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Abstract

We investigate a long-debated question of how to create predictive recidivism models that are sufficiently
accurate, transparent, and interpretable to use for decision-making. These models are used to support deci-
sions from sentencing, determining release on probation, to allocating preventative social services. We use
popular machine learning methods to create models along the full ROC curve on a wide range of recidivism
prediction problems. We show that many methods (SVM, Ridge Regression) produce equally accurate mod-
els along the full ROC curve. However, methods designed for interpretability (CART, C5.0) cannot be tuned
to produce models that are accurate and/or interpretable. To handle this shortcoming, we use a new method
known as SLIM (Supersparse Linear Integer Models) to produce transparent and interpretable models along
the full ROC curve. These models can be used for decision-making for many different cases, since they
rival the most powerful black-box machine learning models in accuracy, but are more transparent and highly
interpretable.



1 Introduction

Forecasting has been used for criminology applications since the 1920s (Borden 1928, Burgess 1928) when
various factors derived from age, race, prior offense history, employment, grades, and neighborhood background
were used to estimate success of parole. Many things have changed since then, including the fact that we have
developed machine learning methods that can produce accurate predictive models, and have collected large
high-dimensional datasets on which to apply them.

Recidivism prediction is still extremely important. In the United States, for instance, a minority of indi-
viduals commit the majority of the crimes (Wolfgang 1987): these are the “power few” of Sherman (2007)
on which we should focus our efforts. Clearly, we want to ensure that public resources are directed towards
the right individuals, whether these resources are correctional facilities or preventative social services. Milgram
(2014) recently discussed the critical importance of accurately predicting if an individual who is released on bail
poses a risk to public safety, pointing out that high-risk individuals are being released 50% of the time while
low-risk individuals are being released less often then they should be (Milgram 2014). Her observations are in
line with longstanding work on clinical versus actuarial judgment, which shows that humans, on their own, are
not as good at risk assessment as statistical tools (Dawes et al. 1989, Grove and Meehl 1996). This is the reason
that several U.S. states have mandated the use of predictive models for sentencing decisions (Pew Center of the
States, Public Safety Performance Project 2011, Wroblewski 2014) such as those being developed recently by
(Turner et al. 2009).

There has been some controversy as to whether sophisticated machine learning methods (such as random
forests, Breiman 2001b, Berk et al. 2009, Ritter 2013) are necessary to produce accurate predictive models of
recidivism, or if traditional approaches such as logistic regression would suffice (see, e.g., Tollenaar and van der
Heijden 2013, Berk and Bleich 2013, Bushway 2013). Random forests may produce accurate predictive models,
but these models effectively operate as a “black-box,” where it is difficult to understand how the input variables
are combined to produce a predicted outcome. If a simpler, transparent, but equally accurate predictive model
could be developed, it would be more usable and defensible for all different decision-making applications.
There is a clear precedent for using such models in criminology (Steinhart 2006, Andrade 2009) where some
have argued that a “decent transparent model that is actually used will outperform a sophisticated system that
predicts better but sits on a shelf” (Ridgeway 2013). This discussion is captured nicely by Bushway (2013), who
described a discrepancy between papers of Berk and Bleich (2013) and Tollenaar and van der Heijden (2013).
Berk and Bleich (2013) claim we need sophisticated machine learning methods due to their substantial benefits
in accuracy, whereas Tollenaar and van der Heijden (2013) claim that these methods are not necessary and that
logistic regression is sufficient. In this work, we show that the answer to the question is far more subtle than a
simple yes or no.

In particular, the answer depends on how the models are going to be used for decision-making. For each use
case (e.g., sentencing, parole decisions, policy interventions) one might need a decision point at a different level
of the true positive rate (TPR) and false positive rate (FPR) (see also Ritter 2013). Each (TPR, FPR) pair is a
point on the receiver operator characteristic (ROC) curve. To determine if one method is better than another, one
must consider the appropriate point along the ROC curve for decision-making. As we will show in this paper,
for a wide range of recidivism prediction problems, many machine learning methods (support vector machines,
random forests) produce equally accurate predictive models along the full ROC curve. However, there are trade-
offs between accuracy, transparency, and interpretability: methods that are designed to yield transparent models
(CART, C5.0) cannot be tuned to produce as accurate models along the full ROC curve, and do not always
yield models that are interpretable. This is not to say that interpretable models for recidivism prediction do not
exist. The fact that many machine learning methods produce models with similar levels of predictive accuracy
indicates that there is a large class of approximately-equally-accurate predictive models (called the “Rashomon”
effect by Breiman 2001a) and, in this case, there may exist interpretable models that also attain the same level
of accuracy. Finding these models that are accurate and interpretable, however, is computationally challenging.

In this paper, we explore whether such accurate-yet-interpretable models exist and how to find them. To this
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end, we use a powerful new machine learning method known as a Supersparse Linear Integer Model (SLIM, see
Ustun et al. 2013, Ustun and Rudin 2014, 2015). SLIM is designed to produce models that are highly accurate
but simple enough to make predictions by hand, without the use of a calculator or computer. We use SLIM to
produce accurate transparent models along the full ROC curve. These models can be used for decision-making
for many different cases; they are just as accurate as the most powerful black-box machine learning models, but
completely transparent and highly interpretable. Black box models are indefensible. One may not agree with a
particular transparent model, but one can at least have a clear idea of what it is doing.

The remainder of our paper is structured as follows. In Section 2, we discuss related work. In Section 3, we
describe how we derived eight recidivism prediction problems and provide simple insights into each problem.
In Section 4, we compare the accuracy and interpretability of models produced by the eight machine learning
methods on the eight recidivism prediction problems, and include examples of accurate and interpretable SLIM
models for each problem.

With this manuscript, all of our code will be published for the purpose of reproducibility and clarity to show
how data were processed and how models were trained. We invite others to build on our work and adapt our
methodology to produce interpretable models for recidivism prediction on future applications.

2 Related Work

We discuss related work in both criminal justice and in machine learning.

2.1 Related Work in Criminal Justice

Since the 1920’s (Borden 1928, Burgess 1928, Tibbitts 1931), predictive models for recidivism have been in
widespread use in different countries and areas of the criminal justice system, spurred on by continued research
into the superiority of actuarial judgment (Dawes et al. 1989, Grove and Meehl 1996) as well as a desire to
efficiently use limited public resources (Clements 1996, Simon 2005, McCord 1978, 2003). Countries that
currently use risk assessment tools include: Canada (Hanson and Thornton 2003); the Netherlands (Tollenaar
and van der Heijden 2013); the U.K. (Howard et al. 2009); and the U.S (Turner et al. 2009). Applications of these
tools can be seen in evidence-based sentencing (Hoffman 1994), correction / prison administration (Belfrage
et al. 2000), informing release on parole (Pew Center of the States, Public Safety Performance Project 2011),
determining the level of supervision during parole (Barnes and Hyatt, Ritter 2013), determining appropriate
sanctions for parole violations (Turner et al. 2009), and targeted policy interventions (Lowenkamp and Latessa
2004).

In this work, we consider predictive models for general recidivism (recidivism of any crime type) as well
as crime-specific recidivism. Risk assessment tools for general recidivism risk prediction include: the Salient
Factor Score (Hoffman and Adelberg 1980, Hoffman 1994), the Offender Group Reconviction Scale (Copas
and Marshall 1998, Maden et al. 2006, Howard et al. 2009), the Statistical Information of Recidivism scale
(Nafekh and Motiuk 2002), and the Level of Service/Case Management Inventory (Andrews and Bonta 2000).
Crime-specific applications include risk assessment tools for domestic violence (see, e.g., the Spousal Abuse
Risk Assessment of Kropp and Hart 2000), sexual violence (see, e.g., Hanson and Thornton 2003, Langton
et al. 2007), and general violence (see, e.g., Historical Clinical and Risk Management tool of Webster et al.
1997, or the Structured Assessment of Violence Risk in Youth tool of Borum 2006).

