challenge to both human vision and CNNs, which human adults can overcome when
object knowledge is made available.

Finally, to explore which factors make a Two-tone hard to recognise for developing humans and
CNNs, we assessed correlations of naive two-tone recognition performance with various
low-level image features and parameters of the two-tone transformation. First and unsurprisingly,
we found that across all age groups as well as NASNet, naive recognition became worse with
more smoothing of the grayscale image (rpearson's < -0.6 and p < 0.001 for all groups; see
Supplementary Table 5). Similarly, increasing the luminance threshold at which grey pixels are
set to black also reduced naive recognition for 4- to 5-year-olds, adults, and NASNet (rpearson's <
-0.4 and p < 0.05); p > 0.05 for all other groups). Given the proposed need for prior knowledge to
resolve edge information for Two-tone recognition (Teufel et al., 2018; Moore and Cavanagh,
1998), we next tested how distortion of edge information by the two-tone generation process
correlates with two-tone recognition. We investigated how Two-tone transformation affected the
outputs of several models that compute an overall summary statistic of edge information in the
image (a Sobel edge detector, Mathworks, 2020a; and spatial image filters emulating magno-
and parvocellular operations, see Supplementary Materials 5 for details, Groen et al., 2013). We
found that the extent to which edge information had been altered was correlated with naive
Two-tone recognition performance only in the 4 to 5-year-old age group and NASNet (see
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Supplementary Table 5). This may suggest that object recognition in younger children is more
sensitive to disruption of edge information in the image than adults, but note that these analyses
suffer from the limited score range effects in older age groups. In addition, since recognition
performance correlated better with image smoothing than these edge statistics, this suggests
that the aspects which make two-tones challenging are not fully captured by the tested
computations.

Figure 4: Comparison of CNN performance to human performance
A) Image recognition accuracy of CNNs (AlexNet, CorNet-S, NASNet-large; greyscale bars) and human
performance (coloured bars, error bars show bootstrapped 95% confidence intervals) for each condition
(Greyscale and Two-tone) of images used in current study (Novel Image Set) and Image Net images used
to train CNN models (Trained Image Set). CNN performance: percent of images correctly labelled; human
performance: Naive Naming Accuracy. B) Image-wise comparison of mean 4- to 5-year-old Naive Naming
Accuracy and NASNet performance (measured by probability weighting of the highest-scoring correct
label) for Catch and Two-tone trials of Novel Image Set. Red line shows linear least-squares line of best fit,
dashed line shows x = y.

Discussion

To test how prior knowledge guides visual object perception between the ages of 4 and 12 years,
we used a paradigm of ambiguous two-tone images and greyscale cues. In adults, information
about a two-tone’s content provided by the original greyscale induces perceptual reorganisation,
the near-mandatory recognition of previously unrecognisable stimuli. To quantify how this
process develops across childhood, we compared the ability to locate features on two-tones that
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were naively recognised (before seeing the greyscale cue) to feature localisation on two-tones
not previously recognised. Here, performance on naively recognised two-tones provides an
individual benchmark for feature localisation error when objects are perceived. So, if previously
unrecognised two-tones are correctly perceived after greyscale cueing (perceptual
reorganisation), pointing performance should approach this benchmark. Crucially, this
comparison isolates the effects of prior knowledge on two-tone recognition, as age differences in
other task-relevant abilities (e.g., pointing precision, biases) should affect both conditions
equally.

We first showed that two-tone naming accuracy on naive viewing underwent substantial
developmental improvement, increasing from 26% to 63% correct between the ages of 4-5 years
and adulthood. However, despite this large age difference in robustness to visual information
loss in two-tones, correlations between image difficulties across all age groups showed that the
processes hindering naive two-tone recognition remain consistent across age. After seeing the
original greyscale, adults and the oldest children could locate object features on previously
unrecognised two-tones with similar accuracy as on the two-tones they naively recognised,
clearly demonstrating perceptual reorganisation. However, younger children experienced
drastically less new recognition of two-tones after seeing the greyscale cue, pointing out
substantially fewer image features correctly than on the benchmark of naively recognised
two-tone images. In addition, image difficulty before and after greyscale cueing (i.e., imagewise
naive naming and cued pointing accuracy) was correlated for young children, but not for older
children and adults. This indicates that only at older ages, prior knowledge induces a qualitative
shift in how two-tones are processed. Together these results reveal that the effective use of prior
knowledge in perception poses a major challenge to human development, with improvements
occurring gradually between the ages of 4 to 12 years.

