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Abstract 26 

 27 

Stingless bees are major flower visitors in the tropics, but their foraging preferences and behavior 28 

are still poorly understood. Studying stingless bee interactions with angiosperms is 29 

methodologically challenging due to the high tropical plant diversity and inaccessibility of upper 30 

canopy flowers in forested habitats. Pollen DNA metabarcoding offers an opportunity of assessing 31 

floral visitation efficiently and was applied here to understand stingless bee floral resources spectra 32 

and foraging behavior. We analyzed pollen and honey of three distantly related species of stingless 33 

bees, with different body size and social behavior: Melipona rufiventris, Scaptotrigona postica and 34 

Tetragonisca angustula. Simultaneously, we evaluate the local floristic components through seventeen 35 

rapid botanical surveys conducted at different distances from the nests. We discovered a broad set 36 

of explored floral sources, with 46.3 plant species per bee species in honey samples and 53.67 in 37 

pollen samples. Plant families Myrtaceae, Asteraceae, Euphorbiaceae, Melastomataceae and 38 

Malpighiaceae dominated the records, indicating stingless bee preferences for abundant resources 39 

that flowers of these families provide in the region. Results also reinforce the preference of 40 

stingless bees for forest trees, even if only available at long distances. Our high-resolution results 41 

encourage future bee-plant studies using pollen and honey metabarcoding in hyper diverse tropical 42 

environments.  43 

 44 

 45 

 46 
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Introduction 49 

Plant-pollinator interactions mediate most flowering plant reproduction, maintaining terrestrial 50 

ecosystems and crops1. The current decline in pollinator abundance and diversity worldwide 51 

threatens pollination services, with direct consequences to nature conservation and food security2. 52 

Therefore, understanding the interaction between pollinators and flowering plants became crucial, 53 

since it can provide an information framework to subsidize conservation policies and decisions in a 54 

changing world. The most important group of animal pollinators – the bees – totally depend on 55 

floral resources to complete their life cycles3, while 87.5% of the animal-pollinated flowering plants 56 

depend on bees to reproduce4. Interaction between bees and angiosperms has been a major 57 

research focus in the last two decades, due to the massive effects of insect and bee declines5 58 

threatening ecosystem services and food security6,7. In this context, pollen, and honey DNA 59 

metabarcoding emerged as an efficient technique to identify plant taxa visited by pollinators based 60 

on samples extracted from bees' bodies or nests8–11. DNA metabarcoding of pollen and honey has 61 

been largely applied to temperate systems, and recently to (sub) tropical species of stingless 62 

bees12,13. 63 

The stingless bees (Apidae, tribe Meliponini) comprise c. 500 species of eusocial bees, most 64 

of which occur in tropical America (more than 400 species), but also in Africa, Asia and 65 

Australia3,14. The role of stingless bees as pollinators of the neotropical flora could become even 66 

more relevant under climate change scenarios, if the predicted expansion of warmer temperatures 67 

pushes the distribution of predominantly temperate bees, such as Apis and Bombus, into cooler 68 

regions6,15. Although domestication is still restricted to a few species, stingless bees are also 69 

explored commercially for honey production 16, which can reduce the use of introduced honey-70 

bees and their impact on native species in these regions12 71 

As all social bees, stingless bees show a predominantly generalist pattern of floral 72 

exploitation, i.e. they visit a large number of species in several plant families, supposedly 73 
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disregarding specific floral traits17. Particularities exist though, since stingless bees exhibits a huge 74 

diversity of body size (1.8 to 13.5 mm)3 flight distance (0.3 to 3 km)18 and foraging behavior19. 75 

However, the breadth of the stingless bees diet – that is, how many different species of flowering 76 

plant they forage on – and the extent of their role as pollinators of tropical plants - are still largely 77 

open questions. Most studies aiming to answer some of these questions faced some 78 

methodological difficulties due to inaccessibility of visited flowers, which mostly occupy upper 79 

canopy strata, especially in rainforests20, and hyper diversity of tropical plants, thus hampering easy 80 

identification through bee-pollen morphology21,22. 81 

In this study, we explored the diet breadth of three distantly related species of stingless 82 

bees of different body sizes and flight ranges in a hyper-diverse tropical ecosystem, the Cerrado 83 

savannas of central South America. The Cerrado is the most species-rich savanna in the world and 84 

a hotspot of biodiversity23; the flora encompasses >13.000 native species24 a highly patchy 85 

vegetation with several different physiognomies, ranging from grasslands, marshlands, and typical 86 

savanna to closed canopy riverine forests along waterways25. The proportion of pollinator-87 

dependent species in the Cerrado flora is still unknown, although this number is likely to be similar 88 

to that of tropical forests4, with some authors estimating c. 60% of angiosperm species being bee 89 

dependent26. 90 

We analyzed pollen and honey from the pots of the nests (henceforward pot-pollen and 91 

pot-honey respectively) from three commonly managed stingless bee species (Melipona rufiventris, 92 

Scaptotrigona postica and Tetragonisca angustula) native to the Cerrado to investigate: (i) How broad is 93 

the floral resource exploitation of stingless bees in a hyper-diverse flora? (ii) Which plant species 94 

and families are the most important sources of pollen and/or nectar for stingless bees in the area? 95 

(iii) What can pollen and honey metabarcoding reveal, when combined with floristic surveys of the 96 

area, about stingless bees foraging behavior, particularly foraging distances, and floral preferences? 97 

