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AN INVERSE MAPPING THEOREM IN FRECHET SPACES 

BY 

HENRI-FRANÇOIS GAUTRIN, KHALDOUN IMAM, 
TAPIO KLEMOLA AND JEAN-MARC TERRIER 

ABSTRACT. Within the framework of a-differentiability, introduced by 
H. R. Fischer in locally convex spaces, sufficient conditions for an inverse 
mapping theorem between Fréchet spaces are established. 

RESUME. En se basant sur les propriétés de la a-différentiabilité intro­
duite par H. R. Fischer dans les espaces localement convexes, les auteurs 
établissent des conditions suffisantes pour obtenir un théorème 
"d'application inverse" entre deux espaces de Fréchet. 

1. Introduction. In a Banach space, the notion of differentiable mapping is well 
established (cf. Henri Cartan [1]). In fact, let E and F be Banach spaces,/a mapping 
from an open set U in E to F, and a E: U.f is (Fréchet) differentiable at a if there exists 
g G 2 ( £ , F) such that 

\\f(x) - f(a) - g(x - a)\\ = 0<\\x - a\\). 

We shall write f'(a) for g. 
We then have the well known inverse mapping theorem for Banach spaces, namely: 

If / is strictly differentiable at a ([1]), and iff'(a) is an isomorphism, then there exist 
an open neighborhood V of a, and an open neighborhood W of f(a), such that fis a 
homeomorphism from V onto W, and the inverse homeomorphism is strictly differ­
entiable at f(a). 

Different extensions of this theorem to some classes of locally convex spaces have 
been proposed ([5], [6], [7]), using different notions of a differentiable mapping. In 
fact, there is no unique natural definition of a differentiable mapping in these spaces 
(see for example [8]). 

In this paper, we shall prove a generalization of the inverse mapping theorem for 
Fréchet spaces, using an extension of the definition of differentiability introduced by 
H. R. Fischer in [2]. 

Let E and F be two locally convex spaces with topology generated by sets of 
semi-norms TE and TF. 

DEFINITION 1. A calibration is a mapping v from TF to TE. 
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DEFINITION 2. Let cr be a calibration. We define i£a(F, F) as the set of those 
f E ££(E, F) such that \\f\\° < °° for every q in TF where 

\\fl= sup q(f(x)). 
a ( ? ) U ) < l 

Let/be a mapping from an open set U of E to F, a E U and cr a calibration. 

DEFINITION 3. We calif H «-differ entiable at a if there exists A E i£a(F, F) s«c/i r/za/, 
for each e > 0 flAid g E TF, there exists ô(e, g) > 0 such that 

a + hE U and CT(^) (/I) < 8 => <7(r(a, A)) ^ e a(<?) (h) 

where r(a, /z) = f(a + /i) — f{a) - A(h). 

Obviously, when such an A exists, it is unique. In general, we shall write A = f (a). 

DEFINITION 4. We call f strictly H «-differ entiable at a if there exists B E X«(E, F) 
such that, for all e > 0 and q E TF, there exists ô(e, q) > 0 swc7? £/uzf 

a(<?) (x - a) < ô and cr(<?) (v - a) < 8 4> ^(nU, v) < e a(q) (x - y) 

where r,(x, v) = f(x) - f(y) - B(x - y). 
It is clear that definition 4 implies definition 3 with B = A. 

DEFINITION 5. We call f M «-differ entiable at a if there exists A E Ï£«(E, F) swc/z f/iaf, 
/or each e > 0 and q E TF, there exists Ve,q(a), a open neighborhood of a, such that 

a + hE K , » => q(r{a, h)) < e v(q) (h) 

where r(a, h) = f(a + h) — f(a) - A(h). 
Here again, when such an A exists, it is unique, and we shall write A = f'(a). 

DEFINITION 6. Iff is M «-differ entiable at a and if we can find an open neighborhood 
Vz(a) of a such that, for all q E r F 

fl + /iG V,(a) => q(r(a, h)) < e u{q) (A), 

we call f uniformly M «-differ entiable at a. 

