
Beginning Haskell

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2

2. Haskell basics .. 3

3. Taking the vows .. 4

4. A new expressiveness... 7

5. Modules and program structure 14

6. Resources and feedback ... 18

Beginning Haskell Page 1 of 18

Section 1. About this tutorial

Should I take this tutorial?
This tutorial targets programmers of imperative languages wanting to learn about functional
programming in the language Haskell. If you have programmed in languages such as C,
Pascal, Fortran, C++, Java, Cobol, Ada, Perl, TCL, REXX, JavaScript, Visual Basic, or many
others, you have been using an imperative paradigm. This tutorial provides a gentle
introduction to the paradigm of functional programming, with specific illustrations in the
Haskell 98 language.

Programmers with a background in functional programming will probably find this tutorial a bit
slow; however, programmers who have not used Haskell 98 in particular can still get a quick
sense of the language by browsing the tutorial.

What's not covered?
In an introductory tutorial, many of Haskell's most powerful and complex features
cannot be covered. In particular, the whole area of type classes and algebraic types
(including abstract data types) is a bit much for a first introduction. For readers whose
interest is piqued, I will mention that Haskell allows you to create your own data types,
and to inherit properties of those data types in type instances. The Haskell type system
contains the fundamental features of object-oriented programming (inheritance,
polymorphism, encapsulation); but in a way that is almost impossible to grasp within a
C++/Java/Smalltalk/Eiffel style of thinking.

The other significant element omitted in this tutorial is a discussion of monads, and
therefore of I/O. It seems strange to write a tutorial that does not even start with a
"Hello World!" program, but thinking in a functional style requires a number of shifts.
While that "Hello World!" is quite simple, it also involves the mini "pseudo-imperative"
world of monads. It would be easy for a beginner to be lulled by the pseudo-imperative
style of I/O, and miss what is really going on. Swimming is best learned by getting in
the water.

About the author
David Mertz is a writer, a programmer, and a teacher, who always endeavors to improve his
communication to readers (and tutorial takers). He welcomes any comments or questions
about this tutorial; please direct them to mertz@gnosis.cx.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Beginning Haskell Page 2 of 18

mailto:mertz@gnosis.cx

Section 2. Haskell basics

About Haskell
Haskell is just one of a number of functional programming languages. Others include
Lisp, Scheme, Erlang, Clean, Mercury, ML, OCaml, and others. The common adjunct
languages SQL and XSL are also functional. Like functional languages, logical or
constraint-based languages like Prolog are declarative. In contrast, both procedural
and object-oriented languages are (broadly speaking) imperative. Some languages,
such as Python, Scheme, Perl, and Ruby, cross these paradigm boundaries; but, for
the most part, programming languages have a particular primary focus.

Among functional languages, Haskell is in many ways the most idealized language.
Haskell is a pure functional language, which means it eschews all side effects (more
later). Haskell has a non-strict or lazy evaluation model, and is strictly typed (but with
types that allow ad hoc polymorphism). Other functional languages differ in each of
these features -- for reasons important to their design philosophies -- but this collection
of features brings one, arguably, farthest into the functional way of thinking about
programs.

On a minor note, Haskell is syntactically easier to get a handle on than are the
List-derived languages (especially for programmers who have used lightly punctuated
languages like Python, TCL, and REXX). Most operators are infixed rather than
prefixed. Indentation and module organization looks pretty familiar. And perhaps most
strikingly, the extreme depth of nested parentheses (as seen in Lisp) is avoided.

Obtaining Haskell
Haskell has several implementations for multiple platforms. These include both an
interpreted version called Hugs, and several Haskell compilers. The best starting place
for all of these is Haskell.org. Links lead to various Haskell implementations.
Depending on your operating system, and its packaging system, Haskell may have
already been installed, or there may be a standard way to install a ready-to-run version.
I recommend those taking this tutorial obtain Hugs for purposes of initial
experimentation, and for working along with this tutorial, if you wish to do so.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Beginning Haskell Page 3 of 18

http://www.haskell.org

Section 3. Taking the vows

Giving things up
The most difficult part of starting to program with Haskell is giving up many of the most
familiar techniques and ways of thinking within imperative programming. A first
impression is often that it must simply be impossible to write a computer program if you
cannot do X, Y, or Z, especially since X, Y, and Z are some of the most common
patterns in "normal" imperative programming. In this section, let's review a few of the
most "shocking" features of Haskell (and of functional programming in general).

