
Master’s thesis

for the degree of

Master of Arts UZH

Lemma Disambiguation in Multilingual
Parallel Corpora

Author: Jasmin Heierli

Student ID: 07-741-432

Examiner: Prof. Martin Volk

Supervisor: Dr. Simon Clematide

Institute of Computational Linguistics

Submission date: 18.06.2018

Abstract

We present novel and efficient approaches to lemmatisation by improving and build-

ing on the output of standard lemmatisation tools such as the TreeTagger. Lemma-

tisation is the process of reducing an inflected word form to its base form and it can

be key in the process of reducing sparse data for morphologically rich languages,

such as Finnish or German, because highly inflected word forms are relatively rare.

A rich morphology also leads to more ambiguities. These ambiguities in context

usually do not pose a problem to humans, but they pose a problem to computers.

In computational linguistics lemmatisation is performed automatically and often re-

lies on a lexicon known to the system. Ideally each word form is in the lexicon and

assigned with a single lemma. However, this is often not the case, as the system is

confronted with unseen word forms in a new data set, the lexicon contains erroneous

entries or the same word form occurs with more than one lemma candidate because

it is ambiguous. The TreeTagger is such a system and a standard POS-tagging tool

that can output lemmas to word forms that are contained in the lexicon.

We develop two machine learning approaches for lemma disambiguation in Ger-

man, French, Italian and Finnish that yield better overall performance than pre-

existing quantitative approaches. We apply our approaches to the Full European

Parliament Corpus v. 6, a multilingual, multiparallel corpus. The first approach is

a distant-semi supervised approach, which is trained on the unambiguous lemmati-

sations of lemma candidates of ambiguous lemmas. This approach does not need any

manually annotated data for training. The main disadvantage is the low coverage,

as a large amount of ambiguous lemmas do not occur unambiguously in the corpus.

Therefore, we also developed an active learning pipeline that lets users select the

correct lemma in several carefully chosen examples of ambiguous lemmas with lack

of evidence for lemma candidates. We draw the observations for manual annotation

from precomputed clusters, which help to find minority classes and outliers. The

manually disambiguated data is used for a supervised machine learning approach.

For the evaluation of the two approaches, we created gold standards for all four

languages. The larger part A is for evaluating the distant semi-supervised approach

and the smaller part B is for evaluating the active learning pipeline. The distant

semi-supervised approach yields results of above 85 % precision, which is above the

majority class baseline and exceeds a previously developed quantitative approach

applied on the same corpus in recall and F1-score. The results for the active learning

pipeline are equally promising with a precision above 90 % for German.

ii

Acknowledgement

First of all, I would like to thank my supervisor, Dr. Simon Clematide, for in-

troducing the topic for this thesis to me and being encouraging and patient until

its completion. His door was always open and he always tried to squeeze in some

time for answering my most urgent questions and spent extra time on reading and

improving my work. I also want to thank Johannes Graën for providing me with

the data of his former analysis and his knowledge and expertise with the corpus.

He also supported me with issues regarding the server infrastructure and I appreci-

ated his inputs in our after-lunch discussion. I am also grateful for Phillip Ströbel’s

proofreading and his introduction to Multivec and word embeddings, which took my

research another step further. I would also like to thank the rest of the staff from

the institute of Computational Linguistics for the warm and welcoming atmosphere

and the lunch times we have spent together.

My special thanks go to Chiara Baffelli, Michela Rossi and Vanessa Kasper, who

diligently and free of charge helped me with the Italian and Finnish gold standards.

Without your precious work, I could not have conducted my experiments in the

manner as they are. I also thank Sara Wick for proofreading and the encouragement

throughout.

Last, but not least, I am grateful for my family’s patience and support. I owe

many thanks to my mother for the many hours of additional babysitting, as well

as our childminder, who took on extra shifts. I also thank my children, Olivia and

Vivien, for their extra patience and the bearing of my absences. Finally, without

the support and encouragement of my husband, this project could not have been

accomplished. Thank you for your unconditional love and support, Thomas.

iii

Contents

Abstract i

Acknowledgement iii

Contents iv

List of Figures vii

List of Tables viii

List of Acronyms ix

1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions . 4

1.3 Thesis Structure . 5

2 Previous Works 7

2.1 Morphological Analysis and Lemmatisation 7

2.2 Neural Lemmatisation . 9

2.3 Lemma Disambiguation Approaches 11

2.4 Word Sense Disambiguation . 12

3 Data 15

3.1 The European Parliament Corpus . 15

3.2 Data Format of the Corpus . 16

3.2.1 Lemmas in FEP6 . 18

3.2.1.1 Lemmatisation with the TreeTagger 18

3.2.1.2 Lemma Distribution of German, French Italian and Finnish 21

3.3 Gold Standard and Lemmatisation Quality Measurements 24

3.3.1 German Gold Standard and Lemmatisation Quality 27

3.3.2 French Gold Standard . 28

3.3.3 Italian Gold Standard . 30

3.3.4 Finnish Gold Standard . 31

iv

Contents

3.4 Lemma Coverage in German . 32

4 Distant Semi-Supervised Machine Learning Approach 35

4.1 Concept of the Distant Semi-supervised Machine Learning Approach 35

4.2 Machine Learning Algorithms . 37

4.2.1 Naive Bayes . 37

4.2.2 Support Vector Machines (SVM) 39

4.2.3 Gradient Tree Boosting (GTB) 39

4.2.4 XGBoost . 40

4.3 Feature Extraction and Selection . 41

4.3.1 Local Features . 41

4.3.1.1 Cooccurrence Features . 41

4.3.1.2 Morphological Analysis . 42

4.3.1.3 POS tags . 43

4.3.2 Syntactic Feature . 43

4.3.3 Cross-lingual and Semantic Features 44

4.3.3.1 Translations . 44

4.3.3.2 Translation Feature Evaluation 44

4.3.3.3 Word Embeddings . 46

4.3.4 Feature Transformation . 49

4.4 Training . 49

4.5 Prediction . 51

4.6 Testing . 51

5 The Active Learning Approach 52

5.1 Conceptualisation of the Active Learning Approach 52

5.2 Clustering . 54

5.2.1 Cluster Modification . 55

5.2.2 fastcluster Experiments . 55

5.2.3 Cluster Quality . 58

5.3 Efficiency for User Queries . 59

5.4 User Interaction and Input . 60

5.4.1 Classification . 62

6 Results 63

6.1 Evaluation of the Distant Semi-supervised Machine Learning Approach 63

6.1.1 Baseline . 64

6.1.2 Extensive Evaluation of German 64

6.1.3 Evaluation of French, Italian and Finnish 65

6.1.4 Evaluation of Graën (2018) . 68

v

Contents

6.2 Evaluation of the supervised active learning approach 69

6.2.1 Baseline . 69

6.2.2 Evaluation of German . 69

6.2.3 Side Effects of Active Learning 70

7 Conclusion 72

7.1 Future Work . 74

References 75

A Tables 82

B Figures 83

C Lemmatisation Guidelines 84

vi

List of Figures

1.1 A POS-tagged and lemmatised English sentence. 2

2.1 Lemming Model. 8

2.2 Sample output of GerTwol. 9

2.3 Lematus input sequence. 10

3.1 CONLL-U-like corpus format. 16

3.2 TreeTagger model. 19

3.3 TT suffix tree. 20

3.4 Ambiguous lemma and unambiguous candidate counts. 24

4.1 Machine learning pipeline. 37

4.2 Sample of the extracted cooccurrence features. 42

4.3 Sample of the extracted translation features. 44

4.4 word2vec model. 47

4.5 German word form and lemma candidate statistics. 50

5.1 Active learning pipeline. 53

5.2 Cluster dendrogram. 55

5.3 User prompt. 61

5.4 Decision path. 62

B.1 Exhaustive best feature and algorithm search. 83

vii

List of Tables

3.1 Training corpora and tag sets, if applicable. 21

3.2 Frequency distribution of lemmas. 22

3.3 An example from the part A of the gold standard. 25

3.4 An example from part B of the gold standard. 25

3.5 Comparison between Annotator 1 and Annotator 2. 26

3.6 Evaluation table for German TT lemmas. 28

3.7 Evaluation table for French TT lemmas. 30

3.8 Evaluation table for Italian TT lemmas. 31

3.9 Evaluation table for Finnish TT lemmas. 32

3.10 Lemmatisation comparison between TT and GerTwol. 32

3.11 Additional GerTwol ambiguities. 34

3.12 Lemma frequencies of GerTwol and TT by word class. 34

4.1 Distribution of evidence for unambiguous lemma candidates. 36

4.2 Translation feature performance. 46

5.1 Measurement of different distance update formulas for German. . . . 58

5.2 Average Cophenentic Correlation Coefficients for FR, IT and FI. . . . 59

5.3 Comparison between pre-computed clusters and random draw. 60

6.1 Precision of Baseline for all four languages. 64

6.2 Evaluation of distant semi-supervised approach for German. 65

6.3 Evaluation of distant semi-supervised approach for French. 66

6.4 Evaluation of distant semi-supervised approach for Italian. 67

6.5 Evaluation of distant semi-supervised approach for Finnish. 68

6.6 Comparison of distant semi-supervised approach and Graën (2018). . 69

A.1 Absolute numbers of translation features as performance measure. . . 82

viii

List of Acronyms

CBOW continuous bag-of-words

CCC Cophenetic Correlation Coefficient

CL Computational Linguistics

CRF Conditional random field

DE German

FEP6 Full European Parliament Corpus version 6.0

FI Finnish

FR French

GTB Gradient Tree Boosting

IT Italian

NER Named Entity Recognition

NLP Natural Language Processing

NLTK Natural Language Processing Toolkit

OCR Optical Character Recognition

POS Part-Of-Speech

SVM Support Vector Machines

TT TreeTagger

WSD Word Sense Disambiguation

ix

1 Introduction

1.1 Motivation

A thorough and meticulous annotation is the foundation for most natural language

processing (NLP) applications. A subtask of linguistic annotation is lemmatisation,

which is key to numerous NLP tasks, such as parsing, machine translation, ontology

creation, lexicographical tasks, information retrieval and word sense disambiguation

(WSD).

Lemmatisation is the process of reducing an inflected word form to its ‘lemma’,

the base form. The concept of ‘lemma’ has different meanings, depending on the

field of study.

• Linguistics A ‘lemma’ is considered as keyword in a dictionary. It represents

a lexeme, which subsumes all word forms of the word paradigm of a word in

a certain language (Glück and Rödel, 2016, p. 96).

• Computational Linguistics A ‘lemma’ is the normalised base form of all

word forms that belong to the same word, having the same stem, part-of-speech

tag and the same word-sense (Jurafsky and Martin, 2017, p. 20).

The two definitions are closely related and yet they have entirely different pre-

dispositions. A lemma in the linguistic context refers to a lexeme representation

with a dictionary entry, while in the context of computational linguistics (CL) a

dictionary entry is not necessarily involved. We will illustrate this with two exam-

ples. The word forms sings, singing and sang belong to the lemma sing, which you

will find in any average dictionary. If we have a look at the number 11, or a full

stop ‘.’, it becomes difficult to determine a lemma in the linguistic sense. 11 and ‘.’

cannot be found in most dictionaries, as there is an infinite number of digit combi-

nations and punctuation marks do not carry lexical meaning. However, in CL, we

usually lemmatise all tokens, regardless of whether they carry lexical or grammati-

cal meaning, since many applications rely on lemmatisation and even units such as

punctuation deliver crucial information. Such tokens receive a lemma identical to

their word form, for tasks such as tagger training, or a normalised lemma, such as

‘#’ for any digit number or a ‘.’ for punctuation in order to reduce orthographic

1

Chapter 1. Introduction

Envelopes NNS envelope

and CC and

ballot NN ballot

papers NNS paper

have VHP have

been VBN be

distributed VVN distribute

. SENT .

Figure 1.1: A POS-tagged and lemmatised English sentence.

variation depending on purpose and lemmatisation convention. The conventions

may indeed differ across languages and applications. In German and English, verbs

are usually reduced to the infinitive form, such as went → go or German ging →
gehen. In Latin on the other hand, verbs are reduced to the 1st person singular, such

as amo (‘I love’). Lemmatisation in CL usually follows these conventions, particu-

larly when applications rely on additional data from lexicons or are conceptualised

to extend the such.

While published lexicons are written manually, CL lemmatises words automat-

ically. We will look at the different methods later, and will now briefly explore the

obstacles and peculiarities of automatic lemmatisation. Automatic lemmatisation

often relies on a lexicon known to the system. Ideally, each encountered word form

is in the lexicon and unambiguously assigned to a lemma as in the tagger output of

the TreeTagger (Schmid, 1994) in Figure 1.1, consisting of word form, part-of-speech

and lemma.

However, the first obstacle is that the lexicon can contain incorrect lemma

candidates, such as in 1.1.

(1.1) stattet
word form

VVFIN
POS tag

statten
lemma

Die Union stattet sich mit den Mitteln aus ...

‘The Union is equipping itself with the means ...’

The lemma statten does not exist in German. The context of the word form

stattet makes clear that the lemma has to be ausstatten (‘equip’), as it is a parti-

cle verb and the particle aus follows 5 tokens later. Such errors are mainly caused

by separated verb prefixes that cannot be reattached automatically by the tagger.

The other obstacle lies in the nature of language. Lemmatisation lexicons are finite,

while natural language is not. This is shown in the German example 1.2. Gegenseit-

igkeitsvereinbarung (‘reciprocal agreement’) is a compound. Compounds and named

entities, such as 1.3, are frequently not covered by the lexicons as the possibilities

2

Chapter 1. Introduction

for novel word creations are endless.

(1.2) Anwendungsbereichs
word form

NN
POS tag

〈unknown〉
lemma

‘scope’s’ NN 〈unknown〉

(1.3) Obamas
word form

NP
POS tag

〈unknown〉
lemma

‘Obama’s’ NP 〈unknown〉

There are out of the box tools available to solve the issue with unidentified

compounds and named entities. The issue of unknown compounds can be tackled

by compound splitters, such as BananaSplit (Ott, 2006). Bananasplit is based on

recursive look-ups in an dictionary and splits nouns, adjectives, and verbs in exactly

two parts if the compound is not in the lexicon. There are also good options, such

as the Stanford Named Entity Recognizer (Finkel et al., 2005), available to solve

the issue with unknown named entities. Named entities are usually divided into

different classes, such as people, locations and organizations, and then identified by

a classifier, such as the aforementioned Stanford Named Entity Recognizer (Finkel

et al., 2005), which is based on conditional random fields. This process is called

named entity recognition (NER).

Lemmatisation can be key in reducing sparse data for better system perfor-

mance. This is particularly crucial, when dealing with morphologically rich lan-

guages, such as Finnish or German because a considerable amount of highly inflected

forms is rare. A rich morphology may not only result in an increased amount of

sparse data, but also in more ambiguities. Resolving morphological ambiguity in

context does not pose a problem to most humans, but it poses a huge problem to

machines. Thus, some tools, such as the TreeTagger (TT) return more than one

lemma candidate for ambiguous word forms, as shown in example 1.4.

(1.4) Akten
word form

NN
POS

Akt|Akte
tag lemma candidates

file.PLURAL NN ‘act|file’

Given enough context, humans immediately know whether the lemma needs to

be Akte (‘file’) or Akt (‘act’) because the grammatical gender of Akt does not agree

with the case in context and the resulting meaning does not make sense. The TT

on the other hand, outputs all lemmas that it has seen at some point associated

with this particular word form. This is where we want to strive for novel, efficient

solutions that improve and build on the output of standard lemmatisation tools such

as the TreeTagger.

3

Chapter 1. Introduction

1.2 Research Questions

The research questions that shall be answered in this thesis, are:

1. How good is the lemmatisation quality of the TreeTagger models for German,

French, Italian and Finnish? We look into their performance on the European

Parliament corpus.

2. How can a distant semi-supervised machine learning approach disambiguate

ambiguous lemmatisation in a multilingual multiparallel corpus set-up with

monolingual context-based features, as well as multilingual features?

3. How can active learning techniques be efficiently applied in order to generate

training material for a supervised machine learning approach where the distant

semi-supervised approach cannot be used due to missing training data?

The first question aims at investigating the overall lemmatisation quality of

the TreeTagger for German, French, Italian and Finnish. In a perfect world, our

corpus would consist of tokens with exactly one correctly assigned, unambiguous

lemma. However, in reality our corpus has a considerable amount of tokens with

more than one or no lemma candidates. Particularly morphologically rich languages,

such as the four languages in question are hard to lemmatise. Additionally, the

assigned lemmas can be erroneous. Thus, the quality shall be investigated in terms

of the amount of ambiguities per language, as well as incorrectly assigned lemmas.

The incorrectly assigned lemmas are counted in a subsample, which is manually

disambiguated in order to establish a gold standard for German, French, Italian and

Finnish. The gold standard will be used to evaluate the machine learning approaches

presented in question two and three below.

The second question is based on the assumption that aligned translations in

a multilingual parallel corpus can be exploited in order to disambiguate lemmas.

We propose the application of a distant semi-supervised machine learning approach

which, gains information based on multilingual as well as intralingual features. Am-

biguous lemmas in the form of Stimme|Stimmen can be split into their individual

lemma candidates, such as Stimmen (‘voices’, noun plural) and Stimmen (‘voting’,

noun). We search for word forms, which feature the lemmas from the split ambigu-

ous lemma as unambiguous lemma. The unambiguous lemma becomes the label and

its word form within context the training instance. and used as labelled training

instances for a machine learning algorithm. As the task of lemma disambiguation

is closely related to word sense disambiguation (WSD), our work will be largely

inspired by the findings of WSD tasks, which have been tackled by machine learning

for several years. As compared to WSD, lemma disambiguation only distinguishes

between different senses if they are expressed in two different lemmas. Thus, lemma

4

Chapter 1. Introduction

disambiguation is more superficial and may be regarded as preliminary stage to

WSD, as it reduces the amount of ambiguities on the word form level and only

homonymous and polysemous lemmas should remain. However, lemma disambigua-

tion and WSD share the difficulty of changing sets of classes, depending on the word

that has to be classified, as opposed to a fixed set of classes for most classification

tasks, such as document classification, tagging or named entity recognition. Addi-

tionally, our approach is novel, as it also includes intralingual features as a back-off

in case that multilingual features are not available. While other approaches, such

as Volk et al. (2016) and Graën (2018), solely rely on translation information, our

system will also take into account monolingual context. Hence, we will like WSD

assume that the monolingual and parallel multilingual context of each token will

deliver the necessary information for a machine learning algorithm to take these

decisions (Navigli, 2009, p. 28).

The third question addresses the problem of gaining training data for cases for

which not all lemma candidates occur as unambiguous lemma in the corpus. The

distant, semi-supervised machine learning approach cannot resolve these ambigu-

ities. The amount of these ambiguous lemmas is huge and the classes are often

imbalanced, which would result in a very expensive manual annotation task, as we

would also need to search examples for the minority class in order to train a clas-

sifier. Thus, we will present an active learning approach that prompts the user for

manual annotations. The sample for manual annotation is drawn from previously

clustered data, in order to prevent bias towards the majority class and search for

missed candidates. The clustering is based on multilingual word embeddings. The

manually annotated occurrences will be used to apply a supervised approach that

disambiguates the rest of occurrences automatically.

1.3 Thesis Structure

Chapter 2 introduces a selection of previous works on topics related to lemmatisa-

tion and lemma disambiguation. We will introduce lemmatisers and morphological

analysers and have a look into two methods that specifically tackle lemma disam-

biguation. Furthermore, we will present WSD approaches that have an experimental

set-up that is similar to ours.

The data for our experiments in presented in Chapter 3. We introduce the

corpus and the data format, with which we have conducted our experiments. For

the experiments we have developed a gold standard lemmatisation for ambiguous

lemmas in German, French, Italian and Finnish, which we will also introduce in

this chapter. Additionally, we will investigate the accuracy and coverage of the

5

Chapter 1. Introduction

TreeTagger on ambiguous lemmas.

We outline the the experiments with the distant semi-supervised approach in

Chapter 4. We will introduce the machine learning algorithms and features that we

have tested and how we obtained our training and test-set and the labels.

Chapter 5 introduces active learning and how we used it in order to disam-

biguate lemmas that cannot be tackled with the previously presented approach.

We also introduce a method to successfully draw examples of the minority classes

from unlabelled data for a supervised machine learning approach with a handful of

manually labelled data.

We present the results of our experiments in Chapter 6. Firstly, we will present

the results and improvements of the distant semi-supervised approach for German,

French, Italian and Finnish, and, secondly, we present the results of the supervised

approach based on active learning. We also evaluated the quantitative approach of

Graën (2018), who provided us with his data.