We also discuss how efficiently pollen and honey metabarcoding identified plants visited by bees in 98 
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the area, considering the low DNA sequence coverage of neotropical plant species in public 99 

databases27, and the potential role of this technique in improving ecological understanding of bee-100 

plant interactions in the tropics.  101 

 102 

Material and Methods 103 

Study site 104 

Our study was conducted in the Ecological Reserve of the Brazilian Institute of Geography 105 

and Statistics (IBGE) (15°56′41″ S and 47°53′07″ W) that, together with the contiguous Brasilia 106 

Botanic Garden and the University of Brasília Experimental Field Station, preserves an area of c. 107 

10,000 ha of native Cerrado in the Distrito Federal, Brazil. The IBGE reserve was chosen as a 108 

study site for being one of the most well-studied areas of Cerrado, with good prospects of building 109 

a relatively robust plant DNA reference library, a requirement for our analyses (see below); it 110 

occupies a central position within the Cerrado Biome. The climate in the area is typical tropical 111 

savanna climate (Aw Köppen classification system) with dry winters and rainy summers with an 112 

average annual precipitation of 1453 mm, altitude ranges from 1048 to 1160 m. The IBGE reserve 113 

contains the main vegetation types typical of the Cerrado domain: savannas (cerrado sensu stricto), 114 

palm swamps (veredas), grasslands (campo limpo and campo sujo) and riverine forests (mata de galeria), 115 

surrounded by natural and agricultural areas (Figure 1). This habitat heterogeneity results in high 116 

plant biodiversity. The last published floristic survey in the area recorded 1798 species of 117 

angiosperms, of which 1457 are native, distributed in 138 families and 724 genera28. 118 

 119 

Stingless bee species and nest material sampling 120 
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Three native species of stingless bees were chosen for our study: Melipona rufiventris, 121 

Scaptotrigona postica and Tetragonisca angustula. Choice of species was guided by three key aspects: 122 

body size, differences in foraging behavior, and phylogenetic relationships. Melipona rufiventris is the 123 

largest with a body length of c. 9.5 mm, S. postica has an intermediate body size varying from 5.7 to 124 

6 mm, and T. angustula is amongst the smallest stingless bees with a total body length of c. 4 mm. 125 

Phylogenetically, the three genera are not closely related, i.e. they are not sister groups29. Melipona 126 

rufiventris is typically found in the more open vegetation types of eastern and central Brazil, 127 

Scaptotrigona postica occours in a broader region in Central, Northeast and southeast Brazil, also 128 

associated with open vegetation, while Tetragonisca angustula is widespread in the Neotropics 129 

(Mexico to South America)14.  130 

The three species are commonly managed by local beekeepers and were chosen also for 131 

their relatively easy management in artificial colonies (Figure S1). The decision to use artificial 132 

colonies for sampling in our study relied on four main points: 1. to preserve the natural bee 133 

community in the area, not destroying any nests for sampling; 2. to facilitate sampling, as pollen 134 

and honey are stored in accessible compartments in the wooden box; 3. to facilitate the access to 135 

the colonies, which in natural conditions would be randomly distributed, depending on availability 136 

of cavities, and 4. to make sure nests would have a strong population and enough pot-pollen and 137 

pot-honey for sampling. Eighteen pre-established nests were installed: three of M. rufiventris, eight 138 

of S. postica and seven of T. angustula. The nests were installed at a distance of about 5 m from each 139 

other and c. 150 cm above ground level, in typical savanna or cerrado sensu stricto28 where most 140 

species are subshrubs, shrubs or small trees.  141 

Nests were moved to the study area eight weeks prior to the first sampling to allow bees 142 

time to start accumulating pollen and honey from local species in the artificial nests. Pot-pollen 143 

and pot-honey samples were collected from the nests (Figure S3) once every 15 days for five 144 

months (July 2019 – November 2019). This period started at the height of the dry season, moved 145 
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through the transition between dry and wet seasons and ended at the beginning of the wet season. 146 

Samples were always collected from new pots – that is, those built in between two subsequent 147 

sampling events. Micropipettes (1000 uL) were used to collect honey from the pots, while pollen 148 

was collected with plastic straws, which perforates the pollen mass while collecting it at the same 149 

time. Samples were subsequently stored in falcon tubes and stored in a -20o C freezer until 150 

extraction. In total, 191 samples (115 of pollen and 75 of honey) were collected from the three 151 

species: 29 of M. rufiventris, 81 of S. postica and 74 of T. angustula 152 

 153 

Metabarcoding protocol 154 

Extractions of DNA of pollen samples from pot-pollen and pot-honey follow different 155 

methodologies, due to the different natures of the samples. For pot-honey, we extracted DNA 156 

using the Machery-Nagel (Düren, Germany) NucleoSpin Food Kit; for pot-pollen we used the 157 

Machery-Nagel (Düren, Germany) NucleoSpin Plant II.  158 

Pot-Pollen DNA extraction – To extract pollen genomic DNA, we added to the pooled 159 

samples (weight ranging from 0.1 g to 2 g) 4 mL of deionized and autoclaved water, and 160 

homogenized it using a vortex. We then placed 200 µL of this emulsion in a 1.5mL 161 

microcentrifuge tube, and centrifuged it for 15 minutes at 8000 rpm. We discarded the supernatant 162 

material, froze the pellet obtained in liquid nitrogen, and then used mortar and pestle to break the 163 

pollen exine and the NucleoSpin Plant II Kit to promote cell lysis and to isolate the DNA 164 

according to the manufacturer’s instructions. 165 

Pot-Honey DNA extraction – To extract pollen genomic DNA from honey, we added 166 

deionized and autoclaved water to the samples until the volume of each sample tube reached 1.5 167 

mL. We incubated the tubes at 65�°C for 30�min and, over that period, inverted the tubes slowly 168 

to homogenize the material. We then pooled the honey samples collected from the same nest and 169 
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the same day by pouring them into falcon tubes, to which deionized and autoclaved water was 170 

added until completing 10 mL. Afterwards, we centrifuged these pooled samples for 15 min at 171 

