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Abstract. Optical aberration is a crucial issue in optical microscopes, which fundamentally limits the 

practical imaging performance. As a commonly encountered one, spherical aberration is introduced by 

the refractive index mismatches between samples and environments, which will cause problems like 

low contrast, blurring, and distortion in imaging. Light-field microscopy (LFM) has recently emerged 

as a powerful tool for fast volumetric imaging. The appearance of spherical aberration in LFM will 

cause large changes of the point spread function (PSF) and thus greatly affects the imaging 

performance. Here, we propose the aberration-modeling view-channel-depth (AM-VCD) network for 

LFM reconstruction, which can well mitigate the influence of large spherical aberration. By 

quantitatively estimating the spherical aberration in advance and modeling it in the network training, 

the AM-VCD can obtain aberration-corrected high-speed visualization of three-dimensional (3D) 

processes with uniform spatial resolution and real-time reconstruction speed. Without any hardware 

modification, our method provides a convenient way to directly observe the 3D dynamics of samples in 

solution. We demonstrate the capability of AM-VCD under a large refractive index mismatch with 

volumetric imaging of a large-scale fishbone of largemouth bass. We further investigate the capability 

of AM-VCD in real-time volumetric imaging of dynamic zebrafish for tracking neutrophil migration. 
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1 Introduction 

Light-field microscopy (LFM) has recently served as a vital candidate for high-speed, large-scale, and 

long-time volumetric imaging for live samples, especially in observing morphological and functional 

dynamics such as neuronal activity1, 2, embryo development3, 4, and vascular transport5. Compared with 

other three-dimensional (3D) imaging methods recording a sequence of two-dimensional (2D) images 

to form a 3D volume such as light sheet microscopy (LSM)6-8, confocal microscopy9, 10, and two-

photon microscopy (2PM)2. LFM benefits from the advantages of single-shot acquisition manner, easy-

to-build optical set-up, and low phototoxicity1-4, 11-13. LFM utilizes a microlens array (MLA) inserted in 

the detection path of a commonly-used epi-fluorescence microscopy to encode the 3D volumetric 

information in a snapshot acquisition13. Then by postprocessing the snapshot with deconvolution14 or 

learning-based15, 16 methods, high-speed volumetric imaging of various applications can be obtained 

with promising performance. Among these methods, the view-channel-depth (VCD) network16 is 

recently proposed for artifact-removal, resolution-enhanced, and real-time reconstruction. However, 

although the LFM applies the sub-aperture acquisition of optical information by using the MLA, its 

reconstruction performance is still heavily affected by the imaging aberrations, especially the spherical 

aberration caused by the refractive index mismatch between samples, sample-immersed solutions, 

sample containers, and objective-lens-immersed mediums, which is typically unavoidable in high NA 

microscopic imaging systems17, 18. It is because the appearance of spherical aberration in LFM will 

cause large changes of the point spread function (PSF) while both the deconvolution and deep learning 

methods are sensitive to the accurate modeling of PSFs. 

Many pieces of research have been proposed to solve the problem of aberrations in microscopy, such as 

the different adaptive optics (AO) methods applied in LSM, confocal, and 2PM18-22, which commonly 

utilize spatial light modulators (SLMs) or deformable mirrors (DMs) to modulate the light wavefront. 

Some works even model the aberration in deep learning networks23-25 to well ease its influence and 

improve the imaging quality. However, the aberration problem is rarely explored in the field of LFM5, 

26. Wu et.al5 combinedly utilize a scanning LFM system and iterative digital adaptive optics (DAO) to 

realize subcellular resolution and long-term observation of 3D dynamics. In addition, Zhang et.al26 

propose introducing spherical aberration to expand the depth of field (DOF) of scanning LFM and 

reduce artifacts near the original focal plane. But to the best of our knowledge, no research has been 

proposed to achieve the snapshot 3D observation of live dynamic samples at micrometer resolution 

under the condition of heavy spherical aberration. 

In this work, we introduce the aberration modeling (mainly the spherical aberration) into the learning-

based reconstruction process of LFM (VCD network16) to enhance imaging performance. By further 

integrating with automatic aberration evaluation and loss function optimization, our method, termed 

aberration-modeling view-channel-depth (AM-VCD) network, achieves resolution-uniform, artifact-

reduction, and real-time LFM reconstruction, even in a situation with large spherical aberration. Our 

method does not make any changes to the hardware of LFM. Through modeling spherical aberration in 

network training, it is convenient and widely applicable in different LFM systems. The spherical 

aberration, modeled on the basis of Zernike polynomials, can be automatically estimated by measuring 
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the PSFs of beads or bead-like structures inside the scene to be observed, as shown in Fig. 1 (see 

Section 2.3 and Fig. S2 for details). We first demonstrate the principle and improvement of our method 

through experiments of fluorescent beads, which can obtain aberration-corrected high-speed volumetric 

imaging even under a large spherical aberration. We also conduct some experiments under situations 

with varying degrees of spherical aberration to further verify the effectiveness and practicability of our 

method, where direct deconvolution and learning-based methods both fail to achieve a tolerable 

imaging quality. We realize the high-quality 3D imaging of largemouth bass fishbone in a volume of 

426×426×101 µm3 with a measured spherical aberration of -0.9λ (20×/0.5NA air-immersion objective). 

We track the neutrophil migrations in dynamic zebrafishes in a volume of 426×426×101 µm3 with a 

measured spherical aberration of -0.5λ (20×/0.5NA air-immersion objective) with 30 ms exposure time 

and 6 Hz camera frame rate (which is limited by the hardware of the camera). 

