Beyond a single patch: local and regional processes explain biodiversity patterns in a seagrass epifaunal metacommunity

Keila A Stark ${ }^{1 *}$, Patrick L Thompson ${ }^{1}$, Jennifer Yakimishyn ${ }^{2}$, Lynn Lee ${ }^{3}$, Mary I O'Connor ${ }^{1}$

1. Department of Zoology

Biodiversity Research Centre
University of British Columbia
V6T 1Z4
Vancouver, BC, Canada
2. Pacific Rim National Park Reserve
P.O. Box 280

Ucluelet, BC, Canada
3. Gwaii Haanas National Park Reserve, National Marine Conservation Area Reserve, and Haida Heritage Site 60 Second Beach Road
Skidegate, BC, Canada
*Correponding author: keilastark@zoology.ubc.ca

Appendix S1: Supporting Information

Table S1. Summary of traditional biodiversity metrics for each site

Site abbrev	Region	Species richness	Raw abundance	Effective diversity (Hill number)
DC	Barkley Sound	21	1168	11.8
RP	Barkley Sound	17	1590	8.8
SA	Barkley Sound	17	924	6.8
DK	Clayoquot Sound	21	1168	11.8
EB	Clayoquot Sound	21	4812	8.5
IN	Clayoquot Sound	16	1803	7.5
CB	Gulf Islands	18	2112	5.0
GB	Gulf Islands	11	2239	4.3
JB	Gulf Islands	22	3522	7.1
LH	Gulf Islands	15	2259	6.6
SS	Gulf Islands	10	740	6.6
HL	Haida Gwaii	9	16743	1.3
RA	Haida Gwaii	14	934	8.6

Table S2. Species names, taxonomic groupings, and proportion of deviance (predictive power).
Numbers correspond to the axes in Figure 3. The top twenty species with highest predicted abundances according to the HMSC model are bolded.

Number	Species name	Broad taxonomic group	Adjusted deviance explained for the HMSC model (D ${ }^{\mathbf{a}}$ adj)
1	Alia carinata	Gastropod (snail)	0.15
$\mathbf{2}$	Alvania compacta	Gastropod (snail)	$\mathbf{0 . 4}$
3	Amphissa columbiana	Gastropod (snail)	0
4	Crepidula sp.	Gastropod (snail)	0.64
5	Euspira lewisii	Gastropod (snail)	0.46
6	Harmothoe imbricata	Gastropod (snail)	0
$\mathbf{7}$	Lacuna spp. (L. variegata and L.	Gastropod (snail)	$\mathbf{0 . 4 5}$
8	vincta)	Gastropod (snail)	0.46
9	Lirularia parcipincta	Gastropod (snail)	0
10	Lirularia sp.	Gastropod (snail)	0.5
11	Littorina sp.	Gastropod (snail)	0.45
12	Margarites pupillus	Gastropod (limpet)	0.53
$\mathbf{1 3}$	Lottia pelta	Bivalve	$\mathbf{0}$
$\mathbf{1 4}$	Clinocardium nuttallii	Bytilus sp.	Bivalve
15	Saxidomus gigantea	Bivalve	$\mathbf{0 . 2 8}$
16	Unknown clam 1	Bivalve	0
17	Unknown clam 2	Polychaete	0.68
18	Dorvillea longicornis	Polychaete	0.35
19	Exogone sp.	Polychaete	0.52
20	Glycinde armigera	Polychaete	0.25
21	Lepidonotus squamatus	Polychaete	0.05
22	Neoamphitrite robusta	Polychaete	0.55
23	Unknown polychaete (Family		0.22
	Oenoidae)	0.15	
24	Unknown polychaete (Family	Polychaete	
$\mathbf{2 5}$	Opheliiidae)	Spirorbis sp.	Polychaete

Monocorophium insidiosum	Gammarid amphipod	$\mathbf{0 . 2 3}$
Orchomenella recondita	Gammarid amphipod	0.73
Photis brevipes	Gammarid amphipod	$\mathbf{0}$
Pontogeneia rostrata	Gammarid amphipod	$\mathbf{0 . 6 5}$
Unknown gammarid (Family Hyalidae)	Gammarid amphipod	0.12
Unknown gammarid (Family		
Isaeidae)	Gammarid amphipod	0.10
Unknown gammarid (Family		
Ischyoceridae)	Gammarid amphipod	0.24
Caprella californica	Caprellid amphipod	$\mathbf{0 . 3 6}$
Caprella laeviuscula	Caprellid amphipod	$\mathbf{0 . 0 6}$
Caprella natalensis	Caprellid amphipod	$\mathbf{0 . 8 2}$
Cumella vulgaris	Cumacean	0.36
Leptochelia sp.	Tanaid	$\mathbf{0 . 4 9}$
Nebalia gerkinae	Leptostracan	0.39
Porcellidium sp.	Copepod	$\mathbf{0 . 3 3}$
Harpacticoid 1	Copepod	$\mathbf{0}$
Harpacticoid 2	Copepod	$\mathbf{0}$
Harpacticoid 3	Copepod	0.50
Anoplodactylus viridintestinalis	Pycnogonid	0.01
Idotea montereyensis	Isopod	0.73
Idotea resecata	Isopod	$\mathbf{0 . 3 6}$
Munna sp.	Isopod	0.20
Pugettia producta	Brachyuran crab	0.36
Pugettia richii	Brachyuran crab	0.34
Hippolyte californiensis	Caridean shrimp	0.45