5000 rpm and discarded the supernatant material. Each precipitated pooled honey sample was 172 

resuspended in 200 µL deionized and autoclaved water and placed in a 1.5-mL microcentrifuge 173 

tube. This procedure was done twice. Finally, we centrifuged the samples for 15 min at 5000 rpm, 174 

discarded the supernatant material, dried the pellet in a drying cabinet at 35°C, and then ground 175 

the samples inside the microcentrifuge tube using micro-pestles and liquid nitrogen. We then used 176 

the NucleoSpin Food Kit to promote cell lysis and to isolate the DNA according to the 177 

manufacturer’s instructions.  178 

The protocol of amplification utilizes a dual-indexing strategy9 to amplify the ITS2 region, 179 

using the primers ITS-S2F and ITS4R. Primer sequences, references and other amplification 180 

methodological details can be found in9 and30. The triplicate PCR reactions were combined per 181 

samples, well mixed and checked on 1% agarose gel using 5 uL of the combined products for 182 

quality. PCR products of each sample were normalized to ensure more equalized library sizes using 183 

the SequalPrep Normalisation kit (Invitrogen, CA, USA) according to the manufacturer's protocol. 184 

The multiplex-index samples were pooled and then submitted to quality control and quantification 185 

to ensure the correct fragment size has been amplified with a Bioanalyzer High Sensitivity DNA 186 

Chip (Agilent Technologies, CA, USA) and a dsDNA High Sensitivity Assay on the Qubit 187 

Fluorometer.  For library dilution, we followed the Illumina Sample Preparation Guide for a 2 nM 188 

library and a 5% PhiX control was added in order to increase quality. In addition, the reagent 189 

cassette of the sequencing kit was spiked with the Read1, Read 2 and index primers according to 190 

Sickel et al. (2015). Sequencing was then performed on the Illumina MiSeq system at the University 191 

of Würzburg. Sequence data are available at NCBI (Bioproject 976708).   192 

 193 

Bioinformatic data analyses 194 
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We used VSEARCH v2.14.231 to join paired ends of forward and reverse reads and to 195 

remove reads shorter than 150bp, quality filtering (EE < 1)32, de-novo chimera filtering (following 196 

UCHIME3)33, and determination of amplicon sequence variants (ASVs)33, as previously done for 197 

pollen metabarcoding networks12. Reads were first directly mapped iteratively with global 198 

alignments using VSEARCH against several floral ITS2 reference databases for the study region 199 

and an identity cut-off threshold of 97%. A reference library of ITS2 sequences of all plant species 200 

recorded from IBGE was built from sequences available on GenBank. This primary database was 201 

then curated to remove voucherless entries for greater trustworthiness. Remaining unclassified 202 

sequences were then tracked by iterative searches against geographically broadening public 203 

sequence reference data, i.e., species lists of the flora of the Distrito Federal, then the large, 204 

neighboring state of Goiás, and lastly the entire Cerrado biome flora to increase completeness of 205 

reads. These reference databases were created with the BCdatabaser34 from GenBank entries given 206 

above mentioned species lists and default parameters (length between 200 and 2000 bp, maximum 207 

nine sequences per species). For still unclassified reads, we used SINTAX35 to assign taxonomic 208 

levels as deep as possible using a global reference database36. After classification, we performed 209 

plausibility checks according to geolocation and phenology with the results to verify validity. 210 

Thirteen species were automatically matched to genus level only but were attributed to species 211 

based on being the only species of the genus to occur in the Distrito Federal. 212 

 213 

Floristic surveys and vegetation characterization 214 

To improve our knowledge of the flora surrounding the nests, we conducted Rapid 215 

Botanical Surveys (RBS) in small plots that were demarcated in loco as homogeneous to vegetation 216 

type. These plots were exhaustively surveyed for all flowering plant species of all life forms, fertile 217 

or not, by a team of 3-5 researchers, where one was the booker, i.e. the most experienced person in 218 
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the group, who identified the plants in the field and discarded duplicated species; other team 219 

member collected and pressed the vouchers (for additional methodological details see37. 220 

Eleven RBS plots had been initially chosen to correspond to one plot near the nests 221 

(henceforward nest plot) and ten other plots established at the vertices of two pentagons; the inner 222 

pentagon was established with its vertices at 700m from the nests and the outer pentagon with 223 

vertices at 1500m from the nests. These distances were chosen based on the literature of the flight 224 

capabilities of other stingless bees18. These eleven RBS plots mostly fell in areas of well-preserved 225 

savanna within the IBGE Reserve, ranging from the more open, grass and herb-rich areas with few 226 

shrubs and trees (campo sujo), to dense savanna woodland (cerradão); one outer pentagon plot fell in 227 

disturbed cerrado and another in heavily degraded secondary vegetation out of the IBGE. Because 228 

none of the plots fell in riverine gallery forest, we included six additional RBS plots in this 229 

vegetation type: three in the riverine gallery forest nearest to the nests (Nascente do Roncador, c. 230 