It is highly unlikely that this developmental shift in perceptual reorganisation reflects age
differences in object knowledge, task comprehension or non-perceptual processes. While the
two-tone paradigm intrinsically minimises potential differences in participants’ object knowledge
by providing the relevant information via a greyscale cue, we further controlled for object
knowledge differences by only including trials in which greyscale images were correctly named.
In addition, the sequential and blurred transition between corresponding greyscale and two-tone
images reduces the demand for working memory and configurement of mental representations.
To confirm task comprehension of all participants before and throughout the task, we also used
‘easy’ two-tone images (Catch images, made by thresholding grayscale images without
smoothing). During a training phase, participants had to correctly locate all targets of three Catch
images before progressing to the main task, during which five randomly interleaved Catch trials
were presented to monitor compliance. High recognition performance on these trials
(Supplementary Figure 2) demonstrates that all age groups understood, remembered, and
followed instructions for both two-tone recognition tasks (naming and pointing) throughout the
experiment.

To explore what perceptual strategies younger children employed to parse cued two-tones, we
reviewed the patterns of locations that 4- to 5-year-olds selected on these images. This revealed
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that children often located correct object features if these were clearly outlined, but were prone
to large localisation errors when object feature boundaries were obscured or disrupted. Even
when failing to recognise the correct two-tone features, 4- to 5-year-olds often selected
alternative shapes that plausibly matched the requested item in outline (e.g., when asked to
locate a hat, many identified a shape with a hat-like outline, albeit in the wrong location). This
error pattern suggests that younger children looked for features by relying on local shape
outlines, rather than by identifying and grouping shapes relevant to the object gestalt. Similar
strategies have been reported in adults with Autism Spectrum Disorder, who have outperformed
non-autistic adults in tasks that favoured perception of local rather than global features (Happé
and Booth, 2008; though see Van der Hallen et al., 2015). These individuals also show evidence
of reduced effects of prior knowledge of two-tone processing (Król and Król, 2019; though this
may be specific to face-stimuli: Loth et al., 2010; Van de Cruys et al., 2018), which has been
attributed to a relative downweighting of prior knowledge with respect to sensory inputs.
Conversely, participants prone to experiencing hallucinations experience higher levels of
perceptual reorganisation than healthy adults (Davies et al., 2018; Teufel et al., 2015), which has
been attributed to an upweighting of prior information to compensate for increased noise levels
in these patients’ bottom-up sensory streams (Davies et al., 2018; Fletcher and Frith, 2009;
Kapur, 2003; Rivolta et al., 2014; Teufel et al., 2015).

Like the youngest children in this study, Convolutional Neural Networks (CNNs) have also been
shown to prioritise local over global information for object recognition, which too has been linked
to higher levels of dependency on feedforward information processing when compared to the
adult human visual system (Baker et al., 2018; Brendel and Bethge, 2019; Geirhos et al., 2019).
To assess if this, or other image processing differences of CNNs, correspond to distinct levels of
two-tone recognition, we compared human development of this ability to performance of CNNs
with distinct network architectures. None of the models tested reached naive adult performance,
or showed any recognition improvements for ‘familiar’ two-tones (made from the imageset on
which models were trained (Deng et al., 2009) compared to novel two-tones despite matching for
difficulty. However, NASNet (Zoph et al., 2018) - the only model to achieve human-like greyscale
recognition - displayed accuracy levels equivalent to that of 4-5 year-old children for two-tone
images. Whilst CorNet (Kubilius et al., 2019) and AlexNet (Krizhevsky et al., 2017) showed
similarly poor levels of greyscale recognition, CorNet performed better on two-tones for both
trained and novel image sets. These results suggest that training with the original image used to
make a two-tone may not be sufficient to trigger an analogue of perceptual reorganisation in
these CNNs. However, due to the common training set of these models, the differences in
two-tone recognition performance seen here are likely driven by architectural features. Namely,
increased depth (NASnet) and/or recurrency (CORnet) of information processing may facilitate
improved two-tone recognition.

