The vorticity equation and its applications

Felix KAPLANSKI
Tallinn University of Technology
feliks.kaplanski@ttu.ee

i "
|mH| TALLINNA TEHNIKAULIKOOL
| A {




Examples of vortex flows

Variable-density mixing layer
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Examples of vortex flows
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Examples of vortex flows

VORTEX BREAKDOWN IN THE LABORATORY

The photo at the right is of a laboratory vortex breakdown provided by
Professor Sarpkaya at the Naval Postgraduate School in Monterey, California.
Under these highly controlled conditions the bubble-like or B-mode breakdown

is nicely illustrated. It is seen in the enlarged version that it is followed by an S-
mode breakdown.
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Examples of vortex flows

VOLCANIC VORTEX RING

The image at the right depicts a vortex ring generated in the crater of Mt. Etna.
Apparently these rings are quite rare. The generation mechanism is bound to
be the escape of high pressure gases through a vent in the crater. If the venting

is sufficiently rapid and the edges of the vent are relatively sharp, a nice vortex
ring ought to form.
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Examples of vortex flows
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Vortices in the atmosphere and the oceans — North Pacific
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Vortex ring flow

Examples of vortex flo

A VORTEX RING

At the right is a vortex ring generated by Professor T.T. Lim and his former
colleagues at the University of Melbourne. The visualization technique
appears to be by smoke.
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Virtual imah%e of a vortex ring flow
www.applied-scientific.com/ IN/PROJECTS/NSFO0/FAT_RING/Fat_Ring.html -

Force
acts
impulsively
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Overview:

m Derivation of the equation of transport of
vorticity

m Describing of the 2D flow motion

on the basis of vorticity w and
streamfunction y instead of the more
popular (u,v,p)-system

m Well-known solutions of the system (w, ¢ )
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NSE

We start from the Navier—5Stokes equations for incompressible Newtonian
viscous flow, grven by (in the absence of gravity)
g7 . 1 —
— 4+ (- V)u—v(V-Viju = —-Vp (7.37)
at i)
Veu = 0, (7.58)

These equations of motion were first obtained 1n 1822 by the French phvsicist
Claude Lows Mane Henn Navier (1785-1836), and later rederved indepen-
dently m 1845 by the Insh mathematician and physicist George Gabriel Stokes
(1819-1903). Note that the difference between the Navier—Stokes equations
and Euler’s eguations for an mncompressible ideal fimd 15 the second-order
dervative term ¢ (W - W ).
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Vorticity

As well as the flow velocity itself. 1t 15 useful to define the vorticity of a fuid
flow which 15 equal to the curl of the flow velocity.

The vorticity is a vector-valued function of position and time defined as
w:=V xu, (1.18)
and it 15 crucially important in the study of fluid dyvnamics.

The vorticity at a point is a measure of the local rotation. or spin. of a fluid
element at that point. Mote that the local spin 15 nof the same as the global
rotation of a fiuid.

If the flow 1n a region hias zero vorticity, then the flow 1= descrnibed as irrota-
tional. Irrotational flow is one of the major categories of fwd flows.

In 2-D flow, i the r—y plane of a Cartesian coordinate system, the velocity
has the form
u = [uell. , y), uy(t, T y), []':f'r' ) (1.19)

and the vorticity is w = (0,0, w.)". where

i, Oy
Wy = — . 1.20
dx ity (1.20)
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Vorticity transport equation

Helmholtz Equation

Derivation (2-1D)
If we neglect viscous forces, the r- and y-components of the 22D momentum equation can
be written as follows.

hu ch du —1dp 1)
o Ve T dy —  pdr  F v
dv o o —1 dp

= — 1 :.E':I
2 By + Gy j

We now take the curl of this momentum equation by performing the following operation.

d

dy

d

I -{ y-momentum {E}} — -{ r-momentum | L}}
1‘\-
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Helmholtz equation

