Genus	Vol. 24(2): 117-130	Wrocław, 31 VII 2013

Preliminary morphological and molecular study of species of Saccharicoccus Ferris, 1950 and Trionymus Berg, 1899 (Hemiptera: Coccoidea: Pseudococcidae)

Ewa Mróz ${ }^{1}$, Mafgorzata Kalandyk-KoŁodziejczyk ${ }^{2}$, Ewa Simon ${ }^{3}$
${ }^{1,2,3}$ Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland;
e-mails: ${ }^{1}$ ewa.mroz@us.edu.pl, ${ }^{2}$ malgorzata.kalandyk@us.edu.pl, ${ }^{3}$ ewa.simon@us.edu.pl Corresponding author: malgorzata.kalandyk@us.edu.pl

Abstract

This paper presents preliminary results of morphological and molecular analysis of species of Saccharicoccus and Trionymus. Five species were analyzed: Saccharicoccus penium, Trionymus aberrans, Trionymus isfarensis, Trionymus perrisii and Trionymus thulensis. The obtained outcomes show that the occurrence of cryptic species within T. aberrans is highly probable. The distinctiveness of other examined species is substantiated. The separateness of T. isfarensis and T. thulensis is confirmed. Morphological and molecular data suggest that S. penium should not be reduced to synonym of T. isfarensis.

Key words: entomology, Saccharicoccus, Trionymus, morphology, molecular analysis, ITS

INTRODUCTION

The family Pseudococcidae is the second largest family within the superfamily Coccoidea. It consists of over 2200 species (Ben-Dov et al. 2012). The Pseudococcidae is divided into two subfamilies: Pseudococcinae (with 201 genera) and Phenacoccinae (with 69 genera) (Hardy et al. 2008).

One of the largest genera within subfamily Pseudococcinae is Trionymus Berg, 1899 and it includes about 120 species (Danzig 1997, Ben-Dov et al. 2012). The genus has worldwide distribution. So far 11 species of Trionymus have been recorded in Poland (Koteja \& Żak-Ogaza 1989, Łagowska \& Koteja 1996, Łagowska 2004, Simon \& Herczek 2010). Generally species in this genus live on grasses as well as on herbaceous plants such as T. multivorus (Kiritchenko, 1936). They inhabit leaf sheaths
when they live on the grasses, and sometimes roots or leaves. Trionymus includes a number of morphologically similar species, which makes their identification difficult because of wide range of variation in the species, and because of this the taxonomic position of some species is unclear (Kosztarab \& Kozár 1988).

The morphology and biology of adult females of Trionymus are similar to the females of Palearctic Balanococcus Williams, 1962. Species of Balanococcus differ in having tubular ducts with a deep collar covering the duct, short antennae, poorly developed ostioles and comparatively large hind coxae (Gavrilov 2010). Some species of Trionymus are also close to species of Dysmicoccus Ferris, 1950, which differ in possessing more than 5 or 7 pairs of cerarii (Kosztarab \& Kozár 1988).

The whole group comprising species of Balanococcus, Dysmicoccus and Trionymus needs a thorough revision (Kosztarab \& Kozár 1988; Gavrilov \& Trapeznikova 2007).

Taxonomical problem concerns also systematic position of species within genus Saccharicoccus Ferris, 1950. It consists of only two species: S. penium Williams, 1962 and S. sacchari (Cockerell, 1895) (Kosztarab \& Kozár 1988, Tang 1992). Only the former, which has been collected from grasses, occurs in Poland. Saccharicoccus penium Williams, 1962 was synonymized with Trionymus isfarensis (Borchsenius, 1949) by Danzig (1983). Koteja (1986) did not accept this procedure and decision. Systematic position of this species is still under discussion.

Recently, molecular studies focused on the use of DNA markers that can be used to distinguish between closely related taxa. Among molecular markers used for species identification of mealybugs the following genetic markers are applied: ITS, COI and 28S (Downie \& Gullan 2004, Gullan et al. 2010, Malausa et al. 2011). The present paper shows the preliminary results of molecular investigations conducted with the application of ITS2.

