Supplementary information for:

Intrapopulation adaptive variance supports selective breeding in a reef-building coral

Crawford Drury¹, Casey Harris¹, Nina Bean¹, Josh Hancock¹, Joel Hucekba^{1,2}, Christian Martin H.³, Ty Roach¹, Robert Quinn³, Ruth D. Gates¹

1 Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA

2 University of Amsterdam, Amsterdam, Netherlands

3 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA

*Corresponding Author: crawford.drury@gmail.com These authors contributed equally: Nina Bean, Casey Harris

Supplemental Figure 1 – Site and Experimental Framework

A) Gamete collections were made at Reef 13 in Kāne'ohe Bay, O'ahu, Hawai'i on 13 July 2018. B) Individual colonies were netted for collections using C) pairs identified in the 2015 bleaching event to minimize microhabitat differences and select for parental thermal tolerance. D) Gametes were collected from 11 colonies of each phenotype and used to create pools of all nonbleached gametes and all bleached gametes. The site-wide cross was then created from equal volumes of the bleached and nonbleached pools and all three pools were exposed to E) larval temperature treatments downstream starting 12 hours after fertilization. At 109 hours after fertilization, larvae from all three phenotypes were allowed to settle on preconditioned aragonite plugs for 8 days and then exposed to F) juvenile temperature treatments. See Supplementary Fig. 1-2 for full details. Color scheme maintained in subsequent figures.

Supplementary Figure 2 - Experimental Timeline

Timeline in days post fertilization detailing temperature treatments, sequence, and data collection. Blue and red bars represent duration of treatment for larval and juvenile stress tests, with nested gray dots at survivorship survey timepoints. Points correspond to data collection for symbiont samples, larval sequencing and photographs for growth measurements. Briefly, (A) larvae were aliquoted into 50mL tubes for survivorship analysis at two temperatures on 1 dpf. Sequencing samples were collected from larval cultures (not from survivorship aliquots) at 1 and 4 dpf. (B) After final sequencing samples were collected (4 dpf) extra larvae at ambient temperatures were allowed to settle at ambient temperatures without interrupting survivorship aliquots. (C) These settled juveniles were randomly allocated to high and ambient temperatures at 12 dpf and monitored until 45dpf.

Supplementary Figure 3 – Temperature Profiles

A) Temperature profiles from each conical during the larval phase. Black circles denote timing of genetics sampling. Cross denotes timing of transfer of remnant ambient larvae to settlement chambers. B) Temperature profiles from each conical during the juvenile phase. Colors correspond to temperature treatment (blue=Ambient, red=High).

Supplemental Figure 4 – Betaine Glycine Abundances Betaine Glycine abundances from parent colonies in this study.

Supplementary Figure 5 – Survivorship Dynamics of Larval M. capitata

A) Probability estimates from Kaplan-Meier larval survivorship fits for each temperature over hours in temperature treatment, line shown with 95% confidence interval shading. B) Probability estimates from Kaplan-Meier larval survivorship fits for each phenotype in high temperature treatment, line is shown with 95% confidence interval shading. Black circles denote timing of genetics sampling. Plus denotes timing of transfer of remnant ambient larvae to settlement chambers. Colors correspond to temperature treatment (blue=Ambient, red=High), transparency corresponds to phenotype.

Supplementary Figure 6 – Survivorship Dynamics of Juvenile M. capitata

A) Probability estimates from Kaplan-Meier juvenile survivorship fits for each temperature over hours in temperature treatment, line shown with 95% confidence interval shading. B) Probability estimates from Kaplan-Meier larval survivorship fits for each phenotype in high temperature treatment, line is shown with 95% confidence interval shading. Black circles denote timing of genetics sampling. Plus denotes timing of transfer of remnant ambient larvae to settlement chambers. Colors correspond to temperature treatment (blue=Ambient, red=High), transparency corresponds to phenotype.

Supplemental Figure 7

Correlation of Population Branch Statistic (PBS) for the Cross and Nonbleached pool. PBS represents selection pressure under heat stress at each loci (n=31,794).