In Chapter 7 we present the conclusions we made after having worked on this

topic. We will discuss the benefits and drawbacks of our approaches and we will

suggest ideas and inspiration for future experiments.

6

2 Previous Works

2.1 Morphological Analysis and Lemmatisation

Recent findings show that it is favourable to apply models with joint lemmatisation

and morphological tagging. In the following section, we will introduce three systems

with language independent joint lemmatisation and morphological tagging, which

do not rely on external lexical recourses or morphological dictionaries and analyzers.

Morfette is a morphological tagger and lemmatiser developed by Chrupala et al.

(2008), which is based on a Maximum Entropy classifiers for each task and a decoding

module that matches the best output sequences of the two classifiers for a sequence

of words. Their system is language-independent and also copes well with morpho-

logically rich languages with sparse word forms (Chrupala et al., 2008, p. 2362). In

order to deal with sparse, unseen word forms and lemmas, Morfette’s lemmatisa-

tion model is based on lemma induction. Each lemma is induced by a shortest edit

script, which transforms a string into its lemma (Chrupala et al., 2008, p. 2362).

If we have the German form schreit (‘scream’, 3rd person, singular, present) the

following edits are necessary to transform it into its lemma schreien (‘scream’):

{〈D, t, 7〉, 〈I, e, 8〉, 〈I, n, 9〉}, where a triple stands for delete/insert character at a

certain position. Each string is reversed, as most inflection is expressed through

suffixation and the shortest edit scripts should be as independent from word length

as possible. These edit scripts are assigned as classes to word form lemma pairs.

Both, lemmatisation and morphological tagging are based on a number of arbitrary

and context-based features, which can be easily extended and refined for specific

languages and domains. The two Maximum Entropy Models return probability

distributions for all possible morphological tags given the context and all possible

lemma classes given the context and morphological tag. A beam search algorithm

then combines the n sequences with the highest probability of morphological tags

and lemmas for a given word form. They report a considerable error reduction rate

around 60 %, for Morfette against their baseline system, consisting of a memory-

based tagger generator (Chrupala et al., 2008, p. 2365). Additionally, models for

lemmatisation and morphological tagging can be trained separately and even with

different algorithms, which is a plus, if training corpora with both annotations are

7

Chapter 2. Previous Works

unavailable for training (Chrupala et al., 2008, p. 2366)

Müller et al. (2015) developed a log-linear model called LEMMING that models

lemmatisation and morphological analysis at the same time. Their system operates

on token level and is also able to lemmatise unknown word forms, due to the idea that

lemmatisation is a“string to string transduction task” (Müller et al., 2015, p. 2269).

This means that they translate word forms, such as worked character by character –

w-w, o-o, r-r, k-k, e-ø, d-ø – into its lemma work. These transformations are exploited

as features for the logistic regression model, alongside irregular word forms, possible

prefixes and suffixes, and edit trees. The edit trees contain all possible affixation or

deletions a lemma may accept in order to form affiliated word forms (Müller et al.,

2015, p. 2269). They linked all these features with the POS and morphological

attributes, which are expressed through these features (Müller et al., 2015, p. 2270).

This feature set also enables the model to lemmatise unknown word forms. The final

model is a tree-structured conditional random fields (CRF) model that combines

the previously mentioned lemmatisation with a higher-order CRF for the sequence

modelling of morphological tags, as depicted in Figure 2.1.

Figure 2.1: Illustration of the tree structured CRF model as presented in Müller
et al. (2015)

LEMMING requires a corpus with gold standard tags and lemmas for training,

and does not require more training data than a state of the art POS tagger, according

to Müller et al. (2015, p. 2271). As the model is token-based and does not rely on

morphological dictionaries or analyzers, it can be trained on any gold standard

tagged and lemmatised corpus.

The German morphological analyser GerTwol by Haapalainen and Majorin

(1994) is based on an entirely different approach. They developed a finite-state

transducer based system that analyses and lemmatises German word forms. The

word form lexicon contains 85,000 word forms, of which the majority is from The

8

Chapter 2. Previous Works

"Abgabebestimmungen"

Ab|gab~en#be|stimm~ung S FEM, PL NOM

Ab|gab~en#be|stimm~ung S FEM PL AKK

Ab|gab~en#be|stimm~ung S FEM PL DAT

Ab|gab~en#be|stimm~ung S FEM PL GEN

Figure 2.2: Sample output of GerTwol for the German word Abgabenbestimmungen
(‘charges regulations’).

Collins German Dictionary1 with additional nouns and proper names (Haapalainen

and Majorin, 1994). However, the number is not absolute because GerTwol is also

equipped with a large set of derivational morphological and compounding rules,

which enables the analysis of new compounds as well as nominalised adjectives and

verbs. The analysis works on two levels. The first level is the lexical level and the

second level is the surface level and each string on the lexical level has a corre-

sponding string on the surface level (Haapalainen and Majorin, 1994). The output

of the analysis consists of all possible base forms and morphological analyses, as

GerTwol does not consider context. Thus, it is unsuitable as a sole analyser, but

works well in combination with a POS tagger or for the extension of POS tagger

lexicons. An analysis can contain strong boundaries, marked by ‘#’ that separate

independent words, soft word boundaries, marked by ‘|’ that separate dependent

morphemes or dashes that separate inflectional or derivational morphemes (Haa-

palainen and Majorin, 1994). Figure 2.2 shows a sample output of the German word

Abgabenbestimmungen (‘charges regulations’). GerTwol correctly analyses the com-

pound consisting of Abgabe (‘charges’) and Bestimmung (‘regulation’). Additionally

the soft boundaries indicate that Gabe (‘gift’) and Stimmung (‘mood’) are also valid

German morphemes, but attached to dependent morphemes. The second column

is the morphological analysis, the POS followed by other morphological features.

Eventually, GerTwol is a good addition to POS taggers for German, as it is very

fast, contains the essential German vocabulary, which is extended by compounding

and derivational morphological rules, and detects ambiguous word forms.

2.2 Neural Lemmatisation

One of the most recent advances in the field of lemmatisation is Lematus by Bergma-

nis and Goldwater (2018). Lematus is a context-sensitive lemmatiser, which solely

1The Collins German Dictionary, revised edition 1991, Copyright HarperCollins Publishers.

9

Chapter 2. Previous Works

performs lemmatisation without any additional information, such as morphological

tagging or POS tags, apart from character-level context (Bergmanis and Goldwater,

2018, p. 1391). Their model is built with the Nematus toolkit by Sennrich et al.

(2017) and is a “deep attentional encoder-decoder with a 2-layer bidirectional en-

coder with a gated recurrent unit (GRU) and a 2-layer decoder with a conditional

GRU in the first layer followed by a GRU in the second layer” (Bergmanis and

Goldwater, 2018, p. 1393)2. As the model of Sennrich et al. (2017) is geared to-

wards machine translation and not monolingual lemmatisation, they adapted some

of the model parameters to fit their purpose. They trained models for 20 differ-

ent languages on the Universal Dependencies Treebank 2.03. The input sequence of

their model is a space-separated character sequence of a token and all the characters

before and after this token in a predefined context window of the size N . Figure

2.3 shows an example for the Latvian word ceļu, which is the genitive plural of ceļ̌s

(‘road’), with a context window of size N = 15. The <s> mark token boundaries,

whereas <lc> and <rc> mark left and right context respectively.

Figure 2.3: Illustration of the input token ceļu for Lematus with the character-based
context in a context window of N = 15, as in Bergmanis and Goldwater
(2018, p. 1393)

They tested several models with a character-based context between 0 (only the

token itself) and 25. They measured their models against Morfette, LEMMING

and another neural network based system as well as a majority baseline, for which

they took the lemma that has been seen most frequently or first with the word form

in question (Bergmanis and Goldwater, 2018, p. 1395). Bergmanis and Goldwater

(2018, p. 1395) found that a character-based input with a context window of N = 20

performs best for all languages against Morfette and the other neural lemmatisation

approach, and for 15 languages against LEMMING. However, they noticed that the

character-based model performs better on ambiguous lemmas, while the context-free

model performs better on unseen lemmas. Additionally, they found that ambiguity

and unseen tokens negatively correlate in the 20 languages that they investigated.

A given language either expresses morphosyntactic functions through distinct word

2For a detailed description of the architecture, see Sennrich et al. (2017)
3https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1983 (Accessed 4 May

2018).

10

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1983

Chapter 2. Previous Works

forms, leading to a higher productivity and more unseen word forms, or non-distinct

word forms, leading to more ambiguous forms (Bergmanis and Goldwater, 2018,

p. 1394). Thus, the model may be chosen according to the productivity of a given

language. Said ambiguous word forms are only resolved with Lematus, if they

are resolved in the training corpus, i.e. the Universal Dependencies Treebank 2.0.

However, German is lemmatised with the TreeTagger, which returns pipe-separated

lemma candidates for ambiguous word forms. A good performance on ambiguous

lemmas for Lematus, thus means reproducing such pipe separated lemma pairs.

2.3 Lemma Disambiguation Approaches

The two lemma disambiguation approaches presented in this section are relevant, as

they firstly try to select the correct lemma out of two or more lemma candidates,

and secondly also exploit multilingual parallel corpora.

Volk et al. (2016) present a purely quantitative approach, which exploits par-

allel data for disambiguating ambiguous lemma. They use parallel texts in English

and German from the Credit Suisse Bulletin Corpus in order to resolve the lemma

ambiguities in the full corpus, which also includes monolingual German texts. The

TreeTagger (TT) outputs a considerable amount of lemmas with more than one can-

didate, such as the lemmas Dose and Dosis for the word form Dosen (Volk et al.,

2016, p. 293). However, the English translation often reveals the intended lemma

of the token in question, as Dose translates to can and Dosis to dose. Thus, they

extracted all German sentences that contain an ambiguous word form with their

corresponding English sentences and searched for the most probable lexical transla-

tion via word alignments (Volk et al., 2016, p. 293). Then, they compared whether

the translation probability of the English lemmas is higher to one of the German

candidates, and if so, the option with the higher probability was accepted as the

resolution. On a sample of 100 lemmas, they reached a precision of 0.97. However,

only 16 % of all lemmas could be resolved, which results in a F1-score of 27 %4.They

could improve their recall to 75 % by accepting lemmas as unambiguous candidate,

when they occur as sole possible translation for this word form in the English lemma

alignments (Volk et al., 2016, p. 293). This measurement slightly reduced the preci-

sion to 0.93 %, which leads to an F1-score of 83 %. The recall was further increased

by lowercasing the German lemmas in order to perform a case-insensitive search,

which would specifically tackle nominalised verb forms5. This results in a recall of

4We calculated and added the F1-scores, as they are not provided in the paper.
5They hope to find evidence for the lemma spielen (‘to play’ in the corpus, if they cannot find
Spielen (‘playing’).

11

Chapter 2. Previous Works

84 % and a precision of 91 % with an F1-score of 83 %. They did not test their

method for other language pairs despite the promising results.

Graën (2018) seized on the promising results of Volk et al. (2016) and enhanced

their approach by adding more translations from all aligned languages in the Full

European Parliament Corpus v.9. He computes the global distribution matrix of

all lemmas. However, he only considers optimal word alignments, for which all four

word aligners agree in both directions (Graën, 2018, p. 31). Then he checks, whether

each lemma candidate of a certain ambiguous lemma occurs in the corpus. If a lemma

candidate does not occur as unambiguous lemma in the corpus, he excludes it as

option because he cannot not calculate its probability. In these cases, he selects the

lemma candidate that has unambiguous evidence in the corpus (Graën, 2018, p. 32).

In a next step, he searches for corresponding tokens in the optimal alignments and

looks up the alignment probability of their lemmas to each of the lemma candidates

if applicable (Graën, 2018, p. 31). Eventually, he chooses the lemma candidate with

the highest overall probability as sole replacement with the equation in 2.1.

(2.1)

λfinals = argmaxλis
∑
n

pa(λ
i
s | λnt)

The replacement lemma candidate is calculated by the sum of the probabilities

of the n lemmas from the aligned tokens (λnt) given each lemma candidate(λis).

This approach could not tackle cases, for which no optimal alignments exist in the

corpus, or all of the optimal alignments do not have a lemma. He conducted a small

evaluation, in which he found 2 errors across 53 disambiguated lemmas. However,

the evaluation sample is very small. Graën (2018, p. 34) also applied this method

on FEP6 and he kindly provided us with his lemma disambiguations, which we will

discuss and evaluate in Chapter 4.

2.4 Word Sense Disambiguation

Dimitar Kazakov (2013) developed a multilingual approach to WSD. Word sense

disambiguation is a similar problem as lemma disambiguation, as the latter eases

the path to the former. They used a subpart of the Europarl corpus and applied

sentence and word alignment in order to assign the same ID to the aligned tokens

(Dimitar Kazakov, 2013, p. 338). Further, they stored the frequency for each trans-

lation for a certain lemma. This results in a multilingual synset for each lemma. The

combinations of lemma translations then helped to derive the sense of the lemma

12

Chapter 2. Previous Works

in question, as some translations highly correspond to a specific word sense (Dim-

itar Kazakov, 2013, p. 339). This strategy lead to an average ambiguity reduction

of 36.45%. Additionally, they note the high dependence on word alignment of their

multilingual lemma disambiguation approach.

Lefever and Hoste (2009) present a multilingual unsupervised word sense disam-

biguation task without the tedious task of manually sense-tagging each polysemous

noun. Instead of manually tagged data, they use the Europarl corpus and set En-

glish as source language and five languages – Dutch, French, German, Spanish and

Italian – as target languages that should disambiguate the source language (Lefever

and Hoste, 2009, p. 82). This approach does not only rely less on manually tagged

data, but it is language independently applicable. The approach is based on the

hypothesis that the different word senses of a word in English are lexicalised dif-

ferently in the five target languages. If two translations match the same sense it

might be a hint that these two target language words are synonymous (Lefever and

Hoste, 2009, p. 84). This is essentially the same hypothesis, on which our work is

based. Just as they assume that different word senses are lexicalised differently in

other languages, we assume that the lemma candidates of ambiguous word forms

are lexicalised differently in other languages.

Ng et al. (2003) evaluate a bilingual approach to disambiguate sense-tagged

nouns with automatically acquired training data from an English-Chinese parallel

corpus. Their method has the advantage that no manually disambiguated data

is required for the training of their algorithm, as they use the translations of the

ambiguous word as “sense-tags”. Their approach is very similar to Diab and Resnik

(2002) who found it to be the most successful unsupervised method for WSD (Ng

et al., 2003, p. 455). They also list a few problems that might occur: it is difficult to

tell how large the parallel corpus needs to be, whether the word alignment accuracy

suffices for their purpose and whether they can stand the pace of state-of-the-art

supervised WSD approach. For their new approach they assume that every Chinese

translation of an ambiguous English noun refers to a certain sense of the English

noun in question. Sometimes, two ore more senses are lumped together to one sense,

as they translate into the same Chinese word (Ng et al., 2003, p. 457). Nouns that

are lumped into one remaining sense only, are excluded from the WSD algorithm as

there is no longer a decision to be made (Ng et al., 2003, p. 458). Eventually, they

state that the Naive Bayes algorithm trained on parallel English-Chinese data could

probably deliver comparable data, if it was trained domain independently and all

the senses were represented in the parallel corpus.

Lefever and Hoste (2014) present a language independent WSD system that

exploits word alignments of four languages – French, Dutch, Italian, Spanish and

13

Chapter 2. Previous Works

German – as sense tags with English as input language. They automatically ex-

tracted translation labels and features via word alignments, assuming that evidence

from multiple languages into the feature vector is more informative than just one

(Lefever and Hoste, 2014, p. 340). They hope that the automatically acquired

translation can at least partially solve the data-acquisition bottleneck (Lefever and

Hoste, 2014, p. 340). In order to test their system, they selected 20 polysemous

nouns with at least 3 WordNet senses that occur at least 50 times in the Europarl

corpus (Lefever and Hoste, 2014, p. 341). They used a sentence-aligned version

of the Europarl corpus by Koehn (2005). For word alignment they used GIZA++

(Och and Ney, 2003).They extracted all word alignments for their 20 nouns from

the corpus and had annotators cluster them manually into two-level sense clusters

with the main senses on top and the other, more fine grained senses at the bottom

(Lefever and Hoste, 2014, p. 347).They serve as sense labels. For the classification

they used the memory-based learning (MBL) algorithm with local context features,

namely cooccurring words with the target word, extracted from the English source

sentence, alongside a binary bag of words feature based on the the translations of

the four languages (Lefever and Hoste, 2014, p. 353). Their best model for English

yields an average accuracy of 75.2 % with all features. Lastly, the developed sim-

ilar for with each of the other 5 languages – French, Dutch, Italian, Spanish ans

German – as input languages and the other languages as translation features. The

models outperformed all winning SemEval-2 systems, apart from the model Spanish

(Lefever and Hoste, 2014, p. 356). Additionally, they found that relying on transla-

tion features from fewer languages lowers their accuracy, which confirms they initial

hypothesis that multilingual features outperform bilingual features.

14

3 Data

This chapter introduces the corpus, which we chose for our project. We explain the

data format, which we used for most of our experiments and how it was produced.

Then, we focus on the lemmatisation and the distribution of ambiguous lemmas

across languages.

3.1 The European Parliament Corpus

We work with the Full European Parliament Corpus v. 6 (FEP6) compiled and

preprocessed for the SPARCLING project, a project of the Department of English

and Computational Linguistics at the University of Zurich1. The original version of

the Europarl corpus was compiled by Philipp Koehn (2005) by crawling the website

of the European Parliament. The resulting corpus contains sentence-aligned texts

from debates of the European Parliament over 15 years, from 1996 to 2011. The

originally mostly oral debates were transcribed into grammatically correct written

text and later translated into all official languages. However, the documents are not

necessarily translated directly from the source language into all 22 languages, as it

would require many translators with different translation pair competences. Hence,

they used a pivot system, in which they translated the documents first into the four

most used languages and then into the remaining less spoken languages (Parliament,

2008). The resulting transcriptions from the debates of the European Parliament

are divided into different chapters, each covering one topic. The different chapters

may cover votings, debates, as well as formerly written statements, read to the other

members of the parliament.

Unfortunately, this large collection of parallel texts contains a large number of

errors, which could have a negative impact on further processing steps, such as PoS

tagging or, parsing and turn alignment, and applications that rely on their output.

Graën et al. (2014) found inconsistencies with character encoding, when alternatives

were available, incompletenesses of speaker information extracted from the web or

direct incorporations of them into the speaker’s turn. Additionally, Koehn applied

1http://www.cl.uzh.ch/de/research/completed-research/sparcling.html (accessed 11
December 2017).

15

http://www.cl.uzh.ch/de/research/completed-research/sparcling.html

Chapter 3. Data

235444658 In in ADP APPR _ 235444661 PP ES 132423 834115 9700618 es 1550 BADIA_I_CUTCHET__maria _

235444659 dieser dies PRON PDAT _ 235444660 DET ES 132423 834115 9700618 es 1550 BADIA_I_CUTCHET__maria _

235444660 Hinsicht Hinsicht NOUN NN _ 235444658 PN ES 132423 834115 9700618 es 1550 BADIA_I_CUTCHET__maria 235445040|235445411

235444661 möchte mögen VERB VMFIN _ _ ROOT ES 132423 834115 9700618 es 1550 BADIA_I_CUTCHET__maria 235445045|235445046|235445417

235444662 ich ich PRON PPER _ 235444661 SUBJ ES 132423 834115 9700618 es 1550 BADIA_I_CUTCHET__maria _

235444663 zunächst zunächst ADV ADV _ 235444670 ADV ES 132423 834115 9700618 es 1550 BADIA_I_CUTCHET__maria 235445042|235445415

235444664 eine eine DET ART _ 235444666 DET ES 132423 834115 9700618 es 1550 BADIA_I_CUTCHET__maria _

235444665 kurze kurz ADJ ADJA _ 235444666 ATTR ES 132423 834115 9700618 es 1550 BADIA_I_CUTCHET__maria 235445050|235445420

235444666 Anmerkung Anmerkung NOUN NN _ 235444670 OBJA ES 132423 834115 9700618 es 1550 BADIA_I_CUTCHET__maria 235445051|235445421

235444667 zur zu ADP APPRART _ 235444666 PP ES 132423 834115 9700618 es 1550 BADIA_I_CUTCHET__maria _

235444668 frühkindlichen frühkindlich ADJ ADJA _ 235444669 ATTR ES 132423 834115 9700618 es 1550 BADIA_I_CUTCHET__maria 235445053

235444669 Bildung Bildung NOUN NN _ 235444667 PN ES 132423 834115 9700618 es 1550 BADIA_I_CUTCHET__maria 235445055|235445424

235444670 machen machen VERB VVINF _ 235444661 AUX ES 132423 834115 9700618 es 1550 BADIA_I_CUTCHET__maria 235445048|235445418

235444671 . . . $. _ 235444670 -PUNCT-ES 132423 834115 9700618 es 1550 BADIA_I_CUTCHET__maria _

Figure 3.1: German sentence in the CONLL-U-like format in the FEP6.

shallow tokenisation rules, which separated apostrophized prepositional articles in

Italian and French by white space. This confuses other tokenisers, as they then cate-

gorize the apostrophe as punctuation and separate it from the prepositional article.

