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1. Introduction to the technologies

Study of internal features of bryozoans is essential in order to determine species-
diagnostic characteristics. Usually, preservation in the fossil record is such that these
internal features are not easily determined, and until recently were largely revealed using
destructive methods. In some exceptional cases preservation is such that internal
morphologies are preserved. Martinsson (1965) was able to demonstrate the internal
zooecial chamber three-dimensional shape in the cryptostome Ptilodictya lanceolata
thanks to them being lined and so replicated in phosphate which could be etched from the
surrounding zooecial walls. Similar preservation of zooecial chambers was reported by
Eisenack (1964) in some trepostomes and cryptostomes from the Silurian of Gotland.
Silicification generally replicates external features faithfully, but unfortunately in most
assemblages preserved in this way any internal skeletal structures are not. Where in rare
cases internal walls are preserved, such as in the cystoporate Fistulipora incrustans from
the Mississippian of Ireland, the morphology of chambers can be viewed when the outer
zoarial walls are removed (Bancroft and Wyse Jackson 1995, fig. 3C-D).

There has been a long history of evolving technologies to image the internal morphology
of bryozoans (Wyse Jackson and Buttler 2015). These technologies range from primitive
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but effective approaches such as mechanically removing zooecial walls with a scalpel to
see inside to Synchrotron Radiation Micro-Computed Tomography (SRµCT) to create 3D
digital images (Key et al. 2022). In between these two end members, several technologies
have been used to create 3D reconstructions of bryozoan morphology. The most widely
used in paleobryozoology is thin sectioning (Boardman 2008).

Thin sectioning is a destructive process involving cutting, grinding, and polishing the
rock with an embedded bryozoan colony to expose it (Nye et al. 1972). The final product
is a two-dimensional thin slice through the rock (i.e. a thin section) mounted on a glass
slide that can be imaged with a microscope. Thin sections can yield high resolution
images. Acetate peels are made similarly. After polishing, the colony is etched with acid,
so any internal structures stand out in relief. Then a sheet of acetate is partially chemically
dissolved onto that surface with acetone (Boardman and Utgaard 1964). The acetate is
then pulled off the colony and can be imaged with a microscope. Acetate peels allow image
resolutions almost as good as thin sections. Both techniques have always been destructive
and labor-intensive.

Thin-sections or acetate peels taken in three orientations across fenestrate bryozoans
have allowed for three-dimensional chamber shapes to be pictorially reconstructed as was
done in studies by Snyder (1991) and Wyse Jackson et al. (2006, text-fig. 1), but this is
laborious, and it is difficult to ensure the degree of accuracy that recent non-destructive
techniques have provided in some studies. Nevertheless, in preservation where the
skeletal ultrastructure and post-mortem chamber infill is similar (i.e. calcitic), and where
newer digital scanning studies would not distinguish between the two, the hand-drawn
scheme is of some value taxonomically.

More recently, there has been success with confocal laser scanning microscopy.
Initially it was largely restricted to imaging bryozoan larvae from modern bryozoans
(Wanninger 2007, Tsyganov-Bodounov and Skibinski 2010) but has grown to include
adult zooids (Temereva and Kosevich 2018).

The latest non-destructive 3D imaging technology is X-ray Micro-Computed
Tomography. In the literature, this was often abbreviated as micro-CT. In this paper we
use µCT which is more commonly used now in bryozoology (e.g. Zhang et al. 2021) and
more broadly in the life sciences in general (e.g. Rawson et al. 2020). There two types of
µCT: laboratory-based (µCT) and synchrotron-based (i.e. Synchrotron Radiation Micro-
Computed Tomography (SRµCT)). Both use X-ray absorption as the source of contrast
in this type of imaging. µCT uses a stand-alone unit, sometimes attached to an SEM.
SRµCT requires a synchrotron, a ~100 m diameter facility, of which there are only ~50
worldwide (Lightsources 2022).