If we assume that p is constant (low speed flow), the two pressure derivative terms cancel.
Since the gravity components g, and g, are generally constant, these also disappear when
the curl's derivatives are applied. Using the product rule on the lefthand side, the resulting

equation is
d fdv  du d (fdv du d fov du
— | — — = + U= — — — + — — =
dt\dr oy dr\dr  dy dy \dr oy

N r':'11=_E?u E.i'u+|f.i'1_' _ 0
dr dy ] |dx  dy B

We note that the quantity inside the parentheses is merely the z-component of the vorticity
£ = dv/dr — du/dy, so the above equation can be more compactly written as

wZ:g E?_E_ua_g+1-ﬁ_£+fﬁ_u+i = ()
ot dr dy T |dxr Oy
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Vorticity equation on plane

1 3
2
i(av_au +81<@v+u8 v+v

1
) AT
ot 8x3 ay x ox  ox oxdy 0x
b

2)-1)=
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Taking into account:

Jou dv W oW _0
ox Jdy odxdy o0xdy
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Vorticity equation on plane
d dv du. 390°v 3 0u

4 9% 4 du
(—=-—)+u—-u +V -V—
ot dx dy 0x 0xady 0xady dy

9 9v odu. 0> 0v du.
=V 2( — )+ 2( - )
_ax ox dy dy” ox ay_
0 dw OJdw [0Pw 0w
—w+uU—+v—=v —+ .
ot 0X dy 0x Y%
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Cylindrical coordinate system

In cylindrical coordinates (r, 0,z )with 9/98 =0
-axisymmetric case
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Vorticity equation: axisymmetric case

2) : tu—+v—=—"—"-+V

g dv Iy Iy 1 dp [82\/ v 1dv v]
- +—+

! 3 4 L g2
2)-1)= 8(81/ au au av+ &()yv \%

ot 623 8r 6/82 22 Azor /df\&r ror

i og ot i=_1\@+1\@u
azar Y ar r 40/8}&1” m

9 Ay _duy 9’ Gy _duy Loy duy Lou 1dy
0z 0z or’ o’ 9z I r dz I ror 1 oz

Proof with Mathematica
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Taking into account:

Continuity equation

J(ru) . d(rv)
0z ar

d(ru) d(rv) ou  Jv
+ =r—+r—+vs=
0z or 0z or

1o 1 0¥ 1% 19¥W
o e 22 1

r 0zor ¥y 0zor r 0z r 0z
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Vorticity equation: axisymmetric case

3 3 4 %
d Jdv  du 9%V ou v du
(——-—)+u—-u +V -V—
Jdt 0z Or Jdz dzor dzor ar
0> 9v du. 90> 0v ou. 19 dv du. 1 dv du
=V 2( - )+ 2( - +— - )_ 2 - )
dz= dz Or dr°- dz Or ryor o0z or r- oz or
2
0 dw Odw Vw 0w 10w
—w+uU——+FV—=V > + > + — i
ot 0z or 0z or v or r
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Vorticity transport equation for 2D :
g=1- axisymmetric vortices,
g=0 — plane vortices

dw Jdw  Jdw ’w J’w qiw qw
—tV— 4+ U— =V 5+ - =
ot or oz oz or v or r
The Stokes stream function can be introduced as follows
_low 1w

U= V=

ME33 : Fluid Flow Chapter 10: Approximate Solutions



For 3D problem: generalized Helmholtz
equation

Jw, dw, Jw, 20 ow ow ow
+v +u +w =0, —+0,—+0.—+VAw, ,
ol o oy 74 o oy 74
ik
2 1oxt 4+ 02/ v + 9%/ 922 o = 0 0
where A=0"/dx"+09d°/dy " +0°/0z ox oy oz
u Vv w

For 3D problem we can not introduce streamfuction W
like for 2D problem.
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For 3D problem: generalized Helmholtz
equation in cylindrical coordinates
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For 2D problem:

(U,V,p) - ((Da 1P)

Winning: two variables instead of three

Losses: difficulties with boundary conditions
for streamfunction
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7.1.3. Invariants of motion

When the flnid is inviscid and of constant density and the varticity
1s governed by the vorticity equation (7. 1}, we have four invariants

of motion:

