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Examples of vortex flows 

VORTEX BREAKDOWN IN THE LABORATORY  
The photo at the right is of a laboratory vortex breakdown provided by 
Professor Sarpkaya at the Naval Postgraduate School in Monterey, California. 
Under these highly controlled conditions the bubble-like or B-mode breakdown 
is nicely illustrated. It is seen in the enlarged version that it is followed by an S-
mode breakdown.  
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Examples of vortex flows 

VOLCANIC VORTEX RING  
The image at the right depicts a vortex ring generated in the crater of Mt. Etna. 
Apparently these rings are quite rare. The generation mechanism is bound to 
be the escape of high pressure gases through a vent in the crater. If the venting 
is sufficiently rapid and the edges of the vent are relatively sharp, a nice vortex 
ring ought to form.  
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Examples of vortex flows 
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Vortex ring flow 
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Examples of vortex flows

A VORTEX RING 
At the right is a vortex ring generated by Professor T.T. Lim and his former 
colleagues at the University of Melbourne. The visualization technique 
appears to be by smoke. 
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 Virtual image of a vortex ring flow 
www.applied-scientific.com/ MAIN/PROJECTS/NSF00/FAT_RING/Fat_Ring.html -   

Force 
acts 
impulsively 
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Overview: 
 

!  Derivation of the equation of transport of 
vorticity 

!  Describing of the 2D flow motion 
    on the basis of vorticity ω and 

streamfunction ψ instead of the more 
popular  (u,v,p)-system  

     
!  Well-known solutions of the system (ω, ψ )	
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NSE 
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Vorticity 
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Vorticity transport equation 
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Helmholtz equation 

ςω =z
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Vorticity equation on plane 
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Taking into account: 
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Vorticity equation on plane 
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Cylindrical coordinate system 

In cylindrical coordinates (r , θ ,z  ) with 0=∂∂ θ/
-axisymmetric case 
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Vorticity equation: axisymmetric case  
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Proof with Mathematica  



Chapter 10:  Approximate Solutions ME33 :  Fluid Flow                     19 

Taking into account: 
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Vorticity equation: axisymmetric case 
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Vorticity transport equation for 2D : 
q=1- axisymmetric vortices,  

q=0 – plane vortices 
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For 3D problem: generalized Helmholtz 
equation 
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For 3D problem: generalized Helmholtz 
equation in cylindrical coordinates 
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For 2D problem: 

(u,v,p)                      (ω, ψ)	



	


Winning: two variables instead of three 
 
Losses: difficulties with boundary conditions 

for streamfunction  
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Vortex flow 2-D plane 
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Streamfunction and (u, v) through vorticity 

and u, v are given by 



Chapter 10:  Approximate Solutions ME33 :  Fluid Flow                     28 

!  Solutions, which contain vorticity 
expressed through delta-functions   
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Vortex flow.  
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Vortex flow. 
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The Biot-Savart Law 
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!  Solutions, which contain vorticity 
expressed through delta-functions  
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Vortex flow. 
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Vortex flow. 
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!  Other solutions 
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Vortex flows. Hill’s ring 
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0=∂∂ θ/
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Solution 
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Further we define constant c 

and find solution 

Proof with Mathematica 	
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Appropriate tangent velocity 
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Burgers vortex (a viscous vortex with swirl)  
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Vorticity 
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Irrotational Flow Approximation 

!   Irrotational 
approximation: vorticity is 
negligibly small 

!   In general, inviscid 
regions are also 
irrotational, but there are 
situations where inviscid 
flow are rotational, e.g., 
solid body rotation (Ex. 
10-3) 
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Irrotational Flow Approximation 
2D Flows 
!   For 2D flows, we can also use the streamfunction 
!   Recall the definition of streamfunction for planar (x-y) 

flows 

!   Since vorticity is zero, 

!   This proves that the Laplace equation holds for the 
streamfunction and the velocity potential  
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Elementary Planar Irrotational Flows 
Uniform Stream 

!   In Cartesian coordinates 

!   Conversion to cylindrical 
coordinates can be 
achieved using the 
transformation 

Proof with Mathematica 	
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Elementary Planar Irrotational Flows 
Line Source/Sink 

!   Potential and 
streamfunction are 
derived by observing that 
volume flow rate across 
any circle is  

!   This gives velocity 
components 



Chapter 10:  Approximate Solutions ME33 :  Fluid Flow                     49 

Elementary Planar Irrotational Flows 
Line Source/Sink 

!   Using definition of (Ur, Uθ) 

!   These can be integrated 
to give φ and ψ 

Equations are for a source/sink 
at the origin Proof with Mathematica 	
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Elementary Planar Irrotational Flows 
Line Source/Sink 

!   If source/sink is 
moved to (x,y) = (a,b) 
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Elementary Planar Irrotational Flows 
Line Vortex 

!  Vortex at the origin.  First 
look at velocity 
components 

 
 
 
!  These can be integrated 

to give φ and ψ 

Equations are for a source/sink 
at the origin 
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Elementary Planar Irrotational Flows 
Line Vortex 

!   If vortex is moved to 
(x,y) = (a,b) 
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Elementary Planar Irrotational Flows 
Doublet 

!  A doublet is a 
combination of a line 
sink and source of 
equal magnitude 

!  Source 
 
 
!  Sink 
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Elementary Planar Irrotational Flows 
Doublet 

!  Adding ψ1 and ψ2 
together, performing 
some algebra, and 
taking a→0 gives 

K is the doublet strength 
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Examples of Irrotational Flows Formed 
by Superposition 

!  Superposition of sink and 
vortex : bathtub vortex 

Sink Vortex 
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Examples of Irrotational Flows Formed 
by Superposition 

!  Flow over a circular 
cylinder:  Free stream 
+ doublet 

!  Assume body is ψ = 0 
(r = a) ⇒ K = Va2 
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Examples of Irrotational Flows Formed 
by Superposition 

!   Velocity field can be found by 
differentiating streamfunction 

!   On the cylinder surface (r=a) 

Normal velocity (Ur) is zero, Tangential 
velocity (Uθ) is non-zero ⇒slip condition. 