Thus, Graën et al. (2014) classified the errors into different types and estimated

their frequencies. This analysis resulted in the release of a revised version of the

Europarl corpus, the Corrected Structured Europarl Corpus (CoStEP)2. The pre-

viously classified errors were widely corrected or removed. Additionally, texts only

available in one language or translated by the speaker instead of a translator were

dropped altogether. This smaller version of the Europarl corpus is tokenised and

aligned on speaker turns. A chapter may contain just one or several speaker turns.

3.2 Data Format of the Corpus

Linguistic research requires more preprocessing, and therefore, several versions were

derived from the CoStEP. The Full European Parliament Corpus v. 6 (FEP6), used

for the experiments in our thesis, contains a total of seven languages – German,

English, French, Spanish, Italian, Finnish and Polish – and 136,298 aligned speaker

turns (Graën, 2017, p. 9). However, Polish covers just 43,458 turns (Graën, 2017,

p. 9). we worked with the corpus in an extended CONLL-U-like format3 as shown

in Figure 3.1 below. Each turn in the data set appears first in German, then follow

English, Spanish, French, Italian and Finnish, before the next turn again starts

with German. In the following, we will explain the columns containing information

relevant to our work.

Column 1 holds a global ID for each token in the corpus. This is different

from the original CONLL-U format, in which the 1st column holds a global sentence

ID. The ID simplifies cross-lingual token identification for the extraction of specific

2The CoStEP corpus is available at: https://pub.cl.uzh.ch/wiki/public/costep/start
3http://universaldependencies.org/docs/format.html (Accessed 5 April 2018).

16

https://pub.cl.uzh.ch/wiki/public/costep/start

Chapter 3. Data

examples, alignments and dependencies.

The data format further incorporates the word form for each token in the

2ndcolumn. The individual tokens, as shown in column 2 of Figure 3.1, are the

result of the tokeniser Cutter 1.0 (Graën, 2017, p. 9). Cutter 1.0 is equipped with

rules specifically for the parliamentary domain and the languages available in the

corpus. The language-specific rules are based on word forms, lemmas and POS tags.

Thus, Cutter 1.0 not only recognises word boundaries, but also sentence boundaries

and sentence segment boundaries by colons and semicolons. After the tokenisation,

a total of 240,637,915 tokens and 1,514,995 types can be identified (Graën, 2017,

p. 9).

The corpus was tagged and lemmatised with the TreeTagger (TT) (Schmid,

1994) for all languages. Graën (2017, p. 9) applied the POS-tagging models avail-

able on the TT’s webpage4. The lexicon of the tagger was extended by POS tags

and lemmas for frequent words, particularly in German, in order to increase the

accuracy and lemmatisation coverage of the tagger (Graën, 2017, p. 9). The lem-

mas are represented in column 3 and the TreeTagger POS tags in column 5 of the

data format. It is noteworthy that the POS tag sets for the different languages

differ greatly, as they depend on the material, with which the model was trained.

The previously mentioned interlingual lemma disambiguation approach from Graën

(2018), has not been applied to the data used in our experiments yet. Our data

has been extracted from a pre-release version of version 6. As the lemmas are the

core of our work and they are distributed together with the POS tags, we will closer

investigate the tagging and lemmatisation process of the TT in section 3.2.1.1.

The 6th column is empty and reserved for morphological information. We have

enriched the data with a stand-off annotation, as explained in section 4.3.1.2.

The syntactic information is contained in column 7 and 8. (Graën, 2017, p. 10)

reports that they trained the MaltParser (Nivre et al., 2006) for German and Ital-

ian, as there were no pre-trained models available, in order to derive the syntactical

dependencies. For English, they applied the pre-trained parser model. The other

languages were not parsed. For best results the MaltOptimizer (Nivre and Balles-

teros, 2012) was applied for training the different parsing models. The parser returns

the dependency relation for each token in column 8 to its dependency head in column

7.

Column 9 contains the country of origin of the turn speaker if applicable. Also

given is the speaker’s name in column 15 and the speaker’s language in column 13.

This information is not relevant for our project.

4http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/

17

Chapter 3. Data

Column 10 contains the language-specific turn ID. This ID links all sentence

segments across all languages to the speaker turn they belong to. Thus, all transla-

tions can be assigned to the specific turn via this ID, which enables turn-wise data

extraction. Column 11, on the other hand, identifies a turn across all (translated)

languages.

In order to retrieve entire sentences for a detailed data analysis, as for example

in the gold standard, column 12 contains the sentence ID. The ID is unique for each

sentence in the corpus.

Column 14, contains the ID of the language of the text. As opposed to column

13 the language does not refer to the originally-spoken language of the text, but to

the language, in which it is presented in. When extracting data, we need to be able

to identify and discern the different languages and sort the data accordingly.

The last column, 15, contains the pipe-separeted IDs of all aligned tokens of the

token in question. Prior to word alignments, sentence segments were aligned with

hunalign (Varga et al., 2005). Based on the sentence segment alignments, Graën

(2017, p. 10) performed word alignment with GIZA++ (Och and Ney, 2003) and the

Berkeley Aligner (Liang et al., 2006). Graën (2017, p.10) added the output of both

aligners into the corpus. For the word alignment task, they mapped the different

tag sets from the TT POS-tagging models to a universal tag set, represented in

column 4. The universal tag set was designed by Petrov et al. (2012) and contains

12 POS tags. From the universal tags, they chose nouns, verbs and adjectives and

adverbs as content words (Graën, 2017, p. 10). Word alignment was only performed

on the lemmas of content words. Consequently, the closed word classes lack word

alignment in FEP6, but the majority of ambiguous lemmas belong to an open class.

3.2.1 Lemmas in FEP6

3.2.1.1 Lemmatisation with the TreeTagger

As mentioned previously, the FEP6 was tagged and lemmatised with the TT and

the POS-tagging models available its website5. In this section, we will explain how

the TT POS-tagging models are built and how the lemmas are added.

The TT’s POS-tagging models consist of decision trees obtained from annotated

training data (Schmid, 1994). The decision trees are built on trigrams, meaning that

the two preceding tokens are considered in order to determine the tag probabilities

for the token in question, as represented in Figure 3.2.

5http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/ (Accessed 18 January
2018).

18

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

Chapter 3. Data

Figure 3.2: Illustration of a TT decision tree model as presented in Schmid (1994,
p. 3)

Additionally, the tagger requires a lexicon that contains a priori tag probabilities

for each word. The lexicon is split into a full form lexicon, a suffix lexicon and a

default entry (Schmid, 1994). The full form lexicon has to be created from a tagged

training corpus and contains the a priori tag probabilities for each word in the

training corpus. If the model cannot find the word form as it is, or lowercased in

the full form lexicon, it starts to search the character n-gram suffix lexicon. The

suffix lexicon is also built on the training corpus and contains tag probabilities for

suffixes. They are represented as tree structures, with the tag probability at the

top node and the respective last character directly attached to the root. The model

searches the tree from the root node along the branches to the leaf node, which

directly attaches to a tag probability as in Figure 3.3.

If the model also fails to find the token ending in the suffix lexicon, the default

entry is returned. The default entry is calculated by subtracting the tag frequencies

of all leaves of the suffix tree from the tag frequencies at the root node. This explains

how the TT learns the POS tag probabilities for POS tag sequences. On the other

hand, the lemmas, are not learned by the POS tag model, but rather observed. The

training corpus can, but does not have to contain lemmas alongside the word forms

and the tags. If lemmas are provided, the tagger saves a word form/POS tag/lemma

tuple. Whenever the model observes a word form/POS tag/lemma tuple with two

or more different lemmas, it stores all lemmas that match the tuple separated by a

pipe. This may lead to a large number of ambiguities, depending on the complexity

19

Chapter 3. Data

Figure 3.3: Illustration of a TreeTagger suffix tree model as presented in Schmid
(1994, p. 5). The probabilities for the word classes for each suffix are
not shown.

of the morphology of the language and the tag set. Hence, the TT does not really

lemmatise the tokens, but rather provides lemma candidates that it has seen in the

training corpus. Word form/POS tag/lemma tuples that do not occur in the training

corpus are labelled as ‘〈unknown〉’ by default or the word form can optionally be

copied as lemma. Thus, there is no effort to lemmatise unseen word forms. The user

can provide an external lexicon, which needs to contain a POS tag and a lemma for

each token added, but the tagger never learns to lemmatise token/POS tag/lemma

tuples that he had not seen in the training material. All in all, the TT is a very fast

and useful tool for providing corpora with lemmas, as the lexicon can be extended

and POS-tagging models for a variety of languages are provided on the website.

It is evident that the quality of the POS-tagging and lemmatisation in particular

relies heavily on the annotation quality of the training corpus and that the TT is

not built for lemmatising unseen words, but assigning POS tags to them. However,

the information about training corpora and tag sets used for the different POS-tag

language models is sparse. Table 3.1 provides an overview on what is known and

unknown about the different models.

Apparently, there are no scientific publications about the training data of four

out of 7 languages. This aggravates the identification of the error source in the

POS tag model, but also the tagger lexicon that proposes the lemma candidates

20

Chapter 3. Data

Language Resources (training corpus; tag set)

German Training corpus: unknown; tag set: Stuttgart-Tübingen Tagset
(STTS) (Schiller et al., 1995)

French Training corpus: unknown; tag set designed by Achim Stein (Stein,
2003)

Italian unknown, tag set designed by Achim Stein
Finnish Training corpus: FinnTreeBank (Voutilainen et al., 2012); tag set:

based on a simplified morphological tag set as reported by Graën
(2018)

English Training corpus: Penn Treebank Marcus et al. (1993); tag set: Penn
Treebank tag set (Santorini, 1990)

Spanish Training corpus: Spanish CRATER corpus (McEnery et al., 1997);
tag set: EAGLES conformant tag set (McEnery et al., 1997)

Polish Training corpus: National Corpus of Polish,(Przepiórkowski et al.,
2008); tag set: unique morphological tag set

Table 3.1: Training corpora and tag sets, if applicable.

for seen word forms. It is possible that the lemma candidates were not manually

annotated, but added by another morphological analyser or lemmatiser, which may

have a considerable impact on the quality. This is the approach that was applied in

the CRATER corpus, which was tagged with a newly trained POS-tagging model

for Spanish of the Xerox tagger because McEnery et al. (1997) could not find a POS

tagger for Spanish that met their needs. The Xerox tagger is based on a hidden

Markov model and rules for ambiguity classes based on character n-gram suffixes

(Cutting et al., 1992). As the Xerox tagger requires a lexicon for frequent word

forms as well, the lemmas are a byproduct. Marcus et al. (1993) state nothing

about their lemmatisation process for the English training corpus. However, as

they had students to manually add the POS tags, it is very likely that they also

manually lemmatised the word forms. The lemmas in the FinnTreeBank on the other

hand are based on detailed instructions for manual POS-tagging and lemmatisation

(Voutilainen et al., 2012). In summary, there is little known about the origin of the

lemmas in the different tagger models.

3.2.1.2 Lemma Distribution of German, French Italian and Finnish

For further investigations and experiments we tried to assess the performance of the

the TT with respect to lemmatisation. Furthermore, we calculated the number of

ambiguous word forms. As the released version of the corpus no longer contains

indications on unknown words to the model of the tagger, we reprocessed the data

21

Chapter 3. Data

language German French Italian Finnish Spanish English

lemma candidates tokens types tokens types tokens types tokens types tokens types tokens types
0 763,214 179,396 3,039,516 61,053 143,532 72,118 454,549 128,747 787,829 105,759 526,642 49,256
1 37,100,969 188,067 40,455,135 96,066 37,463,101 123,765 27,336,454 519,074 40,978,866 126,722 39,425,664 132,498
2 220,687 487 225,488 330 548,405 803 627,609 45,725 78,890 299 31 3

≥ 3 336 8 6 1 9,113 6 34,546 3,170 167 3 0 0
total 38,085,206 367,958 43,720,145 157,450 39,458,151 196,692 28,453,158 696,716 41,887,594 232,783 39,952,337 132,498

Table 3.2: Frequency distribution of lemmas for the six languages considered in our
experiments in FEP6. ‘tokens’ refers to tuple tokens and ‘types’ refers
to tuple types. The column ‘lemma candidates’ contains the amount of
lemma candidates with 0 for unseen tokens and ≥ 3 for more than 2
lemma candidates.

for German, French, Italian and Finnish. The number of unknown tokens in the

released version is smaller, as we did not apply an extended tagger lexicon. Hence,

we can asses the coverage of the TreeTagger models as downloaded from the website.

Table 3.2 contains the absolute number for every single occurrence of word

form/POS tag/lemma tuples, reffered to as tuple tokens, and for the number of

distinct word form/POS tag/lemma tuples, reffered to as types. As shown in Table

3.2, the TT cannot lemmatise 763.214 (2%) tokens out of total 38,085,206. This

results in a token level coverage of 98%. 221,023 (0.5 %) tuple tokens are left

ambiguous with two or more lemma candidates. The tuple type Arbeit|Arbeiten in

example 3.1 occurs 1,971 times as ambiguous tuple token6. More than two lemma

candidates can be found for 338 tuple tokens of 8 different tuple types, as in example

3.2.

(3.1) Arbeiten
token

Arbeit|Arbeiten
lemma candidates

1,971
count

(3.2) Winden
token

Wind|Winde|Winden
lemma candidates

6
count

This results in 436 different types of tuples with two lemma candidates and 8

different types of tuples with more than two lemma candidates, as shown in example

3.2. Tuple types subsume identical tokens with an identical POS tag and an identical

lemma. Example 3.3 represents column 2 in Table 3.2 and illustrates that the token

‘Mitteln’ occurs 3,369 times with the ambiguous lemma Mittel|Mitteln.

(3.3) Mitteln
token

Mittel|Mitteln
lemma candidates

3,369
count

As Graën (2018, p. 31) notes, a large number of ambiguities result from nom-

inalisations of verbs and inflected nouns — often dative plural — that match in

6The POS tags are not shown in the examples, but were considered in the counts.

22

Chapter 3. Data

their form. Examples are Ringen ‘ring’ (dative plural) / ‘struggling’ (derived noun)

and Morden ‘murder’ (dative plural) / ‘murdering’ (derived noun). However, it may

occur as well with entirely unrelated words, such as Dosen ‘can’ (all cases plural)

/ ‘dose’ (all cases plural). Other cases such as Leinen ‘leash’ (all cases plural) /

‘linen’ (singular) / ‘Leinen’ (surname of person) do have three possible meanings,

but only two lemmas ‘leash’ and ‘linen’ differ in their form. The difference between

‘Leinen’ (surname of person) and ‘linen’ (singular) is a word sense issue and not a

lemmatisation issue.

As shown in Table 3.2 in column 4, the TT cannot lemmatise 3,039,516 (6.9

%) of 43,720,145 French tuple tokens in total. This results in a tuple token level

coverage of 93.1 %. Another 225,488 tuple tokens have 2 lemma candidates (0.5 %)

and only 6 tuple tokens feature more than 2 lemma candidates.

When inspecting the gold standard, a large number of ambiguities in French

appear to co-occur with verbs. French is an inflected language and French verbs are

divided into different conjugations. The ‘-ir’ conjugation can be extended with ‘-is’

or ‘-iss’ and these extensions may lead to ambiguities with the ‘-er’ conjugation in

the indicative plural, such as in example 3.4, in which pressent is assigned with the

candidates pressentir|presser (‘to anticipate’ and ‘to flock’).

(3.4) Nous
we

devons
must

décupler
reinforce

nos
our

efforts
efforts

pour
to

envoyer
send

nourriture,
food

médicaments,
drugs

médecins
doctors

et
and

apporter
give

notre
our

soutien
support

aux
to

milliers
thousands

de
of

réfugiés
refugees

qui
which

se pressent
flock to

en Tunisie
Tunisia

et
and

en Égypte.
Egypt

‘We need to reinforce our efforts to send food, drugs and doctors give
support to the thousands of refugees, which flock to Tunisia and Egypt.’

The same accounts to verbs from the ‘-er’ and the irregular conjugation, such

as in example 3.5, in the third person plural indicative and the present participle.

(3.5) moulant
token

moudre|mouler
lemma candidates

Les moulins de la procédure de recours moulent lentement .

Of course there are also ambiguities due to nominalisations, such as frais ‘fresh

air’ (nominalised adjective masculine singular) / ‘spawn’ (masculine plural noun).

Additionally, the French definite article le/la is ambiguous when clitisized before a

vowel, as ’l, or always in the plural les.

The TT has a token-level coverage of 96.4 % for Italian, as 1,437,532 out of

39,458,151 tuple tokens are unknown to the Italian tagger model.

23

Chapter 3. Data

word form c lemma candidates c1 c2

Etiketten 117 Etikett|Etikette 256 6

Fächer 22 Fach|Fächer 130 0

Fächern 14 Fach|Fächer 130 0

Fällen 4432 Fall|Fällen 21740 0

Falten 1 Falte|Falten 0 0

Figure 3.4: The first column contains the word forms and the second column con-
tains the number of times the word form with the ambiguous lemma in
column 3 occurs. Column 4 and 5 contain the cooccurrence counts for
the unambiguous lemma candidates.

3.3 Gold Standard and Lemmatisation Quality

Measurements

For the different experiments, a gold standard in four languages — German, French,

Italian and Finnish — was established in order to have manually annotated data to

test the performance of the machine learning approach and to measure the quality

of the TT lemmatisation7. The gold standard consists of two, manually annotated

parts. Part A was extracted for the evaluation of the distant semi-supervised ap-

proach. Part B is limited to 100 observations for all languages and was established

for the evaluation of the active learning approach8. Hence, we extracted all lemmas

with evidence for both lemma candidates as unique candidate in the corpus for part

A. The word form Etiketten in Figure 3.4 occurs 117 times with the lemma candi-

dates Etikett and Etikette in the corpus, while 256 other word forms have Etikett as

sole lemma candidate and 6 other word forms have Etikette as sole lemma candidate.

We then applied a simple Naive Bayes classifier from the NLTK-toolkit by Loper

and Bird (2002) on the extracted data, in order to have a pre-annotated lemma

for the annotators so that they can efficiently accept or correct. The annotated

lemmas were randomly subsampled with a maximum of 10 examples per ambiguous

lemma. If the corpus contains less than 10 examples, all of them were included.

This cap of maximally 10 instances per lemma was meant to keep the annotation

effort within a limit. The annotators were presented with the word form in question,

the ambiguous lemma, the proposition of the Naive Bayes classifier and the word

7By now the SPARCLING project has ended and version 9 of the corpus is released. The gold
standard was also derived from version 6, which differs with respect to token IDs, lemmatisation
and sentence alignment. Hence, adjustifications would be necessary to map the gold standard
to version 9.

8In Chapter 5 we will explain why part B of the gold standard can be extended.

24

Chapter 3. Data

WF LEMMA DISAMB R SENT 1 WF SENT 2
abgewogen abwiegen|abwägen abwägen 1 Des Weiteren wurde ein

Änderungsantrag über
ein System mildernder
Umstände, bei dem die
Faktoren gegeneinander

abgewogen werden, verworfen.

Table 3.3: An example from the input format of the gold standard creation of part
A. The column abbreviations will be used for the following examples alike:
WF = word form, DISAMB = disambiguation, R = rating, SENT 1 =
first part of the sentence, SENT 2 = second part of the sentence.

WF LEMMA R SENT 1 WF SENT 2
tecniche tecnica|tecnico tecnica potremo farlo promuovendo misure volte a

garantire la sicurezza alimentare nonché am-
modernando le

tecniche di produzione .

Table 3.4: An example from part B of the gold standard, as presented to the
annotators.

form in its sentence context. The column labelled as ”CORRECT” was left blank

for the annotator to efficiently evaluate the Naive Bayes’ output. A rating of ”1”

means that the classifier has delivered the correct answer as in example 3.3, a rating

of ”0” declares the classifier’s answer to be wrong. We initially planned to evaluate

the Naive Bayes on German only and did not have more complex languages, such as

Finnish with frequently more than 2 lemma candidates, in mind or that the tagger

would not cover all possible lemma candidates. Thus, we also accepted manually

entered lemma candidates in column 4.

