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1. Introduction

The groups whose 2-generator subgroups are all nilpotent of class at
most 2 are nilpotent of class at most 3 (see Levi [6]). Heineken [3] generalized
Levi's result by proving that for n ^ 3, if the ^-generator subgroups of a
group are all nilpotent of class at most n, then the group itself is nilpotent
of class at most«. Other related problems have been considered by Brack [1],

Another problem of similar interest is to seek information about the
groups all of whose proper subgroups are nilpotent of class at most n (n ^ 1).
It is known that the group itself need not be nilpotent at all. Finite non-
nilpotent groups all of whose proper subgroups are nilpotent have been
studied in detail by Iwasawa [4] and RMei [10]. Newman and Wiegold [8]
have considered infinite non-nilpotent groups with the above property.
If, however, a group G is nilpotent and has all its proper subgroups of class
at most n, then by [2, p. 153] the class of G cannot exceed 2» and, at least
for certain special values of n, it is known that there are such groups with
class precisely 2« (c.f. R6dei [9] when n = 1 and Macdonald [7] when
n — 3). The main result of this paper is contained in the following theorem.

THEOREM 1.1. Let n and d be positive integers greater than 1. If G is a
nilpotent group whose proper subgroups are all nilpotent of class at most n,
then the class of G is at most m, where m 5S (nd/d— 1) < m-\-1 and d is the
minimal number of generators of G.

The other two theorems proved in this paper are,

THEOREM 1.2. / / G is a nilpotent group whose proper subgroups are all
of class at most n, then G has class at most norG is a p-group for some prime p.

THEOREM 1.3. Let n be an integer greater than 2. If G is a finite metabelian
nilpotent group all of whose proper subgroups are of class at most n and if G
is minimally generated by n elements, then G has class at most n or G is a
2-group.

* This work is a part of my dissertation presented for the degree of Master of Arts at
the Australian National University, Canberra.
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If n = d = 2, then by Theorem 1.1, G has class at most 4. This, however,
is not the best possible bound since it has been proved by Macdonald [7],
Kappe [5] (and the author independently), that in this case the class of
G is at most 3.

If n = d ^ 3, then by Theorem 1.1, G has class at most « + l . The
last section of this paper is devoted to exhibiting groups of class precisely
» + l which are minimally generated by n elements and whose proper sub-
groups are all of class at most n. This shows that the bound given by
Theorem 1.1 is best possible when n — d ^ 3.

I thank my supervisor Dr M. F. Newman for suggesting the topic of
this research and for his general guidance. I also thank Dr. L. G. Kovacs
for his many useful suggestions. My thanks are also given to Professors
B. H. Neumann and A. Brown for providing me the opportunity to do
this work.

2. Definitions and notations

We write a* = b^ab. The commutator [a, b] of a and 6 is arxb-xdb
and, for n > 2,

defines a left-normed commutator of weight n.
If A and B are subgroups of G, then [A, B] is defined to be the sub-

group of G generated by the commutators [a, b] where a e A and b e B.
In particular, the subgroup [G, G] is called the derived group of G.

The normal series

G = Yl(G) 2s 7t{G) £? y,(G) S? • • •
where

= \yt{G), G],

is called the lower central series of G. In particular y2(G) is the derived
group of G. If yn+1{G) = 1 then G is said to be nilpotent of class at most n.

The normal series

1 = Z0(G) <i Zt(G) <; Z,(G) ^ • • •

where Zt(G) is the centre of G and

Zi+1(G)IZt(G) = Z^G\Z{{G))

is called the upper central series of G.
Let a, b, c be arbitrary elements of a group G, then the following com-

mutator identities are standard and will be used without reference:
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[a, b~\ cf[b, c-1, a\°\c, a~\ b]a = 1.

A direct consequence of the last identity is the following identity:

(2.1) [a,b,c][c,a,b]{b,c,a]eYi{G).