PBS calculation framework, comparing heat-selected larval pools of each phenotype to initial and parental pools. T= $-\log(1-F_{ST})$, where pairwise F_{ST} was calculated on a per-site basis for each variant (i.e., T_{FA} = T based on pairwise F_{ST}

Phenotype	(F)	(A) Outgroup A	(B)	Formula
	Focal Group		Outgroup B	
NB	Final Pool	Initial Pool	Nonbleached	$PBS = (T_{FA} + T_{FB} - T_{AB})/2$
	(n=250)	(n=250)	Parents (n=11)	
В	Final Pool	Initial Pool	Bleached Parents	$PBS = (T_{FA} + T_{FB} - T_{AB})/2$
	(n=250)	(n=250)	(n=10)	
Cross	Final Pool	Initial Pool	All Parents (n=21)	$PBS = (T_{FA} + T_{FB} - T_{AB})/2$
	(n=250)	(n=250)		

SIRIUS 4 parameters used for the *in silico* molecular formula annotations of the mass spectrometry data generated from MZmine 2. Mascot graphical format file (mgf) was imported and processed as follows:

Module	Parameters		
	Instrument	Orbitrap	
	MS ² isotope scorer:	Score	
Ciriuc	MS ² mass deviation	5 ppm	
Sirius	Candidates	5	
	Databases	Bio database, GNPS,	
		Natural Products	
ZODIAC	Def	ault	
	Databases	Bio database, GNPS,	
		Natural Products	
CSI: FingerID	Adducts	M+H] ⁺ , [M+Na] ⁺ and	
		[M+K] ⁺	
	Enforce	True	
CANOPUS	Tr	ue	

Annotations from individual genes significantly (p<0.01) associated with bleaching phenotype in adults. Black text denotes annotations from megablast, blue text denotes annotations from discontinuous megablast.

locus	gene name	e-	organism	function	ref
		value			
114:270077-	Ethanolamine	2e-64	Acropora	Sphingolipid	25
1166526(+)_38264	phosphotransferase		digitifera	biosynthesis	
5	1-like				
1142:22067-	Ankyrin repeat and	2e-12	Acropora	Immunity	1,32
267875(+)_240011	zinc-finger domain-		digitifera		
	containing protein 1-				
	like				
135:165149-	Monocarboxylate	1e-124	Acropora	Nitrogen cycling;	2
681565(+)_107553	transporter 10-like		millepora	amino acid	
				metabolism	
16:103141-	Histamine H2	3e-71	Acropora	Immune response	3
1930322(+)_88237	receptor-like		millepora		
175:84843-	PAX-C	4e-114	Montipora sp.	Growth/development;	4,5
855127(+)_390354				host-algal symbiosis	
22.0	Neuropentiale	0 - 27	Orbicelle	regulation	67
23:0-	Neuropeptide	86-37	Orbicella	Larval migration,	6,7
16//333(+)_12/51	Siramide receptor		Javeolata	settiement,	
		0.0	Montinora	Dretain cynthosis	20
2374_33003		0.0	verrucosa	Protein synthesis	20
2644.0-	Histamine N-	0.0	Acronora	Methylation (humans)	8
2044.0-	methyltransferase-	0.0	millenora		0
25075(1)_0002	like		micpord		
316:172135-	PAX-C	6e-83	Montipora	Growth/development,	4,5
793760(+)_405758			solanderi	host-algal symbiosis	
				regulation	
32:221614-	Histamine H2	2e-38	Acropora	Immune response	3
1703322(+)_98648	receptor-like		millepora		
1					
362:154151-	Unknown	2e-24	Acropora	Unknown	-
476426(+)_296306			millepora		
416:25677-	Mucin-like	2e-31	Acropora	Mucus	9,23
496747(+)_417623			digitifera	generation/secretion;	
		.		DNA damage repair	
462:90630-	Octopamine receptor	3e-73	Orbicella	Oocyte	10
579403(+)_429238	beta-1R-like		faveolata	development/maturat	
				ion	