No mutable variables
One of the most common programming habits in imperative programming is to assign a
variable one value, then assign it a different value; perhaps along the way we test
whether the variable has obtained certain key values. Constructs like the C examples
below are ubiquitous (other imperative languages are similar):

if (myVar==37) {...}
myVar += 2
for (myVar=0; myVar<37; myVar++) {...}

In Haskell, by contrast, variables of this sort do not exist at all. A name can be bound to
a value, but once assigned, the name simply stands for that value throughout the
program. Nothing is allowed to change.

In Haskell, "variables" are much like the variables in mathematical equations. They
may need to satisfy certain rules, but they are not "counters" or "containers" in the style
of imperative programming. Just to get headed in the right way of thinking, consider
some linear equations like the ones below as an inspiration:

10x + 5y - 7z + 1 = 0
17x + 5y - 10z + 3 = 0
5x - 4y + 3z - 6 = 0

In this type of description, we have "unknowns," but the unknowns do not change their
value while we are figuring them out.

Isolate side-effects
In Haskell, function computation cannot have side-effects within the program. Most of
the side-effects in imperative programs are probably the sort of variable reassignment
mentioned in the last panel (whether global variables, or local, or dictionaries, lists, or
other storage structures), but every I/O event is also a sort of side-effect. I/O changes
the world rather than being part of a computation per se. Naturally, there are many
times when what you want to do is change the world in some manner (if not, you

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Beginning Haskell Page 4 of 18

cannot even know a program has run). Haskell circumscribes all such side-effects
within a very narrow "box" called Monadic IO. Nothing in a monad can get out, and
nothing outside a monad can get in.

Often, structured imperative programming approaches functional programming's goals
of circumscribing I/O. Good design might require that input and output only happens in
a limited set of appropriately named functions. Less structured programming tends to
read and write to STDIO, files, graphic devices, etc., all over the place and in a way
that is difficult to predict. Functional programming takes the circumscription to a much
higher level.

No loops
Another interesting feature of Haskell is its lack of any loop construct. There is no for
and no while. There is no GOTO or branch or jmp or break. One would almost think
it impossible to control what a program does without such basic (imperative)
constructs; but getting rid of these things is actually quite liberating.

The lack of loops is really the same as the matter of no side-effects. Since one pass
through a loop cannot have variables with different values than another pass, there is
nothing to distinguish them; and the need to branch is usually in order to do a different
program activity. Since functional programming doesn't have activities, but only
definitions, why bother branching.

However, I should try to stay honest about things. It actually proves possible to
simulate almost all of the usual loop constructs, often using the same keywords as in
other languages, and in a style that looks surprisingly similar to imperative constructs.
Simon Thompson provides many examples of this in his book (see the Resources at
the end of this tutorial).

No program order
Another thing Haskell lacks -- or does not need -- is program order. The set of
definitions that make up a program can occur in any order whatsoever. This might
seem strange when definitions look a great deal like assignments in imperative
languages. For example, this might seem like a problem:

-- Program excerpt
j = 1+i
i = 5
-- Hugs session after loading above program
-- Main> i
-- 5 :: Integer
-- Main> j
-- 6 :: Integer

The thing to understand in a program like the one above is that i and j are not
assigned values, but are rather defined in the manners given. In fact, even in the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Beginning Haskell Page 5 of 18

above, i and j are functions, and the examples above are of function definitions. In
many imperative programming languages, you are also not allowed to define functions
multiple times (at least in the same scope).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Beginning Haskell Page 6 of 18

Section 4. A new expressiveness

What's in a Haskell program?
A Haskell program consists, basically, of a set of function definitions. Functions are
bound to names in a manner that looks very similar to variable assignment in other
languages. However, it really is not the same thing; a Haskell bound name is much
more similar to a binding in a mathematical proof, where we might say "Let tau refer to
the equation" A name binding just provides a shorthand for later use of an
equation, but the name can only be bound a single time within a program -- trying to
change it generates a program error.

myNum :: Int -- int myNum() {
myNum = 12+13 -- return 12+13; }
square :: Int -> Int -- int square(int n) {
square n = n*n -- return = n*n; }
double :: Int -> Int -- int double(int n) {
double n = 2*n -- return 2*n; }
dubSqr :: Int -> Int -- int dubSqr(int n) {
dubSqr n = square (double n) -- return square(double(n)); }

Defining functions
There are (optionally) two parts to a function definition. The first part (conceptually, not
necessarily within a listing) is the type signature of a function. In a function, the type
signature defines all the types of the input, and the type of the output. Some analogous
C definitions are given in the end-of-line comments in the example.