The majority of recidivism risk assessment tools were produced using logistic regression and substantially
modified for the purposes of interpretability (see, e.g., the recommendations of Gottfredson and Snyder 2005).
These approaches have led to serious issues in practice (see, e.g., Gottfredson and Moriarty 2006, for a detailed
overview). In particular, risk assessments are not well suited for decision-making because they output risk
estimates as opposed to prediction. Risk estimates can be converted to predicted outcomes by imposing a
threshold (i.e. classify a prisoner as “high-risk” if the predicted probability of arrest > 70%). Many tools use
the risk estimate to produce several outcomes (e.g.,“low risk,” “medium risk” and “high risk) with thresholds
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that are decided arbitrarily (Hannah-Moffat 2013). This makes it difficult, if not impossible, to assess predictive
accuracy: Netter (2007), for instance, mentions that “the possibility of making a prediction error (false positive
or false negative) using a risk tool is probable, but not easily determined.” This problem is further exacerbated by
the fact that the performance of each tool is reported using statistics that do not immediately relate to predictive
accuracy. In many cases, performance is measured using in-sample error (i.e., ‘training’ error) or in-sample
AUC, despite the fact that the out-of-sample TPR/FPR at the decision-making point is far more relevant. There
has been continued interest in more principled evaluation methods for these programs in recent years (see for
instance the review papers of Skeem and Monahan 2011, Hanson and Morton-Bourgon 2009).

Predictive models for recidivism have been used extensively, especially for parole decisions and sentencing.
In the 1970s, for instance, the United States Parole Commission began using an actuarial measurement built from
2,497 prisoners to inform parole decisions, called the Salient Factor Score (SFS) (Hoffman and Adelberg 1980).
A follow-up study showed that the SFS had been fairly accurate in the first twenty years of its implementation
(Hoffman 1994). Since 1987, the United States Sentencing Commission’s Federal Sentencing Guidelines has
mandated the use of a predictive recidivism measure for sentencing, in particular, the Criminal History Category
(CHC) (U.S. Sentencing Commission 1987). A series of reports compared the CHC and SFS along various
dimensions (U.S. Sentencing Commission 2004, 2005). We remark that the form of all of these models are
linear models with integer coefficients like the ones we develop in this paper; of course, the CHC and SFS
were not built using the sophisticated optimization techniques we use. Unlike the CHC and SFS, our models
are created in a completely automated way, for each crime type, which implies that our tools can be used for
population-specific models, or other datasets. The studies found that the AUC was 0.70 for the CHC and 0.73
for the SFS (U.S. Sentencing Commission 2005), which are within the range of the values we report in Section
4.4 (0.66 – 0.72 depending on the method). Note that our dataset is slightly different; it is over five times the
size of that used for the USSC’s recidivism study, and we predict for 3 years rather than 2 years.

2.2 Related Work in Statistics and Machine Learning

Many current criminologists and statisticians still depend heavily on traditional statistical tools such as logistic
regression, e.g., the work of Penner et al. (2013). They consider in-sample performance, rather than the machine
learning perspective of considering out-of-sample performance on a held-out test set; the machine learning
perspective handles problems with overfitting and multiple testing, and it is well-known that only reporting
in-sample accuracy can be very misleading. There are some works that consider machine learning approaches,
and in particular, classification trees. For instance the work of Steadman et al. (2000) favors classification trees
over logistic regression due to its similarity to the clinical method of decision making. Stalans et al. (2004) also
found that decision trees are better than logistic regression for prediction of violent recidivism, and Silver and
Chow-Martin (2002) used trees as a meta-learner over multiple existing recidivism models. Berk et al. (2005)
conducted a study that helped the Los Angeles Sheriff’s Department develop a simple and practical screener
for forecasting domestic violence, also showing that decision trees were more accurate than logistic regression.
Berk and Bleich (2014) used classification trees CART to provide a prototype of risk forecasting for sentencing.
We extensively consider decision trees in this study, but we find there are flaws in the standard decision tree
algorithms and implementations that other methods do not have. In particular, these decision tree methods are
greedy and do not produce optimal solutions; they also cannot easily be tuned to different decision points.

Random forests (Breiman 2001b) is another popular method that produces very complex black-box models:
Neuilly et al. (2011) found that random forests were better for prediction of recidivism for homicide offenders;
Berk et al. (2006) used the method to forecast a prisoner’s likelihood to commit a serious misconduct while in-
carcerated; Berk et al. (2009) used it to forecast potential murders for criminals on probation or parole; and Berk
and Sorenson used random forests to forecast domestic violence and help inform court decisions at arraignment.

The work of Tollenaar and van der Heijden (2013) provides somewhat of an exception to the works on
machine learning for recidivism, by claiming that machine learning approaches do not outperform classical
statistical modeling approaches, and that they both perform similarly. Our findings are similar in some ways
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to those of Tollenaar and van der Heijden (2013) in that for some decision points, we find that all methods
- machine learning methods and classical statistical methods - have essentially the same performance. This
“Rashomon” effect (Breiman 2001a) can be exploited to find models that are accurate but also are beneficial in
other ways, such as interpretability. We agree with the commentary of Yang et al. (2010) who noted that for
many problems, many prediction methods perform approximately the same, and in that case, one should use
another measure to gauge how useful a model is. (Yang et al. 2010, was not a machine learning study however.)
Our findings disagreed with Tollenaar and van der Heijden (2013) in an important way. Specifically, we find
that for some decision points, the choice of algorithm is extremely important.

There are some works on the topic of handling issues such as race in predictive modeling (e.g., Gottfredson
and Jarjoura 1996, Berk 2009), and broadly, guidelines on constructing and understanding models. Gottfredson
and Moriarty (2006) provide a set of warnings for those using statistical tools to create predictions (though the
evaluation of performance that they recommend differs from our approach). For instance, it is clearly true that
all of our results are conditioned on our dataset. It is easily possible to change the conditioning by re-running
our code on a subset of our data, or on recidivism data from another source.

3 Data and Preliminary Analysis

The recidivism prediction problems in our paper were all derived from the “Recidivism of Prisoners Released in
1994” database, which was put together by the U.S. Department of Justice, Bureau of Justice Statistics (2014).
Each problem is a binary classification problem with N = 33796 prisoners and P = 49 input variables, where
the goal is to predict if a prisoner will be arrested for a certain type of crime within 3 years of being released from
prison. In what follows, we describe the original database, explain how we created each prediction problem,
and provide insights. The “Recidivism of Prisoners Released in 1994” database (U.S. Department of Justice,
Bureau of Justice Statistics 2014) is the largest publicly available database on prisoner recidivism in the United
States.1 It tracks a sample of 38,624 prisoners for 3 years following their release from prison in 1994. These
prisoners are randomly sampled from the population of all prisoners released from 15 major states2 and account
for two-thirds of prisoners that were released from prison in the U.S. in 1994.

The database is composed of 38,624 rows and 6,427 columns, where each column represents a prisoner and
each row represents a field of information for a given prisoner. The 6,427 columns consist of 91 fields that
were recorded before or during release from prison in 1994 (e.g., date of birth, effective sentence length), and
64 fields that were repeatedly recorded for up to 99 different points in the 3 year follow-up period (e.g., if a
prisoner was arrested until that point). The information for each prisoner is sourced from record of arrest and
prosecution (RAP) sheets kept by state law enforcement agencies and/or the FBI. A detailed descriptive analysis
of the database was carried out by statisticians at the U.S. Bureau of Justice Statistics (Langan and Levin 2002).
This study restricted its attention to 33,796 of the 38,624 prisoners to exclude extraordinary or unrepresentative
release cases.3 To mirror the approach of Langan and Levin (2002), we also restricted our attention to the same
subset of prisoners.