Part B of the gold standard also contains word form/POS tag/lemma tuples,

of which not all lemma candidates occur as unique lemma candidate in the corpus.

We realised that active learning could be an opportunity to increase the coverage

of our semi-supervised machine learning approach, and hence, we need data for the

development and evaluation of the extended approach. For this application, we

extracted all the tuples that occur at least 15 times in the corpus, but only some or

none lemma candidates occur as unique lemma candidates. Again a maximum of

10 examples per tuple were picked randomly and from the remaining examples, just

100 were picked randomly for manual evaluation, as the active learning approach,

which we will explain in Chapter 5, can automatically extend the gold standard with

each iteration. The volunteers could not accept or reject a recommended lemma in

this partition. They were simply presented with the lemma candidates and had to

fill in the correct answer. This made the task more tedious, as shown in Table 3.4.

The German and French gold standards were established by ourselves, while

Finnish and Italian were established by three different annotators9. In order to

9The annotators for Italian are Italian native speakers with academic degree in linguistics. The

25

Chapter 3. Data

1 0 added lemma Total
1 24 0 0 24
0 2 2 0 4
own lemma 0 0 7 7
Total 26 2 7 35

Table 3.5: Comparison between annotator 1 and annotator 2 of Italian across 35
lemmas.

make sure that the idea behind the task is well understood and executed alike by all

annotators, we created a guideline with instructions and examples. These guidelines

are disclosed in Appendix C.

We compared the results and the performance of the Italian annotators by

calculating an unweighted Cohen’s Kappa value as shown in 3.6, by letting them

independently annotate 35 examples.

(3.6)

k =
p0 − pc
1− pc

Cohen (1960) suggests to test such categorial data, as in the gold standard,

for interrator agreement. The resulting Kappa value measure the inter-annotator

agreement.. Additionally, a rather negative outcome could also hint towards insuf-

ficiently written annotation guidelines. The resulting values may range from -1 to

1. According to Cohen (1960), results below 0 are improbable in practice and a

value of 0.01-20 may be interpreted as none to slight agreement, 0.21-0.40 as fair,

0.41-0.60 as moderate, 0.61-0.80 as substantial and values above 0.80 as almost per-

fect agreement. Thus, results above 0.60 shall be aimed for, as then a majority of

the data in the small subsample should be annotated correctly. Table 3.3 contains

the 35 lemmas in common, which were compared in order to calculate the Cohen’s

Kappa score.

The Cohen’s Kappa score of the above comparison is 0.87 with a 95 % confidence

interval between 0.7 - 1.0. Therefore, we can assume that they worked through the

samples carefully. In case of disagreement within the 35 mutual lemmas, both

annotators were asked to discuss their judgements and agree on a variant. In both

cases they came to an agreement. We would not expect deviations of the result on

annotator for Finnish is a Swiss German native speaker and Finnish L2-speaker with an aca-
demic degree in linguistics.

26

Chapter 3. Data

a larger comparative set because it usually takes little effort to select the correct

lemma candidate of content words for people with a linguistic background.

Generally, the gold standard also contains lemma candidates, which are not

proposed by the TT, as the annotators were allowed to add additional lemma can-

didates, whenever the correct output was not in the tagger output. Depending on

the lexicon of the tagger, some ambiguities might have been missed or wrong POS

tags lead to incorrect lemma candidates. Both cases are relevant to estimate the

lemmatisation quality of the TT. The quality will be evaluated by precision (see

3.7), recall (see 3.8) and the F1-measure (see 3.9), which is the harmonic mean of

precision and recall.

(3.7)

precision =
TP

TP + FP

(3.8)

recall =
TP

TP + FN

(3.9)

F1 = 2 ∗ precision ∗ recall
precision+ recall

3.3.1 German Gold Standard and Lemmatisation Quality

For the German gold standard we sampled a total of 809 lemma occurrences with

evidence for all lemma candidates for part A and 100 lemma occurrences with evi-

dence for not all lemma candidates for part B. This makes a total of 909 manually

annotated instances. One lemma candidate was missing, due to a spelling error

in the text. In the sentence context given in example 3.10 it becomes evident that

Bürgen (‘baling’, noun) has to be a mistake and it should be Bürger (‘citizen’, noun)

instead. Additionally, the tagger suggests the lemmas ausstatten (‘to equip’) and

statten, a lemma that does not exist in the German lexicon. Nevertheless, the TT

assigns the lemma statten also as sole, independent lemma candidate.

27

Chapter 3. Data

Detected Lemma Candidates Undetected Lemma Candidates
Incorrect Lemma Candidates FP = 22 TN = 0
Correct Lemma Candidates TP = 1,785 FN = 11

Table 3.6: Comparison between correct lemma candidates and detected lemma can-
didates by the German TT model.

(3.10) Bürger
citizens

werden
will

drittens
thirdly

mit
with

dem
the

Bericht
report

die
the

Regierungen
governments

dazu
to

aufgerufen,
calls

das
the

Recht
right

auf
to

Internetzugang
internet access

auch
also

den
the

ärmsten
poorest

Bürgen[sic]
baling[sic]

in
in

den
the

abgelegensten
most remote

Regionen
regions

einzuräumen;
give

‘Thirdly, the report calls on governments to give the right to access the
Internet also to the poorest baling[sic] in the most remote regions;’

It appears to be an erroneous entry in the tagger lexicon, which occurs 50 times

as unique lemma candidate, as opposed to 3,126 for gestatten in FEP6. The results

of this evaluation are presented in 3.6.

The manual annotation of the gold standard results in a precision of 98.8 %

and a recall of 99.4 % with an F1-score of 99.1 % for the TT lemmatisation.

3.3.2 French Gold Standard

The French data sample was much larger at the beginning, but manual scrutiny

revealed that 159 out of 403 tokens only have seemingly ambiguous lemmas. The

word form payer (‘to pay’) for example, obtained the lemma payer|payer, which is

obviously not a real ambiguity and must be due to problems in the creation of the TT

model. We excluded these cases from the gold standard. There is a certain risk that

some of these word forms are nonetheless ambiguous, but the expenses of manually

correcting the lemmas were estimated higher. This affects a total of 9,860 word

form/POS tag/lemma tuple tokens or 28 tuple types and 225,494 ambiguous tuple

occurrences and 336 ambiguous tuple types remained. These pseudo-ambiguous

lemmas can be corrected with simple search and replace methods.

The remainder of the French gold standard contains 244 lemma occurrences

in part A and 100 occurences in the part B. This results in a total of 344 lemma

occurrences. In 24 occurrences, a lemma candidate had to be added manually. For

some cases, the tagger did not propose the correct candidate, as it has assigned

the wrong POS tag as in example 3.11. cru (‘raw’) is clearly an adjective, but

the proposed lemma candidates croire (‘believe’) and crôıtre (‘grow’) are verbs, as

28

Chapter 3. Data

they have the same past participle cru. If the tags were correct, the verb lemma

candidates would not be an option.

(3.11) Cette
This

catégorie
category

couvrirait
cover.FUTURE

les
the

fruits
fruits

et
and

les
the

légumes
vegetables

crus,
raw,

certains
some

produits
produce

laitiers
dairy

tels
such

que
as

le
the

yaourt,
yogurt

et
and

quelques
some

bières.
beers

‘This category will cover raw vegetables and fruits, some dairy produce, such
as yogurt, and some beers.’

This happens even more often with unrecognised named entities, as in 3.12.

Argentine (‘Argentina’, noun) clearly refers to the country in this context, and is not

an adjective. The resulting lemma candidates are argentin |argentine (‘Argentinian’,

masculine and ‘Argentinian’, feminine).This is also interesting because the masculine

and feminine form of an adjective are usually not regarded as separate lemmas, unless

the female form carries an (additional) different meaning.

(3.12) En
additionally

outre,
the

le
support

soutien
for

aux
measures

mesures
governmental

gouvernementales
anti-popular

anti-populaires
in

en
Argentina

Argentine
and

et
the

la
fear

peur
that

que
they

celle
escape

-ci
of

échappe
the

à
influence

l’
of

emprise
FMI

du
appear

FMI
clear

apparaissent

clairement.

‘Additionally, the issue of the support for anti-populistic government
measures in Argentina and the fear that the FMI loses its influence becomes
evident.’

There is a considerable amount of lemma candidates also with noun tags that

we would not consider to be independent lemmas, such as clémentine|clémentines

(‘clementine’ and ‘clementines’). Both lemma candidates refer to exactly the same

concept and thus it is unnecessary to have the inflected plural form in the lemma

inventory. Such inflected lemma candidates are most likely a lemmatisation error in

the training corpus. Even more so when the word is inexistent in the French lexicon,

such as liser, which is proposed as lemma candidate alongside lire (‘read’) for lisent

(‘read’, 3rd person plural present).

Another error source are typos, such as in example 3.13. plut indeed can be

either past participle of plaire (‘like’) or pleuvoir (‘rain’), but the context reveals

that it has to be plus (‘more’) instead of plut.

(3.13) Comme
as

vous
you

l’
it

avez
have

montré,
shown

Monsieur
Mister

de
de

Maizière,
Maizière

notre
our

réunification
reunion

(la
the

réunification
reunion

de
of

l’
the

Allemagne)
Germany

a
has

débuté
started

encore
again

plut[sic!]
more

tôt,
early

puisque
because

nous
we

avions
have.PAST

modifié
changed

notre
our

attitude
attitude

et
and

notre
our

approche
approach

de
from

notre
our

histoire
history

européenne
European

commune
united

et
and

de
of

notre
our

avenir
future

européen
European

commun.
united

‘As you, Mister de Maizière, have shown, our reunion (the reunion of
Germany) has already started earlier because we had modified our attitude
and our approach towards our united European history and towards our
united European future.’

The results of this evaluation are summarised in Table 3.7. Consequently, the

precision of the French lemmatisation is 89.24 % at a recall of 95.46 %, resulting in

an F1-score of 92.0 %.

29

Chapter 3. Data

Predicted Positive Predicted Negative
Negative Cases FP = 71 TN = 0
Positive Cases TP = 589 FN = 28

Table 3.7: Comparison between correct lemma candidates and proposed lemma can-
didates by the French TT model.

3.3.3 Italian Gold Standard

Part A of the Italian gold standard sample contains 1,052 and part B 100 ambiguous

lemmas. The first annotator was given 562 lemmas and the second annotator 525 of

part A, of which 35 overlapped. Both annotators also disambiguated 50 instances

from part B of the gold standard. This results in a full gold standard containing a

total of 1152 lemma occurrences.

A total of 79 lemma candidates, which can be subsumed into 21 lemma can-

didate types, had to be complemented manually by the annotators. This included

word forms of rather frequent verbs such as portare (‘to carry’) in example 3.14. The

context reveals that it is incorrectly tagged as noun, and thus the tagger proposes

the candidates porto (‘harbour’, noun masculine) and porta (‘door’ noun, feminine),

instead of the verb portare (‘carry’).

(3.14) La
the

situazione
situation

nei
of the

paesi
countries

a
to

cui
which

la
the

relazione
report

si
itself

riferisce
refers

(parlo
talking

principalmente
mainly

della
of the

zona
region

orientale)
eastern

è
is

molto
very

dinamica
dynamic

e
and

porta,
carries

prevedibilmente,
predictably

molte
many

esperienze
experiences

nuove.
new

‘The situation of the countries to which the report refers to (mainly talking
about the Eastern zone) is very dynamic and promises, predictably, many
new experiences.’

This also happened several times with unrecognised named entities, as they are

often tagged as regular nouns, if present in the tagger lexicon. So is Rosa a frequent

German and English personal name, while rosa in Italian may be either a personal

name (capitalised) or refer to the flower ‘rose’. In the following example 3.15 it

clearly refers to a person.

(3.15) Riteniamo
we believe

che
that

delle
such

elezioni
elections

trasparenti,
transparent,

democratiche
democratic

e
and

imparziali
impartial

-
the

la
freedom

libertà
of the

dei
dissenting

dissenzienti
to

per
quote

citare
Rosa

Rosa
Luxemburg

Luxemburg
-

-
are

siano
a

un
requirement

requisito
fundamental

fondamentale
for

per
relationships

stabilire
establish

rapporti
with

con
the

la
Belarus

Bielorussia
and

e
all

tutti
of

gli
the

altri
other

Stati.
states

’We believe that transparent, democratic and impartial elections - the
freedom of dissenting people to quote Rosa Luxemburg - are a fundamental
requirement in order to establish relationships with Belarus and all other
states.’

Example 3.15 is also interesting because the other proposed lemma candidate

is roso, which is an inexistent word in Italian. roso is one of numerous errors in the

30

Chapter 3. Data

Predicted Positive Predicted Negative
Negative Cases FP = 187 TN = 0
Positive Cases TP = 2045 FN = 72

Table 3.8: Comparison between correct lemma candidates and proposed lemma can-
didates by the Italian TreeTagger model.

TreeTagger lexicon for Italian. Moreover, some ambiguous lemmas are affected by

typos. coni (either ‘embossing’ or ‘cone’) in example 3.16 should be spelled con i

(‘with their’), as revealed by the context.

(3.16) Capirete
you will understand that

che
this

questi
praise

elogi
goes

vanno
also

anche
to

a
all

tutti
those

coloro
who

che
have

hanno
given

dato
their

il
contribution

loro
for

contributo,
example

ad
the

esempio
assemblymen

i
European

deputati
who

europei
themselves

che
interest.Past

si
into the

sono
achievement

interessati
of the

all’
mediator

operato
European

del
and

Mediatore
who

europeo
me

e
have

che
encourage.PAST

mi
cone[sic]

hanno
their

incoraggiato
advice

coni[sic],
and

loro
their

consigli
opinions

e i loro pareri.

‘You will understand that this praise goes also to all of those who have given
their contribution, for example the Member of the European Parliament,
who have been interested in the work of the European mediator and who
have encouraged me with their advice and their opinions.’

The errors are summarised in Table 3.8. The Italian TT model has a precision

of 91.62 % and a recall of 96.6 %. This results in an F1-score of 94.0 %.

3.3.4 Finnish Gold Standard

The Finnish sample for part A originally included more than 1000 tokens. How-

ever, as only one annotator could be found, only the first half was manually dis-

ambiguated. The resulting part A of the gold standard contains 664 disambiguated

tokens. Part B consists of 100 lemmas, which results in a total of 764 lemmas. A

total of 32 word form lemma-tokens, or 17 word form lemma-types, had to be added

manually. As Finnish is a highly agglutinative language, it is particularly prone to

building homonymous word forms. Thus, the tagger had considerable trouble with

named entities from foreign languages, such as the French Rue de la Loin as shown

in example 3.17.

(3.17) Milloin
when

julkaistaan
publish.FUTURE

Rue
Rue

de
de

la
la

Loin
Loin

arkkitehtikilpailun
architectural competition

tulokset?
results

‘When will the results of the Rue de la Loin architectural contest be
published?’

The annotator was asked whether she discovered any lemmas that could be

31

Chapter 3. Data

Predicted Positive Predicted Negative
Negative Cases FP = 0 TN = 0
Positive Cases TP = 732 FN = 32

Table 3.9: Comparison between correct lemma candidates and proposed lemma can-
didates by the Finnish TT model.

lemma candidates TT Gertwol
0 179,396 54,371
1 188,067 341,702
2 489 5,808
≥ 3 8 48
total 367,960 401,929

Table 3.10: Comparison of lemma frequency distributions between TT and GerTwol
for German.

lemmatised wrongly due to tokenisation or spelling mistakes. According to her,

none the like can be found. Table 3.9 shows the errors of the TT. The Finnish TT

mode has an estimated precision of 100 % and a recall of 95.8 %, which results in

an F1-score of 97.8 %

3.4 Lemma Coverage in German

We wanted to investigate whether a morphological analyser may discover yet un-

known lemma candidates. For this purpose, we applied GerTwol, the previously

mentioned morphological analyser for German, on the German part of our corpus.

However, as the original POS tags of GerTwol differ drastically from the STTS tag

set, which is applied by the TT, we used the GerTwol to STTS-tag mapping pipeline

by Clematide. Additionally, we applied Volk (1999)’s rules for choosing the right

lemma. He forged a set of rules that score the different segmentation boundaries re-

turned by GerTwol and return the lemma candidates with the lowest penalty score.

The remaining word form analyses were grouped into word form/POS tag/lemma

tuples similar to the TT, as the TT can only assign a lemma when the word form

and the assigned tag have a lemma in the lexicon, and GerTwol sometimes outputs

several POS categories for one word form, as for example Spielen can be either spie-

len (‘play’) or Spielen. This yields 3 times fewer unknown, but also twice as many

known tokens and almost 10 times more ambiguous word form/POS tag/lemma

tuples, as shown in Table 3.10.

This overall comparison does not tell much yet, apart from the fact that GerT-

32

Chapter 3. Data

wol reduces the amount of unknown tokens, but also increases the amount of am-

biguities. To further examine this, we compared the TT output and the GerTwol

output by word class by accepting only word form, POS tag cooccurrences from

GerTwol that also occur in the TT lexicon, as we trust the TreeTagger’s ability

to assign correct POS tags in context. We chose nouns, including proper nouns,

adjectives and verbs, all inflected and uninflected forms because they are highly

marked for inflection and open classes with new coinages and compounds. Table

3.12 shows that GerTwol increases the coverage the most with nouns, as it outputs

three times less unknown lemma candidates and almost twice the amount of un-

ambiguous lemma candidates as compared to the TT. The amount of ambiguous

nouns is almost 10 times higher. For the adjectives, GerTwol produces slightly more

than half of the amount of unknown lemma candidates, but only a quarter more

unambiguous candidates, while the amount of ambiguous lemmas increases by the

factor 10.The numbers for the verbs are almost identical for the TT and GerTwol.

As the output of the TT and GerTwol differs substantially, we decided to man-

ually evaluate 100 instances per word class, for which GerTwol finds more lemma

candidates than the TT has in its lexicon10. However, we only found 54 verbs

with additional lemma candidates. As Table 3.11 reveals, 20 % of the new nominal

lemma candidates and 30 % of the verbal lemma candidates are valid options, while

no additional adjectival candidates could be found. It turns out that this is due

to a mapping problem between GerTwol and the STTS tag set. While GerTwol

assigns the category “present participle” to deverbal adjectives, such as weinend

(‘crying’), which is wrongly mapped to the predicative adjective class “ADJD” from

the STTS tag set because there is not present participle. GerTwol suggests, the

positiv adjectival form weinend as well as the verb infinitive weinen (‘to cry’). This

leads to a large number of false positives. Additionally, GerTwol mostly suggests

the attributive, as well as the entirely unmarked predicative form, such as still

(‘silent’, predicative) and stille (‘silent’, attributive), while the TreeTagger prefers

the entirely unmarked form in all evaluated cases. Additionally, GerTwol builds

the positive form of compound adjectives with a graded head, such as nächstfolgend

(‘next’, superlative adjectival head) and nahfolgend [sic] (positive adjectival head),

which is technically possible, but semantically wrong. A similar phenomenon can be

observed with nominal compounds, where we have suggestions, such as Spezialfirma

(‘specialist company’) and Spezialfirmen[sic] for Spezialfirmen, as firma (‘company’)

is a noun and firmen can be either the plural of the former or a a verb (´to confirm’),

which can be nominalised and compounded, but does not make any sense. The verbs

tend to be problematic, when they build past participle with the prefix ge-, which

10We only checked instances for which the TT suggests at least one lemma candidate.

33

Chapter 3. Data

nouns verbs adjectives
absolute 22 16 0
percentage 22 % 30 % 0

Table 3.11: Amount of true new ambiguities from GerTwol.

word class nouns adjectives verbs

lemma candidates Gertwol TT Gertwol TT Gertwol TT
0 49,475 141,324 12,523 22,862 7,095 7,243
1 184,801 96,916 55,157 45,412 27,119 26,964
2 4,346 382 596 2 102 109
total 238,623 238,623 68,276 68,276 34,316 34,316

Table 3.12: Comparison of lemma frequency distribution across word classes between
GerTwol and TT.

can also function as derivational prefix, such as gemahnt (‘admonished’, past partici-

ple), which is analysed as mahnen (‘to admonish’) and gemahnen[sic]. Additionally,

GerTwol’s lexicon also contains some very archaic verbs, such as schwären (‘to fes-

ter’), which are highly unlikely to appear in most modern German texts. Generally,

GerTwol still tends to overanalyse, although we applied some filtering to the output.