Regardless of the type of µCT (i.e. laboratory- or synchrotron-based), the limits of
resolution depend on the machine being used and the size of the targeted bryozoan. In
general, if you scan an entire colony, the resolution will be more limited. In contrast, if you
focus on few selected zooids, you can get better resolution. But neither will be as high as
the resolution of an SEM.
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Regardless of the type of µCT (i.e. laboratory- or synchrotron-based), the ability to
differentiate between morphological features depends not only on variations in skeletal
mineral composition but also void space/porosity, which have a bearing on X-ray
attenuation through a colony. Imaging works best when the mineralized skeleton and
zooidal cavities have very different X-ray absorption properties. Imaging can be improved
through staining which can yield a combination of both soft-tissue and skeletal structures
(Metscher 2009). For example, Matsuyama et al. (2015) beautifully imaged the autozooid
chambers, suboral avicularian chambers, orifices, and frontal pores in Recent cheilostomes.
Schwaha et al. (2018) used µCT and heavy metal staining to create 3D renderings of the
various soft-parts of Recent cyclostome polypides. In both of these cases, the mineralized
skeletal walls had very different X-ray absorption properties from the zooidal cavities
containing soft-parts.

Figure 1. Pioneering µCT images of a bryozoan shared with the International Bryozoology
Association community by Paul Taylor in 2008. Shown is transverse internal section (A) and a

colony exterior (B) of the Recent cyclostome Mesonia radians. Branch diameter ~ 0.4 mm.
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Table 1. Publications using µCT imaging technology on bryozoans
arranged by publication date.

Study Laboratory Recent or fossil

Mainwaring 2008 laboratory Recent
Schwaha et al. 2008 laboratory Recent
Taylor et al. 2008 laboratory both
David et al. 2009 laboratory Recent
Metscher 2009 laboratory Recent
Viskova and Pakhnevich 2010 laboratory fossil
Buttler et al. 2012 laboratory fossil
Klicpera et al. 2013 laboratory Recent
Schmidt 2013 laboratory Recent
Wyse Jackson and McKinney 2013 laboratory fossil
Koromyslova and Pakhnevich 2014 laboratory fossil
Koromyslova et al. 2014a laboratory fossil
Koromyslova et al. 2014b laboratory fossil
Pakhnevich et al. 2014 laboratory fossil
Koromyslova et al. 2015 laboratory fossil
Matsuyama et al. 2015 laboratory Recent
Koromyslova and Pakhnevich 2016 laboratory fossil
Koromyslova et al. 2016 laboratory fossil
Fedorov et al. 2017 laboratory fossil
Koromyslova et al. 2018a laboratory fossil
Koromyslova et al. 2018b laboratory fossil
Schwaha et al. 2018 laboratory Recent
Cecchetto et al. 2019 laboratory Recent
Fedorov and Koromyslova 2019 laboratory fossil
Jacob et al. 2019 laboratory Recent
Koromyslova et al. 2019a laboratory fossil
Koromyslova et al. 2019b laboratory fossil
Martha et al. 2019 laboratory fossil
Schwaha et al. 2019 laboratory Recent
Ward et al. 2019a synchrotron fossil
Decker and Schwaha 2020 laboratory Recent
HeYmanov‡ et al. 2020 laboratory fossil
Hirose et al. 2020 laboratory Recent
Koromyslova et al. 2020 laboratory fossil
Tolokonnikova et al. 2020 laboratory fossil
Batson et al. 2021 laboratory Recent
Kocova Veselsk‡ et al. 2021 laboratory fossil
Koromyslova and Fedorov 2021 laboratory fossil
Koromyslova et al. 2021a laboratory fossil
Koromyslova et al. 2021b laboratory fossil
Pakhnevich 2021 laboratory fossil
Zhang et al. 2021 laboratory fossil
Batson et al. 2022 laboratory Recent
Harrison et al., 2022 laboratory Recent
Koromyslova and Pakhnevich 2022 laboratory fossil
Turicchia et al. 2022 laboratory Recent
Key et al. 2022 synchrotron fossil
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2. Pioneering Phase

The use of µCT imaging technology has been around since the mid 1970s (Gutiérrez
et al. 2018), but its first application to bryozoology was three decades later. The first
mention of µCT imaging being used on bryozoans was by Alexey Pakhnevich at the
SkyScan User Meeting 16-18 April in 2007 in Brugge, Belgium. Pakhnevich did that work
at the Paleontological Institute of the Russian Academy of Sciences in Moscow, Russia.
Pakhnevich’s (2007) initial study was on fossil tubuliporids (Pakhnevich et al. 2014,
Koromyslova and Pakhnevich 2016).