Energy: K — l)/ vidix
< IV
1 \ 13
— W{x‘t-) A(X.f}d X
2Jp
- / v-(x xw)d®x, [Lamb32,
D
1 3
Impulse: P = = x x wix, t)d'x,
2 Jp '
1

Angular impulse : L = = / X % (x x w)d®x,
D

Helicity : H - /v wd?x,
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Vortex flow 2-D plane

7.3.1. Vorticily equation

Assuming that the fluid motion is incompressible, the z, y compo-
nents of the fluid velocity are expressed by using the stream function
U{x,y,t) as

u=08,9, v=-08,V, (7.22)
(Appendix B.2). The z component of the vorticity is given by
w=8v — Byu= -9}V — 92V = -V, (7.23)

where V% = 9?2 + 82’,2. The x, y components of vorticity vanish iden-
tically because w = 0 and 9, = 0, where w is the z component of
velocity and the velocity field is independent of z.
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Streamfunction and (u, v) through vorticity

If the function mE:n: j;;} is given, Eq. (7.23) is the Poisson equation
VIl = —w(z,y) of the function ¥(z, y). Its solution is expressed by
the following integral form,

T(r,y) = —4—1#- ffﬂ wiz' ¥ ) og((z —2)? + (¢ — y)")dx'dy’.

and u, v are given by

W -yl y)
[‘Iw-r}q‘_”ﬂf_/;;.[.r-*r}i-l—fy’ y}tl dy’,

.I—.!Z,'IL;-'IJ.I'!} Pyt
vlmv) = 61@___ﬂ;r'[m’—ﬂ?ﬂy’—yllzdrdy'
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mSolutions, which contain vorticity
expressed through delta-functions
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Vortex flow.

7.3.4. Point vortex

When the vortex domain D of Fig. 7.2(a) shrinks to a point P =
(z1,1) by keeping the vortex strength I' to a finite value k., then we
have the following relation,

// w{z,y)drdy = k.
JHm D—p

This implies that there is a concentrated vortex at P, and that the
vorticity can be expressed by the delta function (see Appendix A.7) as

w(z,y) = ké(z — x1)d(y — w1), (7.38)

Substituting this to (7.33) and (7.34), the velocities are

__k ¥ — % .
u(z,y) = 2% @) F =) (7.39)
| A‘ T —I) -
Y T w (7.40)

This is the same as the right-hand sides of (7.36) and (7.37) with I’
replaced by k, and also the expressions (5.47) and (5.48) (and also
(5.73)) if z and y are replaced by z — z; and y — ¥y, respectively.

From the definitions of the integral invariants (7.28)-(7.30) and
(7.32), we obtain ' = k, X, = 2, and Y. = . Thus, we have the
following.

The strength k of the point vortex is invariant, In addition,
the position (x), 1) of the vorter does not change.

Namely, the point vortex have no self-induced motion. In other words,
a rectilinear vortex does not drive itself.
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Vortex flow.

7.3.5. Vortex sheet

Vortex sheet is a surface of discontinuity of tangential velocity
[Fig. 4.5(a)]. Suppose that there is a surface of discontinuity at y = 0
of a fluid flow in the cartesian (x, ¥, z) plane, and that the velocity
field is as follows:

v = (%U,0,0) fory<0; v= (—%U._0,0) for y > 0. (7.43)

(Directions of flows are reversed from Fig. 4.5(a).) The vorticity of
the flow is represented by

w=(0,0,w(y), w=Udy), (7.44)

where §(y) is the Dirac’s delta function (see A.7). This can be con-
firmed by using the formula (5.20) (Problem 7.4).
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Y
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A
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Fig. 4.5. (a) Vortex sheet,
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7.6. Axisymmetric vortices with circular vortex-lines

We consider axisymmetric vortices in this section. An axisymmetric
flow without swirl is defined by the velocity,

vix) = (Ua;(ms 7), 'U‘r(‘rv r), 0),

in the cylindrical coordinates (z,r,¢) (instead of (r, 0, z) of
Appendix D.2). A Stokes’s stream function ¥(x,7) can be defined
for such axisymmetric flows of an incompressible fluid by

1 0V 10V
== oy =—-2Z 7.56
ror " r Ox (7.56)
The continuity equation of an incompressible fluid, divv = d,v, +
+0r(rv;) = 0 (see (D.9)), is satisfied identically by the expressions.