These investigations attempt to establish taxonomical position of selected species of Saccharicoccus and Trionymus and to detect cryptic species within these genera using both morphological and molecular data.

MATERIAL AND METHODS

Scale insects were collected by using hand collecting method (Table 1). Mealybugs samples were preserved in $96-100 \%$ ethanol until DNA extraction. Material was collected and identified by Kalandyk-Kołodziejczyk M. and Simon E. Representatives of five species were used in morphological and molecular analysis: Saccharicoccus penium Williams, 1962, Trionymus aberrans Goux, 1938, Trionymus isfarensis (Borchsenius, 1949), Trionymus perrisii (Signoret, 1875), Trionymus thulensis Green, 1931. Characteristic morphological features of examined species and number of analyzed specimens are presented in Table 2.

The sequences of Dysmicoccus brevipes (Cockerell, 1893) (GenBank Accesion: Gu134673) were used as an outgroup due to morphological similarities among species of Dysmicoccus and Trionymus.

Digital images were obtained with a DN-100 camera installed in a Nikon EclipseE600 light microscope.

Total genomic DNA was isolated using DNeasy Tissue Kit (Qiagen, Germany) following the manufacturer's instructions. A fragment of the ITS2 region was studied. The primers used for PCR amplifications were ITS2-M-F and ITS2-M-F (Malausa et al. 2011). ITS2 was amplified as follows: initial denaturation at $98^{\circ} \mathrm{C}$ for 30 s, followed by 35 cycles of $98^{\circ} \mathrm{C}$ for 10 s ; annealing temperatures of $58^{\circ} \mathrm{C}$ for 15 s ; extension at $72^{\circ} \mathrm{C}$ for 15 s ; final extension at $72^{\circ} \mathrm{C}$ for 5 min . PCR products were purified using a QIAquick ${ }^{\circledR}$ PCR purification Kit (QIAGEN) and sequenced directly using an automated sequencer (Genome Sequencer GS FLX Roche). The studied sequences were deposited in GenBank under accession numbers given in Table 1., where it is presented together with the accession numbers of the sequences used for the phylogenetic analysis.

Chromatograms, resulting from sequencing of both strands, were analysed using Chromas V2.3 (Technelysium Pty Ltd., 2004) software. Alignments for the studied sequence were made using Clustal X (Тномpson et al. 1997).

Tree reconstructions based on nucleotide sequences were carried out by maximumlikelihood (ML) method as implemented in MEGA version 5 (Tamura et al. 2011).

RESULTS

The tree reconstructions based on nucleotide sequences the Internal Transcriber Spacer region of the nuclear ribosomal DNA were carried out by the maximum-likelihood (ML) method (Fig.1). The ML tree was obtained using the Tamura 3-parameter model (T92) (Tamura 1992), because it scored the lowest BIC (Bayesian Information Criterion) value when different models of substitution pattern were tested. Branches corresponding to partitions reproduced in less than 55% bootstrap replicates were collapsed.

Morphological variability within examined specimens of Trionymus perrisii was not observed. All analysed specimens belonging to this species possess last pair of cerarii with 38-40 trilocular pores situated on large sclerotized plate (Fig. 2.1.)