The first use of µCT imaging on bryozoans was shared with the broader bryozoology
community at the 8th Larwood Meeting, 23-24 May 2008 at the University of Vienna,
Austria. Thomas Schwaha et al. (2008) showed some striking images of Cristatella
zooids. At the same meeting, Paul Taylor et al. (2008) showed the internal morphology
of both Recent and fossil cyclostomes. Both of these were abstracts; there were no figures
published. Figure 1 shows some of the first ever 2D and 3D µCT images of a bryozoan
shared with the International Bryozoology Association community by Paul Taylor at that
meeting. It shows a transverse internal section and a colony exterior of the Recent
cyclostome Mesonia radians (Figure 1). At that meeting, Taylor predicted that this
technology would become of great importance to bryozoology and, as has been documented
here, he was correct in his assertion.

The first published µCT images of bryozoans were by Paul Mainwaring in 2008. They
were published in the commercial microscope trade journal Microscopy Today. The
bryozoans in those images were not identified, but they were from the same cyclostome
study as Taylor’s (Mainwaring 2008, Taylor et al. 2008). Of all the citations involving
µCT imaging in bryozoology, 43% in the first five years were abstracts as the novel
technology was presented at conferences. Since then, the citations have been dominated
(90%) by full blown papers.

3. Explosive Growth Phase

In the intervening decade and a half since 2007, there have been dozens of publications
using µCT 3D imaging technology in bryozoology (Table 1). So far there have been 47
published studies (Figure 2). That is a publication rate of 3.4 papers per year, and its use
is growing fast (Figure 3). 96% of the studies used the first generation, laboratory-based
µCT imaging with only 4% using the latest and less accessible SRµCT imaging. 64% of
all studies used the µCT imaging on fossil bryozoans, almost twice as many as on Recent
bryozoans (38%). This is probably in response to the labor involved in making serial thin
sections and acetate peels to create 3D reconstructions of colonies embedded in rock (e.g.
Snyder 1991, Key et al. 2011, Gautier et al. 2013). Much of this growth in research has
been by Anna Koromyslova and colleagues at the Borissiak Paleontological Institute of
the Russian Academy of Science, Moscow. She alone is responsible for 32% of the
publications as first author! Thanks to her and her colleagues, the Russian
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paleobryozoologists have become productive users of µCT technology. They are responsible
for 45% of all the publications (Table 1).

3-D rendering of soft-tissue bryozoans was first published by Metscher (2009) who
illustrated the morphology of the freshwater phylactolamate Cristatella mucedo. The
study by Caroline Buttler et al. (2012) was the first to attempt µCT technology on
trepostomes although the visualization of internal features in the Ordovician species
analyzed was not adequate due to the density similarities of the skeletal material and the
infilling cements. The study by Patrick Wyse Jackson and Ken McKinney in 2013
confirmed with µCT the morphological and distinctive characteristics of a lateral
heterozooid developed in the Mississippian genus Polyfenestella (Figure 4) first described
through conventional means by Adrian Bancroft (1986) 27 years earlier.

The paper by Matteo Cecchetto et al. (2019) on Recent bryozoans from Antarctica is
noteworthy in that digital models of four species obtained by µCT imaging were published
in pdf format, in which these models could be rotated and viewed from numerous angles
using standard computer software. The following year Masato Hirose et al. (2020)
combined µCT imaging with oxygen isotopic composition to determine annual growth
bands in Celleporina attenuata. Prior to this, such bands in other taxa such as Melicerita

Figure 2. Cumulative number of publications using µCT imaging technology in bryozoology
since 2006. Data from Table 1.
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chathamensis had been documented using a combination of conventional X-ray imaging
with stable isotope profiles (Key et al. 2018).