2 Principles and Methods 

2.1 Optical set-up 

We build up a conventional LFM system in this work, which is appended to an epi-fluorescence 

microscope (Zeiss, Axio Observer 7) equipped with a fluorescence lamp illuminator (X-Cite 120Q) and 

a fluorescence filter set (Zeiss, Excitation: BP 450-490, Emission: LP 515). The optical set-up is shown 

in Fig. 1a. A 1:1 relay system is used to conjugate the back focal plane of MLA (RPC Photonics, 

MLA-S100-f21) with the detection plane of the camera sensor (PCO. edge 26 sCMOS camera, 

5120×5120 pixels, and 2.5 μm pixel size). Each microlens covers around 11 × 11 effective pixels, 

which corresponds to the angular resolution. We bin 4×4 pixels of the camera sensor for image 

acquisition, resulting in a 10 μm effective pixel size. We use a 20× 0.5NA air-immersion objective lens 

(Zeiss Objective EC Plan-Neofluar 20×/0.50 M27) and a 63×/1.25NA oil-immersion objective lens 

(Zeiss Objective EC PN 63×/1.25 Oil M27) in experiments. 
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Fig. 1 Principle of AM-VCD method. a. The optical set-up of light-field microscopy (LFM). A microlens array 

(MLA) is inserted at the rear focal plane of a conventional benchtop microscope to subsample the image of 

volumes captured by the front microscope system. The zoom-in panel ① shows the relationship of a sample space 

point with the pattern in the native objective plane. The zoom-in panels ② and ③ show the ideal (diffraction-

limited) point spread function (PSF) and the aberrated PSF (i.e., spherical aberration) before and after the MLA, 

respectively. b. The spherical aberration is introduced by refractive index mismatches, which causes the failure of 

light to converge to a spot. c. The schematic diagram of how the proposed method eliminates the spherical 

aberration in LFM. Training pairs are generated from high-resolution (HR) 3D stacks with aberrated PSFs. The 

AM-VCD network is trained by iteratively minimizing the difference between reconstructed volumes and ground-

truth volumes. The weighted difference between axial maximum intensity projections (MIPs) of reconstructed 

volumes and ground truths is also added in the loss function to ease reconstruction artifacts. d. The real aberrated 

PSFs are obtained by measuring the PSFs of fluorescence beads or bead-like structures in samples (see Fig. S2 for 

details). 
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2.2 AM-VCD principle 

The wave optical model of LFM proposed by Broxton et al.14 utilizes Scalar Debye Theory27 to 

describe the wavefront at the native image plane generated from a point source at the object space. This 

theory is based on the assumption that the PSF model is diffraction-limited and circularly symmetrical. 

However, when the system’s aberrations cannot be disregarded, the original PSF model becomes 

insufficient to accurately describe the real LFM system, which will heavily degrade the reconstruction 

quality of both deconvolution and learning-based methods. Therefore, we introduce the aberration 

modeling into the PSF generation of LFM and integrate it with the deep-learning method to achieve 

resolution-uniform, artifact-reduction, and real-time reconstruction. The proposed AM-VCD method 

can be mainly decomposed into two parts: aberration modeling and network reconstruction. In the 

following sections, we first mathematically represent the optical modeling of a conventional LFM and 

how we introduce aberration terms into this model. Then we describe the network realization of the 

proposed AM-VCD and how we evaluate the aberration in real experiments. 

Forward imaging process of LFM. A conventional LFM system includes two optical hardware 

components: a benchtop wide-field fluorescent microscope and an MLA, as illustrated in Fig. 1a. We 

designate the object space coordinates as (𝑠1, 𝑠2, 𝑧) and the sensor plane coordinates as (𝑥1, 𝑥2). The 

original PSF of LFM at the sensor plane can be expressed as 

ℎ(𝑠1, 𝑠2, 𝑧, 𝑥1, 𝑥2) = | 𝒻𝑓𝜇
{𝑜(𝑠1, 𝑠2, 𝑧, 𝑥1, 𝑥2) · Φ(𝑥1, 𝑥2)}|

2

, (1)     

where 𝒻𝑓𝜇
{·} represents the Fresnel diffraction operator propagating a distance 𝑓𝜇 along the optical axis. 

𝑜(𝑠1, 𝑠2, 𝑧, 𝑥1, 𝑥2) is the optical field at the native image plane (NIP) generated by a point source 

𝑠(𝑠1, 𝑠2, 𝑧)  in the object space, which can be formulated by the Scalar Debye Theory 

as
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, (2)     

where M is the magnification of the objective, 𝑓𝑜𝑏𝑗 is the focal length of the objective, 𝜆 is the emission 

wavelength, 𝛼  is the maximum angle corresponding to NA of the objective. 𝜑(𝜃)  indicates the 

apodization function of the microscope, 𝑖  is the imaginary sign, and 𝐽0  represents the zeroth order 

Bessel function of the first kind. 𝑣 ≈ 𝑘√(𝑠1 − 𝑥1)2 + (𝑠2 − 𝑥2)2 sin(𝛼)  and 𝑢 ≈ 4𝑘𝑧 sin2 (
𝛼

2
)  are 

normalized radial and axial optical coordinates, where 𝑘 =
2𝜋

𝜆
 is the wave number. 