5:218022- 2430108(+)_85190	Adenosine receptor A2a-like	2e-93	Acropora millepora	Immune response; inflammation	1,11
4 50:672149- 1522693(+)_46562	Polyubiquitin-C	0.0	Stylophora pistillata	Oxidative stress resistance; protein	12,29
553:474523- 500157(+) 13812	Ribonuclease Y-like	7e-133	Orbicella faveolata	Unfolded protein response	13
615:456522- 469093(+)_1880	Plexin-B-like	1e-47	Acropora millepora	Cytoskeleton dynamics; cell adhesion; axon guidance	14,23
69:44661- 1355009(+)_72740	Phosphoinositide 3- kinase regulatory subunit 4-like	2e-58	Acropora digitifera	Host autophagy	15
94:79413- 1187499(+)_10643 47	kelch-like protein diablo	8e-113	Acropora millepora	Oxidative stress response; protein ubiquination	26, 30
chr1_RagTag_2201 8874	Golgi-associated PDZ and coiled-coil motif- containing protein- like	8e-77	Acropora millepora	Protein binding/transport	16
chr1_RagTag_3100 3888	Dynein assembly factor 3, axonemal- like	2e-32	Actinia tenebrosa	Cytoskeletal construction; autophagy	17,31
chr10_RagTag_828 4035	Putative ankyrin repeat protein RF 0381	1e-49	Dendronephthya gigantea	Immunity	1
chr11_RagTag_420 3672	Neurexin	2e-68	Acropora digitifera	Biomineralization	18
chr11_RagTag_421 5008	TFIID subunit 5-like	1e-46	Acropora digitifera	Cell signaling; transcription factor activity; protein binding	21
chr12_RagTag_252 57908	Phosphoinositide 3- kinase regulatory subunit 4-like	5e-65	Acropora digitifera	Host autophagy	15
chr2_RagTag_2015 4540	Tetratricopeptide repeat protein 28	2e-108	Orbicella faveolata	Apoptotic signaling	27
chr4_RagTag_1104 7240	kelch-like protein diablo	6e-45	Acropora digitifera	Oxidative stress response; protein ubiquination	26,30

chr4_RagTag_5271	Unknown	0.0	Acropora millenora	Unknown	-
chr5_RagTag_1120 7344	Unknown	0.0	Acropora millepora	Unknown	-
chr6_RagTag_1341 1819	Arginine/serine-rich protein PNISR-like	8e-145	Acropora digitifera	Protein synthesis	19
chr8_RagTag_1240 9112	Neurexin	6e-70	Acropora digitifera	Biomineralization	18
chr8_RagTag_4922 595	Ankyrin repeat and zinc-finger domain- containing protein 1- like	2e-12	Acropora millepora	Immunity	1,32
Sc0000015_RagTag _1507093	E3 ubiquitin-protein ligase MARCH5-like	2e-58	Acropora millepora	Symbiodiniaceae stress response; protein degradation	20,21
Sc0000134_RagTag _502413	Somatostatin receptor type 4-like	3e-160	Acropora millepora	Myoregulatory activity; neural pathways; MAP kinase and adenylate cyclase interactions	22
Sc0000201_RagTag _77657	D-inositol 3- phosphate glycosyltransferase- like	4e-50	Acropora digitifera	Host/algal symbiosis regulation	23
Sc0000204_RagTag _980637	Plexin-B-like	1e-64	Acropora millepora	Cytoskeleton dynamics; cell adhesion; axon guidance	14,23
xpSc0000570_RagT ag 25400	Cationic amino acid transporter 1-like	2e-58	Stylophora pistillata	Protein/membrane formation	24

Summary of Gene Ontologies enriched in significantly high LRT values, suggesting functions that are significantly different between adult phenotypes and distinguish bleaching tolerance.

Term	Name	P (fdr)	Category
GO:0006412	translation	0.084	BP
GO:0006476;	protein deacetylation	0.028	BP
GO:0035601;			
GO:0098732			
GO:0006518	peptide metabolic process	0.046	BP
GO:0006575	cellular modified amino acid metabolic process	0.045	BP
GO:0018200	peptidyl-glutamic acid modification	0.028	BP
GO:0034334;	adherens junction organization	0.045	BP
GO:0034332			
GO:0043043	peptide biosynthetic process	0.059	BP
GO:0043603	cellular amide metabolic process	0.085	BP
GO:0070373	negative regulation of ERK1 and ERK2 cascade	0.048	BP
GO:0071333;	cellular response to hexose stimulus	0.077	BP
GO:0009749;			
GO:0071331;			
GO:0009746;			
GO:0034284;			
GO:0009743;			
GO:0071326;			
GO:0071322			
GO:0090630	activation of GTPase activity	0.085	BP
GO:1901565	organonitrogen compound catabolic process	0.077	BP
GO:1902414	protein localization to cell junction	0.024	BP
GO:1903614;	protein N-linked glycosylation	0.027	BP
GO:1903613;			
GO:1904894;			
GO:0018279;			
GO:0006487;			
GO:0018196			
GO:0031902	late endosome membrane	0.099	CC
GO:000287	magnesium ion binding	0.094	MF
GO:0003735	structural constituent of ribosome	0.094	MF
GO:0003887;	DNA-directed DNA polymerase activity	0.094	MF
GO:0004523;			
GO:0016891			
GO:0004177;	exopeptidase activity	0.094	MF
GO:0008238;			
GO:0070006;			
GO:0008235			