The remaining valid lemma candidates show that particularly with nouns, but also

verbs, the coverage of the TT lexicon could be better with respect to additional am-

biguities, while it appears to be sufficient for adjectives. GerTwol is an invaluable

source for the lemmatisation of word forms, which are unknown to the TT, and that

the TT is a frequently used standard tool for tagging and lemmatisaion of German

texts for good reason.

34

4 Distant Semi-Supervised Machine

Learning Approach

In this chapter we present our semi-supervised machine learning approach to lemma

disambiguation. We firstly illustrate the underlying idea, as well as the potential

drawbacks. We also discuss the feature extraction process, the feature selection and,

the selection of the machine learning algorithms and their evaluation.

4.1 Concept of the Distant Semi-supervised Machine

Learning Approach

The training of our models with machine learning algorithms is based on the as-

sumption that the individual lemma candidates of the ambiguous lemmas, also

occur as unambiguous lemmas in the corpus. This underlying idea is very simi-

lar to the one in the previously mentioned system for WSD by Lefever and Hoste

(2014). This is true for some, but not all ambiguous lemmas as mentioned previ-

ously. In German, lemmas such as Arm|Arme, both lemma candidates Arm (‘arm’)

and Arme (‘pauper’) occur independently in the corpus. However, for lemmas, such

as Akt|Akte only Akt (‘act’) can be found unambiguously, and for examples such

as Ahne|Ahnen (‘ancestor’ and ‘anticipating’) none of the two. Still, we decided

for a distant semi-supervised machine learning approach, in which all sentences con-

taining an independent lemma candidate of an ambiguous lemma are used for the

training of a model, as this approach does not need any manually annotated data.

In this distant semi-supervised approach, we assume that the unambiguous lemma

candidates are assigned correctly and exploit them as labels for training. This is es-

sentially a classification task. We have a set of known labels and train an algorithm

to classify unseen data correctly.

The machine learning algorithm will never observe an ambiguous lemma in the

training set. This could pose a problem, as the environment of the ambiguous lemma

and its individual candidates could be different. This could happen, for example,

when one of the parts has a different meaning depending on its grammatical gender

35

Chapter 4. Distant Semi-Supervised Machine Learning Approach

German French Italian Finnish
complete evidence 139 (28 %) 219 (66 %) 306 (39 %) 1,349 (3 %)
incomplete evidence 356 112 474 47,546
total 495 331 780 48,895

Table 4.1: Distribution of evidence for lemma candidates of ambiguous word
form/POS tag/lemma tuple per language.

or is a homonym. An example for the former from German is the ambiguous word

form Erben ‘to inherit’ (nominalised verb, nominative singular neuter) / ‘heritage’

(nominative plural neuter) and ‘heir’ (nominative plural masculine). Although heir

and heritage are semantically related, they are not identical. However, we assume

that these cases are rare and follow the“one sense per discourse” hypothesis, alleged

by Gale et al. (1992) and supported by Yarowski (1995). The latter found evidence

that words express the same sense with a probability above 99 %, if occurring in the

same discourse and collocation1.

Table 4.1 shows the distribution of unambiguous lemmatisations of ambiguous

lemmas. There is a considerable amount of evidence for the German (28 %), French

(66 %) and Italian (39 %) ambiguous word form/POS tag/lemma tuples, in the

corpus. However, only a very small proportion (3 %) of ambiguous Finnish word

form, POS tag, has sole independent lemma evidence for all lemma candidates. This

means that the distant semi-supervised may not be the best choice for Finnish, as

the coverage will be very low. We further investigated whether we could reduce the

multiple ambiguous lemmas to the lemma candidates with evidence in the corpus

by omitting the candidates without evidence in the corpus. However, we found that

85 % of lemmas have no evidence for any lemma candidate in the corpus and only

12 % have evidence for at least one candidate. This means that we had to tackle

at least 85 % of the ambiguous word form/POS tag/lemma tuples with the active

learning approach (introduced in Chapter 5)2. For German, Italian, and French, we

have a fair chance of lemmatising a considerable amount of lemmas with a fast and

economical method that does not require manual annotations.

We do not use a single machine learning algorithm, but experiment with a mul-

titude of machine learning algorithms. Firstly, we want to fulfil the disambiguation

task for four different languages. They are as different as pears and stones and,

thus, require an adjusted treatment. This means that we have to develop multiple

feature sets and train the models individually. Secondly, we treat each ambiguous

1Collocation is meant in the traditional way: two words cooccurring in the same location.
2In Chapter 5 we will also discuss, why the active learning approach is not very appropriate.

36

Chapter 4. Distant Semi-Supervised Machine Learning Approach

lemma as a separate classification problem. This leads to a pipeline as depicted in

Figure 4.1. We first generate and extract the features for all languages, transform

them into feature vectors for each ambiguity problem, train a model and then apply

the predictive model on the ambiguous lemmas.

Figure 4.1: Graphic representation of the pipeline from the corpus towards the pre-
diction of the disambiguated lemmas.

Most of the pipeline is implemented with the scikit-learn Python library by Pe-

dregosa et al. (2011), which holds a number of different machine learning algorithms,

as well as feature transformation tools.

4.2 Machine Learning Algorithms

We implemented and tested several machine learning algorithms, as the choice of

algorithm has impact on the performance of the resulting models.

4.2.1 Naive Bayes

Naive Bayes is a rather simple, probabilistic classifier based on the Bayes theorem.

A Naive Bayes classifier tries to determine the probability of a hypothesis H to be

true given the context E, as shown in 4.1.

37

Chapter 4. Distant Semi-Supervised Machine Learning Approach

(4.1)

P (H | E) =
P (E | H)P (H)

P (E)

We can multiply the probability of E given H by the probability of H and

divide it by the probability of E, as it assumes all contexts E to be independent

from one another (Witten et al., 2011, p. 92). Regardless of, or maybe for its

simplicity and naive assumption of an independence of features given the class, the

algorithm performs comparably well with other, more complex algorithms (Navigli,

2009, p. 18).

We chose the MultinomialNB() classifier from the sklearn.naive bayes3 class,

as it accepts more than two classes. Therefore the Naive Bayes formula is slightly

adapted4, as shown in equation 4.2. As the MultinomialNB() classifier cannot

handle negative scalar data, we have switched to the BernoulliNB()5, as it can also

handle negative scalar data, such as in our word embeddings.

(4.2)

θ̂yi =

∑
x∈T xi + α∑|T |

i=1Nyi + αn

The new equation estimates the parameter θyi by a smoothed version of the max-

imum likelihood, in which the number of times a feature i is observed with class

y in the training set T multiplied with the smoothing factor α is divided by the

total number of features for class y multiplied by the smoothing factor α and the

total number of training examples n. The smoothing factor with α > 1 accounts

for features that have never been seen during training and prevents probabilities of

zero in the test set. We implemented the standard smoothing, which is a Laplace

smoothing6 with α = 1.

3http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.

MultinomialNB.html#sklearn.naive_bayes.MultinomialNB (Accessed 13 April 2018).
4http://scikit-learn.org/stable/modules/naive_bayes.html#gaussian-naive-bayes,

(accessed 13 April 2018).
5http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.

GaussianNB.html (Accessed 13 April 2018).
6Also called additive smoothing. In this case, we just add one to every feature count to avoid

zero probabilities in unseen data of the test set.

38

http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html##sklearn.naive_bayes.MultinomialNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html##sklearn.naive_bayes.MultinomialNB
http://scikit-learn.org/stable/modules/naive_bayes.html##gaussian-naive-bayes
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html

Chapter 4. Distant Semi-Supervised Machine Learning Approach

4.2.2 Support Vector Machines (SVM)

SVMs have been reported frequently to yield good results in WSD and other text

classification tasks (Navigli, 2009; Raschka, 2015). The algorithm behind SVM tries

to find the maximum margin hyperplane (Witten et al., 2011, p. 224). The maximum

margin hyperplane is a model, which linearly separates two classes correctly (Witten

et al., 2011, p. 224). The instances of both classes that are closest to the maximum

margin hyperplane are the support vectors, and each class has at least one support

vector, but usually more. The support vectors make all other data vectors irrelevant,

as they uniquely define the margin (Witten et al., 2011, p. 224). The smaller the

margin, the more prone is a model to overfit, as it tends to overgeneralize (Raschka,

2015, p. 70).

According to Witten et al. (2011, p. 225), the maximum margin hyperplane can

be defined as in 4.3.

(4.3)

x = b+
∑

i is support vector

αiyia(i) • a

This function computes the maximum margin hyperplane x by multiplying the

dot product of a test vector a and a support vector a(i) by its class value yi and the

parameters b and αi. The parameters b and αi define the hyperplane and have to be

learned alongside the support vectors by the algorithm (Witten et al., 2011, p. 225).

It is possible to model nonlinear class boundaries by increasing the dimensionality

of the vector space. However, we will not go into detail with nonlinear models, as

we have only worked with the linear SVM algorithm.

We implemented the linear SVM algorithm with the LinearSVC()7 function

from the sklearn.svm class.

4.2.3 Gradient Tree Boosting (GTB)

Gradient Tree Boosting is an ensemble method that combines the output of several

weak learners, i.e. weak models, to produce a larger, powerful model. The week

models are decision trees of a fixed size because decision trees are particularly good at

handling heterogenous data and modelling complex functions (scikit-learn: Machine

learning in Python). The algorithm starts by fitting a first weak model F1(x) = y on

7http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#

sklearn.svm.LinearSVC (accessed 5 April 2018).

39

http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html##sklearn.svm.LinearSVC
http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html##sklearn.svm.LinearSVC

Chapter 4. Distant Semi-Supervised Machine Learning Approach

the data. Then, the algorithm fits a next model on the residuals of the first model

h1(x) = y − F1(x). This new model F2(x) = F1(x) + h1(x) is combined with the

new model in order to correct the errors, measured in the loss function L, of the old

model (scikit-learn: Machine learning in Python). This step can be repeated, which

makes Gradient Boosted Regression Trees build an additive model upon the initial

function F1(x) = y with the task to find the model h1(x) = y − F1(x) that reduces

the loss function L at each step. This minimisation problem is solved numerically

by searching for the steepest descent direction. The steepest descent direction is the

negative gradient of the step size γ. Additionally, each learner is regularised by the

shrinkage factor, also called learning rate, ν. As equation 4.4 shows, the learning

rate strongly interacts with the number of weak learners. The smaller the learning

rate, the more weak learners are required to achieve a constant loss function.

(4.4)

Fm(x) = Fm−1(x) + νγmhm(x)

We ran GTB with the GradientBoostingClassifier() function from the

sklearn.ensemble8 module. We can choose between an exponential and a de-

viant loss function and set a number of other parameters. We decided to set the

learning rate to 0.01, the number of weak learners to 150 and the maximum tree

depth to 2 and remain with the default settings for the rest.

4.2.4 XGBoost

XGBoost is a scalable end-to-end tree boosting system developed by Chen and

Guestrin (2016) that achieves state-of-the-art results in many machine learning

tasks. While the underlying algorithm is similar to the Gradient Tree Boosting

algorithm, as it is also an ensemble method that tries to minimise the loss function,

it is modelled differently. They implemented a different regularisation term9 (see

shrinkage above) in order to control the complexity of the model and more success-

fully avoid overfitting (Chen and Guestrin, 2016, p. 786). However, the speed of the

algorithm is probably the main reason, why many people use it. XGBoost makes

use of parallelization, which means that it runs on all available cores. (Chen and

Guestrin, 2016, p. 790).

8http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

GradientBoostingClassifier.html (Accessed 6 April 2018)
9For details, see Chen and Guestrin (2016).

40

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html

Chapter 4. Distant Semi-Supervised Machine Learning Approach

Thus, we used the XGBClassifier() function from the xgboost python module.

We set the learning rate to 0.09 and the number of weak learners to 300 and split

CPU-usage to 8 different cores. The other parameters were set to default.

4.3 Feature Extraction and Selection

We extracted and tested a number of different features that have proven to be useful

for the classification of word senses. As previously mentioned, lemma disambigua-

tion is related to WSD, as it also tries to distinguish between different senses that

are expressed in different lemmas. Hence, inspiration was found in Navigli (2009),

who evaluated the performance of several traditional WSD systems based on a num-

ber of different machine learning algorithms and feature sets. The feature sets of

successful systems contained context features, such as surrounding words and POS

tags, syntactic features, such as syntactic cues and argument-head relations, topical

features, which refer to the topic of the text and semantic features (Navigli, 2009,

p. 10). We decided to test context words, POS tags and morphological analysis of

the word in question as local features, argument-head relations as syntactic feature,

word embeddings as semantic feature and translations as semantic-related feature.

Additionally, we tested a global frequency feature. All the features were extracted

as separate tabulator-separated stand-off annotations for each of the four languages,

linked via the global token IDs of the ambiguous word forms. In the following, we

will describe the features and if necessary additional preprocessing steps.

4.3.1 Local Features

4.3.1.1 Cooccurrence Features

The first local feature describes the context of the ambiguous words. We call it

cooccurrence feature, as it describes the cooccurring words in a context window of

{w−3 - w+3} within a sentence. In order to reduce noise, we stripped punctuation

and all stop words from the sentence before extracting the cooccurring tokens. For

the stop word removal we used the Python stop words10 library, which features

stop words lists in 22 languages, including the 4 languages with which we conduct

our experiments. We also extracted the lemmas of the same context window, as we

assume that a lemma-based approach could reduce sparse data, and thus improve

performance for the 4 morphologically rich languages. The .tsv-files have all the

same format, as presented in Figure 4.2. Column one contains the global Token

10https://github.com/Alir3z4/python-stop-words (Accessed 15 January 2018).

41

https://github.com/Alir3z4/python-stop-words

Chapter 4. Distant Semi-Supervised Machine Learning Approach

1446 Ehre Ehre NOUN NN Haus Präsidium wissen Freude mitwirken mein

1480 sie sie PRON PPER Politiker Ehefrau als beide viele unser

1510 Stärke Stärke NOUN NN Klugheit Rechtschaffenheit Beispiel

Gemessenheit abgeben dies

Figure 4.2: Sample of the extracted cooccurrence features for German.

ID, column two the word form, three the lemma and four and five the coarse- and

fine-grained POS tag, while column six to ten contain the cooccurring word forms

in ascending order. The first two columns render a scan of the entire corpus for

each experiment unnecessary. The lemmatised cooccurrence feature has exactly the

same format. In our experiments, we found that a context window of {w−2 - w+2}
performs better than the initially extracted window.

4.3.1.2 Morphological Analysis

The second feature is based on morphological information. Thus, we performed mor-

phological tagging with 3 different systems on our four languages, depending on the

availability of suitable models. We applied the models on previously extracted word

forms in the required format. After the morphological tagging, we concatenated the

word forms and the tagger output with the global token IDs, in order to create a

morphological stand-off annotation for all four languages. We did not adapt the tag

sets, as we only used this feature language-internally.

For German, we used the output of the RFTagger (Schmid and Laws, 2008),

a Hidden-Markov-Model POS tagger, which is specifically built to deal with large

tag sets with fine-grained tags, such as morphological tags. We tagged Italian and

French with Morfette by Chrupala et al. (2008). The developers provide a model

for French11, and for Italian, we used the model trained by Baffelli (2016). For

Finnish, we used Finnpos by Silfverberg et al. (2016), an open source morphological

tagging a lemmatisation toolkit for Finnish12. Finnpos treats morphological tag-

ging and lemmatisation as separate problems. Firstly, a CRF-classifier returns the

tag sequences with the highest probability for a word sequence. In the following

decoding stage, the classifier assigns the sequence with the highest probability and

checks whether a morphological analysis is available in OMorFi13 (Silfverberg et al.,

2016, p. 870). OMorFi is finite-state transducer based morphological analyser by

11https://github.com/gchrupala/morfette (Accessed 22 February 2018).
12https://github.com/mpsilfve/FinnPos (Accessed 26 February 2018).
13https://github.com/flammie/omorfi (Accessed 26 February 2018).

42

https://github.com/gchrupala/morfette
https://github.com/mpsilfve/FinnPos
https://github.com/flammie/omorfi

Chapter 4. Distant Semi-Supervised Machine Learning Approach

Pirinen (2008), which delivers the lemmas for the sequences. If no lemma can be

found in OMorFi, (Silfverberg et al., 2016, p. 870) employ the same method as the

previously mentioned method by Chrupala et al. (2008). They treat lemmatisation

as a classification task, with each class being a suffix edit script. We decided to test

FinnPos, as the developers present significant improvements against other morpho-

logical taggers and it is open source with a pre-trained morphological tagging model

for Finnish.

Eventually, we extracted all the token IDs with the corresponding morphological

analyses from the stand-off annotations that refer to an ambiguous lemma or a

lemma candidate.

4.3.1.3 POS tags

The third local feature encompasses the POS tags in a context window of {w−3
- w+3}. We extracted the fine-grained POS tags from the original CONLL-U-like

corpus format, as we assume that the additional information in the fine-grained tag-

sets could be relevant for the machine learning algorithm. As previously mentioned,

these tag-sets differ considerably. However, it should not pose a problem, as we

do not mix the disambiguation of the four languages. The four extraction files

are identical with the ones for the cooccurrence words, except for that columns 6-10

contain the POS tags of the cooccurring words, instead of the word forms or lemmas.

This results in four cooccurrence POS-tag files.

4.3.2 Syntactic Feature

We extracted argument-head relations of the target word and its head words from

FEP6. Column 8 in the CONLL-U-like format contains the dependency relation of

the target word and column 7 the ID of its head. Thus, we extracted the relation

type of the target word, the relation type of its head and the relation type of the

head of the head. The root of the dependency tree is marked as root. We stopped

the extraction, when we reached the dependency root, i.e., the main verb. This

results in small subtrees that may also contain information about words outside

the direct context target word (Navigli, 2009, p. 12). We assume that the lemma

candidates tend to maintain different syntactic functions in a sentence, which could

be revealed by the small subtrees. The resulting .tsv files feature less columns

as the dependency relation fit into columns 6-8. We can only extract dependency

relations for German and Italian because the other two languages are not parsed.

43

Chapter 4. Distant Semi-Supervised Machine Learning Approach

70300 es es PRON _ _ _ _ _ _

70233 Fall Fall NOUN _ then__ADV _ affaire__NOUN _ tapaus__NOUN

70247 steht stehen VERB _ be__VERB evidente__ADJ apparaı̂tre__VERB

essere__VERB olla__VERB

Figure 4.3: Sample of the extracted translation features for German.

4.3.3 Cross-lingual and Semantic Features

This section discusses the semantic features that we tested in our experiments.

4.3.3.1 Translations

We extracted the translations of each target word as feature. Each lemma of a

content word in the FEP6 is ideally aligned with a lemma of a content word in the

other languages. However, sometimes no translation could be found, and not all of

the words that we disambiguate are content words. In order to fill the gaps of the

missing translations of content words, we chose the translations of four languages

instead of just one. The more languages, the fewer gaps. We extracted the English

and Spanish translation for all of the four languages that we want to disambiguate,

as they both contain very few ambiguities. Additionally, we extracted German,

French and Italian. Thus, we could extract the lemma14, the language and the POS

tag of the token for our experiments, as shown in Figure 4.3. Column 5 contains

German, 6 English, 7 Spanish, 8 French, 9 Italian and 10 Finnish. The POS tag

is directly attached to the lemma and can either be included or excluded in the

feature.

We conducted several tests with the form in which we present the translation

feature to the machine learning algorithm. We tested what happens if we kept

the empty spaces in the source language. Sometimes, the machine learning algo-

rithm tried to interpret the absence of the feature, which resulted in confusion and

worse results. We also included Finnish as 5th language, or reduced the amount of

languages as features, which both decreased the performance.

4.3.3.2 Translation Feature Evaluation

We investigated whether there was one language in particular that has the biggest

impact on the performance of the translation feature. This is interesting because

14We extracted the lemmas instead of the word forms in order to avoid sparse data through
inflection and because the word-alignment was performed via lemma.

44

Chapter 4. Distant Semi-Supervised Machine Learning Approach

most language data is not readily available in a parallel multilingual environment15.

In order to keep the expenses for future work small, we evaluated the most influential

features of the multinomial Naive Bayes algorithm of the scikit-learn package by

Pedregosa et al. (2011). The MultinomialNB() class has a built in coef attribute,

which “mirrors” the empirical logistic probability – see function 4.5 – of features

cooccurring with a class16.

