
Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory - CAPSL

Guang R. Gao
ACM Fellow and IEEE Fellow

Endowed Distinguished Professor

Electrical & Computer Engineering

University of Delaware

ggao.capsl@gmail.com

Topic A
Dataflow Model of Computation

 CPEG 852 - Spring 2014

Advanced Topics in Computing

Systems

CPEG852-Spring14: Topic A - Dataflow - 1

Outline

• Parallel Program Execution Models

• Dataflow Models of Computation

• Dataflow Graphs and Properties

• Three Dataflow Models

– Static

– Recursive Program Graph

– Dynamic

• Dataflow Architectures

CPEG852-Spring14: Topic A - Dataflow - 1 2

CPEG852-Spring14: Topic A - Dataflow - 1 3

Terminology Clarification

• Parallel Model of Computation

– Parallel Models for Algorithm Designers

– Parallel Models for System Designers

• Parallel Programming Models

• Parallel Execution Models

• Parallel Architecture Models

What is a Program Execution Model?

 Application Code

 Software Packages

 Program Libraries

 Compilers

 Utility Applications

(API) PXM

User Code

 Hardware

 Runtime Code

 Operating System

System

CPEG852-Spring14: Topic A - Dataflow - 1 4

Features a User Program Depends On

 Procedures; call/return

Access to parameters and
 variables

Use of data structures (static
 and dynamic)

Features expressed within
a Programming language

 File creation, naming and
 access

Object directories

Communication: networks
 and peripherals

Concurrency: coordination;
 scheduling

Features expressed Outside
a (typical) programming
language

But that’s not all !!

CPEG852-Spring14: Topic A - Dataflow - 1 5

Developments in the 1960s, 1970s

1960

1970

1980

1990
 Personal Workstations Distributed Systems Internet

Drop in interest in Execution Models for 20+ Years

 Book on the B6700,
 Organick

 Rice University Computer

 Graph / Heap Model,
 Dennis

 IBM System 38

 Burroughs B5000 Project
 Started

 Vienna Definition Method

 Contour Model, Johnston

 Common Base Language,
 Dennis

Highlights Other Events

 IBM announces System 360

 Project MAC Funded at MIT

 Unravelling Interpreter,
 Arvind

 Burroughs builds Robert
 Barton’s DDM1

 RISC Architecture

 Monsoon (1989)

 Sigma 1 (1987)

 Tasking introduced in Algol
 68 and PL/I

 IBM AS / 400

CPEG852-Spring14: Topic A - Dataflow - 1 6

Contour Model:
Algorithm; Nested
Blocks and
Contours

- Johnston, 1971

CPEG852-Spring14: Topic A - Dataflow - 1 7

Contour Model: Processor

- Johnston, 1971

CPEG852-Spring14: Topic A - Dataflow - 1 8

Contour Model: A
Snapshot

- Johnston, 1971

CPEG852-Spring14: Topic A - Dataflow - 1 9

Two Processors Sharing Portions
of Environment

- Berry, 1972

- Program with tasking - Record of Execution

CPEG852-Spring14: Topic A - Dataflow - 1 10

Idea: A Common Base Language

.

This is a report on the work of the Computation Structures Group of
Project MAC toward the design of a common base language for
programs and information structures. We envision that the meanings
of programs expressed in practical source languages will be defined
by rules of translation into the base language.

The meanings of programs in the base language is fixed by rules of
interpretation which constitute a transition system called the
interpreter for the base language.

We view the base language as the functional specification of a
computer system in which emphasis is placed on programming
generality -- the ability of users to build complex programs by
combining independently written program modules.

- Dennis, 1972

CPEG852-Spring14: Topic A - Dataflow - 1 11

CPEG852-Spring14: Topic A - Dataflow - 1 12

What Does Program Execution Model (PXM)
Mean ?

• The notion of PXM

 The program execution model (PXM) is the basic

 low-level abstraction of the underlying system

 architecture upon which our programming model,

 compilation strategy, runtime system, and other
software components are developed.