This dataset also has serious flaws which we point out below (almost every data set has serious flaws of some
kind). For our dataset, many important factors that could be used to predict recidivism are missing, and many
included factors are noisy enough that they were not useful for prediction in our preliminary experiments. The
information about education levels is extremely minimal; we do not even know whether each prisoner attended
college, or completed high school, and the information about courses in prison is only an indicator of whether
the inmate took any education or vocation courses at all. Also there is no family history for each prisoner (e.g.,

1Other studies that use this database include Bhati and Piquero (2007), Bhati (2007), Zhang et al. (2009).
2The states in the database include: Arizona, California, Delaware, Florida, Illinois, Maryland, Michigan, Minnesota, New Jersey,

New York, North Carolina, Ohio, Oregon, Texas, and Virginia.
3To be selected for the analysis of Langan and Levin (2002), a prisoner had to be alive during the 3 year follow-up period, and had to

have been released from prison in 1994 for an original sentence that was at least 1 year or longer. Prisoners with certain release types -
release to custody/detainer/warrant, absent without leave, escape, transfer, administrative release, and release on appeal - were excluded.
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foster care), and no record of visitors while in prison (e.g., indicators of caring family members or friends).
There is no information about reentry programs, or employment history. For instance, we have only an indicator
that someone was once a drug or alcohol abuser, but we have little details about the drug treatment or the extent
of drug abuse. While some of these factors, such as drug/alcohol treatment and in prison vocational programs,
exist, data is highly incomplete and therefore excluded from our analysis. For example, for drug treatment, less
than 14% of the prisoners had a valid entry. The rest were “unknown.” In order for the study to include as many
prisoners as possible, we chose to exclude factors with extremely sparse information.

Furthermore, there are more detailed categories of the crimes reported (e.g. fatal violence can be broken
than into 6 categories), but we did not find those to be useful in preliminary analysis; an avenue of further
investigation would be to consider these features further; however, without the education and family information,
it is not clear that this would be worthwhile. The major benefits of this dataset over others are: (i) it is publicly
available, benefiting reproducibility (ii) it is large (iii) its criminal history records are fairly complete. Indeed,
the BJS study by Langan and Levin (2002) also split the crimes into exactly the same major categories that we
did.

3.1 Prediction Problems

Input Variables: We derived a total of P = 49 input variables. We encoded each input variable as a binary
rule of the form xij ∈ {0, 1} where xij = 1 if condition j holds true about prisoner i, allowing us to en-
code highly nonlinear functions of the original variables. For clarity, we refer to input variables in the text
using italicized font (e.g., female). We provide a summary of all input variables in Table 1. The final set of input
variables represents known risk factors (Bushway and Piehl 2007, Crow 2008) and have been used in risk assess-
ment tools since 1928 (see, e.g., Borden 1928, U.S. Sentencing Commission 2005, Berk et al. 2006, Baradaran
2013). Specifically, the variables are based on: 1) information about prison release in 1994 (e.g., time served,
age at release, infraction); 2) information from past arrests, sentencing, and convictions (e.g., prior arrests≥1,
any prior jail time);4 3) history of substance abuse (e.g., alcohol abuse) 4) gender (e.g., female). Thus our
actuarial tools assess static recidivism risk5 in the sense that a) the information is easily accessible to law en-
forcement officials (all above information can be found in state RAP sheets); and b) the input variables do not
include socioeconomic factors such as race, which would directly eliminate the potential to use these tools in
applications such as sentencing.

Outcome Variables: We created eight recidivism prediction problems by encoding a binary outcome variable
yi ∈ {−1,+1}, where yi = +1 if a prisoner is arrested for a particular type of crime within 3 years after being
released from prison; and yi = −1 otherwise. For clarity, we refer to each prediction problem in the text using
typewriter font (e.g., arrest). We provide details on the recidivism prediction problems that we consider in
Table 2. We note that the percentages P (yi = +1) in Table 2 do not add up to 100% because a prisoner could
be arrested for multiple types of crime within a single incident (e.g., both drug and public order offenses), and
could also be arrested multiple times over the 3 year follow-up period.

The final problems that we consider include: an arrest for any crime (arrest); an arrest for a drug-related
offense (drug); an arrest for a property-related offense (property); an arrest for a public order-related of-
fense (public order); or an arrest for a certain type of violent offense (general violence, domestic violence,
sexual violence, fatal violence).6

4Note that the prior arrests variable does not count the crime for which they were released from prison in 1994; thus, about 12% of
the prisoners in the dataset have no prior arrests =1 even though they had to have been arrested at least once the crime for which they
were released from prison in 1994.

5Static recidivism risk assessment tools use risk factors that do not change over time (see, e.g., Tollenaar and van der Heijden 2013,
Hannah-Moffat 2013, for a discussion).

6We formulated mutually exclusive outcome variables for violent offenses as different types of violence are treated differently within
the U.S. legal system. In other words, yi = +1 for general violence does not necessarily imply yi = +1 for domestic violence,
sexual violence, fatal violence)
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Input Variable P(xij = 1) Definition

female 0.06 prisoner i is female

prior alcohol abuse 0.20 prisoner i has history of alcohol abuse

prior drug abuse 0.16 prisoner i has history of drug abuse

age at release≤17 0.00 prisoner i was ≤ 17 years old at release in 1994

age at release 18 to 24 0.19 prisoner i was 18–24 years old at release in 1994

age at release 25 to 29 0.21 prisoner i was 25–29 years old at release in 1994

age at release 30 to 39 0.38 prisoner i was 30–39 years old at release in 1994

age at release≥40 0.21 prisoner i was ≥ 40 years old at release in 1994

released unconditional 0.11 prisoner i released at expiration of sentence

released conditional 0.87 prisoner i released by parole or probation

released other 0.02 prisoner i released by other means

time served≤6mo 0.23 prisoner i served ≤6 months

time served 7 to 12mo 0.20 prisoner i served 7–12 months

time served 13 to 24mo 0.23 prisoner i served 13–24 months

time served 25 to 60mo 0.25 prisoner i served 25–60 months

time served≥61mo 0.10 prisoner i served ≥61 months

infraction in prison 0.24 prisoner i has a record of misconduct in prison

age 1st arrest≤17 0.14 prisoner i was ≤ 17 years old at 1st arrest

age 1st arrest 18 to 24 0.61 prisoner i was 18–24 years old at 1st arrest

age 1st arrest 25 to 29 0.10 prisoner i was 25–29 years old at 1st arrest

age 1st arrest 30 to 39 0.09 prisoner i was 30–39 years old at 1st arrest

age 1st arrest≥40 0.04 prisoner i was ≥ least 40 years at 1st arrest

age 1st confinement≤17 0.03 prisoner i was ≤ 17 years old at 1st confinement

age 1st confinement 18 to 24 0.46 prisoner i was 18–24 years old at 1st confinement

age 1st confinement 25 to 29 0.18 prisoner i was 25–29 years old at 1st confinement

age 1st confinement 30 to 39 0.21 prisoner i was 30–39 years old at 1st confinement

age 1st confinement≥40 0.12 prisoner i was ≥ 40 years at 1st confinement

prior arrests for drug 0.47 prisoner i was once arrested for drug offense

prior arrests for property 0.67 prisoner i was once arrested for property offense

prior arrests for public order 0.62 prisoner i was once arrested for public order offense

prior arrests for general violence 0.52 prisoner i was once arrested for general violence

prior arrests for domestic violence 0.04 prisoner i was once arrested for domestic violence

prior arrests for sexual violence 0.03 prisoner i was once arrested for sexual violence

prior arrests for fatal violence 0.01 prisoner i was once arrested for fatal violence

prior arrests for multiple types 0.77 prisoner i was once arrested for multiple types of crime

prior arrests for felony 0.84 prisoner i was once arrested for a felony

prior arrests for misdemeanor 0.49 prisoner i was once arrested for a misdemeanor

prior arrests for local ordinance 0.01 prisoner i was once arrested for local ordinance

prior arrests with firearms involved 0.09 prisoner i was once arrested or an incident involving firearms

prior arrests with child involved 0.17 prisoner i was once arrested for an incident involving children

no prior arrests 0.12 prisoner i has no prior arrests

prior arrests≥1 0.88 prisoner i has at least 1 prior arrest

prior arrests≥2 0.78 prisoner i has at least 2 prior arrests

prior arrests≥5 0.60 prisoner i has at least 5 prior arrests

multiple prior prison time 0.43 prisoner i has been to prison multiple times

any prior jail time 0.47 prisoner i has been to jail at least once

multiple prior jail time 0.29 prisoner i has been to prison multiple times

any prior probation or fine 0.42 prisoner i has been been on probation or paid a fine at least once

multiple prior probation or fine 0.22 prisoner i has been been on probation or paid a fine multiple times

