Complete Algebraic Semantics for Second-Order Rewriting Systems based on Abstract Syntax with Variable Binding

Makoto Hamana
Faculty of Informatics, Gunma University, Japan
SYCO 10
19th December, 2022, Edinburgh

\triangleright Complete algebraic semantics of second-order rewriting

\triangleright Complete algebraic semantics of second-order rewriting

\triangleright Based on my paper

- Complete Algebraic Semantics for Second-Order Rewriting Systems based on Abstract Syntax with Variable Binding
- MSCS, CUP, 2022, Special Issue of John Power Festschrift

Mathematical
Structures in Computer Science

Article contents
Abstract
References

Complete algebraic semantics for second-order rewriting systems based on abstract syntax with variable binding

Published online by Cambridge University Press: 14 October 2022
Makoto Hamana (D)
Article Metrics
Get access \rightarrow Share 66 cite $\rightarrow 0$ Rights \& Permissions

Abstract

By using algebraic structures in a presheaf category over finite sets, following Fiore, Plotkin and Turi, we develop sound and complete models of second-order rewriting systems called secondorder computation systems (CSs). Restricting the algebraic structures to those equipped with well-founded relations, we obtain a complete characterisation of terminating CSs. We also extend the characterisation to rewriting on meta-terms using the notion of Σ-monoid.

Keywords

Term rewriting	higher-order rewriting	termination	algebraic models	higher-order abstract syntax

[^0]Information Mathematical Structures in Computer Science, Volume 32, Special Issue 4: The Power Festschrift, April 2022, pp. 542-573

First-order Rewriting: Review

First-Order Term Rewriting System (TRS) $\boldsymbol{\mathcal { R }}$:

$$
\begin{aligned}
f a c t(0) & \rightarrow S(0) \\
\operatorname{fact}(S(x)) & \rightarrow \operatorname{fact}(x) * S(x)
\end{aligned}
$$

Rewrite steps:

```
fact(S(S(0))) => fact(S(0)) * S(S(0)) => (fact(0) * S(0)) * S(S(0))
    => (S(0) * S(0)) * S(S(0)) ==> S(S(0)) (normal form)
```

Fundametal problem
\triangleright Termination (Strong Normalisation)
\triangleright How can we prove the termination of $\boldsymbol{\mathcal { R }}$?

TRS: Sound and Complete Algebraic Characterisation
Thm. [Huet and Lankford'78]
A first-order term rewriting system \mathcal{R} is terminating
\Leftrightarrow
there exists a well-founded monotone $\boldsymbol{\Sigma}$-algebra $\left(A,>_{A}\right)$ that is compatible with $\boldsymbol{\mathcal { R }}$.

Termination proof method

[\Leftarrow] Find a well-founded monotone $\boldsymbol{\Sigma}$-algebra that is compatible with $\boldsymbol{\mathcal { R }}$.

First-order Rewriting: Review

First-Order Term Rewriting System (TRS) \mathcal{R} :

$$
\begin{aligned}
f a c t(0) & \rightarrow S(0) \\
\operatorname{fact}(S(x)) & \rightarrow \operatorname{fact}(x) * S(x)
\end{aligned}
$$

Semantics: well-founded monotone $\boldsymbol{\Sigma}$-algebra ($\mathbb{N},>$) given by

$$
f a c t^{\mathbb{N}}(x)=2 x+2 \quad x *^{\mathbb{N}} y=x+y \quad S^{\mathbb{N}}(x)=2 x+1 \quad 0^{\mathbb{N}}=1
$$

Then it is compatible with $\boldsymbol{\mathcal { R }}$ as

$$
\begin{array}{llll}
\operatorname{fact}^{\mathbb{N}}\left(0^{\mathbb{N}}\right) & =2+2 & >2+1 & =S^{\mathbb{N}}\left(0^{\mathbb{N}}\right) \\
\operatorname{fact}^{\mathbb{N}}\left(S^{\mathbb{N}}(x)\right) & =2(2 x+1)+2 & >2 x+2 x+1 & =\operatorname{fact}^{\mathbb{N}}(x) * S^{\mathbb{N}}(x)
\end{array}
$$

Hence \mathcal{R} is terminating.