• The PXM (and its API) serves as an interface between
the architecture and the software.

CPEG852-Spring14: Topic A - Dataflow - 1 13

Program Execution Model (PXM)
Cont’d

Unlike an instruction set architecture (ISA) specification, which

usually focuses on lower level details (such as instruction

encoding and organization of registers for a specific processor),

the PXM refers to machine organization at a higher level for a

whole class of high-end machines as view by the users

 Gao et al., 2000

CPEG852-Spring14: Topic A - Dataflow - 1 14

What is your

“Favorite”

 Program Execution Model?

CPEG852-Spring14: Topic A - Dataflow - 1 15

Outline

• Parallel Program Execution Models

• Dataflow Models of Computation

• Dataflow Graphs and Properties

• Three Dataflow Models

– Static

– Recursive Program Graph

– Dynamic

• Dataflow Architectures

CPEG852-Spring14: Topic A - Dataflow - 1 16

+

+
*

a b c d e

1

3

4

3

Dataflow Model of Computation

CPEG852-Spring14: Topic A - Dataflow - 1 17

+

+
*

a b c d e

4

3

4

Dataflow Model of Computation

CPEG852-Spring14: Topic A - Dataflow - 1 18

+

+
*

a b c d e

7

4

Dataflow Model of Computation

CPEG852-Spring14: Topic A - Dataflow - 1 19

+

+
*

a b c d e

28

Dataflow Model of Computation

CPEG852-Spring14: Topic A - Dataflow - 1 20

Dataflow Model of Computation

+

+
*

a b c d e

1

3

4

3

28

Dataflow Software Pipelining

CPEG852-Spring14: Topic A - Dataflow - 1 21

A Base-Language

– To serve as an intermediate-level
language for high-level languages

– To serve as a machine language for
parallel machines

 - J.B. Dennis

~ Data Flow Graphs ~

MIT -1964

IBM announces System 360.

Project Mac selects GE 645 for Multics.
 I decide to pursue research on relation of
 program structure to computer architecture.

“Machine Structures Group formed.”

By Jack B. Dennis

CPEG852-Spring14: Topic A - Dataflow - 1 22

Karp, Miller

Parallel

Program

Schema

CPEG852-Spring14: Topic A - Dataflow - 1 23

CPEG852-Spring14: Topic A - Dataflow - 1 24

Data Flow Years at MIT
1974 – 1975

•April 1974: Symposium on Programming, Paris. Dennis:
 First Version of a Data Flow Procedure Language.

•January 1975: Second Annual Symposium on Computer Architecture,
Houston. Dennis and Misunas:

 A Preliminary Architecture for a Basic Data-Flow Processor.

•August 1975: 1975 Sagamore Computer Conference on Parallel Processing:

•Rumbaugh: Data Flow Languages.
•Rumbaugh: A Data Flow Multiprocessor.
•Dennis: Packet Communication Architecture.
•Misunas: Structure Processing in a Data-Flow Computer.

.

CPEG852-Spring14: Topic A - Dataflow - 1 25

•Asynchronous Digital Logic: [Muller, Bartky]

•Control Structures for Parallel Programming: [Conway,
McIlroy, Dijkstra]

•Abstract Models for Concurrent Systems: [Petri, Holt]

•Theory of Program Schemes: [Ianov, Paterson]

•Structured Programming: [Dijkstra, Hoare]

•Functional Programming: [McCarthy, Landin]