CNNs differ greatly from the human system in both visual experience and computational
architecture and, as described above, employ different strategies to achieve high recognition
performance. Indeed, Geirhos and colleagues (2019) found CNNs prefer images that are
coloured or high-contrast. These biases may have inhibited general recognition of the stimuli in
this study (all of which were black-and-white), but less so for Catch Images (binarised but
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unsmoothed two-tones; Supplementary Figure 2C). Interestingly, despite large mechanistic
differences, NASNet and human participants showed correlated imagewise performance on
naive two-tones, revealing commonalities in the challenges these images pose for machine and
human visual systems, especially those still developing.

To explore what these challenges may be, we tested how low-level spatial image properties
correlated with two-tone recognition performance in developing humans and CNN. The
smoothing and thresholding levels used to convert each greyscale image to a two-tone
negatively correlated with naive recognition across ages in humans, and for NASNet. This is
unsurprising, as higher smoothing levels result in a greater loss of information, and higher
thresholds effectively increase image shadows. As these image manipulations can also be
expected to interact in a non-linear or unpredictable manner, we used physiologically plausible
models of image statistics extraction to quantify the effects of two-tone transformation on
low-level spatial image properties (i.e., edge energy, contrast energy, and spatial coherence)
computed at early visual processing stages (Groen et al., 2013). While the effects of smoothing
and binarising images clearly shifted the low-level spatial properties, we did not find that these
statistics correlated better with performance than smoothing levels alone. Nonetheless, as only
24 images were included to ensure a child-friendly task duration, this study was not optimised to
model the effect of image properties on perception. Studies with larger image sets that can
systematically compare the effects of different image features will therefore be necessary to
assess the bottom-up contributions to two-tone perception across development.

Another factor that may contribute to the development of two-tone perception is the efficiency of
spatial integration mechanisms across the cortical hierarchy. Two-tone perception requires both
the detection and segmentation of object contours from irrelevant contours (i.e., from cast
shadows, occluders and background objects) and the integration of these relevant contours to
form the figural percept (Moore and Cavanagh, 1998; Poltoratski and Tong, 2020). There is
evidence that contour integration develops substantially in childhood: Kovács et al. (1999)
showed that the ability to detect contours consisting of collinear-oriented elements amidst
misaligned distractor elements improves substantially between 4-12 years of age. Unlike adults,
children were less tolerant to distractors when there were larger spacings between the contour
elements, suggesting a limitation on spatial integration distance rather than a reduced ability to
detect signal in noise. Similarly, the perception of illusory ‘Kanizsa’ shapes, in which shape
corners are visible but the contours connecting these corners are not, has been shown to
develop gradually over the first decade of life (Nayar et al., 2015). Though these stimuli are
much simpler than most two-tones, perception of Kanizsa shapes has also been shown to
involve hierarchically-organised feedback processing (Kok et al., 2016; Wokke et al., 2013).
More complex images and those with less clearly defined object boundaries have been shown to
require higher levels of recurrent processing in order to extract the image content (Groen et al.,
2018; Kirchberger et al., 2021); a process that can be silenced by disrupting higher-order visual
areas (Kirchberger et al., 2021; Wokke et al., 2012). An increase in top-down signal integration
with sensory inputs across childhood may therefore provide a common explanation for the
prolonged development of these perceptual tasks.
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While we carefully matched visual object knowledge of the two-tone across age groups, it is
possible that the primed object representation was still less abstract, or ‘invariant’ to imge
distortions, in children (and CNNs), thus offering a less robust template for parsing the two-tone.
Indeed, in a cross-cultural study, adults from an isolated tribe with little-to-no experience with
pictorial representations benefitted less from greyscale cueing than Western adults (Yoon et al.,
2014). We made every effort to make clear that two-tones and greyscales were two versions of
the same photos by blurring corresponding images into each other. It is however possible that
benefiting from greyscale cueing required an understanding of dual representations, which
children have been shown to lack (DeLoache et al., 1997). It thus remains to be tested whether
children (or computer vision models) would experience higher levels of perceptual reorganisation
after extensive training with the depicted objects in varying orientations, sizes, and depictions,
and/or the two-tone form.