Analysed tree comprises two main clades. The first consists of two species: Trionymus perrisii and Trionymus aberrans. Some individuals of T. aberrans constitute a separate clade (no. 3 in Fig.1) supported by maximum bootstrap value and some form a clade with T. perrisii (no. 1 in Fig.1). Specimens of T. aberrans marked with no. 2 (Cz5, $\mathrm{Cz37,Cz12,Czo3}, \mathrm{Cz13}$) possess some features distinguishable from specimens that form clade no.3: hind coxae with very few translucent pores and a smaller number of trilocular pores in the last pair of cerarii (Fig.2.2). These individuals were collected in the area of postindustrial wastelands. Specimens constituting clade no. 3 possess numerous translucent pores in hind coxae and higher number of trilocular pores in the last pair of cerarii (Fig. 2.3). Specimens (Cz21, Cz28, Cz29) collected in Austria are distinguishable by the presence of higher number $(15-16)$ of trilocular pores in the anal lobe cerarii. The others possess from 8 to 12 pores. All specimens identified as T. aberrans possess characteristic horseshoe-shaped anal ring (Fig. 2.2., Fig. 2.3.), 8-segmented antennae, two pairs of cerarii and numerous trilocular pores on both body surfaces.

1. Results of Maximum Likelihood of ITS sequences. Bootstrap values are indicated on the branches when higher than 55
2. Characteristic features of examined species: 2.1.Cerarii with large number of trilocular pores in Trionymus perrisii; 2.2.Cerarii with few trilocular pores in the specimen of Trionymus aberrans forming a clade with T. perrisii; 2.3.Cerarii with many trilocular pores in the specimen of T. aberrans which forms clade comprising only T. aberrans; 2.4.Characteristic features of Saccharicoccus penium: 2.4.a. minute pores around hind leg, 2.4.b. hourglass-like circulus, 2.4.c. spiracle; 2.5.Two circuli in Trionymus isfarensis; 2.6.The only round circulus in Trionymus thulensis (see next page)

Second main clade comprises three species forming two sister clades. First of them consists of Saccharicoccus penium (no.4). All specimens identified as S. penium are characterized by some distinctive morphological features, including well visible numerous simple minute pores around the hind legs (Fig. 2.4a), elongate hourglasslike circulus located between abdominal segments 4 and 5 (Fig. 2.4b) and spiracles of characteristic shape (Fig. 2.4c).

Second sister clade comprises two species: Trionymus isfarensis (no.5) and Trionymus thulensis (no.6). Separateness of these species is supported by high bootstrap value. They differ from each other with some distinctive features: number of circuli (2-3 in T. isfarensis; 1 in T. thulensis - Fig.2.5-2.6.); number of hairlike setae in the last pair of cerarii (3-5 in T. isfarensis; 1 in T. thulensis).

DISCUSSION

Our study shows that Trionymus aberrans seems to contain cryptic species complex. T. aberrans was described and illustrated by Goux (1938) and analysed in details by many other authors (e.g. Borchsenius 1949, Tereznikova 1975, Danzig 1997). It was characterized by 8 -segmented antennae, horseshoe-shaped anal ring and absence of circulus. Morphological variability within this species connected with number of antennal segments was observed by Goux (1938). Two subspecies: T. aberrans aberrans and T. aberrans ovalis were described by this author. Members of the latter were characterized by possessing 9 -segmented antennae (Goux 1941). This feature was not observed in any of the examined specimens. Tang (1992) regarded this subspecies a synonym of T. aberrans.

It is supposed that differences between specimens occurring in the area of postindustrial wastelands and others collected in differential habitats (meadows, xerothermic grasslands and forests) might be caused by environmental conditions. The effect of environmental conditions on variation of characters in different species was noted by Williams (1985). Apart from $\operatorname{Goux}(1938,1941)$ morphological variability in T. aberrans was observed by Kosztarab \& Kozár, 1988 (presence or absence of circulus), which indicates that occurrence of cryptic species classified till now as T. aberrans is highly probable.