The second part of a function definition is the actual computation of the function. In this
second part, often (but not always) some ad hoc variables are provided to the left of the
equal sign that are involved in the computation to the right. Unlike variables in C,
however -- and much like variables in mathematics -- the Haskell variables refer to the
exact same "unknown quantity" on both sides of the equal sign (not to a "container"
where a value is held).

example :: Int
example = double (myNum - square (2+2))
dubSqr2 :: Int -> Int
dubSqr2 = square . double -- Function composition

It is also often possible to bypass explicit naming of variables entirely in function
definitions. In dubSqr2, it is enough to say that we should square whatever thing is
double'd. For this, there is no need to mention a variable name since the thing
dubSqr2'd is just whatever expression follows the bound name in later expressions. Of
course, double must itself take the same type of input dubSqr2 expects, and in turn
output the type of output square needs as input.

More simple function definitions
Like C, Haskell is rigidly typed. The averageThree is a good example of a function

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Beginning Haskell Page 7 of 18

that requires type coercion in order to return the right value type. However, the
difSquare function shows something distinct to Haskell. difSquare has no type
signature, so Haskell will infer the appropriate type signature from the operations
involved in the function definition. At first appearance this might seem to be the same
thing that dynamically or loosely typed languages do; but what Haskell does is quite
different. difSquare is rigidly typed at compile time -- there is no runtime dynamism to
this, but the type of difSquare has a Type Class that includes both integers and
floats (and also rationals, complex numbers, etc.). We can find the inferred type within
Hugs:

Main> :type difSquare
difSquare :: Num a => a -> a -> a

That is, both of the input arguments, as well as the output, are inferred to have the
Type Class Num. Had we explicitly declared a type like Int, the function would operate
over a narrower range of values (which is good or bad, depending on our needs).

-- Average of three Integers as floating point
averageThree :: Int -> Int -> Int -> Float
averageThree l m n = fromInt(l+m+n) / 3

-- float averageThree(int l, int m, int n) {
-- return ((float)(l+m+n))/3; }

difSquare x y = (x-y)^2 -- C lacks polymorphic type inference

Recursion
Absent loop structures, flow in Haskell programs is usually expressed as recursion.
Thinking about all flow in terms of recursion takes some work, but it turns out to be just
as expressive and powerful as the while and for constructs in other languages.

The trick to recursion is that we would like it to terminate eventually (at least we usually
do). One way to guarantee termination of recursion is to use primitive recursion. This
amounts to taking a "thing" to recurse on, and making sure that the next call is closer to
a terminal condition than the call that got us here. In practice, we can assure this either
by decrementing an integer for each call (and terminating at zero, or some other goal),
or by taking only the tail of a list for each successive call (and terminating at an
empty list). Both versions of factorial listed in the example assume they will be passed
an integer greater than zero (and will fail otherwise; exercise: how?).

Non-primitive recursion also exists, but it is more difficult to know for sure that a
recursion will terminate. Also, mutual recursion between functions is allowed (and
frequently encountered), but primitive recursion is still the safest and most common
form.

-- Factorial by primitive recursion on decreasing num
fac1 :: Int -> Int
fac1 n = if n==1 then 1 else (n * fac1 (n-1))
-- Factorial by primitive recursion on list tail
fac2 :: Int -> Int
fac2 n = prodList [1 .. n]
prodList lst =

if (length lst)==1 then head lst

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Beginning Haskell Page 8 of 18

else head lst*(prodList (tail lst))

Pattern matching
In functional programming, we are "more concerned with how something is defined
than with the specifics of how it is calculated" (take this motto with a grain of salt,
however, efficiency still matters in some cases). The idea is that it is a compiler or
interpreter's job to figure out how to reach a solution, not the programmer's.