630m from the nests), and three in a more distant gallery forest (Ponte do Corujão, c. 2070m from 231 

the nests), measured as the crow flies, thus a total of 17 RBS plots. Lastly, we also surveyed the 232 

plants and weeds growing in the ornamental gardens associated with the Main Building and Seat of 233 

the Reserva Ecológica do IBGE, which is located c. 650m from the nests. All specimens collected 234 

in RBS inventories were deposited in the UB Herbarium (University of Brasilia) and the records 235 

are available online in the Species Link Network (https://specieslink.net/search/) by searching on 236 

the collector name "Projeto Barcode Cerrado".  237 

 238 

Data Integration 239 

The 30 most abundant plant species in the pollen and honey samples were classified by 240 

ubiquity (i.e., presence in pollen or honey samples of two or all bee species). We then crossed this 241 

information with data from the RBS floristic surveys: distance from the nests: i.e., if they were 242 

sampled at nest plot, inner pentagon plots, outer pentagon plots, nearest or furthest gallery forest 243 
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plots, or the gardens. These 30 species were also characterized from the literature in terms of their 244 

offered resources (e.g. pollen, nectar, oil, resin), their habitat (savanna, forest or cultivated/weedy) 245 

and habit (trees, shrubs, subshrubs, hemiparasites) (Table 1).   246 

 247 

Statistical analysis of pollen and honey samples 248 

Data was processed for analyses using R 4.2.238 and the packages phyloseq39 vegan40, 249 

bipartite41, circlize42 and viridis43. In R, non-plant sequences were removed from the dataset, as well 250 

as the data transformed to relative read abundances (RRAs) per sample. ASVs that were classified 251 

as the same plant species were accumulated at the species level. Low abundance taxa that 252 

contributed less than 1% to a sample were removed from those samples. The Shannon diversity 253 

index was calculated for each sample (pollen and honey) from each bee species. The diversity was 254 

tested for significant differences between stingless bee species using the Kruskal-Wallace test, 255 

separately for pollen and honey samples. We also performed an NMDS ordination to visualize 256 

clustering of samples of pollen and nectar using Bray-Curtis beta-diversity dissimilarities. The 257 

ordination represented by proximity of points shows how similar two samples are in terms of 258 

composition and abundance of taxa. We tested for differences between species by using a 259 

PERMANOVA, separately for honey and pollen samples. We further calculated network indices 260 

of the three stingless bee species to account for their overlap and complementarity in the visited 261 

plant resources, i.e. the d’ for each bee species and H2’ for the entire network.  262 

Results 263 

Pollen and honey metabarcoding yielded a total of 5,079,123 quality filtered reads, with 264 

mean throughput per sample of 27307.11 reads +/- 1756.635 (SE). Significant reads (more than 265 

1% of reads in any sampling) accounted for 110 ASVs, in 86 genera and 40 plant families; c. 36% 266 

of these reads were only matched to generic level or above. In total, 95 out of the 110 ASVs 267 
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recovered from the samples had been previously recorded in the IBGE Reserve flora28; 12 of the 268 

15 absent taxa were exotic cultivated or weedy species. A detailed list of all significant plant species 269 

present in pot-pollen and pot-honey samples is available in Table S2. Reads below the threshold 270 

value (190 ASVs) still showed a high number of matches to species known to occur in IBGE (86 271 

species, c. 45%) of which 41 were also recorded by us in the RBS floristic inventories.  272 

 273 

How broad is the floral resource exploitation by stingless bees in Cerrado Savanna?  274 

Overall, the interaction network was highly generalized (H2’ = 0.2895575), and 275 

consequently also that of the three species within the network (Melipona rufiventris d’ = 0.22, 276 

Scaptotrigona postica d’ = 0.04, and Tetragonisca angustula d’ = 0.22) (Figure 2). More than a half of 277 

plant species appeared in the samples of at least two of the bee species. In terms of relative plant 278 

species abundances as evaluated by combined honey plus pollen samples, bees showed an 279 

opportunistic foraging pattern, with most plant species with low abundance and a few highly 280 

abundant.  281 

 282 

Differences among pattern of floral sources exploitation of bee species 283 

The comparison between alpha diversity among samples of different bee species showed 284 

that the plant species richness in the pot-honey was higher than in the pot-pollen for all species, 285 

but the difference was only significant for M. rufiventris (Figure 3). In a comparison among the three 286 

bee species, Shannon diversity of plant species in pollen samples was not significantly different 287 

between bee species (Kruskal-Wallis rank sum test, chi-squared = 1.4733, df = 2, p-value > 0.05), 288 

neither was plant species richness (Kruskal-Wallis rank sum test, chi-squared = 4.5138, df = 2, p-289 

value > 0.05). The same applied for honey samples with Shannon diversity (Kruskal-Wallis rank 290 

sum test, chi-squared = 2.6469, df = 2, p-value > 0.05) and species richness (Kruskal-Wallis rank 291 

sum test, chi-squared = 4.9389, df = 2, p-value > 0.05).  292 
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Although the most frequent plant species are shared among the three stingless bee species, 293 

samples from different bee species have several compositional particularities, as shown by the 294 

NMDS (Figure 4). The NMDS showed the composition of plants collected differed strongly 295 

between bee species, both for pollen (PERMANOVA, df = 2, R2 = 0.12516, F = 7.2246, p < 296 

0.001***) and honey (PERMANOVA, df = 2, R2 = 0.10751, F = 3.8548, p < 0.001***). The 297 

NMDS also points to different plant species composition between samples of three species, but in 298 

the honey samples little ordination is observed (Fig. 4A). Among pollen samples, on the other 299 

hand, we can observe different patterns among the three species, with more overlap between M. 300 

rufiventris and S. postica (Fig. 4B). 301 

 302 

Most frequent plant species and families recovered from pot-pollen and pot-honey samples 303 

The 30 ubiquitously found plant species in pot-honey and pot-pollen samples belong to the 304 

following families: Myrtaceae, Loranthaceae, Anacardiaceae, Phyllanthaceae, Sapindaceae, 305 

