Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-03T13:55:14.535Z Has data issue: false hasContentIssue false

Model interatomic potentials for Fe–Ni–Cr–Co–Al high-entropy alloys

Published online by Cambridge University Press:  20 October 2020

Diana Farkas*
Affiliation:
Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia24061, USA
Alfredo Caro
Affiliation:
College of Professional Studies, George Washington University, Ashburn, Virginia20147, USA
*
a)Address all correspondence to this author. e-mail: diana@vt.edu
Get access

Abstract

A set of embedded atom model (EAM) interatomic potentials was developed to represent highly idealized face-centered cubic (FCC) mixtures of Fe–Ni–Cr–Co–Al at near-equiatomic compositions. Potential functions for the transition metals and their crossed interactions are taken from our previous work for Fe–Ni–Cr–Co–Cu [D. Farkas and A. Caro: J. Mater. Res. 33 (19), 3218–3225, 2018], while cross-pair interactions involving Al were developed using a mix of the component pair functions fitted to known intermetallic properties. The resulting heats of mixing of all binary equiatomic random FCC mixtures not containing Al is low, but significant short-range ordering appears in those containing Al, driven by a large atomic size difference. The potentials are utilized to predict the relative stability of FCC quinary mixtures, as well as ordered L12 and B2 phases as a function of Al content. These predictions are in qualitative agreement with experiments. This interatomic potential set is developed to resemble but not model precisely the properties of this complex system, aiming at providing a tool to explore the consequences of the addition of a large size-misfit component into a high entropy mixture that develops multiphase microstructures.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Murty, B.S., Yeh, J.W., and Ranganathan, S.: High-entropy alloys. In High-Entropy Alloys (Butterworth-Heinemann, 2014); p. 1. ISBN: 9780128002513.Google Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
Macdonald, B.E., Fu, Z., Zheng, B., Chen, W., Lin, Y., Chen, F., Zhang, L., Ivanisenko, J., Zhou, Y., Hahn, H., and Lavernia, E.J.: Recent progress in high entropy alloy research. JOM 69, 2024 (2017).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213 (2004).CrossRefGoogle Scholar
Otto, F., Yang, Y., Bei, H., and George, E.P.: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628 (2013).CrossRefGoogle Scholar
Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Tang, Z., Gao, M.C., Diao, H., Yang, T., Liu, J., Zuo, T., Zhang, Y., Lu, Z., Cheng, Y., Zhang, Y., Dahmen, K.A., Liaw, P.K., and Egami, T.: Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloy systems. JOM 65, 18481858 (2013).CrossRefGoogle Scholar
Manzoni, A., Daoud, H., Völkl, R., Glatzel, U., and Wanderka, N.: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy 132, 212215 (2013).CrossRefGoogle ScholarPubMed
Wang, W.R., Wang, W.L., Wang, S.C., Tsai, Y.C., Lai, C.H., and Yeh, J.W.: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26, 51 (2012).CrossRefGoogle Scholar
Liu, W.H., Wu, Y., He, J.Y., Nieh, T.G., and Lu, Z.P.: Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 68, 526 (2013).CrossRefGoogle Scholar
Zaddach, A.J., Niu, C., Koch, C.C., and Irving, D.L.: Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. J. Mater. 65, 1780 (2013).Google Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).CrossRefGoogle ScholarPubMed
Zhang, Y., Malcolm Stocks, G., Jin, K., Lu, C., Bei, H., Sales, B.C., Wang, L., Béland, L.K., Stoller, R.E., Samolyuk, G.D., Caro, M., Caro, A., and Weber, W.J.: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 6, 8736 (2015). doi: 10.1038/ncomms9736.CrossRefGoogle ScholarPubMed
Zhang, Y., Lu, Z.P., Ma, S.G., Liaw, P.K., Tang, Z., Cheng, Y.Q., and Gao, M.C.: Guidelines in predicting phase formation of high-entropy alloys. MRS Commun. 4, 57 (2014).CrossRefGoogle Scholar