Besides, in Equation (1), Φ(𝑥1, 𝑥2) represents the phase modulation mask of MLA, whose pitch size is 

𝑑 and focal length is 𝑓𝜇, and can be expressed as 

Φ(𝑥1, 𝑥2) = rect (
𝑥1

𝑑
,
𝑥2

𝑑
) exp (

−𝑖𝑘

2𝑓𝜇

(𝑥1
2 + 𝑥2

2)) ∗ comb (
𝑥1

𝑑
,
𝑥2

𝑑
) , (3) 

where rect(·) indicates rectangle function, comb(·) indicates 2D comb function, and * denotes 2D 

convolution. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.22.529610doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529610
http://creativecommons.org/licenses/by-nc-nd/4.0/


Aberration modeling in LFM. To introduce aberration terms into the LFM imaging model, we apply 

phase modulation at the pupil plane5, 21 rather than modifying the formula of Scalar Debye Theory for 

its efficiency in computation, generality in introducing different types of aberrations, and convenience 

in integrating the Zernike polynomials. 

The pupil plane coordinates are denoted as (𝜌, 𝜃). We use the forward and inverse Fourier transform to 

introduce a virtual 4-f system into the LFM system, which enables us to do phase modulation at the 

system's pupil plane. Then we use the Zernike polynomials to fit the aberration, which is commonly 

used to describe the optical path difference (OPD) of the wavefront at the pupil plane28. The modulated 

or aberrated pupil function 𝑝(𝑠1, 𝑠2, 𝑧, 𝑥1, 𝑥2 , 𝜌, 𝜃) can be expressed as follows 

𝑝(𝑠1, 𝑠2, 𝑧, 𝑥1, 𝑥2 , 𝜌, 𝜃) = ℱ{𝑜(𝑠1, 𝑠2, 𝑧, 𝑥1, 𝑥2)} · 𝑍(𝜌, 𝜃), (4) 

where ℱ{·} denotes the 2D Fourier transform and 𝑍(𝜌, 𝜃) is the aberrated wavefront, which can be 

represented by the Zernike polynomials. Then the aberrated optical field �̃�(𝑠1, 𝑠2, 𝑧, 𝑥1, 𝑥2 , 𝜌, 𝜃) at the 

NIP can be calculated as 

�̃�(𝑠1, 𝑠2, 𝑧, 𝑥1, 𝑥2 , 𝜌, 𝜃) = ℱ−1{𝑝(𝑠1, 𝑠2, 𝑧, 𝑥1, 𝑥2 , 𝜌, 𝜃)}, (5) 

where ℱ−1{·} denotes the inverse 2D Fourier transform. Therefore, the aberrated PSF of LFM at the 

sensor plane can be expressed as 

ℎ̃(𝑠1, 𝑠2, 𝑧, 𝑥1, 𝑥2 , 𝜌, 𝜃) = | 𝒻𝑓𝜇
{�̃�(𝑠1, 𝑠2, 𝑧, 𝑥1, 𝑥2 , 𝜌, 𝜃) · Φ(𝑥1, 𝑥2)}|

2

. (6) 

AM-VCD network realization. As mentioned, the VCD network16 is a recently proposed deep 

learning method for real-time and artifact-removal reconstruction of LFM. We integrate the aberration 

modeling of LFM into the original VCD network to realize the AM-VCD network. Specifically, as 

shown in Fig. 1c-d, we first calculate PSFs of the aberrated LFM according to Equation (6), where the 

system parameters are the same as those in experiments including the real aberrations. Similar to the 

VCD network, we then acquire high-resolution 3D volumes by confocal microscopy or by simulation 

synthesis as the ground truths and subsequently do 3D convolutions to the ground-truth 3D volumes 

with the aberrated PSFs (i.e., the forward imaging model of LFM) to generate corresponding aberrated 

LFM images. The paired ground-truth 3D volumes and aberrated LFM images are applied for our AM-

VCD network training. 

Resolving the 3D structure of an object from a single-shot LFM image is an ill-posed problem and the 

loss function of the network will highly affect the reconstruction performance. We thus modify the loss 

function of the original VCD network to ease the remained artifacts and balance the energy distribution 

axially, especially when the sample distribution is dense and complicated. Specifically, the VCD 

network uses the mean square error (MSE) between VCD inferences and ground-truth 3D volumes as 

the loss function16, which can be expressed as 

ℒ (𝑗) =
1

𝑁(𝑗)
∑ (�̂�𝑖

(𝑗)
− 𝑠𝑖

(𝑗)
)

2
𝑁(𝑗)−1

𝑖=0

, (7) 
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where 𝑠𝑖
(𝑗)

 represents the 𝑖-th voxel of the ground truth in the 𝑗-th pair of the training set and �̂�𝑖
(𝑗)

 

represents the 𝑖-th voxel of the reconstructed 3D distribution in the 𝑗-th pair of the training set. 𝑁(𝑗) 

indicates the total voxel numbers of the 3D Volume 𝒔(𝑗). 

Apart from the MSE between the paired volumes, we also impose a secondary constraint based on the 

axial information of the 3D object during the training of the network. We calculate the maximum 

intensity projections (MIPs) in the x-z, y-z, and x-y directions of the reconstructed 3D distribution and 

compare the differences between these MIPs and their corresponding ground truths. We add this MIP 

constraint to the loss function as follows 

ℒ̃ (𝑗) =
1

𝑁(𝑗)
∑ (�̂�𝑖

(𝑗)
− 𝑠𝑖

(𝑗)
)

2
𝑁(𝑗)−1

𝑖=0

+
𝛼

𝑀(𝑗)
∑ (𝒫𝑥𝑧 {�̂�𝑖

(𝑗)
} − 𝒫𝑥𝑧 {𝑠𝑖

(𝑗)
})

2
𝑀(𝑗)−1

𝑖=0

+
𝛽

𝐾(𝑗)
∑ (𝒫𝑦𝑧 {�̂�𝑖

(𝑗)
} − 𝒫𝑦𝑧 {𝑠𝑖

(𝑗)
})