Early Roots on Dataflow Work
at MIT in 70s

2/27/2014

Symposium on Theoretical Programming

 Novosibirsk 1972

CPEG852-Spring14: Topic A - Dataflow - 1 26

Notables Novosibirsk -1972

J. Schwartz

 Bahrs

 Luckham

M. Engeler

Ershov

Milner

Warren

McCarthy

 Miller

Igarashi

Hoare

Paterson

F. Allen

Dennis

CPEG852-Spring14: Topic A - Dataflow - 1 27

CPEG852-Spring14: Topic A - Dataflow - 1 28

Outline

• Parallel Program Execution Models

• Dataflow Models of Computation

• Dataflow Graphs and Properties

• Three Dataflow Models

– Static

– Recursive Program Graph

– Dynamic

• Dataflow Architectures

CPEG852-Spring14: Topic A - Dataflow - 1 29

Dataflow Operators

• A small set of dataflow operators can be used to
define a general programming language

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T

CPEG852-Spring14: Topic A - Dataflow - 1 30

Dataflow Graphs

x = a + b;

z = b * 7;

z = (x-y) * (x+y);

7
a b

x y

1 2

3 4

5

Values in dataflow graphs are represented

as tokens of the form:

<s, d, v>

Where s is the instruction pointer d is the

port and v represents the data

<3, Left, value>

An operator executes when all its input

tokens are present; copies of the result

token are distributed to the destination

operators.
No separate control flow

CPEG852-Spring14: Topic A - Dataflow - 1 31

• Values represented by tokens

• Placing tokens on the arcs
 (assignment)

 - snapshot/configuration: state

• Computation

 configuration configuration

Operational Semantics
Firing Rule

• Tokens Data

• Assignment Placing a token in the output
arc

• Snapshot / configuration: state

• Computation
– The intermediate step between snapshots /

configurations

• An actor of a dataflow graph is enabled if
there is a token on each of its input arcs

CPEG852-Spring14: Topic A - Dataflow - 1 32

Operational Semantics
Firing Rule

Operational Semantics
Firing Rule

• Any enabled actor may be fired to define the “next
state” of the computation

• An actor is fired by removing a token from each of its
input arcs and placing tokens on each of its output
arcs.

• Computation A Sequence of Snapshots

– Many possible sequences as long as firing rules are obeyed

– Determinacy

– “Locality of effect”

CPEG852-Spring14: Topic A - Dataflow - 1 33

General Firing Rules

• A switch actor is enabled if a token is available on its
control input arc, as well as the corresponding data
input arc.
– The firing of a switch actor will remove the input tokens

and deliver the input data value as an output token on the
corresponding output arc.

• A (unconditional) merge actor is enabled if there is a
token available on any of its input arcs.
– An enabled (unconditional) merge actor may be fired and

will (non-deterministically) put one of the input tokens on
the output arc.

CPEG852-Spring14: Topic A - Dataflow - 1 34

Conditional Expression

if (p(y))

{

 f(x,y);

}

else

{

 g(y);

}

T
p

f g

T F

x y

CPEG852-Spring14: Topic A - Dataflow - 1 35

A Conditional Schema

D
(k,1)

P
(m,n)

Q
(m,n)

T F

m

m m

n n

n

k

CPEG852-Spring14: Topic A - Dataflow - 1 36

A Loop Schema

Loop op

COND

T F

T F

Initial Loop value

F

CPEG852-Spring14: Topic A - Dataflow - 1 37

CPEG852-Spring14: Topic A - Dataflow - 1 38

Properties of Well-Behaved Dataflow Schemata

.....

.....

An (m, n) Scheman
with no enabled actors

v1 vm

m 1

1 n

(a) Initial Snapshot

.....

.....

An (m, n) Scheman
with no enabled actors

m 1

1 n

(a) Final Snapshot

CPEG852-Spring14: Topic A - Dataflow - 1 39

Well-behaved
Data Flow Graphs

• Data flow graphs that produce exactly one
set of result values at each output arcs for
each set of values presented at the input arcs.

• Implies the initial configuration is re-
established.