DEFINITION 7. We call f strictly uniformly M«-differentiable at a if there exists 
B E !£«(E, F) such that, for each e > 0, there exists Ve(a), an open neighborhood of 
a, such that, for all q E TF 

x, y E Ve(a) => q(rx(x, y)) < e u(q) (x - y), 

where rx(x, y) = f(x) - f(y) - B(x - y). 
Here again, it is clear that definition 7 implies definition 6 with B — A. 

REMARK. It is possible to find non trivial examples of strictly uniformly 
MCT-differentiable functions. 

EXAMPLE 1. If v(YF) is a finite subset ofTE, and if fis strictly H ̂ -differ entiable at 
a, then fis strictly uniformly M «-differ entiable at a. 
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EXAMPLE 2. Let E — {x = (x\, x2, . . . , xn,.. .): xn €E ^} the space of sequences with 
the set of semi-norms {pn : pn(x) — |*,,|}„EN, and letf: x E E—>f(x) = ( . . . , JCW + 1/rc 
cos xn,. . .) E E. 

Then/is strictly uniformly Mw-differentiable at o E E. In fact, we have 

fix) - f(y) = ( . . . , *„ - jn, . . . ) + ( • • . , - (cos *„ - cos yn),. . . 
\ n 

Id(x — y) + I. . . , - (cos Jt„ — cos yn), . . . 
n 

/?„(r(x, y)) - - cos xn - cos yn \= -
n n 

xn + y„ 
sin sin 

yn 

Since Ve > 0 3fc(e) such that n > k => 1/w < e, we have 

(*) n > k => p„(r(*, v)) < e|x„ - yn\ = ep„(x - y). 

Furthermore, from the continuity of 2/n sin (JC„ + y„)/2 at (o, o), we have Ve > 0 
38 (rc, e) > 0 such that 

|jcn| ^ 8 and |%| < 8 =̂> 
1 ^ + J« 
- sin — - — 
n 2 e. 

For JC, y E #„ = {z: p„(z) < 8}, we have \xn\ < 8 and |v,7| < 8; then 

(**)/?„(r(x, j)) < e\xn - y„\ = ep„(x„ - yn). 

Let e > 0 be given; we then can find k = k(e). The set V = f l | < n < A is an open 
neighborhood of o\ furthermore, V x, y E V and V « G N, we have pn(r(x, y)) ^ 
ep„(x - y). 

In fact, if n > k,pn(r(x, y)) satisfies (*); and if n < k, thenx, y £E Bn andpn(r(x, y)) 
satisfies (**). 

2. Continuity of a differentiable mapping. We have the following lemma. 

LEMMA 1. If fis uniformly M^-dijferentiable at a, then f is continuous at a. 

PROOF. Let e > 0 and q E TF be given. If e, < e, then there exists a neighborhood 
V€l of a, px E TE and 8, > 0 such that the open semi-ball BP] (a, 8,) is contained in V€| 

and 
/>,(*)< 8, =>?(r(a, A)) < e, v(q) (h). 

Let 82 = e/||/'(a)|£ + €j. Since BP](a, 8j) Pi Ba(q){a, 82) is open, then there exists 
p E TF and 8 > 0 such that£,(a, 8) C £Pl(<2, 8,) H £<,<*> (a, 82). Since p(A) < 8 => 
/?i(/0 < 8, and v(q) (h) < 82, we have q(f(a + A) - f(a)) < e. 

3. Natural calibration. 

LEMMA 2. Le/ (£, T£), (F, FF) be two locally convex spaces, and A E £(E, F). Then 
there exists a calibration u such that A E ££a(E, F). 
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PROOF. The assumption on A implies that, for every q ETF, there exists p E T £ and 
c > 0 such that 

VJC E E q{A{x)) < cp(x) 

We define a mapping a: FF —» T£ by choosing, for a given semi-norm g E TF, a 
semi-norm p E T£ satisfying the above condition. It is then clear that A E i£a(E, F). 

DEFINITION 8. A natural calibration for A E i£(E, F) is a calibration a such that 
A E £V(E, F). 

We shall often write uA for such a calibration. 

LEMMA 3. Let (F, FE), (F, FF), (G, TG) èe locally convex spaces, a E F andfa 
mapping from E to F, H^-differentiable (uniformly M^-differentiable) at a. Let u E 
!£(F, G) and CTM be a natural calibration for u. Then u ° / is HUo^-differentiable 
(uniformly M^^-differentiable) at a. 