Uy
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The Biot-Savart Law

Y IV 1N
Tt — - —=-Truw
or &> r o

] 1 am wla ' —
Ay = ;w[_,;,rlgp_iiﬁfdmrfdraf“ e Wl Fl}illm:’,lfi-’ '-“.-!1]'?

dx’

w(ax,t) =

1 ['.u[rc“,t} ® (@ — ')
47

z— 2

Using this formula, a vortex particle's velocity can be computed from the
vorticity and location of every other particle. Each particle is then advected
according to 1ts local veloaity, and has its vorticity modified to account for
vortex stretching and viscous effects.
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mSolutions, which contain vorticity
expressed through delta-functions
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Vortex flow.

7.6.2. Chircular vortex ring

When the vortex-line is circular and concentrated on a circular core
of a small cross-section, the vortex is often called a circular vortex
ring. The stream function of a thin circular ring of radius R lying
in the plane z = 0 is obtained from (7.58) by setting wy(2’,r'} =
~6(z") 8(r' — R) as

cos @

[#2 + 72 — 2rRcos ¢ + R?|

(7.63)

2
Y
U (z,r) = ETR,A de¢ /3

where v = [[ wydz/dr’ is the strength of the vortex ring.
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Vortex flow.

164 Vortex motions

The impulse of the vortex ring of radius R and strength v is given
by (7.9):

P=(FP,0,0), P = / ur,,rzn'd:rdr =nwR%~.

The stream function of a thin-cored vortex ring of radius R and for its speed as

strength 4, defined by (7.58), can be expressed [Lamb32, Sec. 161] as - SR 1
U= _———|log— . (7.65
PN ) AR { ®a ~1] (7.65)
U (z,r) == VrR [( - l\') K(k)— - F('A')} , (7.64)
2r ke k under the assumption € = a/R < 1. Its kinetic energy is given by
where K(k) and E(k) are the complete elliptic integrals of the first K - pR~* rl 8RR 7
and second kind of modulas k2 = 4rR/(22 + (r + R)?), defined by T { B T

Ix 1 Ax ‘ ) Hicks (1885) confirmed Kelvin's result for the vortex ring with uni-

K{k) = / (l—kjuz—‘)" dg, E(k) =/ (1 = k*sin? £}1/24¢. form vorticity in the thin-core. In addition, he caleulated the speed
— k% sin® £)1/? . . . . . . e

U b v of a ring of hollow thin-core, in which there is no vorticity within the

Considering a thin-cored vortex ring of radius R and a core radius core and pressure is constant, as

a with circulation ~ (Fig. 7.6), Kelvin (1867) gave a famous formula

r 8 8R 1 o
L'h = — l:lf.lp, T _ §] . (7.()())

4R

vortex-lines

Fig. 7.6. A vortex ring of radius R and a core radivs a with circulation + (a
definition sketch).
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m Other solutions
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Vortex flows. Hill's ring

7.6.1. Hill’s spherical vortex

Hill's spherical vortex (Hill, 1894} is an axisymmetric vortex of the
vorticity field occupying a sphere of radius R with the law w = Ar
| A: a constant)} and zero outside it:

wo=Ar (VZZ+rP<R); wy=0 (v%2+r2>10. (7.60)

The total circulation is given by

I"—‘/f Ar dzdr = -2-45"‘
<R 3

where R, = Vz? + r2, This vortex moves with a constant speed
I'
I — ,2,- = .
L 15& 4=, (7.61)

- ]



7.6. Axisymmeiric vortices unth circular vorter-lines

Fig. 7.5, Hill's spherical vortex,
g ¥

without change of form. In the frame of reference in which the vortex
is stationary, the stream function is given by

;(-"rz{l — R?/R?) for R. < R,
Wiz, r) . (7.62)
—3 l}’r'z(l - R"‘/Rf) for R, > R.

where ¥ = — .‘3(.:'1‘2 1s the stream function of uniform flow of velocity
(—U,0,0). Obviously, the spherical surface B, = R coincides with
the stream-line ¥ = 0 (Fig. 7.5).