Aim: Sound and Complete Algebraic Characterisation

Thm. [Huet and Lankford'78]
A first-order term rewriting system \mathcal{R} is terminating
\Leftrightarrow
there exists a well-founded monotone $\boldsymbol{\Sigma}$-algebra \boldsymbol{A} that is compatible with $\boldsymbol{\mathcal { R }}$.
\triangleright Aim: Extend this to second-order rewriting
\triangleright Give: Complete algebraic semantics of second-order rewriting

Example of Second-Order Rewriting : Prenex normal forms

$$
\begin{array}{llll}
\mathrm{P} \wedge \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) & \rightarrow \forall(\boldsymbol{x} \cdot \mathrm{P} \wedge \mathrm{Q}[\boldsymbol{x}]) & \neg \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) & \rightarrow \exists(\boldsymbol{x} \cdot \neg(\mathrm{Q}[\boldsymbol{x}])) \\
\forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \wedge \mathrm{P} & \rightarrow \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}] \wedge \mathrm{P}) & \neg \exists(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) & \rightarrow \forall(\boldsymbol{x} \cdot \neg(\mathrm{Q}[\boldsymbol{x}]))
\end{array}
$$

Signature: $\neg, \wedge, \vee, \forall, \exists$

$$
\begin{array}{rlll}
\mathrm{P} \wedge \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) & \rightarrow \forall(\boldsymbol{x} \cdot \mathrm{P} \wedge \mathrm{Q}[\boldsymbol{x}]) & \neg \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) & \rightarrow \exists(\boldsymbol{x} \cdot \neg(\mathrm{Q}[\boldsymbol{x}])) \\
\forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \wedge \mathrm{P} & \rightarrow \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}] \wedge \mathrm{P}) & \neg \exists(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) & \rightarrow \forall(\boldsymbol{x} \cdot \neg(\mathrm{Q}[\boldsymbol{x}]))
\end{array}
$$

Signature: $\neg, \wedge, \vee, \forall, \exists$

Second-Order Rewriting System is defined on
Second-Order Abstract Syntax [Hamana'04, Fiore LICS'06]
\triangleright Abstract syntax with variable binding [Fiore, Plotkin, Turi LICS'99]
\triangleright Metavariables with arities (e.g. P,Q)
\triangleright Substitutions (Metavars, object vars)

Example: the $\boldsymbol{\lambda}$-calculus as a Second-Order Rewriting System

$$
\begin{aligned}
\lambda(\boldsymbol{x} \cdot \mathrm{M}[\boldsymbol{x}]) @ \mathrm{~N} & \rightarrow \mathrm{M}[\mathrm{~N}] \\
\lambda(\boldsymbol{x} \cdot \mathrm{M} @ \boldsymbol{x}) & \rightarrow \mathrm{M}
\end{aligned}
$$

\triangleright Signature: λ, @

Abstract Syntax and Variable Binding [Fiore,Plotkin,Turi LICS'99]

\triangleright Aim: To model syntax with variable binding, e.g.

$$
\begin{gathered}
\frac{x_{1}, \ldots, x_{n} \vdash t \quad x_{1}, \ldots, x_{n} \vdash s}{x_{1}, \ldots, x_{n} \vdash x_{i}} \\
\frac{x_{1}, \ldots, x_{n} \vdash t @ s}{x_{1}, \ldots, x_{n} \vdash \lambda\left(x_{n+1} \cdot t\right)}
\end{gathered}
$$

\triangleright Syntax generated by 3 constructors
$\triangleright \boldsymbol{\lambda}$ is a special unary function symbol: it decreases the context

Abstract Syntax and Variable Binding [Fiore,Plotkin,Turi LICS'99]

\triangleright Aim: model syntax with variable binding, e.g.