Equation S1. Equations for D^{2} adj calculations
Explained deviance or D^{2} (Guisan and Zimmerman 2000) was calculated by the equation:

$$
D^{2}=1-\text { Residual deviance / Null deviance }
$$

Where the residual deviance refers to the deviance in predicted species occurrences, and the null deviance refers to deviance in observed species occurrences.

Adjusted D^{2} (Guisan and Zimmerman 2000) was calculated by the equation:

$$
D_{a d j}^{2}=1-\left(\left((n-1) /(n-p-1) *\left(D^{2}-1\right)\right)\right.
$$

Where n is the number of sites (13) in our study, and p is the number of parameters the model estimated (4, Ovaskainen et al. 2017, Supporting Information). Negative $D^{2}{ }_{\text {adj }}$ values (those which had greater residual deviance than null deviance) were set to 0 .

Equation S2. Calculations for type III variation partitioning on HMSC model (Borcard et al. 1992)

We estimated three versions of the HMSC model: 1) environmental variables only with the random effects ($m 2$), and 2) spatial distances only with random effects, and 3) the original global model which included environmental and spatial variables, site- and region-level random effects (ml). From each model, we extracted the total variation explained by environment and space, the variation explained by environment, and the variation explained by space. To determine the shared fraction of variation between environment and space, we multiplied each whole fraction by the calculated community-level D^{2} adj to reflect the model deviance in our variance partitioning estimates, and followed the equations
$m l=$ the fraction of variation explained by all environmental variables in the HMSC model estimated with only environmental variables;
$m 2=$ the fraction of variation by spatial distances in the version of the HMSC model estimated with only spatial distances;
$m 3=$ the global model including both;
Fraction $a b$ (pure environment + shared fraction) $=D^{2}{ }_{a d j} m 1$
Fraction $b c$ (pure space + shared fraction) $=D^{2}{ }_{a d j} m 2$
Fraction $a b c$ (pure environment + shared fraction + pure space) $=D^{2}{ }_{a d j} m 3$
Fraction a (pure environment) $=a b c-b c$
Fraction $c($ pure space $)=a b c-a b$
Fraction b (shared fraction) $=a b+b c-a b c$
Fraction d (residuals) $=1-a b c$
Fractions a ("Environmental conditions"), c ("Spatial distance"), b (shared fraction), and d ("Residuals") are shown in the Venn diagram in Fig. S3.

Figure S2. Site-by-species presence-absence matrix of all 58 invertebrate species in the study listed in alphabetical order. Black cells indicate species presences.

Figure S3. Venn diagram summarizing the fractions of variation explained by environmental covariates only (9 water quality and 5 biotic variables), spatial distance only, and the shared fraction explained by environment and space.

Figure S4. A correlation plot showing modelled site-level co-occurrence of species pairs across all species. Purple cells represent positively co-occurring species pairs, and turquoise cells represent negatively co-occurring species pairs. Species names along both axes are ordered according to the output of hierarchical clustering with Ward's criterion (Ward 1963) on pairwise co-occurrence values. This figure is a supplement to Fig. 4a in the main text.

Figure S5. Heat map depicting abundance patterns in all 58 species in the study. Species names are ordered from highest to lowest predicted mean proportional abundance. Cell colours correspond to the co-occurrence groups in Fig. 4b, with turquoise cells representing members of the turquoise assemblage, purple cells indicating members of the purple assemblage, and grey cells indicating species that did not significantly co-occur negatively or positively with other species. Cell shade strength represents proportional abundance at a given site (darker means higher abundance). Most species outside the top twenty most abundant had extremely low predicted proportional abundances owing to their low raw abundances. This figure is a supplement to Fig. 4b in the main text.

Figure S6. Plot showing relationship between maximum site-level abundance and site occupancy for all species. Black points represent broadcast spawners and white points represent brooders. Spirorbid polychaetes were excluded from this figure due to their unusually high maximum abundance (approximately 15000 at one site). A two-tailed t-test showed that there was no significant difference in the number of sites colonized between brooders and broadcast spawners $(\mathrm{t}=0.052, \mathrm{df}=42.5, \mathrm{p}=0.96)$.

Literature Cited

Borcard, D., P. Legendre, and P. Drapeau. 1992. Partialling out the Spatial Component of Ecological Variation. Ecology. 73:1045-1055.

Guisan, A., and N. E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 145:147-186.

Ovaskainen, O., G. Tikhonov, A. Norberg, F. Guillaume Blanchet, L. Duan, D. Dunson, T. Roslin, and N. Abrego. 2017. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters 20:561-576.

Ward, J. H. 1963. Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association 58:236-244.