One useful way of specifying how a function is defined is to describe what results it will
return given different types of inputs. A powerful way of describing "different types of
inputs" in Haskell is using pattern matching. We can provide multiple definitions of a
function, each having a particular pattern for input arguments. The first listed definition
that succeeds in matching a given function call is the one used for that call. In this
manner, you can pull out the head and tail of a list, match specific input values, identify
empty lists as arguments (for recursion usually), and analyze other patterns. You
cannot, however, perform value comparisons with pattern matching (for example, "n
<= 3" must be detected differently). An underscore is used in a position where

something should match, but where the matched value is not used in the definition.

prodLst2 [] = 0 -- Return 0 as product of empty list
prodLst2 [x] = x -- Return elem as prod of one-elem list
prodLst2 (x:xs) = x * prodLst2 xs
third (a,b,c,d) = c -- The third item of a four item tuple
three = third (1,2,3,4) -- 'three' is 3
-- Is a sequence a sub-sequence of another sequence?
isSubseq [] _ = True
isSubseq _ [] = False
isSubseq lst (x:xs) = (lst==start) || isSubseq lst xs
where start = take (length lst) (x:xs)

Guards
Somewhat analogous to pattern matching, and also similar to if .. then .. else,
constructs (which we saw examples of earlier) are guards in function definitions. A
guard is simply a condition that might obtain, and a definition of a function that pertains
in that case. Anything that could be stated with pattern matching can also be rephrased
into a guard, but guards allow additional tests to be used as well. Whichever guard
matches first (in the order listed) becomes the definition of the function for the particular
application (other guards might match also, but they are not used for a call if listed
later).

In terms of efficiency, pattern matching is usually best, when possible. It is often
possible to combine guards with pattern matching, as in the isSublist example.

prodLst3 lst -- Guard version of list product
| length lst==0 = 0
| length lst==1 = head lst
| otherwise = head lst * prodLst3 (tail lst)

-- A sublist is a string that occurs in order, but not
-- necessarily contiguously in another list
isSublist [] _ = True

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Beginning Haskell Page 9 of 18

isSublist _ [] = False
isSublist (e:es) (x:xs)
| e==x && isSublist es xs = True
| otherwise = sublist (e:es) xs

List comprehensions
One of the most powerful constructs in Haskell is list comprehensions (for
mathematicians: this term comes from the "Axiom of Comprehension" of
Zermelo-Frankel set theory). Like other functional languages, Haskell builds a lot of
power on top of manipulation of lists. In Haskell, however, it is possible to generate a
list in a compact form that simply states where the list elements come from and what
criteria elements meet. Lists described with list comprehensions must be generated
from other starting lists; but fortunately, Haskell also provides a quick "enumeration"
syntax to specify starting lists.

-- Odd little list of even i's, multiple-of-three j's,
-- and their product; but limited to i,j elements
-- whose sum is divisible by seven.
myLst :: [(Int,Int,Int)]
myLst = [(i,j,i*j) | i <- [2,4..100],

j <- [3,6..100],
0==((i+j) `rem` 7)]

-- Quick sort algorithm with list comp and pattern matching
-- '++' is the list concatenation operator; we recurse on both
-- the list of "small" elements and the list of "big" elements
qsort [] = []
qsort (x:xs) = qsort [y | y<-xs, y<=x] ++ [x] ++ qsort [y | y<-xs,
y>x]

Lazy evaluation I
In imperative languages -- and also in some functional languages -- expression
evaluation is strict and immediate. If you write x = y+z; in C, for example, you are
telling the computer to make a computation and put a value into the memory called 'x'
right now! (whenever the code is encountered). In Haskell, by contrast, evaluation is
lazy -- expressions are only evaluated when, and as much, as they need to be (in
fairness, C does include shortcutting of Boolean expressions, which is a minor kind of
laziness). The definitions of f and g in the example show a simple form of the
difference.

While a function like g is somewhat silly, since y is just not used, functions with pattern
matching or guards will very often use particular arguments only in certain
circumstances. If some arguments have certain properties, those or other arguments
might not be necessary for a given computation. In such cases, the needless
computations are not performed. Furthermore, when lists are expressed in
computational ways (list comprehensions and enumeration ellipsis form), only as many
list elements as are actually utilized are actually calculated.

f x y = x+y -- Non-lazy function definition
comp1 = f (4*5) (17-12) -- Must compute arg vals in full
g x y = x+37 -- Lazy function definition

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Beginning Haskell Page 10 of 18

comp2 = g (4*5) (17-12) -- '17-12' is never computed
-- Lazy guards and patterns
-- Find the product of head of three lists
prodHeads :: [Int] -> [Int] -> [Int] -> Int
prodHeads [] _ _ = 0 -- empty list give zero product
prodHeads _ [] _ = 0
prodHeads _ _ [] = 0
prodHeads (x:xs) (y:ys) (z:zs) = x*y*z
-- Nothing computed because empty list matched
comp3 = prodHeads [1..100] [] [n | n <- [1..1000], (n `rem` 37)==0]
-- Only first elem of first, third list computed by lazy evaluation
comp4 = prodHeads [1..100] [55] [n | n <- [1..1000], (n `rem` 37)==0]

