A NON-ABSOLUTELY SUMMING OPERATOR

I. J. MADDOX
(Received 25 November 1985)
Communicated by J. F. Price

Abstract

In the case when $0<p<1$ it is proved, using a method of Macphail that the identity map $i: l_{p} \rightarrow l_{p}$ is not (r, s)-absolutely summing for any r, s.

1980 Mathematics subject classification (Amer. Math. Soc.): 46 A 45.

1. Introduction

Mitiagin and Pelczyński (1966) define a bounded linear operator T, between Banach spaces X and Y, to be (r, s)-absolutely summing, $1 \leqslant s \leqslant r \leqslant \infty$, if $\sum\left\|T\left(x_{k}\right)\right\|^{r}<\infty$ whenever $\left(x_{k}\right)$ is a sequence in X such that

$$
\sum\left|f\left(x_{k}\right)\right|^{s}<\infty \quad \text { for each } f \in X^{*}
$$

As usual, X^{*} denotes the continuous dual of X and we interpret, for example, the case $r=\infty$ as $\sup _{k}\left\|T\left(x_{k}\right)\right\|<\infty$.

For $0<p<\infty$ we denote by l_{p} the space of real sequences $x=\left(x_{k}\right)$ such that $\Sigma\left|x_{k}\right|^{p}<\infty$. The following is a well-known result of Orlicz (1933):

Theorem 1. Let $1 \leqslant p \leqslant \infty$ and let $r(p)=\max (p, 2)$. Then the identity map i : $l_{p} \rightarrow l_{p}$ is $(r(p), 1)$-absolutely summing.

More generally, Bennett (1973) has elucidated the absolutely summing properties of the inclusion map $l_{p} \rightarrow l_{q}$ where $1 \leqslant p \leqslant q \leqslant \infty$.

Now although the definition of Mitiagin and Pelczynski was formulated for Banach spaces it is still meaningful for p-normed spaces X and Y, provided X^{*} is non-trivial, for example, if $X=l_{p}$ with $0<p<1$. Thus we may consider the problem of completing Theorem 1 by examining the identity map $i: l_{p} \rightarrow l_{p}$ for $0<p<1$. The result that we give in Theorem 4 below indicates the completely different character of the case when $0<p<1$.

2. The main result

For the proof of Theorem 4 we employ two lemmas. The ideas in these lemmas are due to Macphail (1947) who needed them for another purpose. Since Macphail did not explicitly state the results in the form that we need, we modify his presentation. We use the following notation:

$$
|S|=\sum_{k=1}^{m}\left\|x_{k}\right\|, \quad|S|^{*}=\sup \left\|\sum_{k \in E} x_{k}\right\|
$$

where $S=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in X^{m}$ and the supremum is taken over all subsets E of $\{1,2, \ldots, m\}$.

Also, if $0<p<1$ and $b=\left(b_{k}\right) \in l_{p}$ we denote the natural p-norm of b by

$$
\|b\|_{p}=\sum_{k=1}^{\infty}\left|b_{k}\right|^{p}
$$

Lemma 2. For each $n \geqslant 1$ suppose that $\left|S_{n}\right|>0$ and

$$
\left|S_{n}\right|^{*} /\left|S_{n}\right|<4^{-n}
$$

where $S_{n}=\left(x_{n 1}, x_{n 2}, \ldots, x_{n q(n)}\right), x_{n k} \in X, q(n)$ being a natural number.
Then, if $c_{n}=2^{n} /\left|S_{n}\right|$, the series

$$
\sum_{i=1}^{\infty} b_{i}=c_{1} x_{11}+\cdots+c_{1} x_{1 q(1)}+c_{2} x_{21}+\cdots+c_{2} x_{2 q(2)}+\cdots
$$

is unconditionally convergent in X.

