Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-02T15:22:57.056Z Has data issue: false hasContentIssue false

Staročeskéite, Ag0.70Pb1.60(Bi1.35Sb1.35)Σ2.70S6, from Kutná Hora, Czech Republic, a new member of the lillianite homologous series

Published online by Cambridge University Press:  15 May 2018

Richard Pažout*
Affiliation:
University of Chemistry and Technology Prague, Technická 5, Praha 6, 166 28, Czech Republic
Jiří Sejkora
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, CZ 193 00, Praha 9, Czech Republic

Abstract

A new mineral species, staročeskéite, ideally Ag0.70Pb1.60(Bi1.35Sb1.35)Σ2.70S6, has been found at Kutná Hora ore district, Czech Republic. The mineral occurs in the late-stage Bi-mineralization associated with other lillianite homologues (gustavite, terrywallaceite, vikingite, treasurite, eskimoite and Bi-rich andorite-group minerals) and other bismuth sulfosalts (izoklakeite, cosalite and Bi-rich jamesonite) in quartz gangue. The mineral occurs as lath shaped crystals or anhedral grains up to 80 µm × 70 µm, growing together in aggregates up to 200 µm × 150 µm across. Staročeskéite is steel-grey in colour and has a metallic lustre, the calculated density is 6.185 g/cm3. In reflected light staročeskéite is greyish white; bireflectance and pleochroism are weak with greyish tints. Anisotropy is weak to medium with grey to bluish grey rotation tints. Internal reflections were not observed. The empirical formula based on electron probe microanalyses and calculated on 11 apfu is: (Ag0.68Cu0.01)Σ0.69(Pb1.56Fe0.01Cd0.01)Σ1.58(Bi1.32Sb1.37)Σ2.69(S6.04Se0.01)Σ6.05. The ideal formula is Ag0.70Pb1.60(Bi1.35Sb1.35)Σ2.70S6, which requires Ag 7.22, Pb 31.70, Bi 26.97, Sb 15.72 and S 18.39 wt.%, total 100.00 wt.%. Staročeskéite is a member of the lillianite homologous series with N = 4. Unlike gustavite and terrywallaceite, staročeskéite, similarly to lillianite, is orthorhombic, space group Cmcm, with a = 4.2539(8), b = 13.3094(8), c = 19.625(1) Å, V = 1111.1(2) Å3 and Z = 4. The structure of staročeskéite contains four sulfur sites and three metal sites: one pure Pb site and two mixed sites, M1 (0.52Bi + 0.356Ag + 0.124Sb) and M2 (0.601Sb + 0.259Pb + 0.14Bi). The mineral is characterized by the Bi:Sb ratio 1:1 (Bi/(Bi + Sb) = 0.50) and the Ag+ + Bi3+, Sb3+ ↔ 2 Pb2+ substitution (L%) equal to 70%. Thus the mineral lies between two series of the lillianite structures with N = 4, between the lillianite–gustavite series and the andorite series.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Andrew Christy