Melastomataceae, Euphorbiaceae, Primulaceae, Nyctaginaceae, Rosaceae, Asteraceae, 306 

Malpighiaceae, Cloranthaceae, Piperaceae, Fabaceae, and Clusiaceae (Figure 5, Table S3). Out of 307 

110 ASVs, some plant taxa stand out as most frequent in samples of all the three bee species: 308 

Myrtaceae: Syzygium cumini, Myrcia linearifolia and Myrcia pinifolia; Loranthaceae: 309 

Struthanthus/Psittachanthus, Anacardiaceae: Tapirira guianensis, Phyllanthaceae: Richeria grandis, 310 

Sapindaceae: Matayba guianensis, and Melastomataceae: Miconia stenostachya. Most of them offer 311 

pollen and nectar, except the pollen-only Miconia and the two Myrcia species. Thirteen of these 312 

ubiquitous species were nectar or oil flowers (i.e., they provide additional resources beyond pollen). 313 

Five highly abundant reads were incompletely matched, i.e. could not be identified to species level 314 

(Eucalyptus sp., Myrtaceae sp., Myrsine sp., Croton sp, Struthanthus/Psittachanthus) but Croton, Eucalyptus 315 

Psittacanthus and Struthanthus are known to produce floral nectar. Pollen-only flowers were found in 316 

honey samples of all three species: Myrsine sp, Blepharocalyx salicifolius, Piper aduncum, Miconia 317 
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leucocarpa and several Myrcia species, thus indicating some kind of mixing nectar and pollen trips, 318 

manipulation or spill-over inside the nests. Pollen records include similar diversity numbers of 319 

pollen-only flowers and flowers offering nectar and pollen. Only four of out of the 110 ASVs were 320 

not recorded in our RBSs: Bacharis dracunculifolia and Myrcia pinifolia, both native Cerrado species 321 

that occur in the IBGE, and exotic Eucalyptus sp. Toxicodendron succedaneum.  322 

These 30 most abundant plant species had the following characteristics: all were woody 323 

perennials, and most were trees or large shrubs (one climber and one hemiparasite). They could be 324 

grouped into two dominant groups according to a combination of the habitat and floral resources. 325 

Group 1 is composed of riverine forest species that offer pollen and nectar, recorded as very 326 

common in the Forest RBS surveys: Syzygium cumini, Tapira guianensis, Richeria grandis, Matayba 327 

guianensis, R. urticifolius. Group 2 includes Cerrado shrubs or trees offering only pollen and recorded 328 

as common around the nests, in the Cerrado RBS surveys: Myrcia linearifolia, Blepharocalyx salicifolius, 329 

Maprounea guianensis.  330 

Discussion 331 

Pollen and honey metabarcoding of three stingless bee species in the genus Melipona, 332 

Scaptotrigona and Tetragonisca revealed a broad generalized set of used floral sources regarding 333 

number of species and plant families explored. We recovered 110 plant species in pot-honey and 334 

pot-pollen retrieved from nests of three stingless bee species. This reveals a broader spectrum of 335 

food sources than found by previous surveys on neotropical stingless bees that relied on non-336 

DNA based methods such as field observations, field collections, and palynological studies. For 337 

instance, non-DNA based studies in another hyper diverse area in the Neotropics, the Amazon, 338 

revealed from 80 to 122 pollen types in nests and pollen loads of 10-15 species of stingless bees44. 339 

Other similar studies in species-rich areas of the Neotropics show comparatively lower numbers22. 340 

While these studies recorded a maximum of five to eight plant species per bee species, we found a 341 
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mean of 46.3 plant species per bee species in honey samples and 53.67 in pollen samples. The 342 

interaction network and high number of species found in honey and pollen of the three analyzed 343 

stingless bee species point to a generalist foraging behavior, known to be common in eusocial bees 344 

and in stingless bees in particular17,20. It also points to probable scouting investigative trips, 345 

followed by heavy recruitment and opportunistic behavior when a high-quality resource is located, 346 

with most plant species with low abundance and a few highly abundant. Note that our results may 347 

still be an underestimation, since samples were collected during only 6 months, i.e., did not include 348 

all seasons.  349 

The power of pollen DNA metabarcoding in revealing broad food sources for stingless 350 

bees had only been demonstrated before in Southeast Asia and Australia. In Sumatra, a study of 351 

Tetragonula laeviceps using pollen metabarcoding coupled with light microscopy revealed 99 plant 352 

species45. Similarly, a study with Tetragonula carbonaria in Queensland retrieved 302 plant species in 353 

pollen samples across seven sites at different seasons of the year over a two-year period13. These 354 

are promising results, especially when considering expanding this technique to tropical and 355 

subtropical forests of the Neotropics. Studies of pollination and floral biology in these habitats is 356 

often very difficult because the plants are scattered, flowers are difficult to reach, and often in the 357 

upper canopy. Therefore, direct observations of bees on flowers in tropical and subtropical forests 358 

are rare20, and records of stingless bee – flower interaction in these environments became almost 359 

restricted to pollen loads or pot pollen analyses22. Although their utility is undeniable46, 360 

morphological identification of pollen may become obsolete for pollination biology studies when 361 

compared with the efficiency of DNA metabarcoding to identify different plant species in 362 

extremely rich floras. 363 

Pollen analyses via DNA metabarcoding also have the advantage of revealing unexpected 364 

food sources used by bees that would perhaps be unnoticed in studies using other methodologies. 365 

For instance, our analyses revealed that DNA from 13 wind-pollinated plant species were found 366 
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among the 50 most abundant species in the sample of the three species, including monocots 367 

(Poaceae, Cyperaceae), eudicots (Euphorbiaceae: Acalypha, Amaranthaceae: Amaranthus, Urticaceae: 368 