(4.5)

loge P (xi|y)

The coef attribute of the MultinomialNB() contains as many feature rankings

as class labels, unless it has only two classes. In this case, the rankings are flattened

into one, with the features closer to zero describe a strong belonging to the first

class, while the ones at the other end describe a strong dissociation, which can be

translated into“belongs to the other class, namely class two”. We then trained a

model with the translation feature as sole feature. This feature contains 4 to 5

different languages, which are encoded in the feature names. Thus, we can map

the features to the language and extract the top ten of the cooccurring features

with each class label for each trained model and counted how often each language

cooccurs as translation feature in the top ten for each language. The more a feature

cooccurs with a certain class label, the more important it is for the Naive Bayes

algorithm, considering that it is based on conditional probabilities. As raw counts

are difficult to compare, we compare the proportion of top ten rankings for each

language as translation feature in Table 4.2.

Apparently, German seems to be the best translation feature choice for French,

Italian and Finnish, while English appears to be the best translation feature choice

for German. The other options follow with quite a distance with Italian being

second best translation feature choice for German, French and Finnish and French

being second best choice for German. However, we have to keep in mind that

these results also depend on word alignment, as well as lemmatisation quality, since

word alignment was performed based on lemmas. German appears to have a high

lemmatisation quality as previously revealed in the evaluation of the gold standard.

Additionally, we do not know much about the word alignment quality in terms of

15We could generate translated data by deploying a machine translation system and translate the
monolingual data and perform word alignment afterwards in order to extract the corresponding
translations.

16http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.

MultinomialNB.html (Accessed 10 April 2018).

45

http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html

Chapter 4. Distant Semi-Supervised Machine Learning Approach

Data Language:
Feature Language:

DE FR IT EN ES

DE - 13.63 % 18.19 % 51.89 % 16.30 %
FR 48.53 % - 19.67 % 15.44 % 16.36 %
IT 52.47 % 17.80 % - 15.14 % 14.59 %
FI 41.60 % 13.29 % 16.26 % 15.11 % 13.74 %

Table 4.2: Proportion of top ten appearances per translation feature per language
as feature performance measure. For absolute numbers, see Table A.1 in
Appendix A.

correctness. Thus, the results could be skewed towards German.

4.3.3.3 Word Embeddings

This section discusses word embeddings as sole semantic feature that we tested

in our experiments. Word embeddings are based on the distributional hypothesis

(Harris, 1954), which claims that similar words occur in similar contexts. This idea

is realised in word vectors, in which each target word ~wt in a corpus V with a

vocabulary size of |V | is assigned a vector ~vw, which contains words in context c,

represented as real numbers in a dense vector space. n is an arbitrary window size,

which defines how many words to the right and left of the target word |wt|shall

be taken into account as context. As complex as this procedure may appear, an

evaluation study of Iacobacci et al. (2016) shows that word embeddings lead to

significant improvements of state-of-the art WSD with standard features. They

combined standard features, such as cooccurring words and their POS tags with

word embeddings of the context (Iacobacci et al., 2016, p. 904). They also tested

word embeddings with different learning strategies and found word2vec to result in

the best performing word embeddings (Iacobacci et al., 2016, p. 904). Hence, we

will firstly introduce the toolkit, which we used for computing our embedding and

then continue to describe their use as features.

We decided to use the MultiVec toolkit by Bérard et al. (2016) for calculating

our word embeddings. MultiVec is a toolkit for computing word embeddings includ-

ing Mikolov et al. (2013)’s word2vec features, Le and Mikolov (2014)’s paragraph

features and Luong et al. (2015)’s model for bilingual word representations. The

word representations are computed by a supervised machine learning approach with

shallow neural networks. Shallow neural networks consist of an input layer, a hidden

layer and an output layer. MultiVec has two different models at hand, which are

based on Mikolov et al. (2013)’s word2vec. The continuous bag-of-words (CBOW)

46

Chapter 4. Distant Semi-Supervised Machine Learning Approach

model predicts the ~vw based on the context. The skip-gram model on the other

hand, does the exact opposite. It takes one vector, the vector of the target vector

~vw as input layer and predicts the vectors of the context words in the output layer.

The two models are represented in Figure 4.4.

Figure 4.4: Representation of word2vec’s CBOW and skip-gram model as presented
in (Bérard et al., 2016, p. 4189).

MultiVec does not only take into account data from one language, but from

two languages at the same time. With the implementation of Luong et al. (2015)’s

bivec, MultiVec can process parallel data and performs 4 updates at the same time,

while word2vec performs one (Bérard et al., 2016, p. 4189). Firstly, it updates

source language to source language, secondly source to target language, thirdly

target to target language and lastly target to source. This results in bilingual word

embeddings, which are projected into the same vector space, which makes direct

translations appear very close to each other. MultiVec was tested against word2vec

and bivec in different tasks and outperformed both models (Bérard et al., 2016,

p. 4190–91).

We trained bilingual word embeddings with MultiVec in order to use them

as features. We took each of the four languages for which we want to perform

lemma disambiguation as source language and all the other languages as target

language. We test the different combinations for best performance for each language.

Additionally, MultiVec provides an evaluation script for English word embeddings,

which we used for testing the semantic accuracy of the computed embeddings. On

a first attempt, we computed embeddings with 256 dimensions, but soon realised

that it was too many dimensions for our further processing with machine learning

47

Chapter 4. Distant Semi-Supervised Machine Learning Approach

algorithms. Thus, we chose 128 dimensions on a second attempt. We tested the skip

gram versus CBOW model, context window sizes between 8 and 15 context words to

the left and right and a negative sampling between 5 and 20. Additionally, we tested

the amount of iterations necessary to deliver stable results. We found the skip-gram

model to perform better than CBOW and a context window of 12 with a negative

sampling of 15 with a minimum of 20 iterations to perform best. The resulting

models are saved as binary files, which can be loaded directly from within any

Python script in order to retrieve the vectors for any word in both languages. Thus,

we generate the embeddings for each previously mentioned cooccurrence feature.

The most straight forward way would be to concatenate the four word cooccurrence

vectors. However, even if it is easy and straightforward, it does not necessarily

yield good results. Taghipour and Ng (2015) found that word embeddings without

dimension scaling do not perform well alongside other binary features. Thus, we

implemented their proposed scaling function in 4.6 that scales each vector coordinate

in a range of -1 to 1.

(4.6)

Ei ← σ · Ei/stddev(Ei), i : 1, 2, ...d

Ei denotes the ith dimension of the word embeddings matrix and σ is the target

standard deviation. Several tests showed that 0.1 is a good value for the target

standard deviation (Taghipour and Ng, 2015, p. 318). Thus, we scaled all word

embeddings with the proposed scaling function with a target standard deviation of

0.1. Additionally, we averaged the context vectors instead of concatenating. The

vector concatenation quadrouples the dimensions. This is unfavourable for machine

learning, as high dimensional feature vectors require exponentially more memory.

Thus, we decided to average the context vectors as proposed by (Iacobacci et al.,

2016, p. 899), with the following function in 4.7.

(4.7)

ei =
I+W∑
j=I−W
j 6=I

wij
2W

The formula in 4.7 divides each dimension i of the vectors wij by 2W, as the

number of context words, W , is double the window size of the word embeddings, in

order to compute the average of all embeddings. ei then is a new vector with 128

dimensions with average values for all coordinates. As compared to concatenation

48

Chapter 4. Distant Semi-Supervised Machine Learning Approach

it uses significantly less memory and yields better results.

4.3.4 Feature Transformation

So far, apart from the word embeddings and the class weight feature, we have

solely nominal features. This problem is traditionally solved via one-hot encod-

ing because simply assigning different numbers to all the feature values will most

likely cause any machine learning algorithm to infer a relational relationship be-

tween the different values (Raschka and Mirjalili, 2017, p. 116). This is not true for

most nominal features, as for example the three values ‘sing’, ‘choir’ and ‘church’

for the feature cooccurrence do not have a highest or lowest value; they are sim-

ply different (Raschka and Mirjalili, 2017, p. 116). Therefore, it is advisable to

apply one-hot encoding, a technique that creates a new feature for every feature

value in the data set. The value ‘sing’ from the previously mentioned cooccur-

rence feature is then expressed as [1, 0, 0], where the first entry is for ‘sing’,

the second for ‘choir’ and the last for ‘choir’. However, the drawbacks of one-hot

encoding are that it contains relatively little information in much space and that it

increases the length of feature vector by the amount n-1 (n = amount of features.

We transformed our nominal data into one-hot encoded feature vectors with the

sklearn.feature extraction.DictVectorizer() class17.

4.4 Training

We train one classifier per ambiguous lemma and subsample the training set for

frequent cases in order to save time and memory and to avoid learning problems

whenever possible. Therefore, we filter the data accordingly. When loading the fea-

ture sets we filter the ambiguous lemmas with a look up in a dictionary that contains

all ambiguous word forms and how often the corresponding lemma candidates occur

independently in the corpus. This look up dictionary is created from files, which

contain the word forms in the first columns, how often the word form occurs in the

second column, the lemma candidates in the third column and the last columns18

contain how often each lemma candidate occurs in the corpus, as shown in Figure

4.5. All the ambiguous word forms, with no evidence for one or both lemma can-

17http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.

DictVectorizer.html (accessed 15 February 2018).
18Sometimes the tagger suggests just 2 lemma candidates for a certain word form, while it suggests

up to five lemma candidates for other word forms. Thus the amount of columns, containing
occurrence counts corresponds to the amount of lemma candidates and is individual for each
word form.

49

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html

Chapter 4. Distant Semi-Supervised Machine Learning Approach

abgeraten 6 abgeraten|abraten 0 43

abgewogen 89 abwiegen|abwägen 1 209

anführe 15 anfahren|anführen 11 1636

anführen 16 anfahren|anführen 11 1636

Angehört 1 angehören|anhören 1280 532

Figure 4.5: Excerpt from the German ambiguous lemma and unambiguously occur-
ring lemma candidates counts.

didates are ignored, as they do not qualify for the distant semi-supervised machine

learning approach. Word forms that feature the same lemma candidates such as Ar-

men and Arme which can both be either ‘arm’ or ‘pauper’ are merged into the same

set. The training set is sampled by extracting all the token IDs that belong to an

independent lemma candidate. The token-ids can be mapped to the corresponding

feature sets and the lemma candidate becomes the class label.

The subsampling is necessary because some lemma candidates occur several

10,000 times in the corpus and many classes are highly unbalanced as shown in

Figure 4.5. Unbalanced classes pose a problem because many machine learning

algorithms tend to become biased towards the majority class (Raschka and Mirjalili,

2017, p. 215). Additionally, more data does not always provide additional, necessary

information. We have tested this by gradually reducing the maximum amount of

training instances per lemma candidate. The results of the classifier’s performance

has stabilised with a maximum of 3,000 samples per lemma candidate. To obtain

the maximally 3,000 instances, we have tested two subsampling methods. The first

method subsampled the training set proportionally. This means that each class

was reduced by the same factor in order to obtain less than 7,500 randomly drawn

training instances in total. Whenever, one class would be reduced to zero instances,

we kept one instance by default. The second method only draws random subsamples

of classes that contain more than 3,000 instances and leaves classes with less than

3,000 instances untouched. While the first method more accurately reproduces the

distribution of the original sample, the second method helps to reduce the majority

bias. We had tested both methods, and decided for the method that only reduces

classes that contain more than 3,000 instances, as firstly, the classifier performed

better and secondly, we want our classifier to obtain useful information from our

feature set.

50

Chapter 4. Distant Semi-Supervised Machine Learning Approach

4.5 Prediction

The distant semi-supervised version of our machine learning outputs predictions for

all ambiguous word form/POS tag/lemma tuples, of which both lemma candidates

occur in the corpus. All tuples with none or only one lemma part occurring in

the corpus remain ambiguous. Thus the recall corresponds to the distribution of

evidence for both classes, as presented in Table 4.1. The recall for German is 28

%, for French 66 %, for Italian 39 % and for Finnish 3 %. While some ambiguous

lemmas, such as überfahren|überführen (‘to overrun’ and ‘to convict’ occur only once,

others, such as fallen|fällen (‘to fall’ and ‘to render’ or ‘to log’) occur a thousand

times and more. Nevertheless, we train a classifier for each instance, as we do not

want to further reduce the coverage of this approach and the additional costs are

low, once the pipeline has been established.

4.6 Testing

The predictions of the distant semi-supervised machine learning approach are tested

against the entire larger part of the manually annotated gold standards. The setting

does not require an n-fold cross validation, as we want the best machine learning

algorithm to predict best on an entirely different data set. It is already in the na-

ture of the set-up that training data does not coincide with test data. Thus, the

algorithms are tested against the entire part A of the manually annotated gold stan-

dards, which were presented in Section 3.3. Nevertheless, including some data from

the gold standard could improve the performance of the algorithm. The problems of

this approach are that the test set becomes smaller and sparse ambiguous lemmas

could entirely vanish from the test set. We test several feature combinations of the

previously mentioned features with the machine learning algorithms introduced in

section 4.2. The results of these tests will be presented in Chapter 6. The results and

insights of the distant semi-supervised machine learning approach will also serve as

foundation for the active learning approach, as we can hopefully determine insights

on useful feature combinations and well-functioning machine learning algorithms for

our problem.

51

5 The Active Learning Approach

Settles (2012, p. 53) defines active learning as the following: “[...] active learning,

aims to improve upon supervised machine learning methods by making the most

of the vast amounts of unlabelled data that may be available.” This is done by

“posing queries [to users] of the most informative instances”, he continues. This

chapter introduces the concept of active learning, the way we have integrated it into

our lemma disambiguation pipeline, and how we group the ambiguous lemmas into

different subgroups for informative queries.

5.1 Conceptualisation of the Active Learning

Approach

We implemented an active learning pipeline in order to increase the coverage of

our lemma disambiguation system, as a majority of ambiguous lemmas does not

have evidence for all lemma candidates in the corpus. Active learning can close this

information gap by asking the user to label unlabelled instances that the system

decides to be useful (Pustejovsky and Stubbs, 2012). There are different methods

on how the algorithm takes this decision and we decided to implement a density-

weighted or pool-based method, i.e., an unsupervised learner that clusters our data

into different groups, which we assume to be representative based on the features

for our expected classes (Pustejovsky and Stubbs, 2012, p. 245). The idea behind

this method, which is sometimes also called“optimal experimental design”, is to

gain as much information as possible with as less effort as possible (Settles, 2012,

p. 5). However, the approach could be problematic because we only want to label

a small amount of data, and it is yet uncertain whether this will suffice to train

a new, precise classifier. On the positive side, we do know at least part of our

pool, as we can extract the relevant samples by the ambiguous lemma. Thus, we

just have to find instances that represent each of the different lemma candidates.

Additionally, we can precompute the different samples, which saves memory and

will make querying the user much faster.

Eventually, we developed a system that requests for user input, in cases where

52

Chapter 5. The Active Learning Approach

Figure 5.1: Graphic representation of our active learning pipeline. The “machine
learning pipeline” refers to the pipeline represented in Figure 4.1 in
Chapter 4.

we lack evidence for one or both lemma candidates as depicted in Figure 5.1. We

load the precomputed clusters for the ambiguous lemma, group them into one addi-

tional cluster to the amount of suggested lemma candidates by the tagger and then

draw a user pre-defined amount of instances from these clusters via token ID. With

the token IDs, we query the sample sentence with the ambiguous word form from a

pre-compiled SQLite database. The user then either decides for one of the lemma

candidates suggested by the TreeTagger or enters another lemma. If all instances

are assigned with the same lemma, we assign this lemma by default to all other am-

biguous word forms with these lemma candidates. If the sample is assigned different

lemma candidates a machine learning algorithm is trained with the user-labelled

data as introduced in Chapter 4. We select the algorithm and feature combinations

which performed best in the experiments in Chapter 4. While the clustering and

sample draw is a mainly unsupervised procedure, the machine learning procedure

itself is supervised, as the labels for the training data are obtained via human an-

notation. If we have enough evidence for both lemma candidates in the corpus, we

proceed with the distant semi-supervised approach from Chapter 4. This pipeline

enables a coverage of up to 100 % if the user is willing to also disambiguate lemmas

that only occur once. Otherwise, the coverage depends on the user-set threshold for

53

Chapter 5. The Active Learning Approach

the minimal occurrence for each ambiguous lemma.

5.2 Clustering

We precomputed clusters for all our ambiguous lemmas with insufficient evidence

for our distant semi-supervised approach. The clustering was performed with the

fastcluster package for hierarchical clustering by Müllner (2013)1. The main goal

of clustering is to find subsets within all available observations that are interest-

ing, homogenous and well separated from one another (Hansen and Jaumard, 1997,

p. 191)2. The hierarchical clustering of fastcluster is based on dissimilarity matrices,

which are computed from the original matrix, X = N×p for N being the number of

observations and p being the number of features per observation. The dissimilarity

matrix is computed as matrix D = (dkl) of N−1 dissimilarities between the observa-

tions (Hansen and Jaumard, 1997, p. 193). The distance between two observations

usually has one of the following properties: dkl ≥ 0, dkk = 0 or dkl = dlk (Hansen

and Jaumard, 1997, p. 193). There are different ways, how these distances can be

computed and the fastcluster package features the traditional Euclidean distance

as well as other metrics3. Based on these initial distances, the cluster algorithm

determines a pair of mutually closest points, i.e. a and b. These points are then

merged into a new node n and the initial nodes a and b are deleted from the set.

Afterwards, the algorithm needs to update the dissimilarity information of the new

node n to all other nodes in the set. These steps are repeated until there is only one

single node left (Müllner, 2013, p. 3). fastcluster provides seven different schemes

– single, complete, average, weighted, ward, centroid and median – to update the

dissimilarity of the clusters4. The output of the algorithm is a stepwise dendro-

gram, as depicted in Figure 5.2, encoded in a list of N − 1 triples, each containing

information about which nodes are merged and their mutual distance. Other open

source Python packages for hierarchical clustering are significantly slower and are

suspected to also consume more memory (Müllner, 2013, 9).

1http://danifold.net/fastcluster.html?section=0l (Accessed 12 February 2018).
2In our specific case, we hope to find the observations belonging to our different lemma candidates

in these clusters. It is, however, not guaranteed that the clustering reflects our criteria, as it is
an unsupervised machine learning approach.

3For other options, as well as detailed explanations of the math behind, see Müllner (2017, p. 12).
4For a detailed description of these methods, see Müllner (2013, p.4).

54

http://danifold.net/fastcluster.html?section=0l

Chapter 5. The Active Learning Approach

Figure 5.2: The output dendrogram of the hierarchical clustering as presented in
Müllner (2013, p. 15).

5.2.1 Cluster Modification

We modified the output dendrogram of the hierarchical clustering to fit our purposes.

Any unsupervised clustering algorithm returns an unpredictable amount of clusters;

namely as many clusters as the algorithm computes to appropriately separate our

observations. This is impractical for our purposes, as we want the number of clusters

to represent the number of lemma candidates for each set of observations. We

found an inexpensive cluster merging proposition by Piper (2012). He suggests to

merge the clusters in the output dendrogram bottom-up, until one is left with the

desired amount of clusters. Whenever we merge two clusters, we move one level up

in the hierarchy; from the fine-grained clustering at the bottom, towards a more

coarse-grained clustering towards the top (see Figure 5.2). We decided to merge the

clusters until we are left with n+1 clusters, n being the amount of lemma candidates

suggested by the TreeTagger. The additional cluster is for lemma candidates that

could be present, but are unknown in the tagger lexicon. In that way, we take into

account that some lemma candidates might be missing.

5.2.2 fastcluster Experiments

We tested four different distance update formulas with fastcluster and use the

Cophenetic Correlation Coefficient (CCC) to measure and compare the quality of

the output dendrograms. The distance update formula has a major influence on the

55

Chapter 5. The Active Learning Approach

quality of the resulting clusters. Also important are the data structure and repre-

sentation. fastcluster requires the input to be in a two-dimensional numpy.array()-

format, containing feature vectors with floating point entries (Müllner, 2017, p. 8).

The results from the experiments with the semi-supervised machine learning ap-

proach in Chapter 4 were chosen as starting points in order to determine the best

features for the clustering algorithm. Fortunately, one of the best performing fea-

tures were the numeric embeddings of the cooccurring token with the ambiguous

word. In order to include the translations, we also calculated bilingual embed-

dings5 with each of the translation languages. Thus, we could also represent the

translations as numeric values. Aggarwal and Zhai (2012) wrote a survey on text6

clustering in which they compared several clustering techniques, as well as different

distance update formulae for hierarchical text clustering. They suggest the following

formulae:

• Single Linkage: The Single Linkage distance update formula connects any

pair of observations or clusters, so that their closest pair of observations have

the highest similarity as compared to other observations or clusters (Aggar-

wal and Zhai, 2012, p. 91). This is an extremely fast and memory efficient

method. Usually, it is just necessary to order the observations according to

their computed similarity in descending order. However, this method can be

problematic, as it can lead to “chaining”. “Chaining” happens when the algo-

rithm follows a chain of similar documents so that dissimilar observations end

up in the same cluster (Aggarwal and Zhai, 2012, p. 91). X may be similar

to Y and Y similar to Z, but this does not always mean that Z is also simi-

lar to X. We tested this method with the Python fastcluster.linkage(x)

function.

