Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-17T22:20:19.189Z Has data issue: false hasContentIssue false

Evolutionary Trends and Their Functional Significance in the Post-Paleozoic Echinoids

Published online by Cambridge University Press:  22 December 2017

Abstract

Many evolutionary trends are described in the post-Paleozoic echinoids and their functional advantages are discussed. In the ambulacra, the compound plate first appeared in the Late Triassic, becoming more pronounced during the Mesozoic, and reaching its zenith in the Cenozoic. Compounding enabled the echinoid to have more numerous tubefeet, strengthened the test, and increased the size of the ambulacral tubercles and spines. These larger spines provided greater protection from predators and faster locomotion. Petals first appeared in the Middle Jurassic and were developed for more efficient respiration. The first depressed petals occurred in the Late Jurassic, and by Late Cretaceous many echinoids had depressed petals culminating in deep petals in the Cenozoic. These depressions channeled water over the respiratory tubefeet, increased the width of the ambulacra and their tubefeet, and enabled these tubefeet to be protected from predators by the arching of spines over them. An anterior groove is slightly developed by the Middle Jurassic, distinct in the Cretaceous, and deepest in the Cenozoic. This groove provided a passage for food, and shelter for the large penicillate tubefeet. Phyllodes first occur in the Lower Jurassic in both the regular and irregular echinoids. During the Mesozoic the number of pores in the phyllodes in the irregular echinoids was reduced, and in most species one pore was eliminated of a porepair. The phyllodes provided a large number of feeding tubefeet near the peristome. In the apical system of the irregular echinoids, the periproct broke out during the Lower Jurassic. Its movement posteriorly served to separate the echinoid's excrement from its feeding and respiratory areas. The number of genital plates was reduced to a single plate in the cassiduloids by the Late Cretaceous, but this reduction occurred later in the holasteroids and spatangoids; many species living today have more than one genital plate. The Triassic and Early Jurassic echinoids were small; but during the latter part of the Jurassic, larger species occur, particularly among the irregulars and echinothurioids. All the Triassic echinoids except one were circular in marginal outline, but during the Jurassic the test in many irregulars became elongate enabling the echinoid to develop unidirectional movement. The flattening of the test permitted the echinoid to cover its test more easily, making the animal less conspicuous, less affected by wave motion, and placing more of the food-gathering tubefeet in contact with the seafloor. The Triassic lantern had grooved teeth and a shallow foramen, but by the Lower Jurassic some lanterns had a deeper foramen magnum. By the Middle Jurassic keeled teeth are present, and by the Late Cretaceous some lanterns have joined epiphyses. These changes permitted the lantern to be more mobile and strengthened the teeth and epiphyses. The lantern supports in all Triassic echinoids are outgrowths of interambulacral plates, but in the Lower Jurassic many species have ambulacral supports. By the Middle Jurassic these supports are joined together in some species to form an arch. These changes also increased the mobility and power of movement of the lantern. Gill notches first appeared in the Lower Jurassic (Hettangian) and were well developed by the Toarcian. The tubercles and their spines were large in the Triassic and gradually decreased in size in some species through the Mesozoic. This reduction enabled these echinoids with smaller spines to cover their tests with sediment. The rate of introduction of new plates was low in the Triassic, increasing during the Jurassic. This increase was mainly in the ambulacra and served to increase the number of tubefeet. Among the holasteroids-spatangoids some of the ventral interambulacral plates increased in size relative to adjacent plates during the Mesozoic and Cenozoic forming the labrum and plastron. These changes permitted the development of the “heart-shaped” test, and an anterior shift of the peristome. Diversity of echinoids increased since the Triassic with the development of different kinds of echinoids able to inhabit many varied habitats. All Triassic echinoids lived on top of the substrate, but in the Jurassic irregular echinoids began to burrow in the sediment. They increased in number of species during the Mesozoic and now are more numerous in species than the regular echinoids.