GO:0004190;	aspartic-type endopeptidase activity	0.094	MF
GO:0070001			
GO:0008138	protein tyrosine/serine/threonine phosphatase activity	0.093	MF
GO:0008199;	ferric iron binding	0.094	MF
GO:0004322;			
GO:0016724;			
GO:0016722			
GO:0016758;	transferase activity, transferring glycosyl groups	0.093	MF
GO:0016757			
GO:0017016;	small GTPase binding	0.094	MF
GO:0031267			
GO:0017048	Rho GTPase binding	0.094	MF
GO:0030144;	protein phosphatase inhibitor activity	0.093	MF
GO:0140103;			
GO:0030145;			
GO:0004864;			
GO:0019212			
GO:0051020	GTPase binding	0.028	MF
GO:0070851;	growth factor receptor binding	0.094	MF
GO:0005138			

Summary of Gene Ontologies enriched in significantly low LRT values, suggesting functions that are significantly similar between adult phenotypes and do not distinguish bleaching tolerance.

Term	Name	P (fdr)	Category
GO:0001667	ameboidal-type cell migration	0.048	BP
GO:0001932;	regulation of phosphorylation	0.037	BP
GO:0042325			
GO:0002252;	immune effector process	0.045	BP
GO:0051607;			
GO:0009615			
GO:0002376	immune system process	0.077	BP
GO:0008037	cell recognition	0.077	BP
GO:0008202	steroid metabolic process	0.006	BP
GO:0009605	response to external stimulus	0.077	BP
GO:0009888	tissue development	0.070	BP
GO:0009952	anterior/posterior pattern specification	0.051	BP
GO:0010035	response to inorganic substance	0.045	BP
GO:0010038	response to metal ion	0.084	BP
GO:0010557;	positive regulation of gene expression	0.054	BP
GO:0010628;			
GO:0031328;			
GO:0009891			
GO:0010638	positive regulation of organelle organization	0.048	BP
GO:0016192	vesicle-mediated transport	0.027	BP
GO:0019827;	stem cell population maintenance	0.048	BP
GO:0098727			
GO:0022604	regulation of cell morphogenesis	0.056	BP
GO:0030278	regulation of ossification	0.077	BP
GO:0030517	negative regulation of axon extension	0.095	BP
GO:0031122	cytoplasmic microtubule organization	0.070	BP
GO:0043207;	response to biotic stimulus	0.029	BP
GO:0009607;			
GO:0051707			
GO:0045087	innate immune response	0.045	BP
GO:0045596	negative regulation of cell differentiation	0.044	BP
GO:0045597	positive regulation of cell differentiation	0.092	BP
GO:0045859;	regulation of transferase activity	0.008	BP
GO:0043549;			
GO:0051338			
GO:0045926	negative regulation of growth	0.083	BP
GO:0045944	positive regulation of transcription by RNA polymerase	0.045	BP
GO:0050685	positive regulation of mRNA processing	0.085	BP