Table 1: Overview of input variables for all prediction problems. Each input variable is a binary rule of the form xij ∈
{0, 1}. We list conditions required for xij = 1 under the Definition column.
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Problem P(yi = +1) Outcome Variable

arrest 59.0% yi = +1 if prisoner i is arrested for any offense within 3 years of release from prison

drug 20.0%
yi = +1 if prisoner i is arrested for drug-related offense (e.g., possession, trafficking)
within 3 years of release from prison

property 25.2%
yi = +1 if prisoner i is arrested for a property-related offense (e.g., burglary, larceny, arson,
fraud) within 3 years of release from prison

public order 27.9%
yi = +1 if prisoner i is arrested for a public order offense (e.g., weapons possession, DUI)
within 3 years of release from prison

general violence 19.1%
yi = +1 if prisoner i is arrested for a violent offense (e.g., robbery, aggravated assault)
within 3 years of release from prison

domestic violence 3.5% yi = +1 if prisoner i is arrested for domestic violence within 3 years of release from prison

sexual violence 3.0% yi = +1 if prisoner i is arrested for sexual violence within 3 years of release from prison

fatal violence 0.7%
yi = +1 if prisoner i is arrested for murder or manslaughter within 3 years of release from
prison

Table 2: Overview of recidivism prediction problems.

3.2 Conditional Probabilities for Each Outcome and Variable

Table 3 lists the conditional probabilities P (y = 1|xj = 1) between the outcome variable y and each input
variable xj for all prediction problems. Using this table, we can identify strong associations between the input
and output for each prediction problem. These associations can help uncover insights into each problem and also
help qualitatively validate predictive models in Section 4.5. Consider, for instance, arrest. Here, we can see that
prisoners who are released from prison at a later age are less likely to be arrested (as the probability for arrest
decreases monotonically as age at release increases). This also appears to be the case for prisoners who were
first confined (e.g., sent to prison or jail) at an older age (see, e.g., age of first confinement). In addition, we can
also see that prisoners with more prior arrests have a higher likelihood of being arrested (as the probability for
arrest increases monotonically with prior arrests).

Similar insights can be made for crime-specific prediction problems. In drug, for instance, we see that
prisoners who were previously arrested for a drug-related offense are more likely to be arrested for a drug-
related offense (32%) than those who were previously arrested for any other type of offense. Likewise, looking
at domestic violence, we see that the prisoners with the greatest probability of being arrested for a domestic
violence crime are those with a history of domestic violence (13%).

4 Prediction Methodology and Empirical Results

In what follows we discuss cost-sensitive classification for imbalanced problems, provide and overview of tech-
niques and provide empirical results.

4.1 Imbalanced Problems and Cost-Sensitive Classification

The majority of classification problems that we consider in this paper are imbalanced in the sense that the data
contain a relatively small number of examples from one class and a relatively large number of examples from
the other.

Imbalanced classification problems necessitate changes in the way that we train classification models as
well as the way that we evaluate their performance. Consider, for instance, a heavily imbalanced problem such
as fatal violence where only P(yi = +1) = 0.4% of individuals are arrested within 3 years of being released
from prison. In this case, a method that maximizes overall classification accuracy is likely to produce a model
that predicts no one will be arrested for fatal offenses – a result that is not surprising given that the trivial model
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Input Variable Prediction Problem

arrest drug property
public
order

general
violence

domestic
violence

sexual
violence

fatal
violence

female 0.54 0.21 0.27 0.23 0.11 0.02 0.01 0.0005

prior alcohol abuse 0.58 0.18 0.29 0.28 0.20 0.04 0.03 0.01

prior drug abuse 0.61 0.23 0.32 0.27 0.21 0.03 0.03 0.004

age at release≤17 0.84 0.35 0.46 0.36 0.31 0.01 0.01 0.04

age at release 18 to 24 0.71 0.24 0.31 0.35 0.25 0.04 0.03 0.01

age at release 25 to 29 0.66 0.23 0.29 0.32 0.21 0.04 0.03 0.01

age at release 30 to 39 0.59 0.20 0.26 0.28 0.17 0.04 0.03 0.01

age at release≥40 0.41 0.12 0.15 0.18 0.09 0.02 0.03 0.003

released unconditional 0.65 0.20 0.28 0.36 0.23 0.06 0.04 0.01

released conditional 0.58 0.20 0.25 0.27 0.17 0.03 0.03 0.01

released other 0.61 0.19 0.19 0.19 0.11 0.004 0.02 0.004

time served≤6mo 0.67 0.27 0.30 0.32 0.19 0.04 0.03 0.01

time served 7 to 12mo 0.63 0.22 0.28 0.28 0.19 0.04 0.03 0.01

time served 13 to 24mo 0.59 0.20 0.24 0.28 0.17 0.04 0.03 0.01

time served 25 to 60mo 0.53 0.16 0.22 0.26 0.17 0.03 0.03 0.01

time served≥61mo 0.48 0.11 0.17 0.21 0.15 0.02 0.04 0.004

infraction in prison 0.65 0.19 0.30 0.30 0.20 0.01 0.04 0.01

age 1st arrest≤17 0.73 0.27 0.36 0.37 0.27 0.04 0.04 0.01

age 1st arrest 18 to 24 0.64 0.22 0.27 0.30 0.20 0.04 0.03 0.01

age 1st arrest 25 to 29 0.47 0.14 0.17 0.21 0.10 0.02 0.02 0.005

age 1st arrest 30 to 39 0.34 0.10 0.11 0.13 0.06 0.02 0.02 0.003

age 1st arrest≥40 0.21 0.05 0.05 0.09 0.03 0.01 0.02 0.002

age 1st confinement≤17 0.78 0.28 0.39 0.38 0.29 0.04 0.04 0.02

age 1st confinement 18 to 24 0.68 0.24 0.30 0.33 0.23 0.05 0.04 0.01

age 1st confinement 25 to 29 0.60 0.20 0.25 0.28 0.17 0.03 0.03 0.005

age 1st confinement 30 to 39 0.50 0.16 0.20 0.23 0.12 0.03 0.02 0.003

age 1st confinement≥40 0.34 0.09 0.12 0.16 0.07 0.01 0.02 0.002

prior arrests for drug 0.68 0.32 0.31 0.33 0.21 0.04 0.02 0.01

prior arrests for property 0.67 0.24 0.33 0.33 0.22 0.04 0.03 0.01

prior arrests for public order 0.65 0.24 0.30 0.35 0.22 0.04 0.03 0.01

prior arrests for general violence 0.67 0.25 0.32 0.35 0.26 0.05 0.04 0.01

prior arrests for domestic violence 0.66 0.21 0.28 0.33 0.27 0.13 0.04 0.01

prior arrests for sexual violence 0.49 0.13 0.18 0.25 0.16 0.04 0.06 0.01

prior arrests for fatal violence 0.54 0.19 0.20 0.25 0.21 0.04 0.03 0.01

prior arrests for multiple crime types 0.64 0.23 0.29 0.32 0.21 0.04 0.03 0.01

prior arrests for felony 0.60 0.21 0.27 0.30 0.19 0.04 0.03 0.01

prior arrests for misdemeanor 0.69 0.26 0.33 0.38 0.24 0.06 0.03 0.01

prior arrests for local ordinance 0.91 0.29 0.45 0.84 0.43 0.15 0.05 0.02

prior arrests with firearms involved 0.70 0.30 0.32 0.35 0.27 0.06 0.03 0.01

prior arrests with child involved 0.48 0.13 0.17 0.26 0.14 0.03 0.06 0.01

no prior arrests 0.32 0.07 0.09 0.13 0.08 0.02 0.02 0.003

prior arrests ≥ 1 0.63 0.22 0.27 0.30 0.19 0.04 0.03 0.01

prior arrests ≥ 2 0.66 0.23 0.29 0.32 0.20 0.04 0.03 0.01

prior arrests ≥ 5 0.70 0.25 0.33 0.35 0.22 0.04 0.03 0.01

multiple prior prison time 0.65 0.23 0.30 0.30 0.19 0.03 0.03 0.01

any prior jail time 0.69 0.25 0.32 0.33 0.21 0.04 0.03 0.01

multiple prior jail time 0.73 0.27 0.37 0.36 0.22 0.04 0.03 0.01

any prior probation or fine 0.67 0.24 0.31 0.33 0.20 0.04 0.03 0.01

multiple prior probation or fine 0.71 0.27 0.35 0.37 0.22 0.05 0.03 0.01

Table 3: Table of conditional probabilities for all input variables (row) and prediction problems (columns). Each cell
represents the conditional probability P (y = +1|x = +1) where x is the input variable that is specified in the row and y
is the outcome variable for the prediction problem specified in the column.
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is 99.6% accurate on the overall population. Unfortunately, this model will never be able to identify individuals
that are arrested for fatal offenses, and will actually be 0% accurate on the population of interest.