• Also implies determinacy. [Dennis,et. Al.
1972/3/4]

CPEG852-Spring14: Topic A - Dataflow - 1 40

Well Behaved Schemas

Before After

• • •

P

• • •

• • •

P

• • •

T F

f g

T F

Conditional

one-in-one-out
& self cleaning

f

p

T F

T F F

Loop

CPEG852-Spring14: Topic A - Dataflow - 1 41

Well-formed Dataflow Schema
(Dennis & Fossen 1973)

• An operator is a WFDS.

• A conditional schema is a WFDS.

• A iterative (loop) schema is a WFDS.

• An acyclic composition of component WFDS is a
WFDS.

CPEG852-Spring14: Topic A - Dataflow - 1 42

Theorem

“A well-formed data flow graph is well-

behaved”

 proof by induction

CPEG852-Spring14: Topic A - Dataflow - 1 43

Example of ‘Sick’ Dataflow Graphs

Arbitrary connections of data flow operators can result in pathological programs, such as the

following:

A

B

D

C

E

A

G H

I

K L

J

M N

1. Deadlock 2. Hang-up 3. Conflict 4. Unclean

CPEG852-Spring14: Topic A - Dataflow - 1 44

Well-behaved Program

• Always determinate in the sense that a unique set of
output values is determined by a set of input values

• References:
 Rodriquez, J.E. 1966, “A Graph Model of Parallel Computation”,

 MIT, TR-64]

 Patil, S. “Closure Properties of Interconnections of Determinate

 Systems”, Records of the project MAC conf. on concurrent systems

 and parallel Computation, ACM, 1970, pp 107-116]

 Denning, P.J. “On the Determinacy of Schemata” pp 143-147

 Karp, R.M. & Miller, R.E., “Properties of a Model of Parallel

 Computation Termination, termination, queuing”, Appl. Math, 14(6), Nov. 1966

CPEG852-Spring14: Topic A - Dataflow - 1 45

Remarks on Dataflow Models

• A fundamentally sound and simple parallel model of
computation (features very few other parallel models can
claim).

• Few dataflow architecture projects survived passing early
1990s. But the ideas and models live on.

• In the new multi-core age: we have many reasons to re-
examine and explore the original dataflow models and learn
from the past.

• Eventually, after 40+ years, Jack Dennis’ dataflow model
was recognized by the world – and awarded the IEEE John
Von Neumann Medal (an ACM Turing Award equivalent –
as some people say.)

Graph / Heap Model
Of Program Execution

In our semantic model for extended data flow programs, values
are represented by a heap, which is a finite, acyclic, directed
graph having one or more root nodes, and such that each node of
the heap may be reached over some path from some root node.

 A snapshot of a data flow program in execution will now have
two parts:
a token distribution on the graph of the program, and a heap.

 For each execution step some enabled link or actor is
selected to fire; the result of firing is a new token distribution,
 and in some cases, a modified heap.

- Dennis, 1974

CPEG852-Spring14: Topic A - Dataflow - 1 46

The Graph and
Heap Model

Select

Heap

Select

Before:

After:

5

0 1 2 .. 5 ..

10

10

CPEG852-Spring14: Topic A - Dataflow - 1 47

Jack B Dennis, Guang R Gao propose An

efficient pipelined dataflow processor

architecture in Proceedings of the 1988

ACM/IEEE conference on Supercomputing

A Short Story

1960 1970 1980 1990 2000 2010

Carl Adam

Petri defines

Petri Nets

Estrin and Turn

proposed an early

dataflow model

Karp and Miller analyzed

Computation Graphs w/o

branches or merges

Rodriguez

proposes

Dataflow Graphs

Chamberlain proposes Single

Assignment language for dataflow

Dennis proposes a

dataflow language. Pure

Dataflow is born

Kahn proposes a simple

parallel processing language

with vertices as queues.