$$
\begin{gathered}
\overline{n \vdash i} \quad \frac{n \vdash t \quad n \vdash s}{n \vdash t @ s} \\
\frac{n+1 \vdash t}{n \vdash \lambda(n+1 . t)}
\end{gathered}
$$

\triangleright Category \mathbb{F} for variable contexts
objects: $n=\{1, \ldots, n\} \quad$ (variable contexts) arrows: all functions $\boldsymbol{n} \rightarrow \boldsymbol{n}^{\prime} \quad$ (renamings)
\triangleright Presheaf category Set $^{\mathbb{F}}$

Models of Syntax with Binding: $\boldsymbol{\Sigma}$-Algebras in Set $^{\mathbb{F}}$

Def. A binding signature $\boldsymbol{\Sigma}$ is a set of function symbols with binding arities:

$$
\boldsymbol{f}:\left\langle\boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{l}\right\rangle
$$

which has \boldsymbol{l} arguments and binds $\boldsymbol{n}_{\boldsymbol{i}}$ variables in the \boldsymbol{i}-th argument.
Def. A $\boldsymbol{\Sigma}$-algebra $\boldsymbol{A}=\left(\boldsymbol{A},\left[\boldsymbol{f}^{\boldsymbol{A}}\right]_{f \in \Sigma}\right)$ in $\boldsymbol{S e t}^{\mathbb{F}}$ consists of
\triangleright carrier: a presheaf $\boldsymbol{A} \in \mathbf{S e t}^{\mathbb{F}}$
\triangleright operations: arrows of Set ${ }^{\mathbb{F}}$

$$
f^{A}: \delta^{n_{1}} A \times \ldots \times \delta^{n_{l}} A \longrightarrow A
$$

corresponding to function symbols $\boldsymbol{f}:\left\langle\boldsymbol{n}_{\mathbf{1}}, \ldots, \boldsymbol{n}_{\boldsymbol{l}}\right\rangle \in \boldsymbol{\Sigma}$.
\triangleright Context extension: $\quad \delta \boldsymbol{A} \in \boldsymbol{\operatorname { S e t }}^{\mathbb{F}} ;(\boldsymbol{A})(\boldsymbol{n})=\boldsymbol{A}(\boldsymbol{n}+\mathbf{1})$

Example: $\boldsymbol{\lambda}$-terms

\triangleright Binding signature $\boldsymbol{\Sigma}_{\boldsymbol{\lambda}}$ for $\boldsymbol{\lambda}$-terms

$$
\lambda:\langle 1\rangle, \quad @:\langle 0,0\rangle
$$

\triangleright Carrier: the presheaf $\boldsymbol{\Lambda}$ of all $\boldsymbol{\lambda}$-terms

$$
\Lambda(n)=\{t \mid n \vdash t\}
$$

$$
\boldsymbol{\Lambda}(\rho): \boldsymbol{\Lambda}(\boldsymbol{m}) \rightarrow \boldsymbol{\Lambda}(\boldsymbol{n}) \quad \text { renaming on } \boldsymbol{\lambda} \text {-terms for } \rho: m \rightarrow n \text { in } \mathbb{F} .
$$

\triangleright Forms a $\mathbf{V}+\boldsymbol{\Sigma}_{\boldsymbol{\lambda}}$-algebra

$$
\begin{array}{rclll}
\operatorname{var}^{\Lambda}: \mathrm{V} \rightarrow \Lambda & @ \\
i & : \Lambda \times \Lambda \rightarrow \Lambda & \lambda^{\Lambda} & : \delta \Lambda & \rightarrow \Lambda \\
i \mapsto i & s, t \mapsto s @ t & \lambda^{\Lambda}(n): \Lambda(n+1) & \rightarrow \Lambda(n) \\
& & & t & \mapsto \lambda n+1 . t
\end{array}
$$

\triangleright Presheaf of variables: $\mathrm{V} \in \boldsymbol{S e t}^{\mathbb{F}} ; \mathrm{V}(n)=\{1, \ldots, n\}$
\triangleright Thm. $\boldsymbol{\Lambda}\left(=\mathbf{T}_{\boldsymbol{\Sigma}} \mathbf{V}\right)$ is an initial $\mathbf{V}+\boldsymbol{\Sigma}_{\boldsymbol{\lambda}}$-algebra.