Lemma 3. For each $n \geqslant 1$ there are sequences $R_{1}^{n}, \ldots, R_{n}^{n}$ such that

$$
|T(n)|^{*} /|T(n)| \leqslant n^{-1 / 2}
$$

where for $1 \leqslant i \leqslant n$,

$$
\begin{gathered}
\left|R_{i}^{n}(m)\right|=1 \quad \text { for } 1 \leqslant m \leqslant 2^{n} \\
\left|R_{i}^{n}(m)\right|=0 \quad \text { for } m>2^{n}
\end{gathered}
$$

and

$$
T(n)=\left(R_{1}^{n}, R_{2}^{n}, \ldots, R_{n}^{n}\right)
$$

We remark that the R_{i}^{n} of Lemma 3 are constructed using Rademacher functions. For example, $R_{1}^{n}=(-1,-1, \ldots,-1,1,1, \ldots, 1,0,0,0, \ldots)$ with -1 in the first 2^{n-1} places, 1 in the next 2^{n-1} places and 0 thereafter. Note also that each $R_{i}^{n} \in l_{p}$ for $p>0$.

We now give the main theorem.

Theorem 4. Let $0<p<1$. Then the identity map $i: l_{p} \rightarrow l_{p}$ is not (r, s) absolutely summing for any r, s.

Proof. It is clear that we need only show that i is not $(\infty, 1)$-absolutely summing.

Take $T(n)$ as in Lemma 3 and define for $n \geqslant 1, S_{n}=T\left(4^{2 n}\right)$. It follows from Lemma 2 that

$$
\sum_{i=1}^{\infty} b_{i}=c_{1} R_{1}^{16}+\cdots+c_{1} R_{16}^{16}+c_{2} R_{1}^{256}+\cdots+c_{2} R_{256}^{256}+\cdots
$$

is unconditionally convergent in l_{1}, which implies that $\Sigma\left|f\left(b_{i}\right)\right|<\infty$ for each $f \in l_{1}{ }^{*}$. But for $0<p<1$, each $b_{i} \in l_{p}$ and also l_{p}^{*} may be identified with l_{∞}. Consequently we have

$$
\begin{equation*}
\sum\left|f\left(b_{i}\right)\right|<\infty \quad \text { for each } f \in l_{p}^{*} \tag{1}
\end{equation*}
$$

Now consider terms in $\sum b_{i}$ of the form $b_{i}=c_{n} R_{1}^{4^{2 n}}$ and write $k=4^{2 n}$ for simplification. Then

$$
\left\|b_{i}\right\|_{p}=\left|c_{n}\right|^{p}\left\|R_{1}^{k}\right\|_{p}=\left|c_{n}\right|^{p} \cdot 2^{k}
$$

with $c_{n}=2^{n} /|T(k)|=2^{n} / k 2^{k}$. Hence $\left\|b_{i}\right\|_{p}=2^{(1-p) k-3 n p}$ and since $(1-p) 4^{2 n}$ $-3 n p \rightarrow \infty(n \rightarrow \infty)$ we have

$$
\begin{equation*}
\sup _{i}\left\|b_{i}\right\|_{p}=\infty \tag{2}
\end{equation*}
$$

By (1) and (2) we see that $i: l_{p} \rightarrow l_{p}$ is not ($\infty, 1$)-absolutely summing, which completes the proof.

References

G. Bennett (1973), 'Inclusion mappings between l^{p} spaces', J. Functional Analysis 13, 20-27.
M. S. Macphail (1947), 'Absolute and unconditional convergence', Bull. Amer. Math. Soc. 53, 121-123.
B. S. Mitiagin and A. Pelczyński (1966), 'Nuclear operators and approximate dimension', Proc. Int. Cong. Math., Moscow.
W. Orlicz (1933), ‘Über unbedingte Konvergenz in Functionenraumen, II', Studia Math. 4, 41-47.

Department of Pure Mathematics

Queen's University of Belfast
Belfast BT7 1NN
Northern Ireland