2

+
𝛾

𝑄(𝑗)
∑ (𝒫𝑥𝑦 {�̂�𝑖

(𝑗)
} − 𝒫𝑥𝑦 {𝑠𝑖

(𝑗)
})

2
𝑄(𝑗)−1

𝑖=0

,

𝐾(𝑗)−1

𝑖=0

(8)

 

where 𝒫𝑥𝑧{·}, 𝒫𝑦𝑧{·} , and 𝒫𝑥𝑦{·}  represent the x-z, y-z, and x-y direction MIPs of the 3D object, 

respectively. 𝛼, 𝛽, and 𝛾 are three pre-set hyperparameters as weights, which we set 𝛼 = 𝛽 = 1 and 

𝛾 = 0 here. 𝑁(𝑗)  is the total voxel numbers of 3D volume 𝒔(𝑗) . 𝑀(𝑗) , 𝐾(𝑗) , and 𝑄(𝑗) represent total 

voxel numbers of 𝒫𝑥𝑧{·}, 𝒫𝑦𝑧{·}, and 𝒫𝑥𝑦{·}, respectively. 

2.3 Aberration evaluation 

Evaluating the real aberrations in experiments is a crucial task in the aberration-corrupted LFM system, 

which will determine the accuracy of PSF modeling and thus affect the final reconstruction 

performance. The main steps of aberration evaluation of our method are as shown in Fig. 1d. We first 

add different levels of aberrations into the PSFs of the original LFM, generating a series of aberrated 

PSFs according to Equation (6), where the parameters are set the same as those in real experiments. In 

this work, we only consider the most commonly encountered spherical aberration, which is introduced 

by the refractive index mismatch between samples and imaging environments. Given a certain level of 

spherical aberration, its aberrated pupil function can be directly generated by the Zernike polynomials 

(see Supplementary Note 1 for details). 

Then we obtain an experimental PSF image by taking a photograph of a fluorescent bead arbitrarily 

immersed in the sample medium or a bead-like structure inside the sample, which has a smaller than 

the resolution limit of LFM (e.g., 4-μm diameter in 20× experiments and 1-μm diameter in 63× 

experiments). We generate a series of synthetic PSFs with varying spherical aberration levels within an 

estimated depth. As shown in Fig. 1d, we then compare the synthetic PSFs with the captured 

experimental PSF image to estimate the level of the real spherical aberration (see Fig. S2 for details). 

Here we calculate the structural similarity index (SSIM) between each synthetic PSF and the 

experimental PSF to evaluate the real aberration as follows 

SSIM(𝐼1, 𝐼2) =
(2𝜇𝐼1

𝜇𝐼2
+ 𝐶1)(2𝜎𝐼1𝐼2

+ 𝐶2)

(𝜇𝐼1

2 + 𝜇𝐼2

2 + 𝐶1)(𝜎𝐼1

2 + 𝜎𝐼2

2 + 𝐶2)
, (9) 
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where 𝐼1 and 𝐼2 are normalized grayscale images, 𝜇𝐼1
 and 𝜇𝐼2

 are the local means of 𝐼1 and 𝐼2, 𝜎𝐼1𝐼2
 is 

the covariance of images 𝐼1 and 𝐼2, 𝜎𝐼1
2  and 𝜎𝐼2

2  are variances of 𝐼1 and 𝐼2, and 𝐶1 and 𝐶2 are constants to 

avoid a division by null. The real spherical aberration in experiments is corresponding to the maximum 

SSIM value, which is further used to generate all the PSFs of the aberrated LFM system according to 

Equation (6) (see Fig. S2 and Fig. S3 for details). 

3 Results 

3.1 Resolution evaluation of AM-VCD by imaging fluorescent beads 

 

Fig. 2 Performance and resolution evaluation of AM-VCD network by imaging fluorescent beads with an oil-

immersion objective lens (63×/1.25NA). a-d. Lateral and axial MIPs of real-captured fluorescent beads 

reconstructed by RL deconvolution, AM-RL deconvolution, VCD network, and AM-VCD network, respectively. e. 

Zoom-in areas marked by white boxes in a-d. The profiles along dashed lines are plotted and full width at half 

maximum (FWHM) values are calculated in both lateral and axial directions. a.u., arbitrary unit. f-g. Average 

lateral and axial FWHM curves of the simulated 3D-distributed beads under different spherical aberration (SA) 

levels (0, 0.3λ, and 0.8λ) are plotted, which are reconstructed by AM-RL deconvolutions (dashed lines) and AM-

VCD network (solid lines) using the corresponding aberrated PSFs. In both experiments and simulations, 
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aberration-modeling-based methods (both AM-RL deconvolution and AM-VCD network) improve the 

reconstruction resolutions. AM-VCD network can further improve the spatial resolution both laterally and axially 

and can suppress the reconstruction errors that occurred in the results of the original VCD network. Scale bar, 

10 μm a-d, 1 μm e. 

We first test the imaging performance, especially the obtainable spatial resolution both laterally and 

axially, of our method by imaging the fluorescent beads. We apply an oil-immersion objective lens 

(Zeiss Objective EC PN 63×/1.25 Oil M27) to image 1-μm diameter fluorescent beads (ABT-18-3-01, 

Bitoyscience), which are placed in a glass bottom dish (15-mm diameter and 0.17-mm bottom 

thickness, NEST). The space between the objective lens and the dish is immersed with silicone oil. 