Second-Order Abstract Syntax

\triangleright Abstract syntax with variable binding

- Metavariables with arities
\triangleright Substitutions (Metavars, object vars)
\triangleright A $\boldsymbol{\Sigma}$-monoid [Fiore, Plotkin, Turi'99] is
- a $\boldsymbol{\Sigma}$-algebra \boldsymbol{A} with
- a monoid structure

$$
\mathrm{V} \xrightarrow{\nu} A \stackrel{\mu}{\stackrel{\mu}{\longrightarrow}} \boldsymbol{A} \bullet A
$$

in the monoidal category ($\mathbf{S e t}^{\mathbb{F}}, \mathbf{\bullet}, \mathbf{V}$),

- both are compatible.
\triangleright Idea
- Unit ν models the embedding of variables
- Multiplication μ models substitution for object variables

Algebraic Characterisation of Syntax with Binding

Given a binding signature $\boldsymbol{\Sigma}$
\triangleright The presheaf of all $\boldsymbol{\Sigma}$-terms

$$
\mathrm{T}_{\Sigma} \mathrm{V}(n)=\{t \mid n \vdash t\}
$$

\triangleright Multiplication $\mu: \mathbf{T}_{\Sigma} \mathbf{V} \bullet \mathbf{T}_{\Sigma} \mathbf{V} \rightarrow \mathbf{T}_{\Sigma} \mathbf{V}$

$$
\mu_{n}^{(m)}\left(t ; s_{1}, \ldots, s_{m}\right) \triangleq t\left[1:=s_{1}, \ldots, n:=s_{m}\right]
$$

(the substitution of $\boldsymbol{\Sigma}$-terms for de Bruijn variables)

Algebraic Characterisation of Syntax with Binding

Given a binding signature $\boldsymbol{\Sigma}$
\triangleright The presheaf of all $\boldsymbol{\Sigma}$-terms

$$
\mathrm{T}_{\Sigma} \mathrm{V}(n)=\{t \mid n \vdash t\}
$$

\triangleright Multiplication $\mu: \mathbf{T}_{\Sigma} \mathbf{V} \bullet \mathbf{T}_{\Sigma} \mathbf{V} \rightarrow \mathbf{T}_{\Sigma} \mathbf{V}$

$$
\mu_{n}^{(m)}\left(t ; s_{1}, \ldots, s_{m}\right) \triangleq t\left[1:=s_{1}, \ldots, n:=s_{m}\right]
$$

(the substitution of $\boldsymbol{\Sigma}$-terms for de Bruijn variables)
\triangleright Thm. [Fiore, Plotkin, Turi'99]

- $\left(\mathbf{T}_{\Sigma} \mathbf{V}, \nu, \mu\right)$ is an initial $\boldsymbol{\Sigma}$-monoid.
- $\left(\mathbf{T}_{\Sigma} \mathbf{V}, \nu\right) \quad$ is an initial $\mathbf{V}+\boldsymbol{\Sigma}$-algebra.
- How to model metavariables and substitutions for metavariables?

Algebraic Characterisation of Syntax with Binding

Given a binding signature $\boldsymbol{\Sigma}$
\triangleright The presheaf of all $\boldsymbol{\Sigma}$-terms

$$
\mathrm{T}_{\Sigma} \mathrm{V}(n)=\{t \mid n \vdash t\}
$$

\triangleright Multiplication $\mu: \mathbf{T}_{\Sigma} \mathbf{V} \bullet \mathbf{T}_{\Sigma} \mathbf{V} \rightarrow \mathbf{T}_{\Sigma} \mathbf{V}$

$$
\mu_{n}^{(m)}\left(t ; s_{1}, \ldots, s_{m}\right) \triangleq t\left[1:=s_{1}, \ldots, n:=s_{m}\right]
$$