In order to provide a clear measure of performance of classification model on imbalanced problems, we
assess the accuracy of a model on the positive and negative classes separately. In our experiments, we report
the class-based accuracy of each model using metrics known as the true positive rate (TPR), which reflects the
accuracy on the positive class, and the false positive rate (FPR), which reflects the error rate on negative class.
For a given classification model, we compute these quantities as

TPR =
1

N+

∑
i∈I+

1 [ŷi = +1] and FPR =
1

N−

∑
i∈I−

1 [ŷi = +1] ,

where ŷi denotes the predicted outcome for example i, N+ denotes the number of examples in the positive class
I+ = {i : yi = +1}, and N− denotes the number of examples from the negative class I− = {i : yi = −1}.
Ideally, a classification model should have high TPR and low FPR (i.e. TPR close to 1 and FPR = 0).

Most classification methods can be adapted to yield a model that is more accurate on the positive class,
but only if we are willing to sacrifice some accuracy on examples from the negative class, and vice-versa.
To illustrate the trade-off of classification accuracy between positive and negative classes, we plot all models
produced by a given method as points on a receiver operating characteristic (ROC) curve, which plots the TPR
on the vertical axis and the FPR on the horizontal axis. Having constructed an ROC curve, we then assess the
overall performance of each method by calculating the area under the ROC curve (AUC).7 A detailed discussion
of ROC analysis in recidivism prediction can be found in the work of Maloof (2003).

Different applications will require models at different points of the ROC curve. Models for sentencing,
for example, need low FPR in order to avoid predicting that a low-risk individual will reoffend. Models for
screening, however, need high TPR in order to capture as many high-risk individuals as possible.

In this paper, we use a cost-sensitive approach to produce classification models at different points of the
ROC curve (see, e.g., Berk 2010, 2011). This approach involves controlling the accuracy on the positive and
negative classes by tuning the misclassification costs for examples in each class. In what follows, we denote the
misclassification cost on examples from the positive and negative classes as W+ and W−, respectively. As we
increase W+, the cost of making a mistake on a positive example increases, and we expect to obtain a model
that classifies the positive examples more accurately (i.e. with higher TPR). We choose W+ and W− so that
W+ +W− = 2. Thus, when W+ = 2, we obtain a trivial model that predicts ŷi = +1 and attains TPR = 1.
When W+ = 0, we obtain a trivial model that predicts ŷi = −1 that attains FPR = 0.

4.2 Overview of Classification Methods

We compared the performance of models from eight different classification methods, including those previously
used for recidivism prediction (see Section 2.2) or that ranked among the “top 10 algorithms in data mining”
(Wu et al. 2008). We restricted our attention to methods with publicly-available software packages that allowed
us to specify misclassification costs for positive and negative classes.

• C5.0 Trees and C5.0 Rules: C5.0 is an updated version of the popular C4.5 algorithm (Quinlan 2014, Kuhn
and Johnson 2013) that can create decision trees and rule sets.

• Classification and Regression Trees (CART): CART is a popular method to create decision trees through
recursive partitioning of the input variables (Breiman et al. 1984), which is a predecessor to C5.0.

• L1 and L2-Penalized Logistic Regression: State-of-the-art variants of logistic regression that penalize the
coefficients to prevent overfitting (Friedman et al. 2010). L1-penalized methods are typically used to create
linear models that are sparse (Tibshirani 1996, Hesterberg et al. 2008).
7We note that AUC is a summary statistic that is frequently misused in the context of classification problems. It is true that a method

that with AUC = 1 always produces models that are more accurate than a method with AUC = 0. Other than this simple case, however,
it is not possible to state that a method with high AUC always produces models that are more accurate than a method with low AUC.
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• Random Forests: A popular “black-box” method that makes predictions using a large ensemble of “weak”
classification trees. The method was originally developed by Breiman (2001b) but is widely used for recidi-
vism prediction (see, e.g., Berk et al. 2009, Ritter 2013).

• Support Vector Machines: A popular “black-box” method for non-parametric linear classification. The
Radial Basis Function (RBF) kernel allows the method to handle classification problems where the decision-
boundary may be non-linear (see, e.g., Cristianini and Shawe-Taylor 2000, Berk and Bleich 2014).

• Supersparse Linear Integer Models: A new method to create scoring systems that are optimized for accu-
racy and sparsity (Ustun and Rudin 2015). We provide a short overview in the following section.

4.2.1 Supersparse Linear Integer Models

A Supersparse Linear Integer Model (SLIM) is a new optimization-based method for creating scoring systems
– that is, linear classification models that only require users to add, subtract and multiply a few small numbers
to make a prediction (Ustun and Rudin 2015).

Scoring systems are widely used because they allow users to make quick predictions, without the use of a
computer, and without extensive training in statistics (see, e.g., Webster et al. 1997, Webster 2013, for applica-
tions in criminology). These models are often more interpretable than traditional linear models because they are
highly sparse and use a small number of integer coefficients. Such characteristics allow users to easily gauge
the influence of one input variable with respect to the others – by catering to the fact that most humans are
seriously limited in the number of cognitive entities they can handle at once (7 ± 2 according to Miller 1984),
and seriously limited in estimating the association between three or more variables (Jennings et al. 1982).

SLIM scoring systems are linear classification models of the form:

ŷi =


+1 if

P∑
j=1

λjxij > λ0

−1 if
P∑
j=1

λjxij ≤ λ0.

Here, λ1, . . . , λP represent the coefficients (i.e. the “points” for input variables 1, . . . , P ), and λ0 represents an
intercept (i.e. the “threshold score” that has to be surpassed to predict ŷi = +1). The values of the coefficients
are fitted from data by solving a discrete optimization problem of the form:

min
λ

1

N

N∑
i=1

1 [yi 6= ŷi] + C0

P∑
j=1

1 [λj 6= 0] + ε
P∑
j=1

|λj |

s.t. (λ0, λ1, ..., λP ) ∈ L.

Here, the objective directly minimizes the error rate 1
N

∑N
i=1 1 [yi 6= ŷi] and directly penalizes the number of

non-zero terms
∑P

j=1 1 [λj 6= 0]. The constraints restrict coefficients to a small set of bounded integers and
may include additional conditions to tailor the accuracy and interpretability of the final scoring system. We note
that the objective also includes a tiny penalty on the absolute value of the coefficients to restrict coefficients to
coprime values without affecting accuracy or sparsity.8

8To illustrate the use of this penalty, consider a classifier such as ŷ = sign (x1 + x2). If SLIM only minimized the misclassification
rate and the number of terms, then ŷ = sign (2x1 + 2x2) would have the same objective value as ŷ = sign (x1 + x2) because it makes
the same predictions and has the same number of non-zero coefficients. Since coefficients are restricted to a discrete set, we use this
tiny penalty on the absolute value of these coefficients so that SLIM chooses the classifier with the smallest (coprime) coefficients,
ŷ = sign (x1 + x2).
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SLIM differs from state-of-the-art machine learning methods because it directly optimizes accuracy and
sparsity, without making approximations that other methods make for scalability (e.g., the use of convex loss
functions). By avoiding these approximations, SLIM sacrifices the ability to fit a model within seconds in a way
that scales to extremely large datasets. In return, however, it gains the ability to produce accurate models that
are far more practical and interpretable than the state-of-the-art.