According to Section 2.3, we can estimate the level of the real spherical aberration (0.3λ here) in this 

experiment in advance. Noting that this spherical aberration inherently exists in the optical system and 

will heavily affect the reconstruction quality of LFM, which is caused by the refractive index mismatch 

between the objective-immersed silicone oil (refractive index = 1.518) and the disk bottom well 

(refractive index = 1.523). 

Synthetic dataset generation for network training. We synthesize the datasets of fluorescent beads 

to train both the VCD and our AM-VCD networks. We first simulate many binary beads with isotropic 

resolutions and make them randomly distributed in a 3D space within a 30-µm depth range. We then 

apply a 3D-Gaussian kernel to convolve these beads to finely control their full width at half maximum 

(FWHM) values to be 1×1×1 µm3. By this, we obtain a 3D stack of randomly distributed beads, which 

is regarded as the ground-truth volume. We totally generate about 4000 3D stacks to form the ground-

truth dataset. Next, we calculate the PSFs of the original LFM according to Equation (1) for VCD and 

PSFs of the aberrated LFM according to Equation (6) for AM-VCD. We subsequently convolve the 

ground-truth 3D stacks with original PSFs and aberrated PSFs respectively to acquire the 

corresponding LFM images for VCD and AM-VCD. Finally, these two paired datasets are respectively 

applied to train the VCD and AM-VCD networks. 

Experiment evaluation. We prepare a 3D distributed sample of fluorescent beads and experimentally 

capture an LFM image of the sample. We reconstruct the 3D image stacks of beads by using 

Richardson-Lucy (RL) deconvolution14, VCD16, and our AM-VCD. We also integrate our aberration 

model into RL deconvolution, termed AM-RL deconvolution, to reconstruct the beads for better 

comparison. As shown in Fig. 2a-d, aberration-modeling-based methods (both AM-RL deconvolution 

and AM-VCD) can improve reconstruction resolution when aberration exists. AM-RL deconvolution 

can effectively suppress artifacts that exist in the results of conventional RL deconvolution (Fig. 2a-b). 

AM-VCD network can further improve the spatial resolution both laterally and axially, compared to the 

VCD network and AM-RL deconvolution, and it suppresses the reconstruction errors in the result of the 

VCD network, as marked by yellow arrows in Fig. 2c. Noting that in Fig. 2e, the reconstructed beads 

by the RL deconvolution and VCD network have some axial shifts compared to the reconstruction 

results by aberration-modeling methods. It indicates that reconstruction without considering spherical 

aberration will lead to incorrect axial positioning of sample structures, which is consistent with the 

characteristic of spherical aberration. Our AM-VCD network achieves an isotropic resolution of about 
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1.4 μm here. 

Simulation evaluation. We also use simulations of beads under different levels of spherical aberration 

(SA = 0, 0.3λ, and 0.8λ) to evaluate the effectiveness of our method. The test LFM images are 

synthesized by randomly placing 100 beads at different layers of a 3D stack and then applying the LFM 

forward model to process the 3D stack using corresponding aberrated PSFs. Since conventional RL 

deconvolution and VCD network will introduce some artifacts and axial shifts in reconstruction as 

having been demonstrated in Fig. 2a, 2c, and 2e, their FWHMs can hardly reflect the actual imaging 

resolution. Thus in simulations, we only test the resolution-resolved ability of AM-RL deconvolution 

and AM-VCD network. For training the AM-VCD network, we generate paired ground-truth 3D stacks 

and LFM images using the above-mentioned synthetic dataset generation steps with different aberrated 

PSFs. As the reconstructed results shown in Fig. 2f and 2g, we can find that for systems with the 

positive spherical aberration, the depth of the highest lateral resolution achieved by AM-RL 

deconvolution moves away from the focal plane in a certain direction as the spherical aberration 

increases and the region near the focal plane is no longer with the lowest reconstruction resolution (see 

also Fig. S10). We think it is due to the change of the spatial sampling patterns in different depths, 

caused by wavefront modulation of the spherical aberration. In comparison, the AM-VCD network 

obtains relatively uniform and almost isotropic resolution across over 25-μm imaging depth under 

different levels of spherical aberration. It reaches an average resolution of 1.1 μm (𝑥, 𝑦) and 1.1 μm (𝑧) 

when SA = 0, 1.2 μm (x,y) and 1.2 μm (𝑧) when SA = 0.3λ, and 1.2 μm (𝑥, 𝑦) and 1.3 μm (𝑧) when 

SA = 0.8λ. The results show that the AM-VCD network has a stable performance even under a large 

spherical aberration level (SA=0.8λ) and is able to achieve a resolution close to the case without 

aberration (SA = 0). 

Besides, we also conduct all the above experiments and simulations using an air-immersion objective 

lens (20×/0.5NA) to demonstrate the effectiveness and generality of our method, as the results shown 

in Fig. S4. 
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3.2 AM-VCD with MIP constraints can further suppress periodic artifacts 

 

Fig. 3. Performance validation of MIP constraints in AM-VCD by imaging biological samples with an oil-

immersion objective lens (63×/1.25NA). a-e. MIPs of reconstructed dandelion villi slice with ring-like structures 

by RL deconvolution, AM-RL deconvolution, VCD, AM-VCD without MIP constraints, and AM-VCD with MIP 

constraints. f. The MIPs of the ground truth image captured by confocal (Zeiss, LSM 880). To exhibit the strong 

capability of our AM-VCD network, we use a 63×/1.25NA oil-immersion objective to image samples, but replace 

the oil with water to introduce a heavy refractive index mismatch (i.e., large spherical aberration) in the LFM 

acquisition. The estimated spherical aberration is about 0.8λ. g. The raw LFM image captured by our LFM system. 