GO:0050793	regulation of developmental process	0.056	BP
GO:0051093	negative regulation of developmental process	0.024	BP
GO:0051094	positive regulation of developmental process	0.070	BP
GO:0051128	regulation of cellular component organization	0.020	BP
GO:0051130	positive regulation of cellular component organization	0.028	BP
GO:0051240	positive regulation of multicellular organismal process	0.026	BP
GO:0051241	negative regulation of multicellular organismal process	0.027	BP
GO:0051704	multi-organism process	0.045	BP
GO:0051965;	regulation of synapse assembly	0.085	BP
GO:0051963			
GO:0070988	demethylation	0.029	BP
GO:0070989	oxidative demethylation	0.006	BP
GO:0071360;	cellular response to dsRNA	0.024	BP
GO:0071359;			
GO:0009597;			
GO:1900246;			
GO:0039535;			
GO:0039531;			
GO:0032481			
GO:0090068;	positive regulation of cell cycle	0.084	BP
GO:0045787			
GO:0005783	endoplasmic reticulum	0.099	CC
GO:0048786	presynaptic active zone	0.099	CC
GO:1990909;	Wnt signalosome	0.099	CC
GO:1990851			
GO:0005509	calcium ion binding	0.094	MF
GO:0008395;	aromatase activity	0.009	MF
GO:0070330;			
GO:0016712;			
GO:0032451;			
GO:0101020;			
GO:0008401;			
GO:0050649			
GO:0015026;	coreceptor activity	0.094	MF
GO:1904928;			
GO:0071936;			
GO:0042813			
GO:0020037;	tetrapyrrole binding	0.094	MF
GO:0046906			
GO:1990837;	double-stranded DNA binding	0.093	MF
GO:0003690;			
GO:0043565			

Results from pairwise comparisons of Likelihood Ratio tests between larval Kaplan-Meier survivorship fits for each Phenotype~Temperature combination. A=Ambient, H=High, B= Bleached, C= Site-Wide Cross, NB= Nonbleached. p<0.05*; p<0.01**; p<0.001***

	AB	AC	ANB	HB	HC	HNB
Ambient Bleached						
Ambient Cross	***					
Ambient Nonbleached	ns	*				
High Bleached	***	***	***			
High Cross	***	**	***	***		
High Nonbleached	***	***	***	***	***	

Results from pairwise comparisons of Likelihood Ratio tests between juvenile Kaplan-Meier survivorship fits for each Phenotype[~]Temperature combination. A=Ambient, H=High, B= Bleached, C= Site-Wide Cross, NB= Nonbleached. p<0.05*; p<0.01**; p<0.001***

	AB	AC	ANB	HB	HC	HNB
Ambient Bleached						
Ambient Cross	***					
Ambient Nonbleached	ns	***				
High Bleached	***	ns	**			
High Cross	***	**	***	***		
High Nonbleached	ns	***	ns	***	***	

Summary of Gene Ontologies enriched in significantly high differences between PBS in nonbleached and cross corals, isolating functions that are selected significantly more strongly in nonbleached corals and highlighting effects of selective breeding.

Term	Name	P (fdr)	Category
GO:0032230	positive regulation of synaptic transmission, GABAergic	0.035	BP
GO:0032849;	regulation of cellular pH reduction	0.035	BP
GO:0032847			
GO:0004712	protein serine/threonine/tyrosine kinase activity	0.040	MF
GO:0043812;	phosphatidylinositol phosphate 4-phosphatase activity	0.040	MF
GO:0034596			
GO:0015491;	cation:cation antiporter activity	0.054	MF
GO:0015298			
GO:0008307	structural constituent of muscle	0.062	MF
GO:0016209;	antioxidant activity	0.062	MF
GO:0004601;			
GO:0016684			
GO:0022821;	potassium ion antiporter activity	0.083	MF
GO:0008273			
GO:0032160	septin filament array	0.084	CC
GO:0097733	photoreceptor cell cilium	0.084	CC
GO:0150051	postsynaptic Golgi apparatus	0.084	CC
GO:0006900	vesicle budding from membrane	0.090	BP
GO:0032228	regulation of synaptic transmission, GABAergic	0.090	BP
GO:0038083	peptidyl-tyrosine autophosphorylation	0.090	BP
GO:0051453;	regulation of pH	0.090	BP
GO:0030641;			
GO:0006885;			
GO:0030004			
GO:0051592	response to calcium ion	0.090	BP
GO:0060402;	cytosolic calcium ion transport	0.090	BP
GO:0060401;			
GO:0097553			
GO:2001225	regulation of chloride transport	0.090	BP