The difference between Jurassic and Triassic species is not as abrupt as formerly thought, and all Jurassic echinoids are considered to have had a cidaroid ancestor.

Type
Research Article
Copyright
Copyright © 1974 The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, A. 1904. The Panamic deep sea Echini. Mus. Comp. Zool. Mem. 31:243 p., 112 Pls., 319 text-figs. Google Scholar
Bather, F. A. 1909. Triassic echinoderms of Bakony. Resultate Wissensch. Erforschung Baltonsees. 1:288 p., 18 Pls., 63 text-figs. Google Scholar
Buchanan, J. B. 1966. The biology of Echinocardium cordatum (Echinodermata: Spatangoidea) from different habitats. Jour. mar. biol. Ass. U.K. 46:97114.Google Scholar
Chesher, R. H. 1963. The morphology and function of the frontal ambulacrum of Moira atropos (Echinoidea: Spatangoida). Bull. Mar. Sci. Gulf and Caribbean 13(4) :549573.Google Scholar
Chesher, R. H. 1968. The systematics of sympatric species in West Indian spatangoids: A revision of the genera Brissopsis, Plethotaenia, Paleopneustes, and Saviniaster . Studies in tropical oceanography, 7. Institute of Marine Sciences, Univ. Miami: 168 p., 35 Pls. Google Scholar
Chesher, R. H. 1969. Contributions to the biology of Meoma ventricosa (Echinoidea: Spatangoida). Bull. Mar. Sci. 19(1) :72110.Google Scholar
Clark, H. L. 1917. Hawaiian and other Pacific Echini. Mus. Comp. Zool., Mem. 46(2) :84283, Pls. 144–161. Google Scholar
Cotteau, G. H. 1860–1894. [In] d'Orbigny, Paléontologie, Française. Description zoologique et géologique de tous les animaux Mollusques et Rayonnées fossiles de France. A. Terrains Crétacés. Paris, vol. 6 (1860), pp. 433596, Pls. 909–1006; vol. 7 (1862–67), 894 pp., Pls. 1007–1204, bis. 1087 bis. B. Terrains Jurassiques, vol. 9 (1867–74), Échinides Irréguliers, 552 pp., Pls. 1–142. C. Terrains Jurassiques, vol. 10, pt. 1 (1875–80), Échinides Reguliers, 468 pp., Pls. 143–262. D. Terrains Jurassiques, vol. 10, pt. 2 (1880–85), 960 pp., Pls. 263–520.Google Scholar
Cuénot, L. 1948. Anatomie, éthologie, et systématique des échinodermes: in Traité de Zoologie, Grassé, P.-P. (ed.), 11:275 p., 312 text-figs., Masson et Cie (Paris). Google Scholar
Deutler, F. 1926. Über das Wachstum des Seeigelskeletts. Zool. Jb. 48 :120200.Google Scholar
Devriès, A. 1960. Contribution à l'étude de quelques groupes d'échinides fossiles d'Algérie. Publ. Serv. Carte Géol. Algérie, new ser., Paléont., Mém. 3: 278 pp., 39 Pls. Google Scholar
Duncan, P. M. 1885. On the structure of the ambulacrum of some fossil genera and species of regular Echinoidea. Quart. Jour. Geol. Soc. 41:419453.Google Scholar
Duncan, P. M., and Sladen, W. P. 1882–1886. Fossil Echinoidea of Western Sind and the coast of Bíluchistán and of the Persian Gulf, from the Tertiary Formations. Pal. Indica, ser. 14, 1(3):382 pp., 58 Pls.Google Scholar
Durham, J. W. 1966. Evolution among the Echinoidea. Biol. Rev. 41:368391, 6 text-figs. Google Scholar
Durham, J. W. 1967. The incompleteness of our knowledge of the fossil record. Jour. Paleont. 41(3):559565.Google Scholar