(the substitution of $\boldsymbol{\Sigma}$-terms for de Bruijn variables)
\triangleright Thm. [Fiore, Plotkin, Turi'99]

- $\left(\mathbf{T}_{\boldsymbol{\Sigma}} \mathbf{V}, \nu, \mu\right)$ is an initial $\boldsymbol{\Sigma}$-monoid.
- $\left(\mathbf{T}_{\Sigma} \mathbf{V}, \nu\right) \quad$ is an initial $\mathbf{V}+\boldsymbol{\Sigma}$-algebra.
- How to model metavariables and substitutions for metavariables?
- Free $\boldsymbol{\Sigma}$-monoids [Hamana, APLAS'04]

Meta-terms: Terms with Metavariables [Aczel '78]

\triangleright A binding signature $\boldsymbol{\Sigma}$
$\triangleright \boldsymbol{Z}$ is an \mathbb{N}-indexed set of metavariables parameterised by arities:

$$
\boldsymbol{Z}(\boldsymbol{l}) \triangleq\left\{\mathrm{M} \mid \mathrm{M}^{l}, \text { where } \boldsymbol{l} \in \mathbb{N}\right\}
$$

\triangleright Raw meta-terms generated by \boldsymbol{Z} :

$$
t::=x\left|f\left(x_{1} \cdots x_{i_{1}} \cdot t_{1}, \ldots, x_{1} \cdots x_{i_{l}} t_{l}\right)\right| \mathrm{M}\left[t_{1}, \ldots, t_{l}\right]
$$

\triangleright A meta-term t is a raw meta-term derived from:

$$
\begin{gathered}
\frac{x \in n}{n \vdash x} \quad \frac{f:\left\langle i_{1}, \ldots, i_{l}\right\rangle \in \Sigma \quad n+i_{1} \vdash t_{1} \cdots n+i_{l} \vdash t_{l}}{n \vdash f\left(n+1 \ldots n+i_{1} \cdot t_{1}, \ldots, n+1 \ldots n+i_{l} \cdot t_{l}\right)} \\
\frac{\mathrm{M} \in Z(l) n \vdash t_{1} \cdots n \vdash t_{l}}{n \vdash \mathrm{M}\left[t_{1}, \ldots, t_{l}\right]}
\end{gathered}
$$

\triangleright Presheaf $\boldsymbol{M}_{\boldsymbol{\Sigma}} \boldsymbol{Z} \in \mathbf{S e t}^{\mathbb{F}}$

$$
M_{\Sigma} Z(n)=\{t \mid n \vdash t\}
$$

$\triangleright \mathrm{V}+\Sigma$-algebra $\left(M_{\Sigma} Z,\left[\nu, f_{T}\right]_{f \in \Sigma}\right)$

$$
\begin{aligned}
& \nu(n): \mathrm{V}(n) \longrightarrow M_{\Sigma} Z(n), \\
& x \longmapsto x \\
& f^{T}: \delta^{i_{1}} M_{\Sigma} Z \times \cdots \times \delta^{i_{l}} M_{\Sigma} Z \longrightarrow M_{\Sigma} Z \\
&\left(t_{1}, \ldots, t_{l}\right) \longmapsto f\left(n+\overline{i_{1}}, t_{1}, \ldots, n+\overline{i_{l}}, t_{l}\right) .
\end{aligned}
$$

\triangleright Multiplication $\mu: M_{\Sigma} Z \bullet M_{\Sigma} Z \rightarrow M_{\Sigma} Z$

$$
t, \quad \bar{s} \longmapsto t\left[1:=s_{1}, \ldots, n:=s_{n}\right]
$$

... substitution of meta-terms for object variables

Free $\boldsymbol{\Sigma}$-monoids: Syntax with Metavariables [Hamana, APLAS'04]
Thm. $\left(M_{\Sigma} \boldsymbol{Z}, \nu, \mu\right)$ forms a free $\boldsymbol{\Sigma}$-monoid over \boldsymbol{Z}.
\triangleright Freeness of $M_{\Sigma} Z$: in Set $^{\mathbb{F}}$, given assignment θ

\triangleright The unique $\boldsymbol{\Sigma}$-monoid morphism θ^{\sharp} that extends θ.