Supplemental References

- Ocampo, I. D., Zárate-Potes, A., Pizarro, V., Rojas, C. A., Vera, N. E., & Cadavid, L. F. (2015). The immunotranscriptome of the Caribbean reef-building coral *Pseudodiploria strigosa*. *Immunogenetics*, *67*(9), 515-530.
- Matthews, J. L., Crowder, C. M., Oakley, C. A., Lutz, A., Roessner, U., Meyer, E., ... & Davy, S. K. (2017). Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. *Proceedings of the National Academy of Sciences*, *114*(50), 13194-13199.
- van Oppen, M. J., Bongaerts, P., Frade, P., Peplow, L. M., Boyd, S. E., Nim, H. T., & Bay, L. K. (2018). Adaptation to reef habitats through selection on the coral animal and its associated microbiome. *Molecular ecology*, *27*(14), 2956-2971.
- Miller, D. J., Hayward, D. C., Reece-Hoyes, J. S., Scholten, I., Catmull, J., Gehring, W. J., ... & Ball, E. E. (2000). Pax gene diversity in the basal cnidarian *Acropora millepora* (Cnidaria, Anthozoa): implications for the evolution of the Pax gene family. *Proceedings of the National Academy of Sciences*, *97*(9), 4475-4480.
- Smith, E. G., Hume, B. C., Delaney, P., Wiedenmann, J., & Burt, J. A. (2017). Genetic structure of coral-*Symbiodinium* symbioses on the world's warmest reefs. *PloS one*, *12*(6), e0180169.
- Aranda, M., Banaszak, A. T., Bayer, T., Luyten, J. R., Medina, M., & Voolstra, C. R. (2011). Differential sensitivity of coral larvae to natural levels of ultraviolet radiation during the onset of larval competence. *Molecular ecology*, 20(14), 2955-2972.
- **7.** Williams, E. A. (2020). Function and distribution of the Wamide neuropeptide superfamily in metazoans. *Frontiers in endocrinology*, *11*, 344.
- Heidari, A., Tongsook, C., Najafipour, R., Musante, L., Vasli, N., Garshasbi, M., ... & Vincent, J. B. (2015). Mutations in the histamine N-methyltransferase gene, HNMT, are associated with nonsyndromic autosomal recessive intellectual disability. *Human molecular genetics*, 24(20), 5697-5710.
- **9.** Yosef, O., Popovits, Y., Malik, A., Ofek-Lalzer, M., Mass, T., & Sher, D. (2020). A tentacle for every occasion: comparing the hunting tentacles and sweeper tentacles, used for territorial competition, in the coral *Galaxea fascicularis*. *BMC genomics*, *21*(1), 1-16.
- Chiu, Y. L., Shikina, S., Yoshioka, Y., Shinzato, C., & Chang, C. F. (2020). De novo transcriptome assembly from the gonads of a scleractinian coral, *Euphyllia ancora*: molecular mechanisms underlying scleractinian gametogenesis. *BMC genomics*, 21(1), 1-20.
- **11.** Fuess, L. E., Palacio-Castro, A. M., Butler, C. C., Baker, A. C., & Mydlarz, L. D. (2020). Increased algal symbiont density reduces host immunity in a threatened Caribbean coral species, *Orbicella faveolata*. *Frontiers in Ecology and Evolution*, *8*, 369.
- **12.** Edge, S. E., Shearer, T. L., Morgan, M. B., & Snell, T. W. (2013). Sub-lethal coral stress: detecting molecular responses of coral populations to environmental conditions over space and time. *Aquatic toxicology*, *128*, 135-146.