SLIM also has the unique ability to address operational constraints related to accuracy and interpretability,
without the need for parameter tuning (e.g., it can directly produce scoring systems with explicit limits on the
false positive rate, or the number of input variables in the final model). In our experiments, we trained the
following version of SLIM:

min
λ

W+

N

∑
i∈I+

1 [yi 6= ŷi] +
W−

N

∑
i∈I−

1 [yi 6= ŷi] + C0

P∑
j=1

1 [λj 6= 0] + ε
P∑
j=1

|λj |

s.t.
P∑
j=1

1 [λj 6= 0] ≤ 8

λj ∈ {−10, . . . , 10} for j = 1,...,P

λ0 ∈ {−100, . . . , 100}.

Here, we constrained each coefficient λj to an integer between−10 and 10, we constrained the threshold λ0 to an
integer between−100 and 100, and we restricted the number of non-zero coefficients to at most 8, similar to the
number of cognitive entities humans can handle (Miller 1956). These choices were intended to create a model
that would allow users to make predictions without a computer or calculator, and to be able to easily assess
how joint values of input variables affected the predicted outcome. The C0 parameter was set to a sufficiently
small value so that SLIM would not sacrifice accuracy for sparsity; given W+, W− we can set C0 to any value
0 < C0 < min{W−,W+}/NP to ensure this condition. The ε parameter was set to a sufficiently small value
so that SLIM would produce a model with coprime coefficients without affecting accuracy or sparsity; given
W+, W− and C0, we can set ε to any value 0 < ε < C0/max

∑P
j=1 |λj | to ensure this condition.

One cannot expect the same level of accuracy or constraint satisfaction by manually rounding or adjusting
logistic regression coefficients, manually searching over integer points in a high dimensional space can be highly
suboptimal.

4.3 Experimental Design

We provide an overview of the methods, software, and settings that we used to produce prediction models for
all problems in Table 4.

We ran each method on each problem for 19 values of W+ as well as method-specific free parameters. By
default, we chose values of W+ ∈ {0.050, . . . , 1.950, 2.000} (i.e. cost ratios between 1:39 and 39:1). This
range was inappropriate for problems with a significant class imbalance as all methods produced trivial models.
For significantly imbalanced problems, such as domestic violence, sexual violence, we instead used values of
W+ ∈ {1.905 . . . , 1.995} (i.e. cost ratios between 19:1 and 199:1). In the case of fatal violence, which was
extremely imbalanced, we used W+ ∈ {1.9905, . . . , 1.9995} (i.e. cost ratios between 209:1 and 3999:1).

For each problem, each method, each value of W+, and each instance of the method-specific free parame-
ters, we trained a total of 11 models: 1 model using all of the data to assess interpretability, and 10 models using
subsets of the data to assess the predictive accuracy through 10-fold cross-validation (10-CV). We generated
the folds once, and used the same folds for each problem so as to allow for comparisons across algorithms and
problems.

We constructed an ROC curve for each method by plotting the 10-CV mean TPR and 10-CV mean FPR of
the produced model for each distinct value of W+. For methods such as Lasso, Ridge and SVM RBF, where
we trained multiple models for each value of W+ with different settings of the free parameters, we selected a
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Method Acronym Software Free Parameters and Settings

CART Decision Trees CART
rpart

(Therneau et al. 2012) 19 values of W+

C5.0 Decision Trees C5.0T
c50

(Kuhn et al. 2012) 19 values of W+

C5.0 Decision Rules C5.0R
c50

(Kuhn et al. 2012) 19 values of W+

Logistic Regression
(L1-Penalty) Lasso

glmnet
(Friedman et al. 2010)

19 values of W+ × 100 values of L1-penalty
chosen by glmnet

Logistic Regression
(L2-Penalty) Ridge

glmnet
(Friedman et al. 2010)

19 values of W+ × 100 values of L2-penalty
chosen by glmnet

Random Forests RF
randomForest

(Liaw and Wiener 2002) 19 values of W+

Support Vector Machines
(Radial Basis Kernel) SVM RBF

e1071
(Meyer et al. 2012)

19 values of W+

× 7 values of C ∈ (10−3, . . . , 103)

SLIM Scoring Systems SLIM CPLEX 12.6
19 values of W+; C0, ε,L set to find most
accurate model with ≤ 8 coefficients where
λ0 ∈ {−100, . . . , 100} and λj ∈ {−10, . . . , 10}

Table 4: Methods, software and free parameters used to create models for each problem. The values of W+ are problem-
specific.

single model for each of the W+ values by choosing the instance that minimized the weighted mean 10-CV test
error. This resulted in optimistic performance for these methods, as we discuss shortly.

We trained all models on a 12-core 2.7GHZ Intel Nehalem CPU with 48GB RAM. We trained all methods
other than SLIM using publicly available packages in R 3.1.1 (R Core Team 2014) without imposing any time
constraints. We trained SLIM by solving mixed-integer programming problems (MIP) with the CPLEX 12.6
API in MATLAB 2014a. We set a time limit of 1 hour for each MIP and solved 11 MIPs in parallel. Thus, it
took 19 hours to train all of the SLIM models required to produce an ROC curve for a single problem. This was
comparable to the time required to train models with RF and SVM RBF: these methods required 40–60 minutes
to train models at each value of W+, and 12–20 hours to produce all models required to create an ROC curve.

Our design differs from split-sample designs where a substantial portion of the data is reserved for used
as a test set (see, e.g., Tollenaar and van der Heijden 2013, Berk et al. 2014). We chose to forgo allocating a
test set because it would have substantially reduced the number of examples in the minority class for heavily
imbalanced problems such as fatal violence.9 This design may have resulted in optimistic performance for
Lasso, Ridge and SVM RBF as we set the free parameters for these methods using 10-CV statistics. However, it
had the benefit of producing 10 separate estimates of predictive accuracy, and final predictive models that were
trained with as much data as possible, and provided us with a measure of uncertainty on unseen data.

4.4 Observations on Predictive Accuracy

We show the ROC curves for all methods on all prediction problems in Figures 1 and 2 and summarize the
10-CV test AUC of each method in Table 5. We make the following important observations, which we believe
carries over to a large class of problems beyond recidivism prediction:

• All methods did well on the general recidivism prediction problem arrest. In this case, we observe only
small differences in predictive accuracy of different methods: all methods (other than CART) attain a test
AUC above 0.70; the highest test 10-CV test AUC was achieved by SVM RBF (0.74). This multiplicity of
good models reflects the Rashomon effect of Breiman (2001b).
9There is little guidance on how much data to allocate for a test set (see e.g Faraway 2014, for a discussion.)
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• Major differences between methods appeared in terms of their performance on imbalanced prediction prob-
lems. We expected different methods respond differently to changes in the misclassification costs, and there-
fore trained each method over a large range of possible misclassification costs. Even so, it was difficult (if
not impossible) to tune certain methods to produce models at certain points of the ROC curve – especially in
problems with significant class imbalance (e.g., fatal violence).

• SVM RBF, LARS Lasso and LARS Ridge were able to produce accurate models at different points on the
ROC curve on most problems. SVM RBF usually achieved the highest AUC on most problems (e.g., arrest,
drug, property, public order, general violence), though Lasso and Ridge often produce comparable AUCs.
We find that these methods do respond well to cost-sensitive tuning, but that it is difficult to find appropri-
ate misclassification costs for highly imbalanced problems such as sexual violence, domestic violence and
fatal violence.