In sum, we show that throughout most of childhood the benefit of prior knowledge on two-tone
recognition is drastically reduced compared to in the mature visual system. When compared to
adults, young children may focus more heavily on local image-features, characteristic of
bottom-up processing streams. We found qualitative evidence of these strategies in young
children, who’s image recognition also correlated with the performance of a CNN - neural
networks that have previously been shown to exhibit local-biases in image processing. For both
these visual systems, the development of prior-knowledge-driven perception, a central aspect of
adult human vision, could depend on the formation of more invariant or abstract object
representations or increased connections across the processing hierarchy that enable informed
integration of incoming spatial features.

Materials and Methods

Participants
Behavioral participants were 74 children aged 3 - 13 years and 14 adults: 31 4- to 5-year-olds
(mean age = 4.8, SD = 0.5 years, includes one 3.1-year-old), 23 6- to 9-year-olds (mean age =
8.5, SD = 0.9 years), 18 10- to 12-year-olds (mean age = 11.0, SD = 0.8 years, including one
13.7-year-old) and 13 adults (mean age = 22.2 ± 2.2 years, range = 19.3 - 25.8 years). An
additional eight adults (mean age = 30.4 ± 5.0 years) completed piloting of the second stimuli set
(‘trained’ set, see Convolutional neural networks). All participants reported normal or
corrected-to-normal vision.

Apparatus
Stimuli were presented on a 22” touchscreen monitor (Iiyama ProLite T2252MTS 22”,
1900x1080 pixel resolution) driven by a MacbookPro, running Matlab R2015b with the
Psychophysics Toolbox (Brainard, 1997).  Participants sat ~30 cm in front of the monitor.
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Behavioural Stimuli
Stimuli consisted of 41 two-tones created by processing greyscale photographs of objects,
animals and faces in Matlab R2015b (MathWorks, Natick, MA, USA); images were first
smoothed with a Gaussian filter and then thresholded to binarise pixel luminances to black or
white to create images with obscured edges. Smoothing and thresholding varied per image.
Following piloting with 29 adults and children (4-10 years), 20 images were selected for
experimental trials to cover a range of difficulties for two-tone recognition, but with high
recognition accuracy (>95%) of the original greyscale images at all ages. An additional 7
two-tones were generated without smoothing, creating easily recognisable two-tones, of which 3
were used in practice trials and 4 were used in ‘Catch’ trials, included to promote motivation, and
obtain an index of attentiveness and task comprehension. All images were resized to a fixed
height of 273.9 mm (680 pixels) on a mid-grey background. Text task prompts were displayed
above the image and read aloud by the researcher.

Procedure
Participants first completed a training task, in which a greyscale image was displayed and
transformed gradually into a two-tone image that was unsmoothed and easy to recognise at all
ages. To confirm that participants had understood that image content was maintained across the
Greyscale and Two-tone, they were asked to point out corresponding features between the
original grey-scale image and the two-tone image when displayed side by side. Following this,
participants completed 3 practice trials with unsmoothed Two-tone images. This was followed by
20 experimental trials with Two-tones of varying difficulty, presented in a randomised order and
interspersed with easy ‘catch’ trials every 5th trial, after which prize-tokens were awarded to
maintain motivation.

Trials consisted of 4 sequential stages (Figure 1). First, participants were asked to identify the
content of a Two-tone on initial viewing. Next, this Two-tone was overlaid with its original
greyscale template, which participants were asked to identify. This template image was then
‘morphed’ back into the Two-tone, and participants were asked to confirm recognition by pointing
out two defining features on the image (regions of interest, ROIs). Importantly, to minimise
memory requirements and stimulate perceptual reorganisation, all images (Two-tone →
Greyscale → Two-tone) were overlaid on top of each other in the exact same position with no
time gap between consecutive images. After completing all 20 experimental trials, participants
located the ROIs they had pointed out on the Two-tone on each of the 20 corresponding
Greyscales. Verbal responses and screen coordinates of touched image locations were recorded
for each trial (see ‘Response’, Figure 1). All task instructions were displayed as text above the
stimulus image and given verbally by the experimenter.