Lazy evaluation II
A truly remarkable thing about Haskell -- and about lazy evaluation -- is that it is
possible to work with infinite lists. Not just large ones, but actual infinities! The trick, of
course, is that those parts of the list that are unnecessary for a particular calculation
are not calculated explicitly (just the rule for their expansion is kept by the runtime
environment).

A famous and ancient algorithm for finding prime numbers is the Sieve of
Eratosthenes. The idea here is to keep an initial element of the list of integers, but
strike off all of its multiples as possible primes. The example does this, but is performed
only as far as needed for a specific calculation. The list primes, however, really is
exactly the list of all the prime numbers!

-- Define a list of ALL the prime numbers
primes :: [Int]
primes = sieve [2 ..] -- Sieve of Eratosthenes
sieve (x:xs) = x : sieve [y | y <- xs, (y `rem` x)/=0]
memberOrd :: Ord a => [a] -> a -> Bool
memberOrd (x:xs) n
| x<n = memberOrd xs n
| x==n = True
| otherwise = False

isPrime n = memberOrd primes n
-- isPrime 37 is True
-- isPrime 427 is False

First class functions (passing functions)
A powerful feature of Haskell (as with all functional programming) is that functions are
first class. The first class status of functions means that functions are themselves
simply values. Just as you might pass an integer as an argument to a function, in
Haskell you can pass another function to a function. To a limited extent, you can do the
same with function pointers in a language like C, but Haskell is far more versatile.

The power of Haskell's first class functions lies largely in Haskell's type checking
system. In C, one might write a "quicksort" function that accepted a function pointer as
an argument, much as in the Haskell example. However, in C you would have no easy
way to make sure that the function (pointed to) had the correct type signature. That is,

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Beginning Haskell Page 11 of 18

whatever function serves as an argument to qsortF must take two arguments of the
same type ("a" stands for a generic type) and produce a Bool result. Naturally, the list
passed as the second argument to qsortF must also be of the same type "a." Notice
also that the type signature given in the sample code is only needed for documentation
purposes. If the signature is left out, Haskell infers all these type constraints
automatically. tailComp meets the right type signature, with the type String being a
specialization of the generic type allowed in qsortF arguments (a different comparison
function might operate over a different type or type class).

-- Quick sort algorithm with arbitrary comparison function
qsortF :: (a -> a -> Bool) -> [a] -> [a]
qsortF f [] = []
qsortF f (x:xs) = qsortF f [y | y<-xs, f y x] ++

[x] ++
qsortF f [y | y<-xs, not (f y x)]

-- Comparison func that alphabetizes from last letter back
tailComp :: String -> String -> Bool
tailComp s t = reverse s < reverse t
-- List of sample words
myWords = ["foo", "bar", "baz", "fubar", "bat"]
-- tOrd is ["foo","bar","fubar","bat","baz"]
tOrd = qsortF tailComp myWords
-- hOrd is ["bar","bat","baz","foo","fubar"]
hOrd = qsortF (<) myWords

First class functions (function factories)
Passing functions to other functions is only half the power of first class functions.
Functions may also act as factories, and produce new functions as their results. The
ability to create functions with arbitrary capabilities within the program machinery can
be quite powerful. For example, one might computationally produce a new comparison
function that, in turn, was passed to the qsortF function in the previous panel.

Often, a means of creating a function is with lambda notation. Many languages with
functional features use the word "lambda" as the name of the operator, but Haskell
uses the backslash character (because it looks somewhat similar to the Greek letter,
lambda). A lambda notation looks much like a type signature. The arrow indicates that
a lambda notation describes a function from one type of thing (the thing following the
backslash) to another type of thing (whatever follows the arrow).

The example factory mkFunc packs a fair amount into a short description. The main
thing to notice is that the lambda indicates a function from n to the result. By the type
signature, everything is an Int, although type inference would allow a broader type.
The form of the function definition is primitive recursive. An empty list produces a result
of zero. A non-empty list produces either the result given by its head pair, or the result
that would be produced if only its tail is considered (and the tail eventually shrinks to
empty by recursion).