3. Proof of the theorem 1.1

First we prove the following

LEMMA 3.1. Let H be a normal subgroup of a group G. If {glt g2, • • • gn)
is a family of elements of G which contains m elements of H(m ?=>n), then

PROOF. The proof is by induction on m. If m = I, the lemma is trivial.
Let m be greater than 1 and suppose the result is true for all positive integers
less than m. Consider the commutator [gj.gg, ••*,?«]• ^ SneH, then
[Si'gi>" '• £n-i] contains at least m—1 entries from H and so by the
induction hypothesis it belongs to ym_i(#). Therefore,

fei. ?.. • • •. gn] e [r™-i(#), m = ym(H).

If gn $ H, then [g1( g2, • • • gn_i] has already at least m entries from
H and, therefore, it belongs to ym(H). Hence \glt gz, • • -, gn] e [ym(H), G]
g ym(H), since ym{H) is normal in G. This completes the proof of the
lemma.

The following lemma can be easily proved.

LEMMA 3.2. Let X denote a set of generators of a group G. If the com-
mutator [ajx, x2, • • •, arB] is equal to 1 whenever xltx2,---,xneX, then G
is nilpotent of class at most n—1.

To prove Theorem 1.1, let X = {xx, x2, • • • xd) be a set of generators
of G. To show that G has Icass at most m, it is sufficient, by Lemma 3.2,
to show that an arbitrary commutator ^ , y,, • • •, ym+i\ *s equal to 1,
where each ^ E J . Since m — n+l where I <S (n/d—1) < l+l, we have that
{l+l)d > m-\-l. This implies that not all the elements of X can occur
more than I times in [ylt yit • • •, ym+i\- Thus, there is an element, say srlt

which occurs at most / times in this commutator.
Since, x2, x3, • • • xt do not generate G, there is a maximal subgroup

of G, call it H, which contains a;2, x3, • • •, xd. By Corollary 10.3.2 of [2],
H is normal in G. Now, \ylt yz, • • •, J/m+i] contains at least m-\-\— I = n-\-l
entries from H. Thus by Lemma 3.1, \y1, y2, • • •, ym+1] eym+1(if) = E
since H is proper in G. This completes the proof of the Theorem l.l.
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The following are immediate corollaries of Theorem 1.1.

COROLLARY 3.3. / / G is a nilpotent group whose proper subgroups are all
of class at most n, then either G has class at most n or G can be generated by
n-\-l elements.

COROLLARY 3.4. / / G is nilpotent of class 2n and if the proper subgroups
of G are all nilpotent of class at most n, then G can be generated by 2 elements.

PROOF OF THE THEOREM 1.2. First we quote the following

LEMMA 3.5. ([8] Theorem 3.3). If G is an infinite nilpotent group whose
proper subgroups are all of class at most n, then G has class at most n.

To prove Theorem 1.2, let G be of class greater than n, then, by
Lemma 3.5, G is finite and hence is the direct product of its Sylow subgroups.
If there is more than one non-trivial Sylow subgroup, then the class of G
is at most «; and otherwise G is a ^-group for some prime p.

PROOF OF THE THEOREM 1.3. The following lemmas are required.

LEMMA 3.6. (Heineken [3]). If G is a nilpotent group all of whose 3-
generator subgroups have class at most 3, then G has class at most 3.

LEMMA 3.7. Theorem 1.3 is true for » = 3.

PROOF. If G does not have class at most 3 then, by Theorem 1.1, it
has class precisely 4. Also by Theorem 1.2, G is a />-group for some prime
p. Since every 2-generator subgroup of G has class at most 3, G satisfies
the identities,

(A) [a, b, b, b] = 1, [a, b, a, a] = 1,

[a, b, a, b] = 1 and [a, b, b, a] = 1.

Also since y6(G) = E, [a, be, be, a] = 1, [a, be, a, be] = 1 and
[ac, b, ac, b] = 1 give respectively (by using A),

(B) [b,a,c,a] = [a,c,b,a]; \b,a,a,c] = [a,c,a,b];

[b, a, c, b] = [c, b, a, b].