h. Fourier transform of d and e. i. Zoom-in areas marked by the yellow boxes in d-f. j. Zoom-in areas marked by 

the white boxes in d-f. k-m. A certain reconstructed slice of synthetic membrane data20 at z = 3.5 μm by AM-VCD 
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without and with (w/o and w/) MIP constraints and the corresponding ground truth. n-p. Zoom-in areas in k-m 

marked by yellow, red, and white boxes, respectively. q. the structural similarity index (SSIM) of the full field of 

view (FOV) membrane data reconstructed by AM-VCD network w/o and w/ MIP constraints across the depth 

range, referring to the ground truth. r. Fourier transform of k and l. Our proposed AM-VCD network w/ MIP 

constraints can suppress periodic artifacts of reconstructed results, which are illustrated in both the spatial and 

Fourier domain images, and achieve high-quality reconstruction performance both laterally and axially. Scale bar, 

15 μm a-g, 7.5 μm i-j, 10 μm k-m, and 3 μm n-p. 

In this experiment, we compare different reconstruction performances by RL deconvolution, AM-RL 

deconvolution, VCD, and AM-VCD in imaging biological samples with complex structures. Here we 

train the AM-VCD network with and without MIP constraints respectively to demonstrate the validity 

of the loss function modification (adding MIP constraints) in Equation (8). It is noted that in the rest of 

the paper, the loss functions applied in AM-VCD training are all equipped with MIP constraints if there 

is no special explanation.  

We first use a 63×/1.25NA oil-immersion objective to image the ring-like structures of dandelion villi 

slice (commercially bought from AOXING Laboratory Equipment). The space between the objective 

and the specimen is filled with water to artificially introduce a large spherical aberration, which is 

evaluated to be 0.8λ. The captured LFM image is shown in Fig. 3g. We place some fluorescent beads 

on the cover slip to capture the experimental PSF for aberration evaluation, which is 0.8λ after 

estimation. From the reconstructed results in Fig. 3a-f, we observe that methods such as the RL 

deconvolution, our modified AM-RL deconvolution, and the original VCD network can hardly 

reconstruct the 3D distribution of the sample due to the introduced large spherical aberration, especially 

in axial directions. AM-VCD network without MIP constraints performs much better in correctly 

resolving the sample structures and shows a much better imaging resolution referring to the ground 

truth captured by a confocal microscope (Zeiss, LSM 880). But it still produces some periodic artifacts 

and some errors in axial energy distribution, due to the object’s complex 3D structures. In comparison, 

the AM-VCD network trained with MIP constraints can further improve the imaging quality and well 

suppress the periodic artifacts and axial errors in the reconstructed results, demonstrating the validity of 

the loss function modification, as shown in Fig. 3d-e and 3i-j. It achieves the best reconstruction 

performance and highest spatial resolution, especially in the axial direction. The artifact-suppress 

performance of AM-VCD with MIP constraints can also be seen in the Fourier domain, as shown in 

Fig. 3h. In addition, for computational cost, the deconvolution methods need several minutes of 

reconstruction time (about 20 minutes for a 671×671 LFM image here), while the network methods 

only need several tens of milliseconds to reconstruct a 3D volume (about 70 ms). 

To further verify the artifact-suppress ability of AM-VCD with MIP constraints, we borrow the 3D 

cellular membrane volume data29 to synthesize the training dataset and testing data by adding a 

spherical aberration level of 0.8λ. Since the cellular membrane data have quite complex structures, 

some periodic artifacts are introduced in the reconstrued result by AM-VCD without MIP constraints, 

as the reconstrued slice image (z = 3.5 μm) shown in Fig. 3k and some zoom-in areas shown in Fig. 3n-

p. The periodic artifacts can also be found in the Fourier transform of Fig. 3k, as shown in Fig. 3r. On 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2023. ; https://doi.org/10.1101/2023.02.22.529610doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.22.529610
http://creativecommons.org/licenses/by-nc-nd/4.0/


the contrary, AM-VCD with MIP constraints can greatly suppress the periodic artifacts in the 

reconstruction result, showing more consistent performance with the ground truth, as the reconstructed 

slice shown in Fig. 3l and zoom-in areas shown in Fig. 3n-p. The artifact-suppress ability can also be 

found in the Fourier transform of Fig. 3k and 3l, as shown in Fig. 3r. The SSIM curves in Fig. 3q 

quantitatively exhibit the improvement by adding the MIP constraints. Inheriting from the original 

VCD network, AM-VCD without MIP constraints performs well in reconstructing simple dot-like or 

line-like structures of samples. But it will inevitably produce some periodic artifacts when the 3D 

distribution of the object has more complex structures (e.g., dense distributions or complex surfaces). 

We demonstrate here that these periodic artifacts can be effectively removed by adding the MIP 

constraints. 

3.3 AM-VCD improves fidelity in observing specimen immersed in a solution 

 

Fig. 4 Imaging of fishbones of the glycerol-immersed largemouth bass sample by using an air-immersion objective 

lens (20×/0.5NA). a. A part of the largemouth bass specimen (hard bones dyed by Alizarin Red S) is immersed in 
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the glycerol and placed in the glass disk for direct observation. b. 3D renderings of fishbones reconstructed by RL 

deconvolution, AM-RL deconvolution, VCD network, and AM-VCD network, respectively. The ground-truth 3D 

volume is acquired by confocal microscopy. Our AM-VCD network achieves the best performance with few 

artifacts, resolving the hole structures accurately c. Several slice images sectioned at three axial positions (z = -

36 μm, 0 μm, and 36 μm) of fishbones by RL deconvolution, AM-RL deconvolution, VCD network, AM-VCD 

network, and ground truth, respectively. Our AM-VCD network exhibits a strong optical sectioning ability 

consistent with the ground truth, as marked by blue and yellow arrows. Scale bar, 50 μm b-c. 