The impulse of Hill's sphoncal vortex is obtained from (7.9} by
using (7.60), and found to have only the axial component F,:

P (P.00), P = / werindzdr = 2rR3U.
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Viscous decayv of a line vortex

Az an example of the above theory, we study the effects of viscosity on 2 line
vortex. That 13, we take as an inifial condition the flow pattern of a 1/r—
vortex groen by

]._Il'_:l
U = —, ., (7.77
2y ¢ (7.77)
where ['y 15 a constant. This 15 a solution for a vortex m an inviscid fuid. with
Zero vorticity except at v = () where 1t 15 infimste. There 1s, however, a finite

circulation around the origin. The idea 15 that we can see the gffecr ofviscosity
on such vortices by using the imviscid solution as an initial condition for the

Wartnor—Stnlr-az cnmafinme

We use polar coordinates (r, ) and assume symmetry

d/06=0

a_a) w 1w
ot or: r or
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Solution

w = € Further we define constant ¢
4wt
I'=I(rt),,=2xfwrdr,_,
2
= c2m [e Ydr = ¢
davt
and find solution
2
W = L e V! | |
4.t Proof with Mathematica
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Appropriate tangent velocity

This eventually leads to a solution given by

I

2
1 _e—r /4vi
2nr( )

u(rt)—~—faWdr

The first term 15 just the wmascid solution. We see that at fixed r, as tume
increases, the flow velocity component u,, decreases and departs from a 1/r-
dependence. In other words, the vorticity increases. Close to the axs, but
within a distance that increases in time [ie. r < (4ut)1/?], the flow is ap-
proximately that of uniform rotation. The intensity of the vortex decreases in
time, as the core spreads outwards.
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\ - - . J. e o
Graph of the fimction <(1 —e™™
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Burgers vortex (a viscous vortex with swirl)

atream-hnpe

vortex-line

Fig 78 Burgers vortex under an external straining vy,
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Vorticity

. _ I'
w(t = o) — wplr) = — exp[-r*/Ij],
iy

where ' = [ (s 275 ds denotes the initial total vorticity
Ip represents a length scale of the final form. The swirl velocity vg(r)

around the Burgers vortex is given as
w(r) = — < (L—e ™), F=r/lp (7.80)

As a result of detailed analyses, evidences are increasing to show
that strong concentrated vortices observed in computer simulations
or experiments of turbulence have this kind of Burgers-like vortex.
This implies that in turbulence there exists a mechanism of sponta-
neous self-formation of Burgers vortices in the statistical sense.
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Irrotational Flow Approximation

m Irrotational
approximation: vorticity is
Irrotational flow region negl|g|b|y small

:,~:z£§§t (=VxV=0
—”/&\

m In general, inviscid

—-—'"_\ N
— Y regions are also
— ! % irrotational, but there are
- / L —— . . . . .
\/ == situations where inviscid
Rotational flow region flow are rotational, e.g.,
solid body rotation (Ex.
10-3)
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Irrotational Flow Approximation
2D Flows

m For 2D flows, we can also use the streamfunction
m Recall the definition of streamfunction for planar (x-y)

flows O O
U — (9_’1/ V — —%
m Since vorticity is zero! > ;
LU
© 0x Oy
32 82
_w -4 _?’D — ()
oy?  0x?

m This proves that the Laplace equation holds for the
streamfunction and the velocity potential
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Elementary Planar Irrotational Flows