Morphological studies indicate that S. penium should not be reduced to synonym of T. isfarensis as Danzig (1983) suggested. Koteja (1986) did not approve her concept. He emphasized that T. isfarensis as described by Borchsenius (1949) is entirely different from S. penium taking into consideration the number and shape of circuli, occurrence of minute pores around hind legs and the structure of spiracles. All examined individuals classified as S. penium are characterized by presence of typical features described by Williams (1962), which are not visible in specimens classified as T. isfarensis. Our morphological analysis shows that S. penium and T. isfarensis are separate species. Koteja (1986) suggested that specimens collected previously in Poland (Koteja \& ŻaKOgaza 1969, 1983, Koteja 1971) and included to T. isfarensis had been misidentified. In his later papers one can find the information on the new localities of T. isfarensis in

Poland (Koteja \& Żak-Ogaza 1989; Łagowska \& Koteja 1996). Recently T. isfarensis was noted in the eastern part of the Tarnowskie Góry Hummock, which is a region located in the southern Poland (Kalandyk \& Wegierek 2010).

Genus Saccharicoccus was considered to be close to Trionymus. According to Kosztarab and Kozár (1988) species of Trionymus possess following features: antennae 6-8 segmented, 4 dorsal ostioles (rarely 2) present, hind coxae often with translucent pores, fewer than 6 pairs of cerarii, trilocular pores on both body surfaces, multilocular pores always on venter, often present on dorsum, oral tubular ducts on both body surfaces. Typical features of S. penium are: 7-segmented antennae, ostioles poorly developed, hind coxae with a few translucent pores, one pair of cerarii, trilocular pores evenly distributed on both body surfaces, multilocular pores occurring on venter and dorsum of abdomen, numerous trilocular pores on both body surfaces, 2 sizes of tubular ducts (Williams 1962). Result of our preliminary molecular studies does not explain if S. penium should be transferred to genus Trionymus. It only shows that S. penium and T. isfarensis should not be synonymized.

Other genera similar to Trionymus are Balanococcus and Dysmicoccus (Danzig, 1997, Kosztarab \& Kozár 1988). Some species of Trionymus are characterized by short tubular duct arranged together with multilocular pores which brings them very close to Balanococcus Williams, 1962. The Dysmicoccus-Trionymus complex includes several (perhaps 3) groups of species (Kosztarab \& Kozár 1988).

Although T. perrisii is a species considered to be morphologically variable (Kosztarab \& Kozár 1988), we did not notice the variability within this species.

CONCLUSION

On the basis of molecular analysis based on ITS the existence of cryptic species within T. aberrans is highly probable. These species form a clade with T. perrisii. Morphological variability within T. aberrans may be connected with the environmental conditions, a statement that should be tested using higher number of individuals.

Molecular investigations confirm separateness of other examined species: S. penium, T. isfarensis and T. thulensis, which is in accordance with an analysis of the morphological features. The obtained preliminary results should be tested with the application of other molecular markers.

Since the applied molecular marker ITS is not useful in systematic and phylogeny but is the most informative for study of cryptic taxa and delimitation of species (Malausa et.al. 2011), we cannot conclude about taxonomic affinity of S. penium. The results of molecular and morphological research suggest that S.penium is not a synonym of T. isfarensis, but its affinity to genus Saccharicoccus or Trionymus is still debated. Its unclear systematic position will be determined during further research. It is necessary to test the species of this two taxa: S. penium and T. isfarensis by means of using a large number of genetic indicators.

REFERENCES

Ben-Dov, Y., Miller , D.R., Gibson, G.A.P., 2012. ScaleNet: a Database of the Scale Insects of the World. http: // www.sel.barc.usda.gov/scalenet.htm.
Borchsenius, N.S., 1949. [Insects Homoptera. Suborders mealybugs and scales (Coccoidea). Family mealybugs (Pseudococcidae). Vol. VII.] Fauna SSSR. Zoologicheskii Institut Akademii Nauk SSSR. N.S., 38: 1-382.