Instance: Substitution for Metavariables

Case $\boldsymbol{A}=\mathbf{T}_{\Sigma} \mathbf{V} \quad \cdots$ a $\boldsymbol{\Sigma}$-monoid of terms,

$\triangleright \theta^{\sharp}$ is a substitution of terms for metavariables \boldsymbol{Z}
\triangleright E.g. $\boldsymbol{\Sigma}$: signature for $\boldsymbol{\lambda}$-terms, for $\theta\left(\mathrm{M}^{(1)}\right)=\boldsymbol{a} @ \boldsymbol{a}$

$$
\theta^{\sharp}(\lambda(x \cdot \mathrm{M}[\boldsymbol{x}] @ y))=\lambda(\boldsymbol{x} \cdot(\boldsymbol{x} @ \boldsymbol{x}) @ \boldsymbol{y})
$$

\triangleright Other examples of $\boldsymbol{\Sigma}$-monoid \boldsymbol{A} :

- $M_{\Sigma} Z$: meta-substitution: substitution of meta-terms for metavars
- Any $\boldsymbol{\Sigma}$-monoid as a model $-\theta^{\sharp}$ is compositional interpretation

Eg. A transformation to prenex normal forms

$$
\mathrm{P} \wedge \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \rightarrow \forall(\boldsymbol{x} \cdot \mathrm{P} \wedge \mathrm{Q}[\boldsymbol{x}]) \quad \neg \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \rightarrow \exists(\boldsymbol{x} \cdot \neg(\mathrm{Q}[\boldsymbol{x}]))
$$

Def.

Rewrite rules $\mathcal{R} \quad \boldsymbol{l} \rightarrow \boldsymbol{r}$ on meta-terms $M_{\Sigma} Z$
(with some syntactic conditions)

Rewrite relation $\rightarrow_{\mathcal{R}}$ on terms $\mathrm{T}_{\boldsymbol{\Sigma}} \mathbf{V}$

$$
\frac{l \rightarrow r \in \mathcal{R}}{\theta^{\sharp}(l) \rightarrow_{\mathcal{R}} \theta^{\sharp}(r)} \quad \frac{s \rightarrow_{\mathcal{R}} t}{f(\ldots, \bar{x} . s, \ldots) \rightarrow_{\mathcal{R}} f(\ldots, \bar{x} \cdot t, \ldots)}
$$

\triangleright Substitution $\theta: Z \rightarrow \mathrm{~T}_{\boldsymbol{\Sigma}} \mathrm{V}$ maps metavariables to terms
\triangleright NB. rewriting is defined on terms (without metavars)

Presheaf with relation $\left(A,>_{A}\right)$

Def. A presheaf $\boldsymbol{A} \in \mathbf{S e t}^{\mathbb{P}}$ is equipped with a binary relation $>_{\boldsymbol{A}}$, if

1. $>_{A}$ is a family $\left\{>_{A(n)}\right\}_{n \in \mathbb{F}}$,
2. which is compatible with presheaf action.
(for all $\boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{A}(\boldsymbol{m})$ and $\rho: \boldsymbol{m} \rightarrow \boldsymbol{n}$ in \mathbb{F}, if $\boldsymbol{a}>_{A(m)} \boldsymbol{b}$, then $\boldsymbol{A}(\rho)(\boldsymbol{a})>_{\boldsymbol{A}(n)} \boldsymbol{A}(\rho)(\boldsymbol{b})$.)

Monotone Algebra

Def. A monotone $\mathrm{V}+\boldsymbol{\Sigma}$-algebra $\left(A,>_{A}\right)$ is a $\mathrm{V}+\boldsymbol{\Sigma}$-algebra $\left(A,\left[\nu, f^{A}\right]_{f \in \Sigma}\right)$
\triangleright equipped with a relation $>_{A}$ such that
\triangleright every operation $f^{\boldsymbol{A}}$ is monotone.