The first mention of SRµCT imaging being used on bryozoans was by Rolf Schmidt
in 2013. He suggested that the Australian Synchrotron could be used to image Paleozoic
bryozoans, presumably ones embedded in rock (Schmidt 2013). The first study with
published SRµCT images of bryozoans was six years later by Ingrid Ward et al. (2019a).
They used the Australian Synchrotron to image cheilostome colonies embedded in
prehistoric Aboriginal artifacts made from Eocene bryozoan cherts. The cherts were
irreplaceable cultural artifacts from Western Australia that could not be destructively
analyzed by thin section. They were able to identify the bryozoans to the genus level as
seen, for example, in the 3D reconstruction of the reticulate cheilostome bryozoan
Reteporella (Figure 5). This allowed them to determine the geographic extent of
prehistoric Aboriginal trades routes (O’Leary et al. 2017, Ward et al. 2019a, b, Key et al.
2019, Ward et al. 2021). The methodology, resolution, as well as advantages and
disadvantages of SRCµT imaging in bryozoology were recently reviewed by Key et al.
(2022).

The technology has progressed to the point that new taxa are regularly being erected

Figure 3. Number of publications per year using µCT imaging technology in bryozoology.
Data from Table 1.
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using µCT imaging. Most recently, Zhiliang Zhang et al. (2021) used µCT to describe
Protomelission gatehousei, the first unequivocal Cambrian bryozoan. Its colonies were
soft-bodied and preserved through phosphatization which showed bilaminate autozooids
with possible interzooidal connections through the mesotheca.

4. Future

How long can this exponential rate of growth (Figure 3) be sustained? It partly depends
on how much access bryozoologists have to these various µCT imaging technologies. It
is predicted that SRµCT imaging will not be adopted as quickly by bryozoologists for
several reasons. First, laboratory-based µCT provides sufficiently high quality images for
most Recent and fossil bryozoans (Key et al. 2022) compared to SRµCT but not as good
as SEM. Second, SRµCT facilities are few and far between. There are only about 50

Figure 4. Two dimensional µCT images through Polyfenestella fenestelliformis zoarium at
different levels (A-F) from obverse to reverse showing arrangement of autozooecia. The

distinctive lateral heterozooid is arrowed in D. Scalebar = 1 mm. (From Wyse Jackson and
McKinney 2013, fig. 2).
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worldwide (Lightsources 2022). Third, SRµCT is expensive, although access grants are
often available. For example, the Australian synchrotron costs $800 AU ($575 US) per
hour with a four-hour minimum usage. Fourth, post-processing of laboratory- and
synchrotron-based 3D tomographic data is time consuming due to the large amount of
data. It can be as time consuming as thin sectioning and may require an expert. The image
processing software is getting more sophisticated, with more free opensource options. In
the future, it will definitely not be a laborious as thin sectioning which also, remember,
needs a skilled technician.

Figure 5. Three dimensional SRµCT image of the reticulate cheilostome bryozoan Reteporella
digitally extracted from the 2D grayscale rock matrix shown in two orthogonal planes. The

colony surface is colored orange and some of the zooidal orifices green.
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Despite these drawbacks, the future looks bright for the application of 3D µCT imaging
in bryozoology for a variety of reasons. First and foremost, it is non-destructive. Museum
curators of archeological artifacts and biological type specimens are reluctant to allow any
destructive analysis of irreplaceable material such as by thin sectioning or acetate peels.
µCT imaging eliminates this problem. Second, in contrast to SEM-imaging, µCT might
not need removal of organic material via bleach to visualize skeletal structures. Third, a
fully digital 3D volumetric dataset (i.e. µCT stack) can be serially sectioned and explored
in any orientation, something that is virtually impossible with thin sections. Therefore, it
is easier to rotate the bryozoan colony into exact orthogonal section orientation (i.e.
longitudinal vs. tangential vs. transverse) than with thin sections or acetate peels. Fourth,
µCT stacks are easily shareable with other scientists and eventually will lead to the
establishment of so-called cybertypes (i.e. online µCT stacks describing new species;
Faulwetter et al. 2013). Fifth, the technology allows fly-through videos which facilitate
relating 2D thin section views to 3D morphology and makes the results more useful for
teaching and more accessible for other interested parties. Finally, µCT 3D imaging allows
easier inclusion of species-diagnostic internal zooid morphology into taxonomic
descriptions. Such characters are generally absent in bryozoology due to the lack of access
to the zooidal interiors.

The next widely used µCT technology may be dual-energy computed tomography
(DECT). It combines the now well-established use of iodine staining of soft-tissues with
two different X-ray energy spectra to differentiate between soft-tissues and skeletal
material (Handschuh et al. 2017). We can be sure that as imaging technology evolve, there
will be more exciting applications in bryozoology.
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