PROOF. We know that/'(a) E %(E, F). Let us show that u °f'(a) E %0„u(E, G). 
For every p E TG there exists cp > 0 such that 

p((n o/'(fl))(A)) = p(u(f(a)h)) < c, <ru{p){f\a)h). 

Butvu(p)(f(a)h) < ||/'(fl)|Ci|(p)((aoall)(p))(/i). Consequently, 

p((w °/'(fl))(fc)) ^ c,||/'(«)||;<(p)((aoaM)(/7))(/i) 

and 
H o / ' ( f l ) 6 2 f f o ^ G ) . 

Furthermore (w °/) (fl -f h) - (u °/)(a) - M(/( f l + A) - / ( a ) ) = (u °f'(a)){h) + 
(w ° r)(a, h) and V/? E TG we have/?((w ° r)(a, h)) < cp uu(p)(r(a, h)). 

But CTM(/7) E r F and/is //CT-differentiable at a; hence for each e/cp > 0 there exists 
8 > 0 such that 

(a(crM(/?)))(/0 < 8 => dM(/7)(r(fl, A)) < - (a(aH(p)))(fc) 
cp 

i.e. ((a ° <rp(p))(h) ^ ô implies /?((« ° r)(a, h)) < e. This means that w ° / is 
//ao(TM-differentiable at a. 

We have an analogous result if/is uniformly MCT-differentiable at a. Indeed for each 
e/cp > 0 there exists an open neighborhood Ve of a such that 

Vg E TF we have a + /i E V€ =̂> q(r(af h)) < — a(q)(h). 
cp 

In particular, if g = aM(/?), we have 

a + /i E Ve => aM(p)(r(a, A)) < - ((aoaJ(/>))(/0, 
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i.e. a + hEVe implies p((u ° r)(a, h)) < e((a°a„)(/?))(/i). Therefore u °/is uniformly 
Ma 0 CTM-differentiable. 

LEMMA 4. With the assumptions of lemma 3, let us suppose in addition that f is 
strictly H ̂ -differ entiable (strictly uniformly M^-differentiable) at a. Then u°fis strictly 
HUo(Ju-differentiable (strictly uniformly Ma-differentiable) at a. 

PROOF. For all x, y E E we have 

(u of)(x) - (u of)(y) = (u of\a))(x ~y) + (u O/)(JC, v) 

where u °f(a) E 2ffoffk(£, G) md p((u ° r)(x, y)) < cp <ju(p)(r(x, y)) V/? E TG. 
Iff is strictly //(T-differentiable at a, then for each e/c,, > 0 there exists 8 > 0 such 

that 

(cr(aM(/?)))(* - a) < 8 and (CT(CTM(/?)))(j — a) < 8, which implies 

crH(/?)(r(x, y)) < - (a (aM (/?)))(* - j ) . 

Therefore p((u ° r)(x, y)) < € ((a°aj(/?))(x — y). 
If/is strictly uniformly MCT-differentiable at a, then, for each e/c;, > 0, there exists 

an open neighborhood Ve of a such that 

V x, y E Ve, aM(/7)(rU, y)) < e ((a°aM)(/7))U - y). 

Hence p((u ° r)(x, y)) < e ((a°orM)(p))U - y). 

LEMMA 5. Let (E, TE)7 (F, TF), (G, TG) be locally convex spaces, a E E. Let u E 
X(E, F), aM be a natural calibration for u, and f a mapping from F to G, 
Ha-dijferentiable (uniformly M ̂ -differ entiable) at u(a). Then f ° u is 
Hau0fJ-differentiable (uniformly MiTu0(J-dijferentiable) at a. 

PROOF. We have 

(foU)(a + h) - (f°u)(a) =f(u(a) + u(h)) - f(u(a)) 

= fu(a) (u(h)) + r(u(a), u(h)) 

where f'u{a) E !£a(F, G). Let us show that/f'(a) ° u E i£Uu0(J(E, G). If q E TG, then 

q{f'uiaAu(h))) < \\f'u(a)tiqMQ)(u(h)) < C(T(,} | | / : ( Û ) | | ^ > M o ( J ) ( ^ ) ( / I ) . 