Durham, J. W., and Melville, R. V. 1957. A classification of the echinoids. Jour. Paleont. 31(1) :242272, 9 figs. Google Scholar
Farmanfarmaian, A. 1966. The respiratory physiology of echinoderms: 245–266, in Physiology of Echinodermata, edited by Boolootian, R. A., Interscience, New York, 822 p.Google Scholar
Fischer, A. G. 1966. Spatangoids in Moore, R. C., editor, Treatise on Invertebrate Paleontology, Part U, Echinodermata, 3(2) :543628, figs. 427–514. Geol. Soc. Amer. and Kansas Univ. Google Scholar
Fell, H. B. 1966. Diadematacea in Moore, R. C., editor, Treatise on Invertebrate Paleontology, Part U, Echinodermata, 3(1) :340365, text-figs. 255–268. Geol. Soc. Amer. and Kansas Univ. Google Scholar
Geis, H. L. 1936. Recent and fossil pedicellariae. Jour. Paleont. 10:427448, Pls. 58–61. Google Scholar
Goldfuss, G. A. 1826–1844. Petrefacta Germaniae … Abbildungen und Beschreibungen der Petrifacten Deutschlands und der angrezenden Lander, Dusseldorf, 3 vols.Google Scholar
Gordon, I. 1926. The development of the calcareous test of Echinocardium cordatum . Roy. Soc. London Philos. Trans. 215:255313, 27 text-figs. Google Scholar
Gordon, I. 1929. Skeleton development in Arbacia, Echinarachnius, and Leptasterias. Roy. Soc. London, Philos. Trans. 217:289344., 26 text-figs.Google Scholar
Gregory, J. W. 1896. On Lysechinus, a new genus of fossil echinoderms from the Tyrolese Trias. Zool. Soc. London, Proc: 10001005, PL 51.Google Scholar
Hawkins, H. L. 1911. On the teeth and buccal structures in the genus Conulus, Leske. Geol. Mag., Dec. 5, 8:257265, PL 13. Google Scholar
Hawkins, H. L. 1917. The perignathic girdle of the Pygasteridae. Geol. Mag., Dec. 6, 4:342350, 5 text-figs. Google Scholar
Hawkins, H. L. 1920. The morphology and evolution of the ambulacrum in the Echinoidea Holectypoida. Phil. Trans. Roy. Soc. London 209:377480, Pls. 61–69. Google Scholar
Hawkins, H. L. 1934. The lantern and girdle of some recent and fossil Echinoidea. Roy. Soc. London, Philos. Trans. 223B(14) :617649, 26 text-figs.Google Scholar
Hess, H. 1971. Über einige Echiniden aus Dogger und Malm des Schweizer Juras. Eclogae geol. Helv. 64(3) :611633, 19 text-figs., 2 Pls. Google Scholar
Jackson, R. T. 1912. Phylogeny of the Echini, with a revision of Paleozoic species. Boston Soc. Nat. Hist., Mem. 7:491 p., 76 Pls., 255 p. Google Scholar
Jesionek-Szyma$nAska, W. 1959. Remarks on the structure of the apical system of irregular echinoids. Acta Palaeont. Pol. 4:339352.Google Scholar
Jesionek-Szyma$nAska, W. 1962. Contribution a l'étude du genre Orbignyana Ebray, (Echinida, Disasteridae Gras 1848). Bull. Mus. Nat. Hist. 2, 34, 2:184187.Google Scholar
Jesionek-Szyma$nAska, W. 1963. Échinidés irréguliers du Dogger de Pologne. Acta Palaeont. Pol. 8:293414.Google Scholar
Jesionek-Szyma$nAska, W. 1967. Sur un caractère archaique chez des Echinidés irréguliers. C. R. Acad. Sc. 264–D, 26 :29822985.Google Scholar
Jesionek-Szyma$nAska, W. 1968. Irregular echinoids—an insufficiently known group. Lethaia. 1(1) :5062, 11 figs. Google Scholar
