Near-Infrared Astronomy and Data Reduction

Mischa Schirmer^{1,2}

¹Argelander-Institute for Astronomy, University of Bonn, Germany

²Isaac Newton Group of Telesopes, La Palma, Spain

Central European Deepsky Imaging Conference (2009)

Outline

Observing in the Near-Infrared

- Atmospheric transmission and absorption
- Why? Dusty stuff, cool stuff, distant stuff!

2 Troublemakers

- Emission lines The dancing sky
- Near-Infrared detectors
- Strange effects

Atmospheric transmission and absorption Why? Dusty stuff, cool stuff, distant stuff!

Section 1: Observing in the Near-Infrared

Overview

- Atmospheric transmission windows, JHK filters
- 3 examples why we observe in the near-IR
 - dusty stuff
 - cool stuff
 - distant stuff

Transmission windows in the near-IR

- Commonly used filters: Z, J, H, K(s)
- Cover the stable parts of the transmissive windows
- Absorption caused by water vapour and CO₂

Atmospheric transmission and absorption Why? Dusty stuff, cool stuff, distant stuff!

Near-IR wavelenghts can penetrate dust

B68 molecular cloud (VLT FORS and ISAAC)

BVI

BIK

Atmospheric transmission and absorption Why? Dusty stuff, cool stuff, distant stuff!

Cool things become visible only in the near-IR

Normal solar-type stars visible in the optical

- hydrogen burning
- layered, not fully convective like a BD
- $\bullet~T_{\rm eff} \sim 5000 K,$ maximum emission between 400nm 700nm

Atmospheric transmission and absorption Why? Dusty stuff, cool stuff, distant stuff!

Cool things become visible only in the near-IR

Brown dwarfs visible in the near-IR

- no stars: BDs do not burn hydrogen (< 0.012 M_{Sun})
- no planets: BDs do burn Deuterium and Lithium (> 13 M_{Jupiter})

Very distant objects are only visible in the near-IR

Cosmological redshift z (is no doppler effect):

- Expansion of the Universe = stretching of wavelengths
- z=1: universe at 1/2 size when photon emitted
- z=5: universe at 1/6 size when photon emitted, etc...

Cosmological time

Atmospheric transmission and absorption Why? Dusty stuff, cool stuff, distant stuff!

Very distant objects are only visible in the near-IR

Effect of cosmological redshift on a galaxy spectrum:

Observing in the Near-Infrared Emission lines - The dancing sky Troublemakers Near-Infrared detectors Near-IR data reduction Strange effects

Section 2: Why observing in the near-IR is difficult...

Overview

- See an optical airglow movie...
- See a near-IR airglow movie...
- Typical near-IR detectors
- Nasty things near-IR detectors do to us astronomers

Emission lines - The dancing sky Near-Infrared detectors Strange effects

Optical airglow

Emission lines - The dancing sky Near-Infrared detectors Strange effects

Near-infrared airglow

Emission lines - The dancing sky Near-Infrared detectors Strange effects

Near-infrared airglow

Movie: 1.5 hours of airglow in H-band

Wide-field airglow experiment for the 2-Micron All-Sky Survey (2MASS)

- Individual exposure time: 15s
- Field of view: 9 degrees
- Is movie = 7 min real time
- Variation: 10% around mean
- Mean level already removed!

Emission lines - The dancing sky Near-Infrared detectors Strange effects

Near-infrared instruments

- Usually 1k×1k or 2k×2k HgCdTe detectors
- About 90% quantum efficiency from Z to K
- Operating temperature: 65-75 K
- Liquid nitrogen and helium cooling
- Very sensitive

Left: HAWK-I detector mosaic at the VLT

4 $2k \times 2k$ detectors Pixel scale: 0.106 arcsec Field of view: 7.5 arcmin

Emission lines - The dancing sky Near-Infrared detectors Strange effects

Near-infrared instruments

HAWK-I at the Nasmyth focus of Yepun (VLT No. 4)

Observing in the Near-Infrared Emis: Troublemakers Near-Near-IR data reduction Stran

Emission lines - The dancing sky Near-Infrared detectors Strange effects

Strange effects (I): Reset anomaly

Two detector states:

- resetting
- exposing

Anomaly depends on:

- detector temperature
- exposure time
- illumination level
- exposure number
- erratic component

Emission lines - The dancing sky Near-Infrared detectors Strange effects

Strange effects (II): Cross-talk

Left: row crosstalk

Not shown: *normal crosstalk* (ghost images in the readout quadrants)

Cause: electromagnetic coupling of the read-outs, through air or through the detector itself Data reduction flow in THELI

Section 3: Reducing near-IR images

Overview of a full reduction process (similar to optical):

- Reformat FITS headers
- Create master BIAS/DARK/FLAT
- Apply master calibrators to images
- Create and subtract sky background model
- Weighting
- Astrometry and photometry
- Coaddition

Demo: Reducing some H-band images of the Hubble Deep Field South

For Further Reading I

An excellent overview of near-infrared astronomy http://coolcosmos.ipac.caltech.edu/cosmic_classroom/ir_tutorial/

The 2MASS wide-field airglow experiment http://astsun.astro.virginia.edu/~mfs4n/2mass/airglow/airglow.html

The HAWK-I near-infrared imager at the VLT http://www.eso.org/sci/facilities/paranal/instruments/hawki/index.html