Therefore /^(fl) ° u E L^^iE, G). Furthermore, the //^-differentiability of / a t w(a) 
implies 

For every e > 0, there exists 8)? 8 > 0 such that 

u(q)(u(h)) < 8, => ?(r(M(fl), M(A))) < — a(^)(«(/z)) 
Ca(</) 

and ((awoCT)(^))(/z) < 8 =» cr^X^/*)) < 8,. 
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Consequently, ((aM°a)(<?))(/*) < 8 => q(r(u(a), u{h))) < e((aM°cr)(<7))(/z), i.e. 
(f° u) is 7/^^-differentiable at a. 

We have an analogous result if/is uniformly M(J-differentiable at u(a). Indeed, for 
each e > 0, there exists an open neighborhood W€ of u(a) such that, for every q E TG, 
we have 

M(a) + A' E We => q(r(u(a), h')) < — u(q){h'). 
Cv(q) 

If A + /* E Ve = w_,(We), we have w(a) + W(/Î) E We and hence 

q(r(u(a), u(h)) < — a(^)(ïi(A)) < e(K°a)(</))(/*). 
C<r(<7) 

3. An inverse mapping theorem in E. Consider now the case where E and F are 
Fréchet spaces. We shall first prove an inverse mapping theorem for a strictly uniformly 
MCT-differentiable mapping from £ to £ with/' (a) - \E, and then extend it to a theorem 
for mappings from E to F. In the sequel we shall consider the convex enveloppe of TE 

rather than TE itself, but keep the same notation for it. 

THEOREM 1. Let (E, TE) be a Fréchet space, cr: TE -> TE a projective calibration 
(i.e. a2 = <J ° a = a) and fa mapping from E to E, strictly uniformly M ̂ differ entiable 
at a EL E such that f (a) — \E. Then there exists an open set U which contains a, and 
an open set V which contains f(a) such that f is a homeomorphism from U to V. 
Furthermore f~] is uniformly M ̂ -differ entiable atf(a). 

PROOF. Let 0 < e < 1. As fis strictly uniformly MCT-differentiable at a, there exists 
an open neighborhood V€ of a such that 

V q E TE and x, y E Ve, q(f(x) - f(y) + (y - *)) < e <*(?)(* ~ y). 

Let U Q Ve be an open set; we show thatf(U) is also an open set. If b E U, there exists 
q E T£ and ô > 0 such that the semi-ball Bq(b, 8) is contained in U. We shall show 
that there exists a q' E T£ and 8' > 0 such that Bq{f{b), 8') Qf(U). For a given 
y E £, we shall determine a g' E T£ and a 8' > 0 such that 

q'(f(b) - y) < 8' => 3JC E 5,(6, 8) with y - /(JC). 

Let 8' < 8. Consider the sequence {.*„}„ê j defined by 

x0 = b, x„+x = y + xn - f(xn). 

We have 

JCI - x0 = y - f(b) = JCI - b, hence q(y - f(b)) = q{xx - b). If y is such that 
q(y - fib)) < 8', then xx E Bq(b, 8') Ç V£. 
x2 — b — x2 — X\ + JCI — b and x2 — X\ = x{ — b + /(/?) — f{x\), since/is strictly 
uniformly Ma-differentiable at a, and x, E Ve, we have 

q(x2 ~ xx) = q(xx - b + /(/?) - /(*,)) < e CT(^)U, - fc) 
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i.e. q(x2 - * ) < ( e u{q) + e°&>(q))(y - f(b)) where &>(q) = q. 
If y is such that (e v{q) + e°v°(q))(y - f(b)) < 8', then x2 E Bq(b, 8') Ç Ve. By 
repeating the argument, we get 

q(xn+l ~ b) < ( 2 e V ' ( ^ - /(ft)) for « > 0 
w = o / 

The series 2^=0 e'o-'(g) converges weakly to q' = (e/1 — e) v(q) + q E I V If y is 

such that <?'(y - / ( & ) ) < 8', then xn E J^ (è , S') Ç V, for all AZ E N. Let us now show 

that {JCJKEN is a Cauchy sequence. In fact, xn+] — xn = xn — f(x„) — xn-x + /(**-1) 

and/?(*„+, - * „ ) < € or(/?) ( .*„ - xn.x) < < e"(j"(p)(y - / ( f t ) ) for all p in I V 

Since p U , - x j < (e"-]u"-](p) + . . . 4- e™a'"(p))(y - /(&)) = (e"~ ' + . . . + 

ew)a(/?)(y - /(&)), {x„}/76^ is a Cauchy sequence in the Fréchet space E. 