Jesionek-Szyma$nAska, W. 1970. On a new pygasterid (Echinoidea) from the Jurassic (Middle Lias) of Nevada, U. S. A. Acta Palaeont. Pol. 15(4) :411423, Pls. 1–2. Google Scholar
Jolicoeur, P. and Mosimann, . 1960. Size and shape variation in the painted turtle. A principal component analysis. Growth. 24:339354.Google Scholar
Kier, P. M. 1956. Separation of interambulacral columns from the apical system in the Echinoidea. Jour. Paleont. 30(4) :971974, 3 text-figs. Google Scholar
Kier, P. M. 1962. Revision of the Cassiduloid echinoids. Smithsonian Misc. Coll. 144(3) :262 p., 44 Pls. Google Scholar
Kier, P. M. 1968. The Triassic echinoids of North America. Jour. Paleont. 42:10001006, Pls. 121–123, 1 text-fig. Google Scholar
Kier, P. M. 1969. A Cretaceous echinoid with false teeth. Paleontology. 12(3) :488493, Pls. 93–94. Google Scholar
Kier, P. M. 1970. Lantern support structures in the clypeasteroid echinoids. Jour. Paleont. 44(1) :98109, 8 text-figs., Pls. 23, 24. Google Scholar
Kier, P. M. 1972. Tertiary and Mesozoic echinoids of Saudi Arabia. Smithsonian Contri. Paleobiology. 10 :242 p., 50 text-figs, 67 Pls. Google Scholar
Lambert, J. and Thièry, P. 1909–1925. Essai de nomenclature raisonnée des Échinides. Chaumont: 607 p., 15 Pls., 51 text-figs. Google Scholar
Laube, G. C. 1864. Die Fauna der Schichten von St. Cassian I. Abt. Echiniden. K. Akad. Wiss. Wien, Sitz., Mat.-Naturw. K1. 24 :76 p.Google Scholar
Lovén, S. 1874. Étude sur les Échinoidees. K. Sv. Vetenskaps-Akad. Handl., N. S. 11(7) :91 p., 53 Pls. Google Scholar
Lovén, S. 1883. On Pourtalesia a genus of Echinoidea. K. Sv. Vetenskaps-Akad. Handl. 19(2) :95 p., 21 Pls. Google Scholar
Lovén, S. 1888. On a recent form of the Echinoconidae. Bihang Till Kongl. Svenska Vet. Akad. Handl. bd. 13, 4(10) :18 p., 2 Pls., 3 text-figs. Google Scholar
Lovén, S. 1892. Echinologica. Bihang K. Svenska Vetensk. Akad., Handl. 18:74 p., 12 Pls., 54 text-figs. Google Scholar
Melville, R. V. 1961. Dentition and relationships of the echinoid genus Pygaster J. L. R. Agassiz 1836. Palaeontology 4(2) :243246, Pls. 28, 29. Google Scholar
Melville, R. V. 1966. Pygasteroida in Moore, R. C., editor, Treatise on Invertebrate Paleontology, Part U, Echinodermata, 3(1) :365 p., figs. 269, 270. Geol. Soc. Amer. and Kansas Univ. Google Scholar
Mercier, J. 1932. Étude sur les Échinides du Bathonien de la bordue occidentale du Bassin de Paris. Mem. Soc. Lin. de Normandie, n. s., section geol., 2, Caen.Google Scholar
Mintz, L. W. 1968. Echinoids of the Mesozoic families Collyritidae d'Orbigny, 1853 and Disasteridae Gras, 1848. Jour. Paleontology, 42(5) :12721288, 6 text-figs. Google Scholar
Mortensen, Th. 1903. The Danish Ingolf-Expedition 1895–1896, Echinoidea, pt. 1, Copenhagen. 4(1) :198 p., 20 Pls., 12 text-figs. Google Scholar
Mortensen, Th. 1907. The Danish Ingolf-Expedition 1895–1896, Echinoidea, pt. 2, Copenhagen. 4(2) :200 p., 19 Pls., 27 text-figs. Google Scholar