Thm. $\left(\mathrm{T}_{\boldsymbol{\Sigma}} \mathrm{V}, \rightarrow_{\mathcal{R}}\right)$ is a monotone $\mathrm{V}+\boldsymbol{\Sigma}$-algebra.

Models of Rewrite System $\mathcal{R}:(\mathbf{V}+\boldsymbol{\Sigma}, \boldsymbol{\mathcal { R }})$-algebras

A $(\mathbf{V}+\boldsymbol{\Sigma}, \mathcal{R})$-algebra $\left(\boldsymbol{A},>_{\boldsymbol{A}}\right)$ is a monotone $\mathbf{V}+\boldsymbol{\Sigma}$-algebra satisfying all rules in \mathcal{R} as:

V $+\boldsymbol{\Sigma}$-algebra

$$
l \rightarrow r \in \mathcal{R}
$$

... a rule
a unique $\boldsymbol{\Sigma}$-monoid mor. extends θ

$$
\theta_{n}^{\sharp}(l) \rightarrow_{\mathcal{R}} \theta_{n}^{\sharp}(r) \quad \ldots \text { a rewrite }
$$

a unique $\mathbf{V}+\boldsymbol{\Sigma}$-algebra homomor.

$$
!_{A} \theta_{n}^{\sharp}(l) \quad>_{A(n)} \quad!_{A} \theta_{n}^{\sharp}(l) \quad \cdots \text { an interpretation }
$$

Soundness and Completeness of Models

Prop. $\quad \boldsymbol{s} \rightarrow \boldsymbol{\mathcal { R }} \boldsymbol{t}$
\Leftrightarrow

$$
!_{A}(s)>_{A}!_{A}(t) \quad \text { for all }(\mathbf{V}+\boldsymbol{\Sigma}, \mathcal{R}) \text {-algebras } A \text {, assignments } \theta \text {. }
$$

Proof. $[\Rightarrow]$: By induction of the proof of rewrite. $[\Leftarrow]$: Take $\left(A,>_{A}\right)=\left(\mathbf{T}_{\Sigma} V, \rightarrow_{\mathcal{R}}\right)$.

Complete Characterisation of Terminating Second-Order Rewriting

Thm. A second-order rewriting system \mathcal{R} is terminating iff there is a well-founded $(\mathrm{V}+\boldsymbol{\Sigma}, \mathcal{R})$-algebra $\left(\boldsymbol{A},>_{A}\right)$.

Proof. (\Leftarrow) : Suppose a well-founded $(\mathbf{V}+\boldsymbol{\Sigma}, \boldsymbol{R})$-algebra $\left(\boldsymbol{A},>_{A}\right)$.
Assume \mathcal{R} is non-terminating:

$$
t_{1} \rightarrow_{\mathcal{R}} t_{2} \rightarrow_{\mathcal{R}} \cdots
$$

By soundness,

$$
!_{A}\left(t_{1}\right)>_{A(n)}!_{A}\left(t_{2}\right)>_{A} \cdots
$$

Contradiction.
(\Rightarrow) : When \mathcal{R} is terminating, the $(\mathbf{V}+\boldsymbol{\Sigma}, \mathcal{R})$-algebra $\left(\mathbf{T}_{\boldsymbol{\Sigma}} \mathbf{V}, \rightarrow_{\mathcal{R}}\right)$ is a well-founded algebra.

- Because of the algebraic chatersiations of abstract sytanx with binding [FPT'99] and meta-terms [H.04]

$$
\begin{array}{llll}
\mathrm{P} \wedge \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) & \rightarrow \forall(\boldsymbol{x} \cdot \mathrm{P} \wedge \mathrm{Q}[\boldsymbol{x}]) & \neg \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) & \rightarrow \exists(\boldsymbol{x} \cdot \neg(\mathrm{Q}[\boldsymbol{x}])) \\
\forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \wedge \mathrm{P} & \rightarrow \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}] \wedge \mathrm{P}) & \neg \exists(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) & \rightarrow \forall(\boldsymbol{x} \cdot \neg(\mathrm{Q}[\boldsymbol{x}]))
\end{array}
$$

Take a well-founded monotone $\mathbf{V}+\boldsymbol{\Sigma}$-algebra $\left(\boldsymbol{K},>_{\boldsymbol{K}}\right)$
where $\boldsymbol{K}(\boldsymbol{n})=\mathbb{N}$ with $>_{\boldsymbol{K}(\boldsymbol{n})}=>$ on \mathbb{N}.