Cecropia, Cannabaceae: Trema), and a conifer genus, the introduced Pinus (Table S2). The presence 369 

of non-melitophyllous angiosperms and gymnosperms is relatively common in melisso-370 

palynological studies: Cyperaceae, Poaceae, Taxaceae and Pinaceae22,45,47. Despite previous studies 371 

demonstrating that pollen from anemophilous species might be a contamination in melisso-372 

palynological samples 48, bees are regularly reported visiting such taxa49,50. Our results confirm 373 

active collection of pollen from anemophilous species, since their abundance in our analyzed 374 

samples is relatively high. One of the most abundant plant species in the pollen analysis was 375 

Hedyosmum brasiliense (Chloranthaceae), widely cited in the literature as wind-pollinated51. This 376 

species was not only recorded in the pollen samples of all three species of bees, but was amongst 377 

the 10 most abundant records for Tetragonisca angustula in our results. These results reinforce the 378 

theory that anemophilous plants, which account for 10% of angiosperms and most gymnosperms, 379 

produce enough pollen52 to be attractive to social bees, under certain conditions of colony size and 380 

food demands. However, the role of bees and other insects as true pollinators of anemophilous 381 

plants remains unresolved, in spite of the importance of wind-pollinated crops53 and of the several 382 

records showing that anemophilous plant pollen is important for several bee species (see 383 

references above).   384 

A surprising and novel observation is the significant amount of Marchanthyophyte DNA 385 

from the liverwort Dumortiera hirsuta found in pot pollen from the three studied stingless bee 386 

species (Table S2). Future research would need to seek evidence if the DNA results from the 387 

collection of spores or perhaps some chemical compounds from liverworts by stingless bees. Bees 388 

collecting spores from fungi and plants is not a novelty, as there is evidence of active collecting54 as 389 

well as records of spores in samples of pollen and honey55. In lieu of pollen, spores supposedly 390 
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have nutritional benefits56. Stingless bees might also visit liverworts to collect lipidic compounds, 391 

e.g. terpenoids used in communication among individuals57 commonly occurring in liverworts58.  392 

The high degree of overlap between plant profiles found in the honey of the three bee 393 

species suggests that bees may be competing for the same nectar resources. Pollen plant profiles 394 

on the other hand showed far less overlap between species, corroborating evidence that pollen 395 

exploitation and digestion requires a high degree of specialization59, even in generalist bees60, which 396 

is often facilitated by each species’ microbiome61. Although some plant species appeared in the 397 

samples of all three bee species, Scaptotrigona postica and M. rufiventris shared more species while T. 398 

angustula differed from both. Considering body size vs. flower matching, the smallest species, T. 399 

angustula, visits the highest number of species of the three, potentially due to solitary foraging 400 

behavior, in which females forage alone without recruiting other workers.  401 

Melipona species present a unique foraging pattern among stingless bees, not only because 402 

they are amongst the largest stingless bees (up to 15 mm, Michener 2007), but because they show 403 

clear preferences towards some groups of plants22,62. Melipona are also the only stingless bees 404 

capable of buzzing to harvest pollen63, but pollen-flowers that require buzz-pollination for pollen 405 

harvesting were not abundant in the samples, even though species with poricidal anthers were 406 

observed flowering around the nests during the months of collection (e.g., Miconia ferruginata DC, 407 

Pleroma stenocarpum (Schrank & Mart. ex DC.) Triana, Solanum falciforme Farruggia).   408 

Our botanical surveys also reinforced the patterns of floral exploitation among the three 409 

species, such as the apparent preference for trees with mass flowering by stingless bees, even 410 

though their exploitation demands a long flight range. Some stingless bees' sophisticated 411 

communication abilities allow a massive recruitment of foragers when mass blooming plants are 412 

available19. In the case of Tetragonisca angustula, which is considered a solitary forager, the range of 413 

pollen sources is wider and seems less biased towards mass blooming plants. In the Atlantic 414 

rainforest, another hyper diverse neotropical ecosystem,20 observed that stingless bees have a 415 
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preference for upper canopy stratum with small hermaphroditic or monoecious whitish flowers 416 

and abundant resources (pollen and/or nectar). Importantly, most of their preferred trees flower in 417 

mass, i.e produce a large number of flowers over a short period of time20. In the Cerrado savannas, 418 

where the nests were, we observed the typical high frequency of shrubs and herbaceous species in 419 

stingless bees pollen (ca. 38% of samples), which reflects the savanna physiognomy where herbs 420 

and shrubs are predominant64. However, despite the high availability of flowers in the savanna 421 

surrounding their nests, they still flew up to riverine forests at least 630 m far from the nests to 422 

collect resources where mass-flowering species were more common. 423 

Flight distance in bees is usually related to body size (larger bees tend to have wider flight 424 

ranges)65 and social behavior (social bees have a larger foraging distance than solitary bees due to 425 

the potential communication and recruitment between individuals)66. Given that the closest 426 

riverine forest is located at a distance of 630 m to the nests, and that species from this habitat were 427 

among the most abundant in the samples, this suggests that all three stingless bee species will 428 

forage and probably recruit at least 630 m from their nests, supporting the hypothesis of long-429 

distance foraging when attractive rewards are available20. This distance is well within the known 430 

flight range of Melipona whose typical flight distance is about 2 km, but can be extended up to 10 431 

km18, but it is more surprising for Scaptotrigona and Tetragonisca whose reported maximum flight 432 

distances are 1.7 to 0.6 km, respectively18. 433 

These estimates of minimum foraging distance of 630m are considered trustworthy based 434 

on the high frequency of pollen from species occurring only in riverine forests (Group 1), e.g. 435 