- Aguilar, C., Raina, J. B., Fôret, S., Hayward, D. C., Lapeyre, B., Bourne, D. G., & Miller, D. J. (2019). Transcriptomic analysis reveals protein homeostasis breakdown in the coral *Acropora millepora* during hypo-saline stress. *BMC genomics*, 20(1), 1-13.
- **14.** Alves, C. J., Yotoko, K., Zou, H., & Friedel, R. H. (2019). Origin and evolution of plexins, semaphorins, and Met receptor tyrosine kinases. *Scientific reports*, *9*(1), 1-14.
- Dunn, S. R., Schnitzler, C. E., & Weis, V. M. (2007). Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. *Proceedings of the Royal Society B: Biological Sciences*, 274(1629), 3079-3085.
- Cheng, J., Moyer, B. D., Milewski, M., Loffing, J., Ikeda, M., Mickle, J. E., ... & Guggino, W. B. (2002). A Golgi-associated PDZ domain protein modulates cystic fibrosis transmembrane regulator plasma membrane expression. *Journal of Biological Chemistry*, 277(5), 3520-3529.
- **17.** Hemond, E. M., Kaluziak, S. T., & Vollmer, S. V. (2014). The genetics of colony form and function in Caribbean *Acropora* corals. *BMC genomics*, *15*(1), 1-21.
- **18.** Takeuchi, T., Yamada, L., Shinzato, C., Sawada, H., & Satoh, N. (2016). Stepwise evolution of coral biomineralization revealed with genome-wide proteomics and transcriptomics. *PloS one*, *11*(6), e0156424.
- DeSalvo, M. K., Voolstra, C. R., Sunagawa, S., Schwarz, J. A., Stillman, J. H., Coffroth, M. A., ... & Medina, M. (2008). Differential gene expression during thermal stress and bleaching in the Caribbean coral *Montastraea faveolata*. *Molecular ecology*, *17*(17), 3952-3971.
- **20.** Mayfield, A. B., Chen, Y. J., Lu, C. Y., & Chen, C. S. (2018). The proteomic response of the reef coral *Pocillopora acuta* to experimentally elevated temperatures. *PloS one*, *13*(1), e0192001.
- **21.** DeSalvo, M. K., Sunagawa, S., Voolstra, C. R., & Medina, M. (2010). Transcriptomic responses to heat stress and bleaching in the elkhorn coral *Acropora palmata*. *Marine Ecology Progress Series*, 402, 97-113.
- **22.** Alzugaray, M. E., Hernández-Martínez, S., & Ronderos, J. R. (2016). Somatostatin signaling system as an ancestral mechanism: Myoregulatory activity of an Allatostatin-C peptide in Hydra. *Peptides*, *82*, 67-75.
- 23. Mansfield, K. M., Cleves, P. A., Van Vlack, E., Kriefall, N. G., Benson, B. E., Camacho, D. J., ... & Gilmore, T. D. (2019). Varied effects of algal symbionts on transcription factor NFκB in a sea anemone and a coral: possible roles in symbiosis and thermotolerance. *bioRxiv*, 640177.
- Levy, O., Karako-Lampert, S., Ben-Asher, H. W., Zoccola, D., Pagès, G., & Ferrier-Pagès, C. (2016). Molecular assessment of the effect of light and heterotrophy in the scleractinian coral *Stylophora pistillata*. *Proceedings of the Royal Society B: Biological Sciences*, 283(1829), 20153025.

- 25. Panevska, A., Skočaj, M., Križaj, I., Maček, P., & Sepčić, K. (2019). Ceramide phosphoethanolamine, an enigmatic cellular membrane sphingolipid. *Biochimica et Biophysica Acta (BBA)-Biomembranes*, *1861*(7), 1284-1292.
- **26.** Doonan, L. B., Hartigan, A., Okamura, B., & Long, P. F. (2019). Stress-free evolution: the Nrf-coordinated oxidative stress response in early diverging metazoans. *Integrative and comparative biology*, *59*(4), 799-810.
- **27.** Cunning, R., Bay, R. A., Gillette, P., Baker, A. C., & Traylor-Knowles, N. (2018). Comparative analysis of the *Pocillopora damicornis* genome highlights role of immune system in coral evolution. *Scientific Reports*, *8*(1), 1-10.
- **28.** Kwong, W. K., del Campo, J., Mathur, V., Vermeij, M. J., & Keeling, P. J. (2019). A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. *Nature*, *568*(7750), 103-107.
- **29.** Komander, D. (2009). The emerging complexity of protein ubiquitination. *Biochemical Society Transactions*, *37*(5), 937-953.
- **30.** Liebl, F. L., Werner, K. M., Sheng, Q., Karr, J. E., McCabe, B. D., & Featherstone, D. E. (2006). Genome-wide P-element screen for *Drosophila synaptogenesis* mutants. *Journal of neurobiology*, *66*(4), 332-347.
- **31.** Shahnazari, S., & Brumell, J. H. (2009). Eating twice for the sake of immunity: a phagocytic receptor that activates autophagy. *Cell host & microbe*, *6*(4), 297-298.
- **32.** Li, M., Liu, H., Guo, Y., Chen, F., Zi, X., Fan, R., ... & Zhao, X. (2020). Single symbiotic cell transcriptome sequencing of coral. *Genomics*, *112*(6), 5305-5312.