Danzig, E.M., 1983. [New and little known species of scale insects (Homoptera, Coccinea) of the fauna of the USSR.] Entomol. Obozr., 62: 514-523.
Danzig, E.M.,1997. Species of the genus Trionymus from Russia and neighbouring countries (Homoptera, Coccinea: Pseudococcidae). Zoosyst. Rossica, 6: 95-114.
Downie, D.A,. Gullan, P.J., 2004. Phylogenetic analysis of mealybugs (Hemiptera: Coccoidea: Pseudococcidae) based on DNA sequences from three nuclear genes, and a review of the higher classification. Syst. Entomol., 29(2): 238-259.
Gavrilov, I.A., 2010. Descriptions of two new species of Pseudococcidae (Homoptera: Coccinea) and additions to the scale insect fauna of Bulgaria. Zootaxa, 2635: 32-40.
Gavrilov, I.A., Trapeznikova, I.V., 2007. Karyotypes and reproductive biology of some mealybugs (Insecta: Coccinea: Pseudococcidae). Comp. Cytogenetics, 1: 139-148.
Goux, L., 1938. Notes sur les coccides [Hem.] de la France (23e note). Description d'un Trionymus nouveau. Bull. Mens. Soc. Linn. Lyon, 7: 166-169.
Goux, L., 1941. Notes sur les Trionymus de la France et sur quelques espèces nouvelles pour la faune Francaise (Hem. Coccidae). Bull. Soc. Hist. Nat. Afr. Nord, 32: 31-44.
Gullan, P.J., Kaydan, M.B., Hardy, N.B., 2010. Molecular phylogeny and species recognition in the mealybug genus Ferrisia Fullaway (Hemiptera: Pseudococcidae). Syst. Entomol., 35: 329-339.
Hardy N.B., Gullan P.J., Hodgson C.J., 2008.A subfamily-level classification of mealybugs (Hemiptera: Pseudococcidae) based on integrated molecular and morphological data. Syst. Entomol., 33: 5171.

Kalandyk .M., Wegierek., P., 2010. Scale insects (Hemiptera, Sternorrhyncha, Coccoidea) of selected plant communities in the eastern part of Garb Tarnogórski. The monograph. Ann Upper Silesian Mus. Bytom, Entomology, 19: 116 pp.
Kosztarab., M., Kozár., F., 1988. Scale Insects of Central Europe. Akademiai Kiado, Budapest. 456 pp.
Koteja, J., 1971. Materiały do fauny czerwców Polski (Homoptera, Coccoidea) III. Pol. Pismo Entomol., 41: 319-326.
Koteja, J., 1986. Saccharicoccus penium Williams 1962 must not be reduced to synonyms of Pseudococcus isfarensis Borchsenius 1949 (Homoptera, Coccinea). Pol. Pismo Entomol., 56: 375-380.
Koteja, J., Żak-Ogaza, B. 1969. The scale-insect fauna (Homoptera, Coccoidea) of the Ojcow National Park in Poland. Acta Zool. Cracov., 14: 351-373.
Koteja, J., Żak-Ogaza, B., 1983. Fauna czerwców (Homoptera, Coccinea) Wyżyny KrakowskoCzęstochowskiej. Acta Zool.a Cracov., 26: 465-490.
Koteja, J., Żak-Ogaza, B., 1989. Czerwce (Homoptera: Coccinea) Gór Świętokrzyskich. Fragm. Faun., 32 (12): 243-258.
Łagowska, B., 2004. Czerwce (Coccoidea), Zabielicowate (Ortheziidae), Czerwcowate (Margarodidae), Czerwce mączyste (Pseudococcidae), Pilśnikowate (Eriococcidae), Kermesowate (Kermesidae), Miłkowate (Cerococcidae), Misecznikowate (Coccidae), Gwiazdosze (Asterolecaniidae), Tarczniki (Diaspididae). W: Bogdanowicz, W., Chudzicka, E., Pilipiuk, I., Skibińska, E., (ed.). Fauna Polski - charakterystyka i wykaz gatunków. MiIZ PAN, Warszawa, 1: 240-252, 266-269.