Syzygium cumini, an introduced species that only occurs in a small portion of the nearest riverine 436 

forest to the nests. Other highly abundant species in our samples are common in the Distrito 437 

Federal riverine forests (Clusia cruiva, Hedyosmum brasiliense, Miconia hirtella, Piper aduncum, Richeria 438 

grandis)67–69 and were only found in our surveys of the riverine forests (Table 1).  439 
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Some plant families stand out as the most important floral sources for the three stingless 440 

bee species, i.e. have one or more species amongst the 30 most frequent ASVs. Amongst them, 441 

Myrtaceae, Anacardiaceae, Sapindaceae, Melastomataceae, Euphorbiaceae, and Asteraceae are well-442 

known as common resources for stingless bees globally17, while Loranthaceae and Malpighiaceae 443 

are frequent in other studies62. Phyllanthaceae, Primulaceae, Chloranthaceae and Piperaceae, 444 

however, have been only rarely reported22. Asteraceae, Myrtaceae, and Melastomataceae are 445 

amongst the most speciose plant families in the IBGE reserve , representing at least 300 species 446 

with different life forms (from herbs to trees) in the flora28, but it is surprising that other diverse 447 

plant families in the IBGE area, i.e. Fabaceae, Lamiaceae and Orchidaceae, which also represent 448 

close to 300 species combined28, are less conspicuous or totally absent from our most frequent 30 449 

taxa. This means that, although the important floral sources for stingless bees partially overlap with 450 

the most common plants in the area, indicating that abundant sources are preferred, this is not 451 

always the case. This could simply mean that species within these families were not flowering at the 452 

time of sampling, but it is worth noting that Lamiaceae, papilionoid legumes and orchids share 453 

complex floral morphologies that are different from those of the families recorded as most 454 

abundant in our samples These three families tend to present flowers with bilateral symmetry, 455 

specialized petals and androecia, and deep, hidden resources that often forces floral visitors to 456 

approach and handle the flowers in a specific way70. Our results confirm the hypothesis raised by20 457 

that stingless bees may be specialized in exploiting small, open resource “bowl-type” flowers52, 458 

with exposed stamens and nectar, that are produced in large numbers. They may also favour plant 459 

species with a “big bang” flowering phenology i.e., that that undergo mass blooming for short 460 

periods. Floral morphology, floral chemistry and phenology of plants exploited by stingless bees 461 

deserve further investigation. Investigations of plant resources exploited by stingless bees using 462 

metabarcoding over a longer time periods, in other types of vegetation, and of other bee species, 463 

would also be desirable to consolidate our knowledge of stingless bee ecology in the Neotropics. 464 
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 635 

Table and figures  636 

 637 

Figures  638 

Figure 1. Map of the IBGE reserve and surroundings showing the location where bee nests were 639 

installed and the locations of Rapid Botanical Surveys. The image also shows main vegetational 640 

types, i.e. cerrado savanna, riverine forests, swamps, cultivated and urban areas. Photographs 641 

depict a. cerrado savanna vegetation type (Photo author: ACM) and b. area of transition between 642 

grassland and riverine forest (Photo author: AJCA). Vegetation cover: MapBiomas 643 

(www.mapbiomas.org). Reserve delimitation: IBGE.  644 

 645 

Figure 2. Interaction network of three stingless bee species and the 30 most frequent species in 646 

honey and pollen samples (Table S3). Bars connecting bee species and plant species indicate 647 

reported interaction (i.e. that plant species was present in the sequencing reads of pollen and/or 648 

honey metabarcoding in significant numbers). Some plant species are represented by numbers: 1. 649 

Croton conduplicatus; 2. Eucalyptus; 3. Myrtaceae; 4. Clusia criuva; 5. Myrcia guianensis; 6. Miconia hirtella; 650 

7. Myrcia splendens; 8. Byrsonima basiloba; 9. Byrsonima laxiflora; 10. Leandra polystachya; 11. Myrsine 651 

umbellata; 12. Acalypha; 13. Couepia; 14. Mabea fistulifera; 15. Fabaceae; 16. Myrcia tomentosa; 17. Ilex 652 
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affinis; 18. Eugenia involucrata; 19. Moraceae; 20. Cecropia pachystachya; 21. Byrsonima crassifolia; 22. 653 

Schefflera macrocarpa; 23. Artocarpus heterophyllus; 24. Campomanesia pubescens; 25. Myrcia pubescens; 26. 654 

Stillingia; 27. Syzygium; 28. Pinus; 29. Banisteriopsis; 30. Borago officinalis; 31. Byrsonima viminifolia; 32. 655 

Melastomataceae; 33. Euphorbia potentilloides; 34. Asteraceae; 35. Rosa chinensis; 36. Copaifera; 37. 656 

Trema micranthum; 38. Terminalia.  657 

 658 

Figure 3. Boxplot of Shannon diversity indexes of plant species found in the honey (dark grey) 659 

and pollen (light grey) pots. Boxplots display the median (thick horizontal middle bars), lower 660 

(0.25) and upper (0.75) quartile (box limiting thin horizontal bars), minimum and maximum values 661 

(vertical lines). Solid dots represent an individual outlier sample. On the left, the three studied bee 662 

species in lateral view and in scale to show body size: a. Melipona rufiventris, b. Scaptotrigona postica, c. 663 