Operations

$$
\begin{gathered}
\nu_{n}^{K}(i)=0 \quad \wedge_{n}^{K}(x, y)=\vee_{n}^{K}(x, y)=2 x+2 y \\
\neg_{n}^{K}(x)=2 x \quad \forall_{n}^{K}(x)=\exists_{n}^{K}(x)=x+1
\end{gathered}
$$

($\mathrm{V}+\Sigma, \mathcal{R}$)-algebra

$$
\begin{gathered}
!\theta_{0}^{\sharp}(\mathrm{P} \wedge \forall(1 . \mathrm{Q}[1]))=2 \boldsymbol{x}+2(\boldsymbol{y}+1)>_{K(0)}(2 x+2 y)+1=!\theta_{0}^{\sharp}(\forall(1 . \mathrm{P} \wedge \mathrm{Q}[1])) \\
!\theta_{0}^{\sharp}(\neg \exists(1 \cdot \mathrm{Q}[1]))=2(y+1)>_{K(0)} 2 \boldsymbol{y}+1=!\theta_{0}^{\sharp}(\forall(1 . \neg(\mathrm{Q}[1]))) .
\end{gathered}
$$

Summary

\triangleright Complete algebraic semantics of second-order rewriting systems

\triangleright Based on my paper

- Complete Algebraic Semantics for Second-Order Rewriting Systems based on Abstract Syntax with Variable Binding
- MSCS, CUP, 2022, Special Issue of John Power Festschrift

Mathematical Structures in computer Science

Article contents
Abstract
References

Complete algebraic semantics for second-order rewriting systems based on abstract syntax with variable binding

Published online by Cambridge University Press: 14 October 2022
Makoto Hamana (iD
Article Metrics
Get access \rightarrow Share 66 cite $\rightarrow 0$ Rights \& Permissions

Abstract

By using algebraic structures in a presheaf category over finite sets, following Fiore, Plotkin and Turi, we develop sound and complete models of second-order rewriting systems called secondorder computation systems (CSs). Restricting the algebraic structures to those equipped with well-founded relations, we obtain a complete characterisation of terminating CSs. We also extend the characterisation to rewriting on meta-terms using the notion of Σ-monoid.

Keywords

Term rewriting	higher-order rewriting	termination	algebraic models	higher-order abstract syntax

Summary

\triangleright Complete algebraic semantics of second-order rewriting systems
\triangleright Based on my paper

- Complete Algebraic Semantics for Second-Order Rewriting Systems based on Abstract Syntax with Variable Binding
- MSCS, CUP, 2022, Special Issue of John Power Festschrift
\triangleright Short history: I visted LFCS, Edinburgh in 1999-2000 as a JSPS postdoc.
\triangleright Thanks to John Power, Gordon Plotkin

\triangleright Complete algebraic characterisation of second-order rewriting systems
\triangleright using algebraic models of second-order abstrax syntax

Further Topics and Applications

\triangleright Meta-rewriting: rewriting on meta-terms using monotone $\boldsymbol{\Sigma}$-monoids
\triangleright Modularity of Termination for Second-Order rewriting [H. LMCS'21] \mathbf{A} : terminating \& \mathbf{B} terminating $\Rightarrow \mathbf{A} \uplus \mathbf{B}$: terminating with several conditions
\triangleright Tool SOL for termination and confluence checking 1st places in the Higher-order Category of

- International Confluence Competition 2020
- Termination Competition 2022
http://solweb.mydns.jp/webcui/sol/

[^0]: Special Issue: The Power Festschrift