Therefore it converges to a certain x E Bq(b, 8') Ç Bq(b, 8). The strict uniform 

MCT-differentiability of / at a implies t h a t / i s continuous in Ve, so that y = f(x), as y 

— f(x„) — xn+ i — x„. This shows that every element in Bq>(f(b), 8') is the image by 

/ o f an element in Bq(b, 8), i.e. the semi-ball Bq>(f(b), 8') is included in / (£ / ) , that is, 

/ i s an open mapping from Ve to/(V6) . 

Let us now show that the restriction o f / t o V€ is injective. Let JC and y be elements 

of V€ such that/(jc) = / ( v ) . Since x — y = f(x) — f(y) — r(x, y) = — r(jc, y) where 

q(- r(x, y)) = q(r(x, y)) ^ e v(q)(x - y), then q(x - y) < e v(q)(x - y) for all 
q in IV Therefore a(g( (x — y) < e a2(g) (x — y), i.e q(x — y) < e2 o-2(g) (JC — y). 

The repetition of the same argument leads to q(x — y) < e" a"(g) (JC — y) for all 
g in IV Since lim env(q){x — y) = o, we have* = y, so that/is an homeomorphism 

n —»oo 

from Konto / (y e ) . 
Let us finally show that/ - 1 is uniformly MCT-differentiable atf(a), with (f~])'(f(a)) 

= 1/7. First of all, \E = f (a) is an element of i£a(£, £). Furthermore f~\f(x)) — 
f~\f(a)) = x - a; in view of the strict uniform MCT-differentiability of/at a, we have 

x — a — f(x) — f(a) — r(x, a) where q(— r(jc, y)) ^ e a(q)(x — a) 

for all q in IV 
Therefore 

?(r(*, a)) < e(a(?)(/(*) - / ( a ) ) + a(<j)(r(*, «))) < e cr($)(/(*) 

-f(a)) + e2cr2(q)(x - a). 

By iteration, we obtain 

q(r(x, a)) < 2 eV(g)(/(jt) - / ( « ) ) = —^— a(*)(/(*) - f(a)), 
i = 0 ' € 

which means that/"1 is uniformly MCT-differentiable at /(a) . Indeed, V e' > 0 3 e with 
0 < e = e ' / l + e ' < 1, such that f](f(x) - / ' ( / ( a ) ) = /(*) - / ( a ) - r(x, a) and 
V/(JC) £/(V«) we have q(r(x, a)) < e'a(q)(f(x) - f{a)). 

https://doi.org/10.4153/CMB-1986-038-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1986-038-6


1986] INVERSE MAPPING THEOREM 245 

4. An inverse mapping theorem between Fréchet spaces. 

THEOREM 2. Let (E, FE) and (F, TF) be Fréchet spaces, a a calibration and f a 
mapping from E to F strictly uniformly M ̂ -differ entiable at a E E such that f (a) E 
Isom(E, F). Let a' be a natural calibration for (/ ' (a))~l such that cr ° cr' is a projective 
calibration. Then there exists an open neighborhood U of a, and an open neighborhood 
V off(a) such that f is a homeomorphism from U onto V. Furthermore the inverse 
mapping f~] is uniformly M'a>o0oU>-differ'entiable atf(a). 

PROOF. Consider the mapping g = (/ ' («))"' °/from E to E. The mapping g is strictly 
uniformly MCToCT-differentiable at a, with g' (a) = \E. By theorem 1, there exists an open 
set U' containing a, and an open set V containing g (a) such that g is a homeomorphism 
from U' onto V. Consider now V = f(a)(V); V is an open set in F containing f(a). 
Since f(a) is an isomorphism from E to F,f = f(a) ° g is an homeomorphism from 
U' onto V. In view of theorem 1 and lemma 5 , / _ 1 is uniformly MCT 0(To(T-differentiable 
at / ( f l ) . 
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