Łagowska, B., Koteja, J., 1996. Czerwce (Homoptera, Coccinea) Roztocza. Fragm. Faun., 39: 29-42.
Malausa, T., Fenis, A., Warot, S., Germain, J.F., Ris, N., Prado, E., Botton, M., Vanlerberghe-Masutti, F., Sforza, R., Cruaud, C., Couloux, A., Kreiter, P., 2011. DNA markers to disentangle complexes of cryptic taxa in mealybugs (Hemiptera: Pseudococcidae). Journ. Appl. Entomol.y, 135: 142-155.
Simon, E., Herczek, A., 2010. Scale insects (Hemiptera: Coccoidea) of the Landscape Park "Cistercian Landscape Compositions of Rudy Wielkie". A monograph . Plik, Katowice: 127 pp.
Tamura, K., 1992. Estimation of the number of nucleotide substitutions when there are strong transitiontransversion and G + C-content biases. Mol. Biol. Evol.tion, 9:678-687.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 28(10): 2731-2739.
Tang, F.,T., 1992. [The Pseudococcidae of China.] Shanxi Agricultural University, Taigu, Shanxi, China. 768 pp .
Technelysium Pty Ltd., "Chromas," http://www.technelysium. com.au/chromas.html, 2004.
Tereznikova, E.,M., 1975. [Coccids.] in: [The Fauna of Ukraine.] Akademii Nauk Ukrains'koi SSR Instituta Zoologicheskogo, 20(Pt. 18): 295 pp.
Thompson, J.,D, Gibson, T.,J., Plewniak, F., Jeanmougin, F., Higgins, D.,G., 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24: 4876-4882.
Williams, D.,J., 1962. The British Pseudococcidae (Homoptera: Coccoidea). Bull. British Mus. (Nat. Hist.) Entomol., 12: 1-79.
Williams, D.,J., 1985. Australian mealybugs. British Museum (Natural History), London. 431 pp.

Table 1. The collection data of the studied material

Species	Voucher number	Collection site		Host plant	GenBank Accession No.
Trionymus perrisii	Cz11	Rudy Wielkie, Poland $\begin{aligned} & 50^{\circ} 12^{\prime} 09^{\prime \prime} \mathrm{N} ; \\ & 18^{\circ} 26^{\prime} 37^{\prime \prime} \mathrm{E} \end{aligned}$	26.09.11	Festuca ovina	KC631169
T. perrisii	Cz32	Rudy Wielkie, Poland $\begin{aligned} & 50^{\circ} 12^{\prime} 09^{\prime \prime} \mathrm{N} ; \\ & 18^{\circ} 26^{\prime} 37^{\prime \prime} \mathrm{E} \end{aligned}$	26.09.11	Festuca ovina	KC631170
T. perrisii	Cz2P	Rudy Wielkie, Poland $\begin{gathered} 50^{\circ} 12^{\prime} 09 . " \mathrm{~N} \\ 18^{\circ} 26^{\prime} 37^{\prime \prime} \mathrm{E} \end{gathered}$	02.08.11	Festuca ovina	KC631171
T. perrisii	Cz4	Katowice, Poland $\begin{aligned} & 50^{\circ} 15^{\prime} 13^{\prime \prime} \mathrm{N} \\ & 19^{\circ} 02^{\prime} 47^{\prime \prime} \mathrm{E} \end{aligned}$	15.09.11	Phleum pratense	KC631172
T. perrisii	Cz27	Nowa Wieś, Poland $\begin{gathered} 50^{\circ} 27^{\prime} 10^{\prime \prime} \mathrm{N} \\ 19^{\circ} 05^{\prime} 31^{\prime \prime} \mathrm{E} \end{gathered}$	05.10.11	Phleum pratense	KC631168
T. perrisii	Cz19	Neudorlf, Austria $\begin{aligned} & 47^{\circ} 47^{\prime} 17^{\prime \prime} \mathrm{N} ; \\ & 16^{\circ} 17^{\prime} 17^{\prime \prime} \mathrm{E} \end{aligned}$	02.10.11	Calamagrostis epigejos	KC631173
T. perrisii	CzE	Preganziol, Italy $\begin{aligned} & 45^{\circ} 35^{\prime} 29^{\prime \prime} \mathrm{N} \\ & 12^{\circ} 13^{\prime} 58^{\prime \prime \mathrm{E}} \end{aligned}$	03.10.11	$F e s t u c a$ sp.	KC631174
Trionymus aberrans	Cz5	Ruda Śląska, Poland $\begin{aligned} & 50^{\circ} 16^{\prime} 02^{\prime \prime} \mathrm{N} ; \\ & 18^{\circ} 52^{\prime} 09^{\prime \prime} \mathrm{E} \end{aligned}$	25.09.11	Agrostis capillaris	KC631166
T. aberrans	Cz37	$\begin{gathered} \text { Ruda Śląska, Poland } \\ 50^{\circ} 16^{\prime} 02^{\prime \prime} \mathrm{N} ; \\ 18^{\circ} 52^{\prime} 09^{\prime \prime} \mathrm{E} \end{gathered}$	25.09. 11	Agrostis capillaris	KC631167
T. aberrans	Cz12	Piekary Śląskie, Poland $\begin{gathered} 50^{\circ} 22^{\prime} 00^{\prime \prime} \mathrm{N} ; \\ 18^{\circ} 58^{\prime} 17^{\prime \prime} \mathrm{E} \end{gathered}$	29.09.11	Deschampsia caespitosa	KC631163
T. aberrans	Cz03	Piekary Śląskie, Poland $\begin{gathered} 50^{\circ} 22^{\prime} 00^{\prime \prime} \mathrm{N} ; \\ 18^{\circ} 58^{\prime} 17^{\prime \prime} \mathrm{E} \end{gathered}$	29.09.11	Deschampsia caespitosa	KC631164