-- Make an "adder" from an Int
mkAdder n = addN where addN m = n+m
add7 = mkAdder 7 -- e.g. 'add7 3' is 10
-- Make a function from a mapping; first item in pair maps
-- to second item in pair, all other integers map to zero
mkFunc :: [(Int,Int)] -> (Int -> Int)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Beginning Haskell Page 12 of 18

mkFunc [] = (\n -> 0)
mkFunc ((i,j):ps) = (\n -> if n==i then j else (mkFunc ps) n)
f = mkFunc [(1,4),(2,3),(5,7)]
-- Hugs session:
-- Main> f 1
-- 4 :: Int
-- Main> f 3
-- 0 :: Int
-- Main> f 5
-- 7 :: Int
-- Main> f 37
-- 0 :: Int

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Beginning Haskell Page 13 of 18

Section 5. Modules and program structure

Basic syntax
So far in this tutorial, we have seen quite a bit of Haskell code in an informal way. In
this final section, we make explicit some of what we have been doing. In fact, Haskell's
syntax is extremely intuitive and straightforward. The simplest rule is usually to "write
what you mean."

Haskell and literate Haskell
The examples in this tutorial have used the standard Haskell format. In the standard
format, comments are indicated with a double dash to their left. All comments in the
examples are end-of-line comments, which means that everything following a double
dash on a line is a comment. You may also create multi-line comments by enclosing
blocks in the pair "{-" and "-}". Standard Haskell files should be named with the .hs
extension.

Literate scripting is an alternative format for Haskell source files. In files named with the
.lhs extension, all program lines begin with the greater than character. Everything
that is not a program line is a comment. This style places an emphasis on program
description over program implementation. It looks something like:

Factorial by primitive recursion on decreasing num
> fac1 :: Int -> Int
> fac1 n = if n==1 then 1 else (n * fac1 (n-1))
Make an "adder" from an Int
> mkAdder n = addN where addN m = n+m
> add7 = mkAdder 7

The offside rule
Sometimes in Haskell programs, function definitions will span multiple lines and consist
of multiple elements. The rule for blocks of elements at the same conceptual level is
that they should be indented the same amount. Elements that belong to a higher level
element should be indented more. As soon as an outdent occurs, further lines are
promoted back up a conceptual level. In practice, it is obvious, and Haskell will almost
always complain on errors.

-- Is a function monotonic over Ints up to n?
isMonotonic f n
= mapping == qsort mapping -- Is range list the same sorted?
where -- "where" clause is indented below "="
mapping = map f range -- "where" definition remain at least as
range = [0..n] -- indented (more would be OK)

-- Iterate a function application n times
iter n f x
| n == 0 = x -- Guards are indented below func name
| otherwise = f (iter (n-1) f x)

I find that two spaces is a nice looking indentation for a subelement, but you have a lot

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Beginning Haskell Page 14 of 18

of freedom in formatting for readability (just don't outdent within the same level).

Operator and function precedence
Operators in Haskell fall into multiple levels of precedence. Most of these are the same
as you would expect from other programming languages. Multiplication takes
precedence over addition, and so on (so "2*3+4" is 10, not 14). Haskell's standard
documentation can provide the details.

There is, however, one "gotcha" in Haskell precedence where it is easy to make a
mistake. Functions take precedence over operators. The result is that the expression
"f g 5" means "apply g (and 5) as arguments to f" not "apply the result of (g 5) to
f." Most of the time, this sort of error will produce a compiler error message, since, for
example, f will require an Int as an argument rather than another function. However,
sometimes the situation can be worse than this, and you can write something valid but
wrong:

double n = n*2
res1 = double 5^2 -- 'res1' is 100, i.e. (5*2)^2
res2 = double (5^2) -- 'res2' is 50, i.e. (5^2)*2
res3 = double double 5 -- Causes a compile-time error
res4 = double (double 5) -- 'res4 is 20, i.e. (5*2)*2

As with other languages, parentheses are extremely useful in disambiguating
expressions where you have some doubt about precedence (or just want to document
the intention explicitly). Notice, by the way, that parentheses are not used around
function arguments in Haskell; but there is no harm in pretending they are, which just
creates an extra expression grouping (as in res2 above).

Scope of names
You might think there is a conflict between two points in this tutorial. On the one hand,
we have said that names are defined as expressions only once in a program; on the
other hand, many of the examples use the same variable names repeatedly. Both
points are true, but need to be refined.