Static Dataflow is born

Dennis designs a dataflow

arch

Arvind and Gostelow, & separately Gurd and

Watson created a tagged token dataflow

model. Dynamic Dataflow is born

Arvind, Nikkel, et al designed the

Monsoon dataflow machine

CPEG852-Spring14: Topic A - Dataflow - 1 48

http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=4038025
http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=4038025
http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=4038025
http://epubs.siam.org/siap/resource/1/smjmap/v14/i6/p1390_s1
http://publications.csail.mit.edu/lcs/specpub.php?id=632
http://dl.acm.org/citation.cfm?id=1479114
http://www.springerlink.com/content/f83tt1hk2n776390/
http://www.cs.princeton.edu/courses/archive/fall07/cos595/kahn74.pdf
http://dl.acm.org/citation.cfm?id=642111
http://www.computer.org/portal/web/csdl/doi/10.1109/AFIPS.1979.14
http://www.computer.org/portal/web/csdl/doi/10.1109/AFIPS.1979.14
http://www.computer.org/portal/web/csdl/doi/10.1109/AFIPS.1979.14
http://www.computer.org/portal/web/csdl/doi/10.1109/AFIPS.1979.14
http://csg.csail.mit.edu/pubs/memos/Memo-297/Memo-297.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-297/Memo-297.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-297/Memo-297.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-297/Memo-297.pdf

CPEG852-Spring14: Topic A - Dataflow - 1 49

Evolution of Multithreaded
Execution and Architecture Models

Non-dataflow
based

CDC 6600
1964

MASA
Halstead
1986

HEP
B. Smith
1978

Cosmic Cube
Seiltz
1985

J-Machine
Dally
1988-93

M-Machine
Dally
1994-98

Dataflow
model inspired

MIT TTDA
Arvind
1980

Manchester
Gurd & Watson
1982

*T/Start-NG
MIT/Motorola
1991-

SIGMA-I
Shimada
1988

Monsoon
Papadopoulos
& Culler
1988

P-RISC
Nikhil &
Arvind
1989

EM-5/4/X
RWC-1
1992-97

Iannuci’s
1988-92

Others: Multiscalar (1994), SMT (1995), etc.

Flynn’s
Processor
1969

CHoPP’77 CHoPP’87

TAM
Culler
1990

Tera
B. Smith
1990-

Alwife
Agarwal
1989-96

Cilk
Leiserson

LAU
Syre
1976

Eldorado

CASCADE

Static
Dataflow
Dennis 1972
MIT

Arg-Fetching
Dataflow
DennisGao

1987-88

MDFA
Gao

1989-93

EARTH
Hum et al.
1993-2006

HTVM/TNT-X
DelCuvillo
and Gao

2000-2010

Codelet
Model

Gao et. al.
2009-

A version of this slide was presented

in my invited talk at Fran Allen’s

retirement party July 2002

CPEG852-Spring14: Topic A - Dataflow - 1 50

Jack’s History Note
Prof. Estrin was author of a number of paper
relating to parallel graph models for computation.

The ones I recall were written with Prof. David W---
(?) who was a visiting scientist at MIT for a year or
so (I don't recall what year).

The Dennis Static data flow model was implicit in
the Dennis, Misunas 1975 paper for ISCA and was
the subject of my lectures as IEEE Distinguished
speaker, but I can't quickly determine the year. I
presented a definitive paper at the "Symposium on
Theoretical Programming", Novosibirsk, 1972, and
it was published in LNCS. If I recall correctly it was
CSG Memo 81, but a copy is not in my file. So I
think the date (1972) for static data flow on the
second slide is correct (and I believe precedes
Kahn). So I think the box "Dennis proposes ... " is
wrong (perhaps depending on what is meant by
"pure dataflow").

My view is that my 1974 paper is the first
treatment of a reasonably complete
"dynamic" data flow model, including
arbitrary recursion and tree-structured
data objects (to be followed in two or
three years by Arvin/Gostelow/Plouff).

 Jack Dennis

 Personal Communication

 Sept. 11, 2011

CPEG852-Spring14: Topic A - Dataflow - 1 51

Some Note on History

CPEG852-Spring14: Topic A - Dataflow - 1 52

Some History on Dataflow