• Group-Average Linkage: The Average Linkage formula considers the av-

erage dissimilarity of all the members of two clusters (Aggarwal and Zhai,

2012, p. 91). On the one hand, this method requires more memory and is

considerably slower as the previous method, as it has to compute the distance

between all members of two clusters. On the other hand, it yields better qual-

ity, as it is unaffected by the chaining issues. We tested this method with the

fastcluster.average(x) function.

• Complete Linkage: As opposed to the Single Linkage method, the Complete

Linkage method joins the clusters with the smallest maximum pairwise dis-

tance (Aggarwal and Zhai, 2012, p. 91). This method also avoids the chaining

issue, as pairs of very dissimilar observations or clusters do not end up in the

5We also used the multivec package for this task.
6More precisely, they clustered documents. However, it was still a starting point.

56

Chapter 5. The Active Learning Approach

same cluster (Aggarwal and Zhai, 2012, p. 91). We tested this method with

the fastcluster.complete(x) function.

Additionally, we tested the Hamming method, as it is the only method that

would allow us to work with one-hot encoded vectors. The Hamming distance

equals the amount of differences at corresponding positions between two vectors

of equal length (Müllner, 2017, p. 17). We tested this method with the general

fastcluster.linkage(x) function by passing hamming as method argument. It is

important to note that non-binary input would simply be one-hot encoded.

We tested these methods and features by calculating the average and median

CCC for all clustered German lemmas with a lack of evidence in our corpus. The

CCC was originally developed by Sokal and Rohlf (1962) for biostatistics and mea-

sures how adequately a computed cluster dendrogram preserves the initially com-

puted pairwise distances. It has been applied to measuring clustering quality in

various domains ever since. By calculating the CCC, we suppose that the original

data {Xi} has been been modified with a hierarchical cluster method to output a

dendrogram {Ti}. We then define the distance measures between two observations i

and j with the the original distance measures as x(i, j) =| Xi−Xj | and the distance

between the output model points of i and j as t(i, j) =| Ti − Tj | (Toolbox, 2012).

T always takes into account the output of the cluster model at the very bottom of

the dendrogram, where the observations are first joined together. x is defined as

the average of all x(i, j) and t(i, j), so that the CCC becomes c, as in 5.1 (Toolbox,

2012). The closer to 1 c is, the better the dendrogram preserves and represents the

original distances.

(5.1)

c =

∑
i<j(x(i, j)− x)(t(i, j)− t)√

[
∑

i<j(x(i, j)− x)2][
∑

i<j(t(i, j)− t)2]

We used the cluster.hierarchy.cophenet()7 function of the SciPy package

for the implementation of the Cophenectic Correlation Coefficient. We computed the

original Euclidian distances between the observations with the scipy.spatial.distance.pdist()

function of the SciPy package. However, we could not calculate the Cophenectic

Correlation Coefficient for all lemma pairs because the pdist() function consumes

a lot of memory and we ran out of memory if we had too many observations8 per

7https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.cluster.

hierarchy.cophenet.html (Accessed 30 May 2018)
8We did not spend too much time on fixing the memory issue and just calculated the CCC for

lemma pairs with ≤ 1, 000 observations.

57

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.cluster.hierarchy.cophenet.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.cluster.hierarchy.cophenet.html

Chapter 5. The Active Learning Approach

Method Score Feature Type
Single Linkage 0.778 numeric
Group Average Linkage 0.865 numeric
Complete Linkage 0.753 numeric
Hamming 0.562 one-hot encoded

Table 5.1: Comparison of the average CCCs for German with the different distance
update formulae.

lemma pair.

5.2.3 Cluster Quality

We chose the clustering method and feature combination that yields the highest av-

erage CCC for all lemma pairs. We started with the embeddings of the cooccurring

words9 with the exception of the Hamming method, for which we used the one-hot

encoded vectors, and tested the four different distance update formulae mentioned

above for German. We summarise the average CCCs in Table 5.1. The Group Aver-

age Linkage method yields the highest correlation. Thus, we added the embedding

of the English translation as feature with the Group Average Linkage method, which

increased the result to 0.988 for German. We tested whether the translation of an

other translation language or all other languages would further increase the average

CCC for all lemma pairs, but it was not the case. Adding, another language as

translation feature decreased the average to 0.959 and adding all languages further

decreased the value to 0.913, while also considerably increasing execution time and

memory consumption. Thus, we just tested whether any other language as transla-

tion feature is better than English. The results vary within a range of 0.003, so we

think that it is save to say that the embeddings of the cooccurring tokens together

with the translation into one language yield the best results with respect to preserv-

ing the input distances of the observations, as well as in terms of speed and memory

efficiency. This holds true for the other languages too, as shown in Table 5.2.

Besides the CCC for the quality estimation of the clusters, we compared the

output for the user queries of 10 different ambiguous lemmas in German against a

simple random draw, for which we assumed that both lemma candidates occur in

our corpus. We wanted to verify that the feature and algorithm combination, which

yields the highest CCC, really separates the data to our needs. We requested 15 user

queries per lemma and and performed each request 4 times – twice with a draw from

9We used the same window, w − 2 to w + 2, from the distant semi-supervised classification.

58

Chapter 5. The Active Learning Approach

Language
Features

Embeddings Embedding of 1 Translation

French 0.870 0.971
Italian 0.826 0.912
Finnish 0.826 0.914

Table 5.2: Average Cophenentic Correlation Coefficients for the other three lan-
guages with and without embedding for one Translation.

the precomputed clusters and twice with a random draw from all possible IDs. The

results from this survey are summarised in Table 5.3, in which we list for each method

how many examples we drew for the user prompts. The random draw method

works well for cases such as Messe|Messen (‘fair’ and ‘measuring’), Beweis|Beweisen

(‘proof’ and ‘proofing’), Akt |Akte (‘act’ and ‘file’), Pflanze|Pflanzen (‘plant’ and

‘planting’) and Pol|Pole (‘pole’ and ‘Pole’). Two of these pairs reveal to be resolved

to the same lemma candidate all the time – Pflanze and Beweis. The other 3 cases

might work well, as they probably have a more equal distribution of the two lemma

candidates. For the other 5 cases the draw from the precomputed clusters works

better, as this method is designed to capture potential minorities. The lemma pair

Spiel|Spielen* (‘play’, ‘playing’) is marked with an asterisk because we found a

wrongly tagged instance of the verbal form spielen (‘to play’) that was capitalised

at the beginning of a sentence. The precomputed clusters appear to help finding

outliers and minority classes. The recognition of minority lemma candidates is

crucial for exceeding a majority baseline. Even if the amount of outliers is so small

that we manually disambiguate all of them, we profit from the fact that they are

recognised and correctly resolved. Thus, we remain with the systematic random

draw from clusters implementation.

5.3 Efficiency for User Queries

We created a SQLite database with example sentences for all instances of the am-

biguous lemma pairs with a lack of evidence in the corpus in order to save memory

and increase speed. Therefore, we decided to store the data in a SQLite database,

which enables us to access just one chosen sentence at a time and discard it af-

terwards. We created the database by first extracting all the token IDs of the

ambiguous word forms in the corpus, as well as word forms, of which one lemma

candidate occurs less than 5 times. This enables an attempt to draw more ob-

servations of the minority lemma candidate, in order to improve the precision of

59

Chapter 5. The Active Learning Approach

Lemma 1st C Freq. Cl. Freq. Rd. 2nd C Freq. Cl. Freq. Rd.
Bitte|Bitten Bitte 8 10 11 14 Bitten 7 4 4 1
Messe|Messen Messe 3 3 4 4 Messen 12 12 11 11
Besuch|Besuchen Besuch 14 14 15 15 Besuchen 1 1 0 0
Beweis|Beweisen Beweis 15 15 15 15 Beweisen 0 0 0 0
Pflanze|Pflanzen Pflanze 15 15 15 15 Pflanzen 0 0 0 0
Akt|Akte Akt 6 6 9 6 Akte 6 6 6 9
Herd|Herde Herd 3 1 1 0 Herde 12 14 14 15
Spiel|Spielen* Spiel 12 12 14 12 Spielen 3 2 1 3
Berg|Bergen Berg 12 14 15 15 Bergen 3 1 15 15
Pol|Pole Pol 4 3 9 6 Pole 11 12 6 9

Table 5.3: Comparison of training selection between draw from pre-computed clus-
ters and the random draw method. C = Candidate, Freq. = Frequency,
Cl. = Cluster, Rd. = Random.

the classifier. We extracted the word forms within their sentence context for those

lemmas, which lack evidence for some lemma candidates, or are distributed very

unevenly. The sentences were directly fed into the database with the word form in

question highlighted with ”***” for an easier and faster detection later in context

by the user. This results in a simple and easily accessible database with one table

with the token IDs as unique keys in the first column and the token context as field

in the second column.

All SQLite procedures are executed with the Python built-in sqlite3 module.

5.4 User Interaction and Input

The active learning pipeline lives from the interaction with the users and we accept

user input at several points in the entire pipeline. Firstly, the users can decide

on whether, they want to provide additional annotations for the system. If not,

the system will just continue with the automatuc distant semi-supervised machine

learning pipeline and disambiguate all the tokens that have evidence for both lemma

candidates in the corpus. If the users choose to provide further input, they are

prompted with two other options. So, they can decide on the minimum count,

with which an ambiguous lemma occurs in the corpus, as well as the amount of

word forms they are willing to disambiguate for each lemma pair. The minimal

count for ambiguous lemma pairs has direct influence on the coverage of the system,

as well as the time the users will spend on the disambiguation task. There is a

considerable amount of lemma pairs (237 for German) that occur less than 10 times

60

Chapter 5. The Active Learning Approach

in the corpus. However, we set 10 as the minimum of observation that the users

have to disambiguate, as this is a really small amount of training data for a machine

learning algorithm. This implies that the users would disambiguate all occurrences

of the lemma pairs with less than 10 occurrences in the corpus manually. However,

it would suffice to do this once, or maybe twice to reduce the error rate by validating

the input, and rare lemma pairs are reliably resolved. Nevertheless, the users can

choose to disambiguate either 10, 15 or 20 observations of the same lemma pair.

This choice will not only influence the time they spend on the disambiguation task,

but also the accuracy of the classifier output.

Secondly, the users will be prompted for the manual resolution of the ambiguous

lemmas, which are randomly drawn from the saved clusters. When a cluster contains

less than the number of lemma pairs to be disambiguated divided by the amount of

lemma candidates plus one, we prompt for all instances in the cluster, as we assume

them to be either rare cases or outliers. If the cluster contains more observations,

we randomly draw the amount of lemma pairs to be disambiguated divided by the

amount of lemma candidates plus one. Sometimes, this would result in less samples

for disambiguation than the users chose to disambiguate. In these cases, we just

randomly draw more items, as we assume to have found outliers already. These token

IDs then serve as keys for queries in the previously mentioned SQLite database. We

prompt the users with one sentence at a time, as depicted in Figure 5.3.

Figure 5.3: A sample user prompt for the correct lemma candidate for the word form
Paaren (‘pairing’, ‘couples’).

The users are requested to choose between the proposed, numbered lemma

candidates. As answer the system either accepts the the number for the correct

candidate, or a string for cases, in which the correct candidate is not among the

proposed lemma candidates. When the users input an empty string or a number

outside of the range of lemma candidates, they will be prompted with the same

request again, until they enter either a string or the number of a lemma candidate.

This results in a list with token IDs and a list with resolved lemmas. If there are

no word forms left for disambiguation, the token IDs and the resolved lemmas will

directly be written to a file containing the results. Otherwise, they will be processed

further.

61

Chapter 5. The Active Learning Approach

So far, we have only created a simple terminal-based interface for our experi-

ments. It is possible – and we recommend to do so – to create a more comfortable

and user-friendly web-interface based on our pipeline.

5.4.1 Classification

We train a classifier for all lemmas, for which we have enough evidence for all lemma

candidates in the corpus, of for which the users have found more than one candidate

in the prompts. In cases, for which the users have selected the same lemma candidate

for every prompt, we just assume that the majority hypothesis holds true and we

assign the rest of all other observations with this lemma candidate and save the

output in a file. This saves time and memory, and the draw from the clusters should

ensure that any rare cases would have appeared in a cluster. A short analysis of

the German, large gold standard set for the distant semi-supervised approach, shows

that the distribution of a majority of 71 lemma pairs versus 19 lemma pairs is highly

unbalanced, meaning more than 75 % of all lemma pairs are resolved to the same

candidate. Hence, the loss by this default solution is expected to be small.

For the lemma pairs, for which the user selects various candidates, we train a

classifier on the manual user-annotated data. Although, we have evidence for one or

more lemma candidates for some lemma pairs, we decided not to include them into

the training data. On the one hand, it would increase the majority class bias and on

the other hand they contain false lemmas in cases, such as Akt|Akte (‘act’ and ‘file’),

for which every word form of Akte10 can also be a word form of Akt, which is why we

can only find evidence for the lemma Akt in the corpus. We rely on our results from

the distant semi-supervised machine learning approach for the optimal choice of

machine learning algorithm and the feature combinations. We also train a classifier

for all cases for which we find evidence for both lemma candidates in the corpus in

the same manner as in the distant semi-supervised machine learning approach. It

thus turns out that the distant semi-supervised approach can be integrated in an

active learning system, as outline in Figure 5.4.

Figure 5.4: Graphic representation of the decision path within the full pipeline.

10To the best of our knowledge.

62

6 Results

In this chapter we present the results of the different experiments with our dis-

tant semi-supervised machine learning approach and our experiments with active

learning.

6.1 Evaluation of the Distant Semi-supervised

Machine Learning Approach

We have conducted several experiments with our distant semi-supervised machine

learning approach. Firstly, we have performed an exhaustive search for the best

feature and machine learning algorithm for German, before continuing our search

more systematically. We also present our baseline, against which we measure our

machine learning algorithms and the output from Graën (2018).

We chose precision as evaluation metric, as recall is stable for the distant semi-

supervised machine learning approach because we can disambiguate all lemmas that

have evidence for both lemma candidates in the corpus. Additionally, we want our

system to deliver as precise results as possible. It is not only important that we can

disambiguate as many lemmas as possible, but also that they are disambiguated

correctly. There is an upper bound for all languages in part A of the gold stan-

dard because some lemma candidates are not included in the TT lexicon or assigned

wrongly due to POS-tagging errors1 It is impossible for the machine learning algo-

rithm to learn them in the current set-up. Thus, we will present the results measured

against the more benevolent upper bound, but declare the difference to the entire

part A of the gold standard.

1The German word form Bergen can be either tagged as named entity and then it is unambiguous,
or tagged as common noun and then it is ambiguous and can be either Berg|Bergen (‘mountain’
and ‘salvaging’). In this case the name of the city and the nominalised verb form look alike,
but the Finnish sentence initial Jokin tagged as pronoun is lemmatised to some and tagged as
named entity to Jok|Jokki (Finnish personal names), which means that the tagger misses the
correct lemma, although it is known.

63

Chapter 6. Results

Data set
Language

German French Italian Finnish

Upper Bound 64.3 % 65.5 % 64.5 % 70.1 %
Total 64.3 % 60.6 % 59.4 % 73.2 %

Table 6.1: Precision of Baseline for all four languages.

6.1.1 Baseline

We designed a baseline approach, with which we can compare performance of our

distant semi-supervised machine learning approach. We decided for assigning the

lemma candidate that occurs most frequently in the corpus to each ambiguous word

form. Whenever all lemma candidates occur equally frequent, we make a random

choice. This is an intuitive and fast method. The baselines for the four languages

are presented in table 6.1. The precision of the baseline approach is well above 50

% for all languages. Finnish yields the highest results with a precision above 73.2

% against the upper bound of the gold standard.

6.1.2 Extensive Evaluation of German

We have performed an exhaustive search for the best feature combination and ma-

chine learning algorithm for German. We wanted to see whether there are any

unexpected tendencies before performing a strategical search for all four languages.

The results of the exhaustive search are displayed in Table B.1 in Appendix B.

We tested 256 feature sets and machine learning algorithms in total. This large

amount of tests lead to insights for our following procedures. We discovered that

the XGBoost (Chen and Guestrin, 2016) is a misfit for our problem. XGBoost pro-

duced the worst results2 in our experiments. Whenever we worked with one-hot

encoded features3, it started to produce results below our baseline as shown in Ta-

ble 6.2. Additionally, XGBoost’s hyper-parameters have to be tuned on the data

set. We have a large number of data sets that we want to classify, therefore, tuning

hyper-parameters for each data set is prohibitively expensive. Hence, we did not

experiment with XGBoost on the other three languages. We also learned that com-

bining a multitude of features does not necessarily yield better results. Thus, we

2Despite the outstanding performance of the XGBoost algorithm in many Kaggle machine learning
competitions, including web text classification. For more information about Kaggle, see https:
//www.kaggle.com/competitions.

3This observation is confirmed by Brownlee (2016), who recommends XGBoost for “structured
or tabular” data

64

https://www.kaggle.com/competitions
https://www.kaggle.com/competitions

Chapter 6. Results

Features

Embeddings x x x x
Majority Class x
Cooccurrence T. x x x x
Cooccurrence L. x
Translations x x x x x x
POS tags x x x
Morphology x
Dependencies

Algorithm

Baseline 65.1
Naive Bayes +11.0 +8.9 +10.0 +10.0 +20.1 +10.3 +1.2 +9.4 +10.2 +17.8 +11.9 +18.8 +18.0
SVM Linear +12.7 +8.9 +9.4 +9.3 +20.1 +10.3 -1.5 +8.4 +20.8 +19.8 +18.8 +18.3 +18.8
GTB +9.6 +8.9 +8.5 +8.5 +17.0 +7.3 -1.7 +9.4 +16.7 +16.6 +15.8 +15.9 +14.8
XGBoost +11.4 +8.9 +2.5 +1.2 +5.7 +1.4 +1.5 +2.5 +15.7 +15.9 +15.8 -2.6 -8.5

Table 6.2: Improvements of precision of algorithms and feature combinations against
the baseline in percentage points for German. ‘T.’ is for token and ‘L.’
for lemma.

decided to strategically combine those features that yield good results, when used

alone and see how we can improve their performance.

Table 6.2 contains the single feature performance of the 4 tested machine learn-

ing algorithms, as well as the most promising feature combinations. The translation

feature yields the best results with an increase in precision of 20.1 percentage points

against the baseline with the linear SVM and the Naive Bayes algorithm among

the single features, while the embeddings, majority class, dependencies and cooc-

currence tokens and lemmas follow with an increase of roughly 12 percentage points

with the linear SVM and Naive Bayes algorithm. We found the embeddings to yield

the best results, when trained on German and French. As previously mentioned,

XGBoost underperforms by far in most categories, apart from the word embedding

feature, which is scalar. The linear SVM yields the best and most stable results in

most cases, while the Naive Bayes yields very unstable results4. The Gradient Tree

Boosting (GTB) yields average results for all features. We decided to present only

the best performing feature combinations from our exhaustive search in Table 6.2.

The linear SVM with the embedding and the translation feature yields the highest

precision with 85.9 % against the upper bound and 84.8 % against the full part A

of the gold standard.

6.1.3 Evaluation of French, Italian and Finnish

We systematically searched for the best feature and machine learning algorithm

combination for the remaining three languages. From the exhaustive search for

4Before implementing the scikit-learn Bernoulli Naive Bayes algorithm, we had used the Multi-
nomial Naive Bayes. The Multinomial Naive Bayes yielded better and more stable results, but
is not compatible with scalar features that may contain negative values. Therefore, we had to
switch to the Bernoulli Naive Bayes.

65

Chapter 6. Results

Features

Embeddings x x x x x x
Majority Class x x x x x x
Cooccurrence T. x x x x x
Cooccurrence L. x
Translations x x x x x x x x x x
POS tags x
Morphology x x x x x
Dependencies x

Algorithms

Baseline 65.5
Naive Bayes +11.9 +15.5 +12.8 +12.8 +7.07 +10.7 +18.6 - +17.2 +18.1 +16.8 +7.1 +8.4 +19.0 +7.96 +9.3 +8.5
Linear SVM +13.3 +17.7 +14.6 +13.3 +20.8 +12.8 +14.1 - +18.6 +17.7 +22.1 +19.0 +19.0 +17.7 +21.2 +21.2 +21.7
GTB +16.4 +15.4 +19.9 +16.0 +16.8 +14.1 +21.2 - +15.9 +17.2 +21.2 +21.7 +15.9 +15.5 +15.5 +15.9 +15.9

Table 6.3: Improvements of precision of algorithms and feature combinations against
the baseline in percentage points for French. ‘T.’ is for Token and ‘L.’ for
Lemma.