Yeh, A-C., Chang, Y-J., Tsai, C-W., Wang, Y-C., Yeh, J-W., and Kuo, C-M.: On the solidification and phase stability of a Co-Cr-Fe-Ni-Ti high-entropy alloy. Metall. Mater. Trans. A 45, 184 (2014).CrossRefGoogle Scholar
Dong, Y., Lu, Y.P., Jiang, L., Wang, T.M., and Li, T.J.: Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys. Intermetallics 52, 105 (2014).CrossRefGoogle Scholar
Gao, M.C. and Alman, D.E.: Searching for next single-phase high-entropy alloy compositions. Entropy 15, 4504 (2013).CrossRefGoogle Scholar
Singh, A.K., Kumar, N., Dwivedi, A., and Subramaniam, A.: A geometrical parameter for the formation of disordered solid solutions in multi-component alloys. Intermetallics 53, 112 (2014).CrossRefGoogle Scholar
Poletti, M.G., and Battezzati, L.: Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 75, 297 (2014).CrossRefGoogle Scholar
Wang, P., Wu, Y., Liu, J.B., and Wang, H.T.: Impacts of atomic scale lattice distortion on dislocation activity in high-entropy alloys. Extreme Mech. Lett. 17, 38 (2017).CrossRefGoogle Scholar
Song, H.Q., Tian, F.Y., Hu, Q.M., Vitos, L., Wang, Y.D., Shen, J., and Chen, N.X.: Local lattice distortion in high-entropy alloys. Phys. Rev. Mater. 1, 02340423 (2017).Google Scholar
Oh, H.S., Ma, D., Leyson, G.P., Grabowski, B., Park, E.S., Kormann, F., and Raabe, D.: Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment. Entropy 18, 321 (2016).CrossRefGoogle Scholar
Pollock, T.M. and LeSar, R.: The feedback loop between theory, simulation and experiment for plasticity and property modeling. Curr. Opin. Solid State Mater. Sci. 17, 10 (2013).Google Scholar
Zhao, S.J., Weber, W.J., and Zhang, Y.W.: Unique challenges for modeling defect dynamics in concentrated solid-solution alloys. JOM 69, 2084 (2017).CrossRefGoogle Scholar
Toda-Caraballo, I., Wrobel, J.S., Nguyen-Manh, D., Perez, P., and Rivera-Diaz-Del-Castillo, P.E.J.: Simulation and modeling in high entropy alloys. JOM 69, 2137 (2017).CrossRefGoogle Scholar
Van Swygenhoven, H., Spaczer, M., Caro, A., and Farkas, D.: Competing plastic deformation mechanisms in nanophase metals. Phys. Rev. B 60, 22 (1999).CrossRefGoogle Scholar
Vailhe, C. and Farkas, D.: Transition from dislocation core spreading to dislocation dissociation in a series of B2 compounds. Philos. Mag. A 79, 921 (1999).CrossRefGoogle Scholar
Vailhe, C. and Farkas, D.: Interatomic potentials and dislocation simulation for the ternary B2 Ni-35Al-12Fe alloy. Mater. Sci. Eng. A 258, 26 (1998).CrossRefGoogle Scholar
Farkas, D. and Caro, A.: Model interatomic potentials and lattice strain in high entropy alloys. J. Mater. Res. 33, 32183225 (2018).CrossRefGoogle Scholar
Kittel, C.: Introduction to Solid State Physics (Wiley-Interscience, New York, 1986).Google Scholar
Weast, R.C., ed.: Handbook of Chemistry and Physics (CRC, Boca Raton, FL, 1984).Google Scholar
Simons, G. and Wang, H.: Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge, MA, 1977).Google Scholar
Mishin, Y., Farkas, D., Mehl, M.J., and Papaconstantopoulos, D.A.: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59, 3393 (1999).CrossRefGoogle Scholar
Schaefer, H.E., Gugelmeier, R., Schmolz, M., and Seeger, A.: Positron lifetime spectroscopy and trapping at vacancies in aluminium. Mater. Sci. Forum 15–18, 111116 (1987).CrossRefGoogle Scholar
Murr, L.E.: Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Reading, MA, 1975).Google Scholar
Sinnott, S.B., Stave, M.S., Raeker, T.J., and DePristo, A.E.: Corrected effective-medium study of metal-surface relaxation. Phys. Rev. B 44, 8927 (1991).CrossRefGoogle ScholarPubMed
Mehl, M.J. and Papaconstantopoulos, D.A.: Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals. Phys. Rev. B 54, 4519 (1996).CrossRefGoogle ScholarPubMed
Lizárraga, R., Pan, F., Bergqvist, L., Holmström, E., Gercsi, Z., and Vitos, L.: First principles theory of the hcp-fcc phase transition in cobalt. Sci. Rep. 7, 3778 (2017).CrossRefGoogle ScholarPubMed