References

Hawthorne, F.C. (2002) The use of end-member charge arrangements in defining new mineral species and heterovalent substitutions in complex minerals. Canadian Mineralogist, 40, 699710.Google Scholar
Holub, M., Hoffman, V., Mikuš, M. and Trdlička, Z. (1982) Base-metal mineralization of the Kutná Hora ore district. Sborník geologických věd,ložisková geologie a mineralogie, 23, 69123 [in Czech].Google Scholar
Keutsch, F. and Brodtkorb, M.K. (2008) Metalliferous paragenesis of the San José mine, Oruro, Bolivia. Journal of South American Earth Sciences, 25, 485491.Google Scholar
Makovicky, E. and Karup-Møller, S. (1977 a) Chemistry and crystallography of the lillianite homologous series, part I. General properties and definitions. Neues Jahrbuch für Mineralogie, Abhandlungen, 130, 265287.Google Scholar
Makovicky, E. and Karup-Møller, S. (1977 b) Chemistry and crystallography of the lillianite homologous series, part II. Definition of new minerals: eskimoite, vikingite, ourayite and treasurite. Redefinition of schirmerite and new data on the lillianite–gustavite solid solution series. Neues Jahrbuch für Mineralogie, Abhandlungen, 131, 5682.Google Scholar
Makovicky, E. and Topa, D. (2014) Lillianites and andorites: new life for the oldest homologous series of sulfosalts. Mineralogical Magazine, 78, 387414.Google Scholar
Malec, J. and Pauliš, P. (1997) Kutná Hora ore mining district and appearances of past mining and metallurgic activities on its territory. Bulletin mineralogicko-petrologického Oddělení Narodního Muzea, 4–5, 86105 [in Czech].Google Scholar
Mozgova, N.N., Nenasheva, S.N., Borodaev, J.S., Sivcov, A.V., Ryabeva, E.G. and Gamayanin, G.N. (1987) New mineral varieties in sulfosalts group. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 116, 614–28 [in Russian].Google Scholar
Mozgova, N.N., Nenasheva, S.N., Jefimov, A.V., Borodaev, S., Cepin, A.I. and Sivcov, A.V. (1988) New data about antimony-bismuth lilianite homologues. Mineralogicheskij Zurnal, 10, 3545 [in Russian].Google Scholar
Moëlo, Y., Makovicky, E. and Karup-Møller, S. (1989) Sulfures complexes plombo argentiféres: minéralogie et cristallochimie de la série andorite–fizélyite, (Pb,Mn,Fe,Cd,Sn)3–2x(Ag,Cu)x(Sb,Bi,As)2+x(S,Se)6. Documents du BRGM, 167, 1107.Google Scholar
Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring, A., Paar, W., Nickel, E.H., Graeser, S., Karup-Møller, S., Balić-Žunić, T., Mumme, W.G., Vurro, F., Topa, D., Bindi, L., Bente, K. and Shimizu, M. (2008) Sulfosalt systematics: a review. Report of the sulfosalt subcommittee of the IMA commission on ore mineralogy. European Journal of Mineralogy, 20, 746.Google Scholar
Pauliš, P. (1998) Minerals of Kutná Hora Ore District. Kuttna, Kutná Hora, pp. 148 [in Czech].Google Scholar
Pažout, R. (2017) Lillianite homologues from Kutná Hora ore district, Czech Republic: a case of large-scale Sb for Bi substitution. Journal of Geosciences, 62, 3757.Google Scholar
Pažout, R. and Dušek, M. (2009) Natural monoclinic AgPb(Bi2Sb)3S6, Sb-rich gustavite. Acta Crystallographica, Section C, 65, i77i80.Google Scholar
Pažout, R. and Dušek, M (2010) Crystal structure of natural orthorhombic Ag0.71Pb1.52Bi1.32Sb1.45S6, a lillianite homologue with N = 4; comparison with gustavite. European Journal of Mineralogy, 22, 741750.Google Scholar
Pažout, R. and Sejkora, J. (2017) Staročeskéite, IMA 2016-101. CNMNC Newsletter No. 36, April 2017, page 405; Mineralogical Magazine, 81, 403409.Google Scholar
Pažout, R., Sejkora, J. and Šrein, V. (2017) Bismuth and bismuth–antimony sulfosalts from Kutná Hora vein Ag–Pb–Zn ore district, Republic. Journal of Geosciences, 62, 3757.Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2006) Jana2006. Structure Software Programs. Institute of Physics, Prague, Czech Republic.Google Scholar
Pinto, D., Balić-Žunić, T., Garavelli, A., Makovicky, E. and Vurro, F. (2006) Comparative crystal structure study of Ag-free lillianite and galenobismuthite from Vulcano, Aeolian island, Italy. Canadian Mineralogist, 44, 159175.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (φ ρZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J. T., editor). San Francisco Press, San Francisco, USA.Google Scholar
Topa, D. and Makovicky, E. (2011) The crystal structure of gustavite, PbAgBi3S6. Analysis of twinning and polytypism using the OD approach. European Journal of Mineralogy, 23, 537550.Google Scholar
Topa, D., Makovicky, E., Favreau, G., Bourgoin, V., Boulliard, J.C., Zagler, G. and Putz, H. (2013 a) Jasrouxite, a new Pb–Ag–As–Sb member of the lillianite homologous series from Jas Roux, Hautes-Alpes, France. European Journal of Mineralogy, 25, 10311038.Google Scholar
Topa, D., Makovicky, E. and Paar, W.H. (2013 b) Clino-oscarkempffite, IMA 2012- 086. CNMNC Newsletter No. 16, August 2013, page 2696; Mineralogical Magazine, 77, 26952709.Google Scholar
Topa, D., Makovicky, E., Putz, H., Zagler, G. and Tajjedin, H. (2013 c) Arsenquatrandorite, IMA 2012-087. CNMNC 2696 Mineralogical Magazine, 77, 26952709.Google Scholar
Topa, D., Makovicky, E., Stanley, C.J. and Robetzs, A.C. (2016) Oscarkempffite, Ag10Pb4(Sb17Bi9)Σ=26S48 a new Sb-Bi member of the lillianite homologous series, Mineralogical Magazine, 80, 809817.Google Scholar
Yang, H., Downs, R.T., Evans, S.H. and Pinch, W.W. (2013) Terrywallaceite, AgPb(Sb,Bi)3S6, isotypic with gustavite, a new mineral from Mina Herminia, Julcani Mining District, Huancavelica, Peru. American Mineralogist, 98, 13101314.Google Scholar
Žák, K., Dobeš, P. and Sztacho, P. (1996) Vein-type hydrothermal deposits of the Bohemian Massif: Evolution of hydrothermal fluid sources and relation to extension events in the crust. Global Tectonics and Metallogeny, 5, 175178.Google Scholar