Scoring of behavioural performance
To quantify image recognition, we measured ‘naive naming accuracy’, ‘cued pointing accuracy’,
and ‘cued pointing distance’ (see Figure 1). Naive naming accuracy: Image names were scored
as correct if the content was correctly identified at the basic category level (Rosch et al., 1976) -
superordinate categories names (e.g., naming a ‘cow’ an ‘animal’) were scored as incorrect.
Similar basic level or subordinate categories were accepted (e.g. a ‘tiger’ named as ‘cat’, or
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‘scissors’ named as ‘shears’) as long as there was consistency in naming across the two-tone
and grayscale (for all answers and coding scheme details per image, see Supplementary Table
1). Trials were excluded from Cued Pointing analyses if both ROIs were not attempted for both
Greyscale and Two-tone conditions, and if participants were unable to accurately name the
image content or locate each ROI in the Greyscale condition. Cued pointing accuracy: pointed
out feature location was scored as correct if the touched coordinates fell within a
researcher-defined polygon demarcating the location of each ROI on both the two-tone and
grey-scale images. Cued pointing distance: the distance between each touched location for
greyscale ROIs and the corresponding two-tone ROIs in millimetres.

Convolutional neural networks
Pretrained AlexNet and NASNet-large models were acquired and run on Matlab 2020a’s Deep
Learning Toolbox (MathWorks, Natick, MA, USA). CorNet models (RT, Z, S) were acquired and
run with the Python toolbox THINGSvision (Muttenthaler and Hebart, 2021). Due to poorer
greyscale performance, CorNet-RT and CorNet-Z were not included in the results. All models
were pre-trained to classify images into 1000 classes on the ImageNet dataset (Deng et al.,
2009). Following the same coding scheme for human participants described above, CNN
Classification Accuracy was determined separately for grayscale and two-tone images of
‘trained’ and ‘novel’ image sets (see CNN Stimuli) by whether the first-choice (highest weighted)
classification was correct (with at least a basic-level match). Classification Probability was
measured as the probability weighting of the highest weighted label scored as correct as per the
coding scheme within the top 100 predictions.

CNN Stimuli
Thirty-five images were selected from ImageNet to create additional greyscales and two-tones,
chosen due to similarities with the beahvioural stimuli set and suitability for two-tone
transformation. Resulting greyscales and two-tones were dynamically cropped to a
680*680-pixel square to minimise loss of image content. Image piloting was carried out in eight
additional adult participants using an adapted version of the behavioural task described above:
Images were shown in 7 blocks of 5 images, where 5 naive two-tone trials were followed by 5
corresponding grayscale trials and finally 5 cued two-tone trials, with image order randomised
within conditions. Recognition was determined via Naming Accuracy (as above) for all three
conditions, with an additional perceptual check (‘Which way is the animal/object facing?’) asked
as confirmation for scoring cued trials correct. Following piloting, 20 images were selected to
match the behavioural stimuli on smoothing, thresholding and adult performance levels. Of the
20 behavioural stimuli described above, 19 that were not found within the ImageNet dataset (one
greyscale - two-tone pair excluded; behavioural image 6, see Supplementary Table 1) comprised
the ‘novel’ image set. Images of both sets were resized and triplicated across RGB channels to
match model input sizes (AlexNet: 227*227*3 pixels, NASNet: 331*331*3 pixels, CorNet-S:
224*224*3 pixels).

Statistical analyses
To analyse responses, we used a mixed-effects modelling approach, as this allowed us to
account for different numbers of trials per condition and age-groups, and random effects of
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individual participants and images. We used generalised linear models estimated using the lme4
library in R (Bates et al., 2015). To compare naming we used multilevel logistic regression
models with crossed random intercepts for participants and images. To compare pointing
accuracy, we used multilevel logistic regression models with crossed random intercepts for
participants, images, and ROI area in pixels. For distance measures, we used a multilevel
generalised linear model with a log link function (as pointing error is strictly positive, distance
data were log-transformed to ensure normality), with crossed random intercepts for participants,
images, and ROI area. To test for age trends, we tested each model against a reduced model
without the age effect of interest, using a likelihood ratio test (data and analysis code available
on request). We performed Wald tests on the coefficients for pair-wise age group comparisons.
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