• C5.0T, C5.0R and CART were unable to produce accurate models at different points on the ROC curve on
any imbalanced problems. We found that these methods do not respond well to cost-sensitive tuning, and
that this issue becomes markedly more severe as problems become more imbalanced. For drug, property, and
general violence, for instance, these methods could not produce models with high TPR. For sexual violence

and domestic violence, these methods almost always produced trivial models that always predict y = 0
(resulting in AUCs of 0.5). This result may be attributed to the greedy nature of the algorithms that are being
used to fit the trees, as opposed to the use of tree models in general. The issue is unlikely to be software-related
as it affects both C5.0 and CART, and has been observed by others (see, e.g., Goh and Rudin 2014).

• Random Forests – while being able to produce accurate models at certain points on the ROC curve – tend
to overfit on all problems. To see this, we can compare the difference in performance between the testing
accuracy in Table 5 (usually near 0.7) and the training AUC in Table ?? (usually near 1.0). The overfitting
could be due to settings in the randomForest package in R, or the use of a cost-sensitive approach (Berk et al.
2006, mentions that random forests may be better-suited to tackle imbalanced problems using sampling-based
approaches that oversample the minority class.) The settings in the R package cannot easily be fixed without
tuning in a huge parameter space, which itself grows exponentially with the number of parameters.

• SLIM performs well despite being restricted to a relatively small class of simple linear models (e.g., mod-
els with 8 non-zero integer coefficients) and without cross-validated parameters. In general, SLIM produces
models that are not significantly less accurate than other methods and close to or on on the efficient fron-
tier of the ROC curve (see, e.g., general violence, property). Further, SLIM achieves the highest AUC in
highly imbalanced problems, such as fatal violence and sexual violence, as it responds well to changes in
misclassification costs.

4.5 Observations on Interpretability

Interpretable predictive models provide “a qualitative understanding of the relationship between joint values
of the input variables and the resulting predicted response value,” (Hastie et al. 2009). In assessing the inter-
pretability of various models, we distinguish between transparent models, which provide a textual or visual
representation of the relationship between input variables and the predicted outcome (CART, C5.0R, C5.0,
Lasso, Ridge), and black-box models, which do not (RF, SVM RBF).

Trade-offs Between Accuracy and Interpretability

Most of the methods that we tested for are unable to produce a prediction model that is both accurate and
interpretable along the full ROC curve. In fact, we find the only methods that can consistently produce accurate
models along the full ROC curve and also have the potential for interpretability are SLIM and Lasso. Among
the remaining methods:
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● ● ● ● ● ● ● ●   C5.0R         C5.0T         CART          Lasso         Ridge         RF            SLIM          SVM RBF    

Figure 1: ROC curves for general recidivism-related prediction problems. We plot SLIM models using large blue dots.
All models perform similarly except for C5.0R, C5.0T, and CART.
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Figure 2: ROC curves for violence-related prediction problems. We plot SLIM models using large blue dots. Here C5.0R,
C5.0T, and CART performed poorly, and for fatal violence, all methods except SLIM performed poorly.
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Problem Lasso Ridge C5.0R C5.0T CART RF SVM RBF SLIM

arrest
0.74

0.73 - 0.75

0.73
0.72 - 0.74

0.72
0.71 - 0.73

0.71
0.70 - 0.73

0.66
0.65 - 0.67

0.72
0.71 - 0.73

0.74
0.73 - 0.75

0.70
0.68 - 0.72

drug
0.71

0.68 - 0.74

0.72
0.69 - 0.74

0.63
0.59 - 0.66

0.63
0.61 - 0.65

0.50
0.50 - 0.50

0.69
0.67 - 0.70

0.73
0.71 - 0.75

0.69
0.67 - 0.72

property
0.71

0.69 - 0.73

0.70
0.68 - 0.73

0.66
0.65 - 0.67

0.66
0.63 - 0.67

0.50
0.50 - 0.50

0.69
0.67 - 0.71

0.73
0.70 - 0.74

0.67
0.65 - 0.70

public order
0.69

0.68 - 0.70

0.69
0.68 - 0.71

0.65
0.64 - 0.67

0.65
0.64 - 0.66

0.53
0.51 - 0.54

0.68
0.66 - 0.70

0.70
0.69 - 0.73

0.66
0.64 - 0.67

general violence
0.68

0.67 - 0.70

0.69
0.67 - 0.71

0.57
0.55 - 0.58

0.58
0.56 - 0.60

0.50
0.50 - 0.50

0.65
0.63 - 0.67

0.70
0.69 - 0.72

0.67
0.66 - 0.70

domestic violence
0.70

0.67 - 0.72

0.73
0.68 - 0.75

0.50
0.50 - 0.50

0.50
0.50 - 0.50

0.50
0.50 - 0.50

0.55
0.51 - 0.58

0.72
0.69 - 0.75

0.70
0.57 - 0.74

sexual violence
0.66

0.64 - 0.70

0.66
0.63 - 0.70

0.50
0.50 - 0.50

0.50
0.50 - 0.50

0.50
0.50 - 0.50

0.51
0.49 - 0.53

0.66
0.63 - 0.70

0.67
0.63 - 0.74

fatal violence
0.51

0.50 - 0.53

0.51
0.50 - 0.52

0.50
0.50 - 0.50

0.50
0.50 - 0.50

0.50
0.50 - 0.50

0.51
0.50 - 0.53

0.50
0.50 - 0.51

0.62
0.56 - 0.68

Table 5: Test AUC for all methods on all prediction problems. Each cell contains the 10-CV mean test AUC (top), as well
as the 10-CV minimum and maximum test AUC (bottom).

• Methods such as RF and SVM RBF produce “black box” models that do not provide a comprehensible
representation of the relationship between input variables and the predicted outcome.

• Ridge produces models that are accurate and transparent. The models produced by ridge provide a clear
representation of the relationship between input variables and the predicted outcome. However, they do not
allow users to understand how joint values of the input variables affect the predicted outcome since they use
all of the P = 49 input variables; these models are not sparse.

• Tree and rule-based methods such as CART, C5.0T and C5.0R are generally unable to produce to models that
attain high degrees of accuracy. Even on balanced problems such as arrest where these methods are able to
produce accurate models, however, we find that these models are complicated and use a very large number of
rules or leaves (similar behavior for C5.0T/C5.0R is also observed by, for instance, Lim et al. 2000). While
it may be possible to simplify the models that we obtained through these methods through heuristic post-
processing methods (e.g., pruning), it is not likely to benefit the accuracy of the model (and can drastically
change the TPR or FPR).

On the Interpretability of Equally Accurate Transparent Models

To assess the interpretability of different models, we provide a comparison of predictive models produced by
SLIM, Lasso and CART for the arrest problem in Figures 3–5. This example provide a nice basis for compar-
ison as all three methods are able to produce a model at roughly the same decision point, and with the same
degree of sparsity.10 We make the following observations:

10For this comparison, we considered any transparent model with at most 8 coefficients (Lasso), 8 rules (C5.0R) or 8 leaves (C5.0T,
CART) and had a test FPR less than or equal to that of the SLIM model (48.3%). We report the models that attained the highest test
TPR among all such models. Here, neither C5.0R nor C5.0R could produce an acceptable model with 8 rules or 8 leaves.
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2 age at release≤24 + 2 prior arrests≥5 − 2 age 1st confinement≥40 − 1

Figure 3: SLIM model for arrest. This model has a training TPR/FPR of 78.4%/47.1%, and a mean 10-CV test TPR/FPR
of 78.0%/48.3%.

0.61 prior arrests≥5 + 0.16 age 1st confinement 18 to 24 + 0.07 prior arrests for property
+ 0.06 prior arrests for misdemeanor + 0.02 prior arrests≥2 + 4.75× 10−03 prior arrests for general violence
− 0.21 age at release≥40 − 0.31

Figure 4: Lasso model for arrest. This model has a training TPR/FPR of 73.7%/45.2%, and a mean 10-CV test TPR/FPR
of 73.2%/44.9%.

• All three models attain similar levels of predictive accuracy. Test TPR values ranged between 73-78% and test
FPR values ranged between 45-47%. There may not exist a classification model that can attain a substantially
higher accuracy. The highest test TPR attained by models with test FPR ≤ 50% was produced by the SVM
RBF model which had a TPR of 80%.