Tetragonisca angustula.  664 

 665 

Figure 4. Non-metric multidimensional scaling (NMDS) plots showing plant composition of 666 

honey (a) and pot pollen (b) in samples from nests of the three studied bee species: Melipona 667 

rufiventris, Scaptotrigona postica, Tetragonisca angustula. 668 

 669 

Figure 5. Relative read abundance of the 30 most frequent species found in honey (left half) and 670 

pot pollen (right half) samples of nests of three stingless bee species. From top to bottom: Melipona 671 

rufiventris, Scaptotrigona postica, Tetragonisca angustula. Plant species names are displayed alphabetically. 672 

Color in graph bars refers to the habitat of occurrence in Cerrado biome (savanna or forest). Non-673 

identified species were not assigned to any habitat, thus are represented by grey bars. 674 

 675 

 676 

 677 
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Table 1. Thirty most frequent taxa in ASVs, their habitats and habits (tree, shrub, 

subshrub, climber, hemiparasite), presence in pollen or honey and floral resource offered 

(P: pollen; N: nectar; O: oil; R: resin). Habitat data from floristic inventory in this study; 

numbers in parenthesis represent a record in each RBS plot (forest plots surveyed: 6; 

savanna plots surveyed: 11). Habit data from Flora & Funga do Brasil (2023). 

Higher taxon Species habitat habit 

hone

y pollen 

Floral 

reward 

Asteraceae Baccharis 

dracunculifolia 

Savanna (0) shrub SP, 

TA 

ALL PN 

Myrtaceae Blepharocalyx 

salicifolius 

Savanna (7) 

Forest (1) 

tree, shrub ALL ALL P 

Malpighiaceae Byrsonima basiloba Savanna (1) shrub MR, 

TA 

TA PO 

Malpighiaceae Byrsonima 

pachyphylla 

Savanna (8) tree, shrub SP, 

TA 

ALL PO 

Clusiaceae Clusia criuva Forest (1) tree, shrub SP, 

TA 

SP, TA PR 

Euphorbiaceae Croton conduplicatus Savanna (0) shrub, 

subshrub 

ALL TA PN  

Myrtaceae Eucalyptus sp Cultivated tree, shrub ALL ALL PN 

Nyctaginaceae Guapira graciliflora Savanna (6) tree, shrub ALL ALL PN 

Chloranthaceae Hedyosmum 

brasiliense 

Forest (4) tree, shrub SP, 

TA 

ALL P 

Melastomatace

ae 

Leandra polystachya Savanna (1) shrub, 

subshrub 

MR, 

SP 

MR, SP P 

Euphorbiaceae Mabea fistulifera Savanna (1) tree, shrub ALL SP, TA PN 

Euphorbiaceae Maprounea 

guianensis 

Savanna (9) tree SP, 

TA 

ALL P 

Sapindaceae Matayba guianensis Savanna (3) 

Forest (1) 

tree, shrub ALL ALL PN 

Melastomatace

ae 

Miconia hirtella Forest (2) tree, shrub MR MR, SP PN 

Melastomatace

ae 

Miconia leucocarpa Savanna (2) tree, shrub ALL MR, SP P 

Melastomatace

ae 

Miconia stenostachya Savanna (2) shrub ALL ALL P 

Myrtaceae Myrcia guianensis Savanna (9) tree, shrub, 

subshrub 

MR, 

SP 

ALL P 

Myrtaceae Myrcia linearifolia Savanna (9) shrub, 

subshrub 

ALL ALL P 

Myrtaceae Myrcia pinifolia Savanna (0) shrub ALL ALL P 

Myrtaceae Myrcia tomentosa Savanna (2) tree, shrub SP SP, TA P 
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Forest (2) 

Primulaceae Myrsine sp ? ? ALL SP, TA P 

Myrtaceae Myrtaceae sp ? ? ALL ALL ? 

Piperaceae Piper aduncum Forest (1) tree, shrub ALL ALL P 

Phyllanthaceae Richeria grandis Forest (5) tree, shrub ALL ALL PN 

Rosaceae Rubus urticifolius Forest 4) climber, 

shrub, 

subshrub 

ALL ALL PN 

Loranthaceae Struthanthus 

/Psittacanthus sp 

? hemiparasi

te 

ALL ALL PN 

Fabaceae Stryphnodendron sp Savanna (8) ? MR, 

SP 

ALL PN 

Myrtaceae Syzygium cumini Forest (2 

cultivated) 

tree ALL ALL PN 

Anacardiaceae Tapirira guianensis Forest (1) 

Savanna (3) 

tree ALL ALL PN  

Anacardiaceae Toxicodendron 

succedaneum 

Cultivated (0) tree SP, 

TA 

SP, TA PN 

 678 

Supplementary information 679 

 680 

Table S1. Pollen and honey sampling collected from bee nests of the three stingless bee species: 681 

Melipona rufiventris (M), Scaptotrigona postica (S) and Tetragonisca angustula (T). 682 

 683 

Table S2. Amplicon sequences varieties (ASVs) with significant number of reads and their taxon 684 

matches. The IBGE column records presence/absence of taxa of any level in the IBGE flora 685 

(IBGE 2011). The RBS column records if/where species were recorded in the floristic survey 686 

(distances given from nests): G=garden (650m); N=nest plot (50m); I=inner pentagon plots 687 

(700m); O=outer pentagon plots (1500m); F1=near forest (630m); F2= distant forest (2070); ? = 688 

automatically attributed to all reads not matched to species. The occurrence in honey or pollen is 689 

indicated by the bee species acronym in the relevant column: MR, Melipona rufiventris; SP, 690 

Scaptotrigona postica and TA, Tetragonisca angustula. Floral rewards to pollinators (pollen, nectar or oil) 691 

is presented as well as if the species is traditionally considered wind-pollinated. We assume all non-692 

wind-pollinated are animal pollinated plants.  693 

 694 
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