Mortensen, Th. 1921. Studies of the development and larval forms of Echinoderms. Copenhagen. 266 p., 33 Pls. Google Scholar
Mortensen, Th. 1935. A Monograph of the Echinoidea, Bothriocidaroida, Melonechinoida, Lepidocentroida, and Stirodonta. 2:647 p., 377 figs., 89 Pls. Google Scholar
Mortensen, Th. 1940. A Monograph of the Echinoidea, Aulodonta. 3(1) :370 p., 197 figs., 77 Pls. Google Scholar
Mortensen, Th. 1948. A Monograph of the Echinoidea, Clypeasteroida. 4(2) :471 p., 258 figs., 72 Pls. Google Scholar
Mortensen, Th. 1950. A Monograph of the Echinoidea, Spatangoida. 1. 5(1) :432 p., 315 figs., 25 Pls. Google Scholar
Mortensen, Th. 1951. A Monograph of the Echinoidea, Spatangoida. 2. 5(2) :593 p., 286 figs., 64 Pls. Google Scholar
Moss, M. L. and Meehan, M. M. 1967. Sutural connective tissues in the test of an echinoid. Acta Anat. 66:279304, 16 text-figs. Google Scholar
Newell, N. D. 1959. Adequacy of the fossil record. Jour. Paleont. 33:488499.Google Scholar
Nestler, H. von. 1966. Echiniden aus dem Unter-Maastricht der Insel Rügen 2. Pedicellarien. Geol. Jahr. 15(3) :340365, 6 Pls., 7 text-figs. Google Scholar
Nichols, D. 1959. Changes in the Chalk hearturchin Micraster interpreted in relation to living forms. Phil. Trans. Roy. Soc. London. 242:347437, 46 text-figs. Google Scholar
Nichols, D. 1972. The water vascular system in living and fossil echinoderms. Palaeontology 15:519538, 11 text-figs. Google Scholar
Philip, G. M. 1965. Classification of echinoids. Jour. Paleont. 39 :4562, 4 text-figs.Google Scholar
Philip, G. M. 1967. Major features of the evolution of echinoids: 105–106. in The Fossil Record. Geol. Soc. London: 827 p.Google Scholar
Quenstedt, F. A. von. 1867. Handbuch der Petrefaktenkunde. Tübingen: 2nd edit. 982 p., 86 Pls. Google Scholar
Quenstedt, F. A. von. 1882–1885. Handbuch der Petrefaktenkunde. Tübingen: 3rd edit. 1239 p., 100 Pls. Google Scholar
Raup, D. 1972. Taxonomic diversity during the Phanerozoic. Science. 177(4054) :10651071, 5 figs. Google Scholar
Teichert, C. 1956. How many fossil species? Jour. Paleont. 30 :967969.Google Scholar
Termier, H. and Termier, G. 1953. Classe des échinides: in de paléontologie, Traité, Piveteau, Jean (ed.) 3: 857947, Masson et Cie (Paris).Google Scholar
Tornquist, A. 1908. Die Diadematoiden des Wurtemburgischen Lias. Deutsche Geol. Gesell., Zeitschr. 60:378430, Pls. 15–19. Google Scholar
Uexküll, J. J. von. 1896. Ueber die function der polischen blasen am kauapparat der regulären seeigel. Zool. Stat. Neapel, Mitth. 12:463476, 1 Pl. Google Scholar
Wagner, C. D., and Durham, J. W. 1966. Holectypoids. in Moore, R. C., editor, Treatise on Invertebrate Paleontology, part U, Echinodermata. 3(2) :440450, figs. 329–334. Geol. Soc. Amer. and Kansas Univ. Google Scholar
Wilson, E., and Crick, W. D. 1889. The Lias marlstone of Tilton, Leicestershire. Geol. Mag., n. s., Dec. 3, 6 :337342, Pl. 10.Google Scholar
Weisbord, N. E. 1971. Bibliography of Cenozoic Echinoidea including some Mesozoic and Paleozoic titles. Bull. Amer. Paleont. 59 (263) : 314 pp.Google Scholar