Further, [ac, be, ac, be] = 1 gives (by using A and B),

(C) [a, b, c, c] = [a, c, b, c]~l [a, c, c, 6 ] - 1

= [a, c, b, c]~2 (since G is metabelian).

Commuting both sides of 2.1 by c and applying B gives,

(D) [a, b, c, c] = [a, c, b, c]«

which together with C gives
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(E) [a, c, b, c]* = 1, [a, b, c, c]« = 1.

If p is different from 2, then E gives [a, c, b, c] = 1 and [a, b, c, c] = 1
which together with B give that G is nilpotent of class at most 3, contrary
to our assumption. Thus p = 2 and the lemma is proved.

To prove Theorem 1.3, it is sufficient to show that if G is not a 2-
group, then G/Zn_3{G) has class at most 3. Put / = Zn_3{G). Let a, b e G;
and consider the commutator [wxj, w2j, wzj, wtj] in G\] where
Wf e Sgp {a, 6}. Let alt aa, • • •, an_3 be arbitrary elements of G. Since
Sgp {a, b, ax, a2, • • •, an_a} is proper in G, it has class at most n. In particular,
[wlt wt, w3, wt, «!, ag, • • •, «B_3] = 1, so that [wt, wt, wz, wt] e J. Thus
Sgp {aj, bj) has class at most 3, that is, every 2-generator subgroup of
GjJ has class at most 3.

Suppose that the class of GjJ is greater than 3. Let H be the smallest
subgroup of GjJ which is of class greater than 3, then by the above argument,
d(H) 2: 3, where d{H) is minimal numbers of generators of H. If d{H) — 3,
then, since every proper subgroup of H is of class at most 3, by Lemma 3.7,
H is of class at most 3, contrary to assumption. If d(H) > 3, then each 3-
generator subgroup of H is of class at most 3; and by Lemma 3.6, H has
class at most 3, which is again contrary to assumption. Thus the class of
G\J is at most 3, as was required.

4. Examples

Example 4.1. Let p be an odd prime. There exists a group G of class
precisely 4, minimally generated by 3-elements and whose proper subgroups
are all of class at most 3.

Such a group G is generated by a, b, c, xt, xa, • • •. xs; with the following
relations,

ah = b* = c» = 1; a? = 1 for i = 1, 2, • • •, 8;
[ar,, a,] = 1 for i, j = 2, 3, • • •, 8; a*i = a ^ 1 ,
afl1 = xt for i = 3, 4, • • •, 8; a;| = x2xe,
xi = xf for i — 3, 4, • • •, 8;

a" = axs, x\ = x1xl, x\ = x( for i = 2, 3, • • •, 8;
a" = ax?, b' = bxz1, x[ = a ^ , a;| = a;2a;7,

x° = xt for * = 5, 7, 8.

(G can be constructed in the usual way by three splitting extensions.)
Example 4.2. To each integer n 2> 4, there is an M-generator group of

class precisely » + l whose proper subgroups are all of class at most ».
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Consider the set N = {1, 2, 3, • • •, n} and let S denote the set of all
subsets of N excluding the empty set and the set consisting of 1 alone.

Let X = gp {x,\a% = [x,, x,-] = 1 for all s, s' e S}. This clearly admits
pairwise commuting automorphisms ct^i e {2, 3, . . ., w}) of order 2 which
map x, to x, if * 6 s and x, • x,O{t} if * $ s. Let B be the splitting extension
of X by

A = gp {at\a\ = [a(, at] = 1 for aU i, j = 2, 3, • • •, »},

the «< inducing the automorphisms atf for »' = 2, 3, • • •, n. There is an auto-
morphism im-i of order 4 of B which maps a( to atx<,» for t = 2, • • •, n; x,
to a;, if 1 e s and x, • x,u^ if 1 ^ s. The required group C is then the splitting
extension of B by the cyclic group {a^ of order 4, ax inducing a2 on B.
The verification of the details is tedious though routine and is left to the
interested reader.
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