Table 1. The collection data of the studied material (cont.)

T. aberrans	Cz13	Piekary Śląskie, Poland $\begin{aligned} & 50^{\circ} 22^{\prime} 00^{\prime \prime} \mathrm{N} ; \\ & 18^{\circ} 58^{\prime} 17^{\prime \prime} \mathrm{E} \end{aligned}$	29.09.11	Deschampsia caespitosa	KC631165
T. aberrans	Cz7	Katowice, Poland $\begin{aligned} & 50^{\circ} 15^{\prime} 13^{\prime \prime} \mathrm{N} \\ & 19^{\circ} 02^{\prime} 47^{\prime \prime} \mathrm{E} \end{aligned}$	12.08.11	Phleum pratense	KC631175
T. aberrans	Cz10	Katowice, Poland $\begin{aligned} & 50^{\circ} 15^{\prime} 13^{\prime \prime} \mathrm{N} \\ & 19^{\circ} 02^{\prime} 47^{\prime \prime} \mathrm{E} \end{aligned}$	16.09.11	Agrostis capillaris	KC631176
T. aberrans	Cz24	Twardowice, Poland $\begin{aligned} & 50^{\circ} 25^{\prime} 03^{\prime \prime} \mathrm{N} \\ & 19^{\circ} 04^{\prime} 36^{\prime \prime} \mathrm{E} \end{aligned}$	01.10.11	Agrostis capillaris	KC631179
T. aberrans	Cz28	Neudorlf, Austria $\begin{aligned} & 47^{\circ} 47^{\prime} 17^{\prime \prime} \mathrm{N} \\ & 16^{\circ} 17^{\prime} 17^{\prime \prime} \mathrm{E} \end{aligned}$	02.10.11	$F e s t u c a s p$.	KC631178
T. aberrans	Cz21	Neudorlf, Austria $\begin{aligned} & 47^{\circ} 47^{\prime} 17^{\prime \prime} \mathrm{N} \\ & 16^{\circ} 17^{\prime} 17^{\prime \prime} \mathrm{E} \end{aligned}$	02.10.11	$F e s t u c a s$ sp.	KC631177
T. aberrans	Cz29	Neudorlf, Austria $\begin{aligned} & 47^{\circ} 47^{\prime} 17^{\prime \prime} \mathrm{N} \\ & 16^{\circ} 17^{\prime} 17^{\prime \prime} \mathrm{E} \end{aligned}$	02.10.11	Festuca sp.	KC631180
Saccharicoccus penium	Cz09	Dąbrowa Górnicza, Poland $\begin{gathered} 50^{\circ} 23^{\prime} 15^{\prime \prime} \mathrm{N} ; \\ 19^{\circ} 17^{\prime} 33^{\prime \prime} \mathrm{E} \end{gathered}$	20.07.11	Poa compressa	KC631181
S. penium	Cz9	Dąbrowa Górnicza, Poland $\begin{gathered} 50^{\circ} 23^{\prime} 15^{\prime \prime} \mathrm{N} ; \\ 19^{\circ} 17^{\prime} 33^{\prime \prime} \mathrm{E} \end{gathered}$	20.07.11	Poa compressa	KC631182
Trionymus isfarensis	Cz3	Piekary Śląskie, Poland $\begin{aligned} & 50^{\circ} 21^{\prime} 11^{\prime \prime} \mathrm{N} ; \\ & 19^{\circ} 00^{\prime} 10^{\prime \prime} \mathrm{E} \end{aligned}$	30.09.11	Agrostis capillaris	KC631161