We further verify that our AM-VCD network can directly image samples immersed in a solution that 

introduces a large spherical aberration, with high reconstruction accuracy. Many biological samples, 

especially living samples, always need to be placed in a solution (such as agar and water) for 

observation. However, to directly image a sample immersed in a solution is typically a challenging 

issue, since a heavy refractive index mismatch will be introduced between the sample solution and the 

objective-immersed medium, resulting in the large spherical aberration. We can try to reduce the 

refractive index difference by using matched objective-immersed media, but this way is not always 

possible and may need complicated medications of the optical system. Besides, some solvents are 

corrosive. 

Our proposed AM-VCD network can well solve this problem without the need for hardware 

modification to the LFM system. In Fig. 4, we show that the AM-VCD is suitable to image the semi-

transparent hard bone of glycerol-immersed (n = 1.4746) largemouth bass sample by conveniently 

using an air-immersion 20×/0.5NA objective lens (Zeiss Objective EC Plan-Neofluar 20×/0.50 M27) 

on a typical inverted microscope, getting rid of the complex and delicate system with a water-immersed 

objective. We cut a small piece from the specimen and place it in the original solution (i.e. the glycerol) 

for observation, as shown in Fig. 4a. We randomly drop some green fluorescent beads into the sample 

solution to measure the aberration level. The sample has complex surfaces and the captured raw LFM 

images are under large spherical aberration (the estimated parameter is -0.9λ), which makes it hard for 

conventional LFM algorithms to recover. But our proposed AM-VCD obtains quite similar 

performance to the ground truth obtained by confocal, where the hole structures of the fishbone are 

successfully recovered with high accuracy and few artifacts. The 3D rendering images with a 

426×426×101 µm3 volume are shown in Fig. 4b. In comparison, deconvolution methods such as RL 

deconvolution and our modified AM-RL deconvolution are unable to accurately reconstruct the 

structures of the sample and their achievable resolutions are relatively lower. The results of the VCD 

network have weird 3D structures and introduce large artifacts (e.g., the areas marked by white arrows 

in Fig. 4b). Additionally, as the slice images shown in Fig. 4c, our AM-VCD network demonstrates its 

strong optical sectioning ability (e.g., the areas marked by blue and yellow arrows in Fig. 4c). The 

reconstructed slice images by our method are well consistent with the ground truths in corresponding 

depths (z = -36 μm, 0 μm, and 36 μm), compared with other methods. This experiment verifies that our 

AM-VCD improves the fidelity in directly observing the specimen immersed in a solution, needing no 

hardware modification. 
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3.4 AM-VCD enables resolution-uniform, artifact-suppress, and real-time 3D imaging of living 

samples 

 

Fig. 5 Dynamic 3D imaging of zebrafish neutrophils using an air-immersion objective lens (20×/0.5NA). a. The 

reconstructed lateral MIP at one certain moment (t = 59.00 s). A nonfluorescent bright-field image is captured as 

the reference and fused in the background. Up-right panel: the paralyzed zebrafish larva is immersed in 1% low-

melting-temperature agarose solution and placed in a glass bottom dish. b. The cell tracking results of 

reconstructed zebrafish neutrophils by AM-VCD network, corresponding to the zoom-in area marked by the blue 

box in a. c. Time sequences of the zoom-in area marked by the white box in a. Scale bar, 50 μm a, 30 μm b, 10 μm 

c. 

Our proposed AM-VCD network is very suitable for observing living samples that must be placed in 

the liquid, benefiting from its ability of directly imaging samples immersed in a solution and the 

inherent snapshot capability of LFM. In addition, our method can accurately reconstruct the 3D 

dynamics of samples in real-time and at micrometer resolution. Here we use experiments of dynamic 

imaging of zebrafish neutrophils (426×426×101 µm3 
3D volume and 6 frame rate) to demonstrate the 

superior capability of our method. As shown in Fig. 5a, after dropping the anesthetic into the living 

zebrafish larva placed in the glass disk, we immerse it with the 1% low-melting-temperature agarose 
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solution. We use an air-immersion objective lens (20×/0.5NA) to continuously capture a series of LFM 

images to record the movement of neutrophils in blood vessels. Due to the different refractive indices 

between the agarose solution (refractive index = 1.335) and air (refractive index = 1) together with the 

thickness of the glass bottom (refractive index = 1.523), the spherical aberration is large, which is 

evaluated as -0.5λ. We use the AM-VCD network to reconstruct the 3D dynamics of zebrafish 

neutrophils from the series of LFM images. A reconstructed x-y MIP image at a specific moment 

(t = 59.00 s) is shown in Fig. 5a, where the bright-field image is captured and merged in as a 

background reference and different colors of neutrophils correspond to different axial depths. Our 

method can well resolve the point-structure of neutrophils in the 3D volume even under the large 

spherical aberration, showing the practicality and convenience of our method in real-time and 3D 

imaging of living samples. Fig. 5b shows the cell tracking results of reconstructed zebrafish neutrophils 

by the AM-VCD network, which correspond to the zoom-in area marked by the blue box in Fig. 5a. In 

Fig. 5c, some temporal sequences of the zoom-in area marked by the white box in Fig. 5a are also 

presented to show the dynamic imaging ability of our method (see Supplementary Video 1 for the 

whole moving process of zebrafish neutrophils in 3D). This experiment demonstrates that our AM-

VCD network enables resolution-uniform, artifact-suppress, and real-time (high data acquisition speed 

and real-time reconstruction speed) 3D imaging of living samples in a solution, overcoming the 

limitation of the requirement of refractive index matching and improving the convenience of 

microscopic observation. 