• The SLIM model is highly sparse and uses 4 input variables. The small integer coefficients allow users to
make quick predictions without a computer or calculator (see, e.g., Figure 6). Further, they allow users to
easily gauge the importance of different input variables and provide a natural rule-based interpretation. In
this case, for example, the SLIM model effectively says “predict arrest for any crime if age at release is ≤ 24
or prior arrests ≥ 5, unless the age at first confinement ≥ 40.”

• The CART model allows users to make hands-on predictions. In comparison to the SLIM model, how-
ever, the hierarchical structure of the CART model makes it difficult to gauge the relationship of each input
variable on the predicted outcome. Consider, for instance, the relationship between age at release and the
outcome. In this case, users are immediately aware that there is an effect, as the model branches on the vari-
ables age at release≥40 and age at release 18 to 24. However, the effect is difficult to comprehend since
it depends on prior arrests and prior jail time: if prior arrests≥5 = 1 and age at release 18 to 24 = 1 then
the model predicts ŷ = +1; if prior arrests≥5 = 0 and age at release≥40 = 0 then ŷ = +1; however, if
prior arrests≥5 = 0 and age at release≥40 = 1 then ŷ = +1 only if multiple prior jail time = 1. Such issues
do not affect linear models, such as SLIM and Lasso, where users can immediately gauge the direction and
strength of the relationship between a input variable and the predicted outcome by the size and sign of a
coefficient.

Scoring Systems for Recidivism Prediction

We present one of the SLIM scoring systems for each of the prediction problems that we consider in Figures 6
through 13. Many of these models exhibit the same “rule-like” interpretability discussed in the previous section
(see, e.g., drug in Figure 7, which effectively predicts that a person will be arrested for a drug-related offense if
he/she has had any prior arrests and was at most 17 years old when released from prison).

Note that the models below are not causal, meaning that one cannot change a single feature and evaluate the
change in the predictions; a person with one feature that is different may also have other correlated features that
are not accounted for when changing one feature at a time. One can argue why or why not these models make
sense, whereas a black box model (such as SVM) is indefensible; a black box model is often so complex that
printing one on a page of this manuscript would not be possible.

5 Conclusion

Our paper merges two perspectives on recidivism modeling: the first is to obtain accurate predictive models us-
ing the most powerful machine learning tools available, and the second is to create models that are interpretable,

18



prior_arrests_geq_5 < 0.5
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Figure 5: CART model for arrest. This model has a training TPR/FPR of 77.7%/45.4%, and a mean 10-CV test TPR/FPR
of 77.9%/45.9%.

PREDICT ARREST FOR ANY OFFENSE IF SCORE > 1

1. age at release≤24 2 points . . . . . .

2. prior arrests≥5 2 points + . . . . . .

3. age 1st confinement≥40 -2 points + . . . . . .

ADD POINTS FROM ROWS 1-3 SCORE = . . . . . .

Figure 6: SLIM scoring system for arrest. This model has a training TPR/FPR of 78.4%/47.1%, and a mean 10-CV test
TPR/FPR of 78.0%/48.3%.

PREDICT ARREST FOR DRUG OFFENSE IF SCORE > 1

1. prior arrests for drugs 2 points . . . . . .

2. age at release≥18 -2 points + . . . . . .

ADD POINTS FROM ROWS 1-2 SCORE = . . . . . .

Figure 7: SLIM scoring system for drug. This model has a training TPR/FPR of 75.5%/40.3%, and a mean 10-CV test
TPR/FPR of 70.5%/37.7%.

PREDICT ARREST FOR PROPERTY OFFENSE IF SCORE > 1

1. prior arrests for property 3 points . . . . . .

2. prior arrests≥1 -1 point + . . . . . .

3. prior arrests for sexual -2 points + . . . . . .

ADD POINTS FROM ROWS 1-3 SCORE = . . . . . .

Figure 8: SLIM scoring system for property. This model has a training TPR/FPR of 69.4%/41.3%, and a mean 10-CV
test TPR/FPR of 72.7%/44.8%.

PREDICT ARREST FOR PUBLIC ORDER OFFENSE IF SCORE > 1

1. prior arrests for public order 2 points . . . . . .

2. prior arrests for general violence 2 points + . . . . . .

3. prior arrests≥1 -2 points + . . . . . .

ADD POINTS FROM ROWS 1-3 SCORE = . . . . . .

Figure 9: SLIM scoring system for public order. This model has a training TPR/FPR of 55.9%/36.4%, and a mean
10-CV test TPR/FPR of 55.0%/34.5%.
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PREDICT ARREST FOR VIOLENT OFFENSE IF SCORE > 1

1. age at release≤17 2 points . . . . . .

2. prior arrests for fatal violence 2 points + . . . . . .

3. prior arrests for general violence 2 points + . . . . . .

4. age 1st confinement≥40 -2 points + . . . . . .

5. age 1st arrest≥40 -4 points + . . . . . .

ADD POINTS FROM ROWS 1-5 SCORE = . . . . . .

Figure 10: SLIM scoring system for general violence. This model has a training TPR/FPR of 73.4%/44.2%, and a mean
10-CV test TPR/FPR of 73.9%/45.1%.

PREDICT ARREST FOR FATAL VIOLENCE IF SCORE > 1

1. prior arrests for multiple types of crime 4 points . . . . . .

2. released other 2 points + . . . . . .

3. age 1st arrest≥40 -2 points + . . . . . .

4. age at release 30 to 39 -2 points + . . . . . .

5. age at release 25 to 29 -4 points + . . . . . .

6. age at release≥40 -6 points + . . . . . .

7. female -8 points + . . . . . .

ADD POINTS FROM ROWS 1-7 SCORE = . . . . . .

Figure 11: SLIM scoring system for fatal violence. This model has a training TPR/FPR of 90.5%/63.7%, and a mean
10-CV test TPR/FPR of 81.3%/61.3%. The reason for the “released other” term appearing in the model is unclear, though
as Table 3 shows, the type of release indeed has predictive power. The codebook for the dataset has little explanation
for the meaning of this variable, other than that it excludes conditional releases such as parole and probation release,
unconditional releases such as expiration of sentence or commutation and pardon, and releases by death or transfer. This
term actually appears in some models (see Figure 11), indicating that it is worthwhile to further investigate this variable
for either data quality or more information.

PREDICT ARREST FOR SEXUAL OFFENSE IF SCORE > 9

1. prior arrests for sexual 6 points . . . . . .

2. age at release 25 to 29 6 points + . . . . . .

3. age at release 18 to 24 4 points + . . . . . .

4. age at release≥30 4 points + . . . . . .

5. prior arrests for local ord 4 points + . . . . . .

6. released unconditonal 2 points + . . . . . .

7. age 1st arrest≥40 -2 points + . . . . . .

ADD POINTS FROM ROWS 1-7 SCORE = . . . . . .

Figure 12: SLIM scoring system for sexual. This model has a training TPR/FPR of 59.9%/28.7%, and a mean 10-CV
test TPR/FPR of 58.9%/28.6%.

PREDICT ARREST FOR DOMESTIC VIOLENCE IF SCORE > 17

1. prior arrests for felony 8 points . . . . . .

2. prior arrests for misdemeanor 6 points + . . . . . .

3. prior arrests for general violence 6 points + . . . . . .

4. age at release 18 to 24 4 points + . . . . . .

5. female -4 points + . . . . . .

6. infraction in prison -6 points + . . . . . .

ADD POINTS FROM ROWS 1-6 SCORE = . . . . . .

Figure 13: SLIM scoring system for domestic violence. This model has a training TPR/FPR of 65.5%/27.6%, and a
mean 10-CV test TPR/FPR of 73.1%/39.9%.
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in fact, small enough to fit on an index card. We used a set of features that are commonly accessible to police
officers and judges, and performed a comparison of different machine learning methods. Our findings show
that there are (potentially major) advantages of using new machine learning tools like SLIM. SLIM produces
models that are just as accurate as the more complicated black box algorithms; however, they are also much
more interpretable, they can be customized automatically to follow criminological knowledge, and they can be
directly useful in decision-making. These models can be dependably generated for any given decision point
along the ROC curve.
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