Soulairol, R., Fu, C.-C., and Barreteau, C.: Structure and magnetism of bulk Fe and Cr: From plane waves to LCAO methods. J. Phys.: Condens. Matter 22, 295502 (2010).Google ScholarPubMed
Mishin, Y.: Atomistic modeling of the γ and γ'-phases of the Ni-Al system. Acta Mater. 52, 14511467 (2004). doi:10.1016/j.actamat.2003.11.026.CrossRefGoogle Scholar
Mishin, Y., Mehl, M.J., and Papaconstantopoulos, D.A.: Embedded-atom potential for B2-NiAl. Phys. Rev. B 65, 224114 (2002).CrossRefGoogle Scholar
Vailhé, C. and Farkas, D.: Shear faults and dislocation core structures in B2 CoAl. J. Mater. Res. 12, 25592570 (1997).CrossRefGoogle Scholar
Vailhe, C. and Farkas, D.: Shear faults and dislocation core structure simulations in B2 FeAl. Acta Mater. 45 44634473 (1997).CrossRefGoogle Scholar
Purja Pun, G.P., Yamakov, V., and Mishin, Y.: Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation. Model. Simul. Mat. Sci. Eng. 23, 065006 (2015).CrossRefGoogle Scholar
Mendelev, M.I., Srolovitz, D.J., Ackland, G.J., and Han, S.: Effect of Fe segregation on the migration of a mon-Symmetric Σ5 Tilt grain boundary in Al. J. Mater. Res. 20, 208218 (2005).CrossRefGoogle Scholar
Taylor, A. and Doyle, N.J.: Further studies on the nickel-aluminium system. I. [beta]-NiAl and [delta]-Ni2Al3 phase fields. J. Appl. Cryst. 5, 201209 (1972).CrossRefGoogle Scholar
Makhlouf, S.A., Nakamura, T., and Shiga, M.: Structure and magnetic properties of FeAl1− xRhx alloys. J. Magn. Magn. Mater. 135, 257 (1994).CrossRefGoogle Scholar
Villars, P. and Calvert, L.D.: Person's Handbook of Crystallographic Data for Intermetallic Phases 1-3, ASM Internat (Metals Park, Ohio, 1985).Google Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul. Mat. Sci. Eng. 18, 015012 (2010).CrossRefGoogle Scholar
Tang, Z., Michael, C.G.A.O., Diao, H., Yang, T., Liu, J., Zuo, T., Zhang, Y., Lu, Z., Cheng, Y., Zhang, Y., Dahmen, K.A., Liaw, P.K., and Egami, T.: Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems. JOM 65, 18481858 (2013).CrossRefGoogle Scholar
Sun, X., Zhang, H., Li, W., Ding, X., Wang, Y., and Vitos, L.: Generalized stacking fault energy of Al-doped CrMnFeCoNi high-entropy alloy. Nanomaterials 10, 59 (2020). doi:10.3390/nano10010059.CrossRefGoogle Scholar
Santodonato, L.J., Liaw, P.K., Unocic, R.R., Bei, H., and Morris, J.R.: Predictive multiphase evolution in Al-containing high-entropy alloys. Nat. Commun. 9, 4520 (2018).CrossRefGoogle ScholarPubMed
Shafeie, S., Guo, S., Hu, Q., Fahlquist, H., Erhart, P., and Palmqvist, A.: High-entropy alloys as high-temperature thermoelectric materials. J. Appl. Phys. 118, 184905 (2015).CrossRefGoogle Scholar
Shafeie, S., Guo, S., Erhart, P., Hu, Q., and Palmqvist, A.: Balancing scattering channels. A panoscopic approach towards zero temperature coefficient of resistance using high entropy alloys. Adv. Mater. 31, 1805392 (2019).CrossRefGoogle Scholar
Yang, T., Xia, S., Liu, S., Wang, C., Liu, S., Zhang, Y., Xue, J., Yan, S., and Wang, Y.: Effects of Al addition on microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloy. Mater. Sci. Eng. A 648, 15 (2015).CrossRefGoogle Scholar
Wang, W.R., Wang, W.L., and Yeh, J.W.: Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J. Alloys Compd. 589, 143 (2014).CrossRefGoogle Scholar
Farkas, D., Mutasa, B., Vailhe, C., and Ternes, K.: Interatomic potentials for B2 NiAl and martensitic phases. Model. Simul. Mat. Sci. Eng. 3, 201 (1995).CrossRefGoogle Scholar
Farkas, D. and Jones, C.: Interatomic potentials for ternary Nb-Ti-Al alloys. Model. Simul. Mat. Sci. Eng. 4, 23 (1996).CrossRefGoogle Scholar
Farkas, D., Roqueta, D., Vilette, A., and Ternes, K.: Atomistic simulations in ternary Ni-Ti-Al alloys. Model. Simul. Mat. Sci. Eng. 4, 359 (1996).CrossRefGoogle Scholar
Farkas, D., Schon, C.G., DeLima, M.S.F., and Goldenstein, H.: Embedded atom computer simulation of lattice distortion and dislocation core structure and mobility in Fe-Cr alloys. Acta Mater. 44, 409 (1996).CrossRefGoogle Scholar