3.5 Data processing 

For experiments using the20× objective, the 3D reconstruction comprises 101 axial slices with a voxel 

size of 0.33×0.33×1 µm3. For experiments using the 63× objective, the 3D reconstruction comprises 61 

axial slices with a voxel size of 0.1×0.1×0.5 µm3.  

In this work, we process data using MATLAB r2022b software in a 64-bit computer with Intel Core i9-

9900X CPU @ 3.50GHz and 128GB memory and TensorFlow 1.0 in Nvidia GeForce RTX 2080 Ti 

graphic cards. The VCD and AM-VCD networks are trained on about 4000 pairs of image patches 

(176×176×101 pixel 3D volumes as ground truths and 176×176 pixel LFM images as the paired 

images), requiring 80 epochs and a time cost of approximately 6 hours on a single GPU. The 

reconstruction of a 671×671 pixel LFM image using the VCD and AM-VCD network both take about 

70 ms for a single 3D volume, while RL deconvolution and AM-RL deconvolution (5 iterations) 

require approximately 300 seconds for reconstruction. 

4 Discussion and Conclusion 

In this work, we propose the AM-VCD network method to ease the performance reduction caused by 

the spherical aberration in LFM imaging. We model the aberration in the PSF generation of LFM and 

integrate it into the VCD deep learning structure. We further realize automatic aberration estimation 

and loss function optimization for the practical use of our method. Through the real experiments of 

fluorescent beads and numerical simulations under various aberration levels, we have proved that our 
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method can achieve 3D volumetric reconstruction with artifact-free, real-time, resolution-uniform 

performance. We also prove that the proposed method can be used to directly and conveniently observe 

the largemouth bass sample immersed in the unmatched solution, resolving the complex structures of 

fishbones with high accuracy. Our method inherits the high acquisition speed of LFM and the real-time 

reconstruction speed of the VCD network. It only requires the conventional LFM system without no 

hardware modification and has the ability of overcoming great spherical aberration. Therefore, it is 

very suitable for long-term 3D dynamic observation of living samples placed in a solution, such as the 

imaging of living zebrafish without using exactly matched water-immersion objectives. In the future, 

we will introduce different types of aberration models into our method to expand its application scope 

and embed the aberration estimation step into the network structure to achieve more convenient and 

more precise aberration evolution. 
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Appendix A 

Sample Preparation 

Fluorescent beads. Fluorescent beads of 1-μm diameter (ABT-18-3-01, Bitoyscience) and 4-um 

diameter (ABT-18-3-04, Bitoyscience) were diluted 10000 times with distilled water and embedded on 

a glass bottom dish 15-mm diameter and 0.17-mm bottom thickness (NEST). The beads, which emit 
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green fluorescence, were then imaged at room temperature. 

Largemouth bass bones imaging. For the preparation of largemouth bass specimens, we used the 

following reagents: distilled water, 95% ethanol, glycerol, 2% potassium hydroxide, hydrogen peroxide, 

and Alizarin Red S (emission wavelength is about 600 nm). We selected a largemouth bass with a 

length of 5 cm. To stiffen the fish, we first cleaned it with distilled water and then soaked it in 95% 

ethanol for 3-4 days. Next, we rehydrated the fish by placing it in distilled water for 24 hours. To 

transparentize the fish, we immersed it in a 2% potassium hydroxide solution for 24-48 hours. We then 

prepared a solution of Alizarin Red S by dissolving it in 95% ethanol and diluting it 10-fold with 1% 

potassium hydroxide solution. The fish was soaked in this solution for 48 hours to stain the bones. 

Finally, we preserved the fish specimen by immersing it in glycerol. To image the stained fish bones, 

we cut a small piece (about 2 mm×2 mm) from the fin and placed it in a glass bottom dish (15-mm 

diameter and 0.17-mm bottom thickness, NEST) filled with glycerol. We attached some green 

fluorescent beads to the surface of the fin slice. The emission peak of Alizarin Red in an aqueous 

medium is around 600 nm, which is also inside the wavelength range of the emission filter of the 

microscope, allowing us to simultaneously measure the experimental PSFs and image the fish bones. 

We used an air-immersion objective lens (20×/0.5NA) to capture images of the fish bones. To obtain 

high-resolution 3D data for network training, we imaged various parts of bones from the largemouth 

bass using an oil-immersion objective lens (40×/1.1NA Oil) on a confocal microscope (Zeiss, LSM 

880).  

Dynamic imaging of zebrafish neutrophil. Transgenic zebrafish from the Tg(mpx:EGFP) line were 

utilized for neutrophil imaging. The embryos were incubated at 28.5°C until they reached 4 days post 

fertilization (dpf). To paralyze the larval zebrafish, the fish was briefly immersed in a solution of 

1 mgml−1  alpha-bungarotoxin (Invitrogen). Once paralyzed, the larva was embedded in 1% low-

melting-temperature agarose solution and placed in a glass bottom dish (15-mm diameter and 0.17-mm 

bottom thickness, NEST). In detail, we used a dropper to take about 1 ml of agar solution and dropped 

it into a glass bottom dish, then we used another dropper to move the zebrafish larva from the culture 

dish and fixed the zebrafish larva in the upper area of the droplet. We kept the specimen at room 

temperature for imaging. 
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