Uniform Stream

m In Cartesian coordinates

I | v4 [ |
| | | | — —
by ———’ B o=Vz, Yv=Vy
| | | |
Py ——— | >
| | | | . . .
b »_v,_> I m Conversion to cylindrical
| | | i coordinates can be
= SE = . — 1+  achieved using the
| | | | .
~p| ———| | L transformation
| | | | |
Ay : L x =rcos, y=rsind

b b =0 b b

¢ = Vrcos, 1= Vrsinb

Proof with Mathematica
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Elementary Planar Irrotational Flows

Line Source/Sink

m Potential and

A v} J‘ streamfunction are
\ ****** / ) derived by observing that
- A volume flow rate across
N any circle is V/L
! 9 ‘\/' . . .
-~ X m This gives velocity
'. L X components
-\ e .
A 7 V/L
> U-=—— Up=0
/\\ ”’ ~ " 27T ’
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Elementary Planar Irrotational Flows

Line Source/Sink

Proof with Mathematica

ME33 : Fluid Flow

m Using definition of (U,, U,)

d¢ 19y V/L

Ur= E r 00  2mr
1 8q§ 8¢
Uo = ro0  Or =0

B These can be integrated
to give ¢ and vy

V/L
2T

/L
v/,

*= o 2T

Inr

Equations are for a source/sink
at the origin

Chapter 10: Approximate Solutions




Elementary Planar Irrotational Flows

Line Source/Sink

m If source/sink is
moved to (x,y) = (a,b)

gb:%lnrlzV/—Lln\/(zls—a)z—I—(y—b)2
TP—V/L 9, — V_/L i (y—b)
2T 2T r—a

=Y
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Elementary Planar Irrotational Flows

Line Vortex

m Vortex at the origin. First
look at velocity

" components
09 10y
ue Ur_afr_ré’@_o
” g, = 100 _ oy _ T
\9 T re0 or  2mr
ﬁ m These can be integrated

\—
o |

to give ¢ and y

I

Equations are for a source/sink ¢ — Lg ¢ — —— Inr
at the origin 2T 2T
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Elementary Planar Irrotational Flows

Line Vortex

m |f vortex is moved to

. (x,y) = (a,b)
P
k qb—%ﬁl—z?rtan (az—a)
% T T
- qp:—%lnfrl——%ln\/(:c—a)z—l-(y—b)z
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Elementary Planar Irrotational Flows

Doublet

ME33 : Fluid Flow

m A doublet is a
combination of a line
sink and source of

4 equal magnitude

, u Source
2

X V/L . 1 Y
v=Srn ot ()
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Elementary Planar Irrotational Flows

Doublet
m Adding y, and vy,

Vi
BN i together, performing
—~y, some algebra, and
L Ay N taking a—0 gives
Cl TN // RN sing
\ \ —b, ‘ d)l /,' Ly ’lp — —K
_\ _¢ \ 4 ///// \\\\\ \ Vs h // ’r‘
¢3 2 /;/ \Q\ (?2 ¢3 6
S A e 3 I W COS
AT - d=K
r
—i)
—3 K is the doublet strength
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Examples of Irrotational Flows Formed

by Superposition

m Superposition of sink and
vortex : bathtub vortex

V/L I
) = 249 Inr
2T \27TY )
Sink Vortex
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Examples of Irrotational Flows Formed

by Superposition

yﬂ
_)
N Vuniform stream
Vs v
— doublet N /./
7
—_— x T =
— A /
/ \% \
_— |- +
I \ VARN /
—
e

yﬂ

=Y
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m Flow over a circular
cylinder: Free stream
+ doublet

v
O = VrcosO+KCOj
in 6
Y = V’rsinO—KSm
T

B Assume bodyis ¢y =0
(r=a)= K= Va?

Y =Vsin (r —a®/r)
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Examples of Irrotational Flows Formed

by Superposition

ME33 : Fluid Flow

m Velocity field can be found by
differentiating streamfunction

10y

10Y 2.2
U, = 50 Veosf (1 —a?/r?)
ng—é;—ff:—VsinH(l—l—az/rz)

m On the cylinder surface (r=a)

U-=0, Up=—-2Vsinb

Normal velocity (U,) is zero, Tangential
velocity (U,) is non-zero =slip condition.
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