Table 1. The collection data of the studied material (cont.)

| T. isfarensis | Cz02 | Piekary Slaskie, Poland
 $50^{\circ} 21^{\prime} 11^{\prime \prime} \mathrm{N} ;$
 $19^{\circ} 00^{\prime} 10^{\prime \prime} \mathrm{E}$ | 10.07 .11 | Agrostis capillaris |
| :---: | :---: | :---: | :---: | :---: | :--- | KC631160

Table.2. Morphological features of the examined species of Saccharicoccus and Trionymus

species	Trionymus perrisii	Trionymus aberrans forming clade with Trionymus perrisii (Cz5, Cz37, Cz12, Czo3, Cz13)	Trionymus aberrans typical	Trionymus aberrans forming clade 3	Saccharicoccus penium	Trionymus isfarensis	Trionymus thulensis
number of analyzed specimens	18	15		16	8	6	10
number of antennae segments	8	8	8	8	7	7	7-8
appearence of legs	well developed	slender	slender	slender	slender	well developed	slender
number of translucent pores in hind coxae	numerous	few	numerous	numerous	few	few	few
number of pairs of cerarii	2	2	2	2	1	from 1 to 2	2
presence of sclerotized plates in C18	present, large	-	-	-	-	present, small	-
number of trilocular pores in C18	38-40	6-8	8-12	8-16	7-9	6-7	7-9
number of hairlike setae in C18	9-13	3-4	3-4	3-4	1	3-5	1
presence of circuli	present	absent	absent	absent	present	present	present
number of circuli	1	0	0	0	1	2-3	1

Table.2. Morphological features of the examined species of Saccharicoccus and Trionymus (cont.)

species	Trionymus perrisii	Trionymus aberrans forming clade with Trionymus perrisii (Cz5, Cz37, Cz12, Czo3, Cz13)	Trionymus aberrans typical	Trionymus aberrans forming clade 3	Saccharicoccus penium	Trionymus isfarensis	Trionymus thulensis
shape of circuli	oval	\bigcirc	-	-	oval, hourglassshape	one between segments 3 and 4 large with sides notched, others small	round and small
shape of anal ring	subcircular	horseshoe-shaped	horseshoeshaped	horseshoe-shaped	oval	almost circular	almost circular
distinguishable feature	C18 on large sclerotized plates	horseshoe-shaped anal ring	horseshoeshaped anal ring	horseshoe-shaped anal ring	minute simple pores around hind legs, hourglass shape circulus	a semi-circle iof trilocular pores in front of each spiracle, oral collar ducts associated with multilocular pores	each spiracle surrounded by a few trilocular pores