Every name is defined exactly once within a given scope. Every function definition
defines its own scope, and some constructs within definitions define their own narrower
scopes. Fortunately, the "offside rule" that defines subelements also precisely defines
variable scoping. A variable (a name, really) can only occur once with a given
indentation block. Let's see an example, much like previous ones:

x x y -- 'x' as arg is in different scope than func name
| y==1 = y*x*z -- 'y' from arg scope, but 'x' from 'where' scope
| otherwise = x*x -- 'x' comes from 'where' scope
where
x = 12 -- define 'x' within the guards
z = 5 -- define 'z' within the guards

n1 = x 1 2 -- 'n1' is 144 ('x' is the function name)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Beginning Haskell Page 15 of 18

n2 = x 33 1 -- 'n2' is 60 ('x' is the function name)

Needless to say, the example is unnecessarily confusing. It is worth understanding,
however, especially since arguments only have a scope within a particular function
definition (and the same names can be used in other function definitions).

Breaking down the problem
One thing you will have noticed is that function definitions in Haskell tend to be
extremely short compared to those in other languages. This is partly due to the concise
syntax of Haskell, but a greater reason is because of the emphasis in functional
programming of breaking down problems into their component parts (rather than just
sort of "doing what needs to be done" at each point in an imperative program). This
encourages reusability of parts, and allows much better verification that each part really
does what it is supposed to do.

The small parts of function definitions may be broken out in several ways. One way is
to define a multitude of useful support functions within a source file, and use them as
needed. The examples in this tutorial have mostly done this. However, there are also
two (equivalent) ways of defining support functions within the narrow scope of a single
function definition: the let clause and the where clause. A simple example follows.

f n = n+n*n
f2 n

= let sq = n*n
in sq+n

f3 n
= sq+n
where sq = n*n

The three definitions are equivalent, but f2 and f3 chose to define a (trivial) support
function sq within the definition scope.

Importing/exporting
Haskell also supports a module system that allows for larger scale modularity of
functions (and also for types, which we have not covered in this introductory tutorial).
The two basic elements of module control are specification of imports and specification
of exports. The former is done with the import declaration; the latter with the module
declaration. Some examples include:

-- declare the current module, and export only the objects listed
module MyNumeric (isPrime, factorial, primes, sumSquares) where
import MyStrings -- import everything MyStrings has to offer

-- import only listed functions from MyLists
import MyLists (quicksort, findMax, satisfice)

-- import everything in MyTrees EXCEPT normalize
import MyTrees hiding (normalize)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Beginning Haskell Page 16 of 18

-- import MyTuples as qualified names, e.g.
-- three = MyTuples.third (1,2,3,4,5,6)

import qualified MyTuples

You can see that Haskell provides considerable, fine-grained control of where function
definitions are visible to other functions. This module system helps build large-scale
componentized systems.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Beginning Haskell Page 17 of 18

Section 6. Resources and feedback

Resources
* To obtain Haskell, visit Haskell.org. Haskell has several implementations for multiple

platforms. These include both an interpreted version called Hugs, and several Haskell
compilers.

* Two recent books on Haskell can help you learn more:
* Haskell: The Craft of Functional Programming (Second Edition) by Simon

Thompson (Addison-Wesley, 1999)
* The Haskell School of Expression: Learning Functional Programming through

Multimedia by Paul Hudak (Cambridge University Press, 2000)

Your feedback
We look forward to getting your feedback on this tutorial. Additionally, you are welcome to
contact the author, David Mertz, directly at mertz@gnosis.cx.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Beginning Haskell Page 18 of 18

http://www.haskell.org
mailto:mertz@gnosis.cx
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	Should I take this tutorial?
	What's not covered?
	About the author

	Haskell basics
	About Haskell
	Obtaining Haskell

	Taking the vows
	Giving things up
	No mutable variables
	Isolate side-effects
	No loops
	No program order

	A new expressiveness
	What's in a Haskell program?
	Defining functions
	More simple function definitions
	Recursion
	Pattern matching
	Guards
	List comprehensions
	Lazy evaluation I
	Lazy evaluation II
	First class functions (passing functions)
	First class functions (function factories)

	Modules and program structure
	Basic syntax
	Haskell and literate Haskell
	The offside rule
	Operator and function precedence
	Scope of names
	Breaking down the problem
	Importing/exporting

	Resources and feedback
	Resources
	Your feedback