German we have learnt that it might work well to first run each feature individually

and then combine the best performing features. We did not combine more than

4 features, as the evaluation of German had shown that more than four features

still yield good results, but not better than having less features, while consuming

considerably more memory.

The analysis of the single features in French reveals very fragmented results,

which are summarised in Table 6.3. The morphology and cooccurrence token fea-

ture perform best by improving the precision by 19.9 and 21.2 percentage points

respectively, but only with the GTB algorithm. The linear SVM yields an equally

good result with the translation feature, by improving the baseline by 20.8 per-

centage points. The other features increase the baseline between 10-17 percentage

points, with the embeddings, which perform best when trained on French and Ital-

ian, and the majority class being on the upper end. Therefore, we tested different

combinations of embeddings, translations, cooccurrence tokens, majority class and

morphology, while ignoring the differences of performance with respect to the choice

of algorithm. The Naive Bayes still produces very unstable results when we combine

the different features, while the linear SVM again produces stable and good results.

The highest improvement is 22.1 percentage points against the baseline, yielded by

the linear SVM with the majority class, the cooccurrence tokens, the translations

and the morphology feature. The precision is 87.6 % against the upper bound and

82.7 % against the full part A of the gold standard.

Italian is the only language for which a single feature yields the highest overall

improvement of the precision against the baseline, which comes at surprise. Table

6.4 shows that the linear SVM algorithm with the translation feature improves the

baseline by 23.1 percentage points. Other well performing features are the cooccur-

rence tokens, the embeddings, the POS tags and the dependencies, which increase

the precision by 14-17 percentage points. Further, we found the bilingual embed-

66

Chapter 6. Results

Features

Embeddings x x x x x x x x
Majority Class x
Cooccurrence T. x x x x x
Cooccurrence L. x x x x x x
Translations x x x x x x x x x x x x x
POS tags x x x x
Morphology x
Dependencies x x x x x

Algorithms

Baseline 63.5
Naive Bayes +16.9 +13.1 +15.7 +16.1 +10.8 +13.1 +7.6 +11.9 +17.9 +19.1 +20.6 +20.9 +20.8 +12.0 +18.3 +19.1 +19.6 +20.3 +16.6 +15.3
Linear SVM +17.5 +13.1 +15.6 +16.4 +23.1 +14.8 +2.9 +14.6 +22.7 +23.0 +21.0 +21.1 +22.3 +22.6 +18.2 +21.8 +22.2 +22.4 +20.6 +22.6
GTB +15.1 +13.1 +13.8 +15 +21.5 +13.6 +2.3 +16.2 +21.3 +21.3 +18.5 +18.6 +20.3 +20.5 +12.0 +20.2 +19.4 +19.3 +18.3 +19.6

Table 6.4: Improvements of precision of algorithms and feature combinations against
the baseline in percentage points for Italian. ‘T.’ is for token and ‘L.’ is
for lemma.

dings with German to perform best. None of the feature combinations with any

algorithm performs as well as the translation feature on its own. However, we de-

cided that it is not a good idea to rely on a single feature, despite the best results,

as another data set might provide less information via translations. Therefore, we

suggest to add the cooccurrence tokens, which results in an equally good perfor-

mance, but still provides a back-off in cases, where the translation feature fails or is

missing. Interestingly, combinations that consider the embeddings do not perform

best. Their results are competitive, but do not exceed the performance of feature

combinations without embeddings. The performance of the linear SVM algorithm

is again the most stable, while the Naive Bayes again produces very unstable results

(not shown in Table 6.4). The GTB algorithm produces good results, but not as

good as the linear SVM. The linear SVM with the cooccurrence lemma and the

translation feature performs best and yields a precision of 86.5 % against the upper

bound and 82.5 % against the full part A of the gold standard.

Although the baseline performed best for Finnish, the machine learning results

for Finnish do not exceed the results for the other languages. It just makes it

harder to beat the baseline, as shown in Table 6.5. The best performing single

feature is the embedding of the cooccurrence tokens with the linear SVM algorithm,

which results in an increase in precision of 11.7 percentage points. We found the

embeddings trained with Finnish and German to perform best. The cooccurrence

tokens with the linear SVM algorithm perform equally good with an increase in

precision of 11.5 percentage points. The Naive Bayes and the GTB do not perform

as well. However, the performance of the GTB is nearly as good. We decided to

combine the embeddings, the cooccurrence tokens, the cooccurrence lemmas and

the majority class. Counterintuitively, the combinations containing the embeddings

feature do not perform best. The best performance yields the cooccurrence tokens

with the translation feature with or without the majority class feature by increasing

the precision by 12.3 percentage points with the linear SVM algorithm. We prefer to

67

Chapter 6. Results

Features

Embeddings x x x x x x
Majority Class x x x x x x
Cooccurrence T. x x x x x x
Cooccurrence L. x x x x
Translations x x x x x x x x x x
POS tags x
Morphology x
Dependencies x

Algorithms

Baseline 73.2
Naive Bayes +8.9 +7.9 +7.9 +8.0 +9.1 +7.4 +7.4 - +4.4 +9.0 -3.8 -8.7 +0.7 -2.1 +9.5 +3.3 +3.46 +8.8
Linear SVM +11.7 +9.8 +11.5 +8.8 +8.8 +7.1 +7.2 - +12.3 +10.4 +8.3 +11.3 +12.3 +10.2 +11.3 +11.5 +11.2 +11.2
GTB +9.1 +7.9 +8.7 +7.2 +10.2 +7.4 +9.9 - +10.1 +9.6 +10.1 +9.8 +10.1 +11.5 +10.7 +11.5 +10.9 +10.9

Table 6.5: Improvements of precision of algorithms and feature combinations against
the baseline in percentage points for Finnish.‘T’ is for tokens and ’L’ is
for lemmas.

omit the majority class feature, as Finnish appears to have a strong majority class

bias already5, as we want the classifier to learn more than the most frequent class.

This yields a final precision of 85.5 % within the upper bound and 84.4 % with the

full part A of the gold standard.

6.1.4 Evaluation of Graën (2018)

We also evaluated the disambiguated data in FEP6 provided by Graën (2018), as we

have been kindly provided with his data and he has evaluated a very small set of 53

instances in FEP9 that successfully yielded an unambiguous lemma6. We introduced

his approach in Section 2.3 of Chapter 2. We chose precision, recall and the F1-score

as evaluation metrics and our part A of the gold standard for a comparison with our

distant semi-supervised machine learning approach because both approaches require

unambiguous evidence for all lemma candidates in the corpus. While our approach

constantly reaches a recall of 100 %, the quantitative approach of Graën (2018)

does not, because not all of the instances in the gold standard have matching word

alignments. Additionally, we decided to compare the precision and recall within the

upper bound, as both systems do not have the ability to exceed it.

Table 6.6 shows precision, recall and F1-score for our distant semi-supervised

approach compared to the approach of Graën (2018). Our approach outperforms

the quantitative approach with the F1-score being above 90 % for all four lan-

guages. The quantitative approach works best for German with an F1-score of 87.6

%. Graën’s (2018) quantitative approach performs slightly better in precision for

German, French and Finnish, but not Italian. Finnish, yields the highest precision

with 91.9 %, but also the lowest recall with 63.7 %. German and Italian yield the

5The baseline performance, which is based on the majority class, is above 70 % precision, which
means that it is a good guess anyway.

6To our knowledge, the approach has not been evaluated for FEP6 so far.

68

Chapter 6. Results

Language DE FR IT FI

Metric
Method

HE GR HE GR HE GR HE GR

Precision 85.9 % 88.9 % 87.6 % 89.1 % 86.5 % 86.22 % 85.5 % 91.9 %
Recall 100 % 86.4 % 100 % 78.6 % 100 % 84.8 % 100 % 63.7 %
F1-measure 92.4 % 87.6 % 93.4 % 83.5 % 92.8 % 85.5 % 92.2 % 75.2 %

Table 6.6: Performance comparison of the distant semi-supervised machine learn-
ing approach and the purely quantitative approach from Graën (2018).
Column “HE” refers to our approach and column “GR” to Graën (2018).

highest recall for the quantitative approach with above 80 % . The major drawback

of Graën’s (2018) approach ist the low recall due to the lack of matching trans-

lations, which also leads to the lower F1-scores. His approach would benefit from

better word alignment quality.

6.2 Evaluation of the supervised active learning

approach

We evaluated our supervised machine learning approach for German with the smaller

part B of the gold standard, against a precomputed baseline. We also discovered a

nice side effect of the user queries.

6.2.1 Baseline

Again, we assigned each occurrence of an ambiguous lemma with the majority class

or a random choice of the lemma candidates if no majority class exists. For some

lemma pairs, such as Filter|Filtern (‘filter’ and ‘filtering’) we find evidence for Filter

in the corpus, so it is our majority class and we assign all cases if Filter|Filtern with

Filter. This results in a precision of 55.1 % against the upper bound of the small

gold standard and 54 % overall.

6.2.2 Evaluation of German

We evaluated the performance of our supervised machine algorithm with the smaller

part B of the gold standard. The precision of our SVM model with the embedding

and translation feature is 95.9 % against the upper bound of the gold standard and

93.9 % overall. However, the upper bound is relative in the context of active learning,

as there is always a chance for finding at least one or all of the lemmas erroneously

69

Chapter 6. Results

assigned by the tagger during the user query phase. As we have answered the user

queries ourselves, we also evaluated how many of the wrongly assigned candidates

the algorithm should have known, as we, for example, manually disambiguated

Spiel|Spielen (‘play’ and ‘playing’) to Spiel in 5 examples and Spielen in 10 examples,

the classifier had a chance to learn the distinction between the two. However, there

are also rare cases of the capitalised, sentence initial verb spielen (‘to play’), which

are tagged as noun and thus also assigned Spiel|Spielen. If such a case appears

in the user queries, the classifier can learn to disambiguate it too, if it is not in

the queries, it cannot. The classifier misclassified 6 word forms in total, of which

5 could have been resolved correctly, as we delivered the correct lemma candidate

for another instance in the user queries. Indeed, the system asked for one of the

candidates – Bürgern (‘citizens’), which becomes Bürge|Bürgen (‘bail’ and ‘bailing’)

due to a typographical error – that are not proposed by the tagger, which means

that we had a chance to exceed the upper bound. Eventually, our system performs

surprisingly good with respect to precision.

The recall of our model against the gold standard is 100 %. However, with

respect to the entire corpus the coverage per ambiguous lemma types is 45.8 %

because we miss 268 ambiguous due to the preset minimal lemma occurrence count

of 15. Yet, this is a considerable increase as compared to the distant semi-supervised

machine learning approach with a coverage of 28 %. Additionally, we could further

increase the coverage anytime by re-running the process with a lower minimal count,

which could be lowered as far as 1 occurrence which results in 100 % coverage7.

We think that it is also important to evaluate the costs of the active learning

process. By costs we mean the amount of time a user spends on disambiguating all

the samples he is presented with. With 15 examples per lemma pair and a minimal

lemma pair count of 16 it takes roughly 2.5 hours8. Lowering the minimal count to 1

would probably mean up to 5 hours or more for a user to work on the disambiguation

task. While this costs are probably equally high or slightly lower for French and

Italian, they are unproportionately higher for Finnish, which is the main reason why

we would not necessarily recommend the active learning pipeline for Finnish.

6.2.3 Side Effects of Active Learning

Not only does the user input deliver correctly labelled data for the training of the

machine learning algorithm, but it also delivers hints towards other errors in the

7This takes considerably more time.
8Note that we already had some experience, as we have tested this task multiple times for the

detection of implementation errors and for debugging. Thus, it is very likely that it is more
time consuming for unexperienced users.

70

Chapter 6. Results

data and corrects typos on the lemma level and provides more data for the gold

standard. Firstly, the user prompts present the user a lot of context surrounding

the ambiguous word form. This context is helpful to detect tagging errors, such as in

example 6.1 of Bergen, a Norwegian city, which is wrongly tagged as common noun.

This leads to the wrongly assigned lemma Berg|Bergen (‘mountain’ and ‘salvaging’),

as their common word forms coincides with name of the city Bergen. Such hints

could be exploited in order to fix tagging errors and check other instances of Bergen.

(6.1) Ein
a

früherer
former

Abgeordneter
member

dieses
of this

Hauses,
house

der
who

von
of

den
the

Shetland-Inseln
Stetland Islands

stammte,
come.PAST

verwies
point.PAST

gern
like

darauf
out

,
that

dass
from

von
the

den
Stetland Islands

Shetland-Inseln
there

aus
the

der
closest

nächst
larger

größere
station

Bahnhof
the

der
in

in
Bergen

Bergen
is

ist.

‘A former member of this House, who came from the Shetland Islands, liked
to point out that Bergen is the closest larger station from the Shetland
Islands.’

Besides this, we also find capitalised verbs, such as sagen (‘to say’) and gestalten

(‘to shape’) in sentence initial position, which are wrongly POS-tagged as nouns.

Thus, they are assigned the lemma of the nouns, which are by chance ambiguous.

Lastly, the user prompts also help in detecting typographical errors. The word

form Bürgern (‘citizens’), for example, is misspelled to Bürgen (‘bailing’) almost

systematically. Out of the 15 instances of Bürgen, it should be Bürgern 7 times.

Hence, we do not only provide input for the supervised machine learning algorithm,

but also detect erroneous data in the corpus.

Lastly, all the manually annotated data can be added to enlarge the gold stan-

dard. We could even compare the input of several users and only accept the input

as golden that has been given at least twice.

71

7 Conclusion

This thesis is an endeavour devoted to the investigation and amelioration of standard

lemmatisation practices with a focus on ambiguity resolution. So far, relatively

little has been done in this field. This can probably be attributed to the fact that

English has a tiny amount of ambiguous word forms. The lemmatisation tools,

such as LEMMING, Morfette and Lematus presented in the related works may well

outperform the TreeTagger (TT) in terms of accuracy. However, pre-trained models

are often unavailable in non-mainstream languages, due to the lack of adequately

annotated language resources. Additionally, they may even be trained on TT output,

such as Lematus and thus simply reproduce the ambiguities of the TT. Thus, our

approach of trying to ameliorate the TT output in multiple languages seems to

be legitimate, if not necessary. We searched for inspiration in the neighbouring

field of the more fine-grained task of word sense disambiguation, and found several

approaches that work with multilingual data.

We chose German, French, Italian and Finnish as languages of interest, as we

found them to have a large number of ambiguities in the Full European Parliament

Corpus v.6, a large multilingual parallel corpus. We have worked with a pre-release

version in a CONLL-U-like format with linguistic annotation, including TT POS-

tags, lemmas and dependency relations. We found the TT output for Finnish to

have the largest amount of ambiguous unique types of word form/POS tag/lemma

tuples. German shows more than 10-times less ambiguous unique word form/POS

tag/lemma tuple types, followed by French and Italian. In French and Spanish, the

phenomenon is almost absent.

Further, we developed a gold standard for German, French, Italian and Finnish.

We manually annotated German and French and engaged other linguistic experts

for manually annotating Italian and Finnish. The gold standards served for the

evaluation of our models, and are available online1 as resources for others who pursue

research in the field of lemma disambiguation. The manual evaluation of the gold

standard data also helped us to estimate the precision and recall of the tagger for

word forms, for which the TT suggests two or more lemma candidates. Additionally,

1https://gitlab.cl.uzh.ch/jasminheierli/gold-standards-lemmadesambiguierung (Ac-
cessed 1 June 2018).

72

https://gitlab.cl.uzh.ch/jasminheierli/gold-standards-lemmadesambiguierung

Chapter 7. Conclusion

we tried to examine the coverage of the TT by applying GerTwol on our German

corpus, respecting the TT POS-tags. While the TT appears to achieve almost 100

% coverage for adjectives, roughly a third of the examined nouns and verbs received

an additional lemma candidate.

When it comes to the automatic disambiguation of the lemmas, we developed

two different models. Firstly, we developed a distant semi-supervised machine learn-

ing algorithm that makes use of independently occurring lemma candidates in the

corpus. Thus, we do not need any manually annotated data for training, as we find

the training data directly in the corpus. We assumed that the translations of these

lemmas would be very informative for the algorithm. This assumption was con-

firmed in all four languages. Additionally, we tested traditional contextual features,

auch as cooccurring tokens and POS tags, as well as more modern features, such as

word embedding with different machine learning algorithms. We found the linear

SVM models to perform best for all languages and yield best precisions above 85

%, which also beat our baseline in all four languages. The results of our models are

competitive with the quantitative multilingual approach of Graën (2018) in terms of

precision and oupterfom it in terms of recall and F1-score. However, the example of

Finnish clearly illustrates the limits of our first approach. The coverage is only 3 %,

as a vast majority of lemma pairs lacks evidence, as unambiguous lemmatisations,

for one or more lemma candidates in the corpus. On the other hand, the coverage

for the other three languages is at least 10 times higher.

Secondly, we developed an active learning pipeline that helps to overcome the

knowledge gap by prompting the user with carefully selected ambiguous items lack-

ing evidence for at least one lemma candidate in the corpus. Then, the user either

disambiguates the lemma by specifying the number of the correct candidate, or en-

tering another suggestion, if the correct lemma is not among the propositions from

the TT. The samples for the user are drawn from precomputed and modified clus-

ters, in order to ensure that minority classes and outliers are found and included

in the training data. We tested the pipeline for German and achieved a precision

of 95.9 % against the upper bound2 and an overall precision of 93.9 %. Despite

the promising results, we would like to point out that selecting the correct lemma

is time consuming. Thus, we implemented a threshold for the minimal occurrence

of ambiguous lemmas in the corpus. Our presented results are calculated with a

threshold of 16 occurrences. However, the threshold does not only save time, but

also lowers the coverage. For German, we achieved a coverage of 45.8 % of all word

form/POS tag/lemma tuple types within the corpus with the threshold. Lastly, the

2The upper bound does not consider ambiguous lemmas assigned with a lemma that is not
suggested by the tagger – earlier reffered to as false negative – because they are unobtainable
for machine learning algorithms.

73

Chapter 7. Conclusion

manual annotation task leads to additional insights into our data. We are likely to

discover POS-tagging errors and typographical errors that can at least be corrected

on the lemma level.

Eventually, the two approaches can be combined3 and lead to a quite reliable

resolution of roughly 50 % for languages with tantamount of evidence for individual

lemma candidates in the corpus.

7.1 Future Work

The example of Finnish demonstrates that for some languages the approach needs

to be further adjusted. We discovered that some lemma pairs, such as laajen-

tuminen#neuvottelu|laajentua#neuvottelu (‘enlargement negotiations’ and ‘enlarge

negotiations’) of the compound word form laajentumisneuvotteluissa, only the first

part of the compound appears to be ambiguous and we also found lemma pairs

that only differ in the second part. Therefore, one could try to find evidence for

the subparts of the lemma candidates and if available exploit these for the classifier

training.

Additionally, we could experiments with different algorithms and features. So

far, we have neglected the field of Neural Networks, which are currently exploited

for many NLP tasks, including lemmatisation, as presented by Bergmanis and Gold-

water (2018). We also believe that we can achieve more with the word embeddings.

We have only tested one approach in order to scale and adjust them for a machine

learning algorithm, and we are aware that it probably was not the best with respect

to expected performance. As we have the resources to work with word embeddings

for the translations of the lemmas in question, we could also experiment only with

word embedding features.

Due to time restrictions, we could only properly evaluate the active learning

pipeline for German. Nevertheless, it would be interesting to see how far we would

come with the same approach for at least French and Italian. Additionally, we could

expand the active learning queues for highly imbalanced classes, in order to search

more training samples for the minority class. We assume that this would further

improve the performance of the machine learning approach. And yet, the results we

were able to obtain are promising and lead to the assumption that the performance

of the models could be further improved by taking such measures.

3We actually did this in the implementation of the active learning pipeline as it did not cause
additional efforts. We already had the implementation of the distant semi-supervised approach.

74

References

C. C. Aggarwal and C. Zhai. A survey of text clustering algorithms, chapter 4,

pages 77–128. Springer, 2012.

C. Baffelli. An annotation pipeline for Italian based on dependency parsing.

ma-thesis, University of Zurich, June 2016.

T. Bergmanis and S. Goldwater. Context sensitive neural lemmatization with

Lematus. In Proceedings of the Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies,

pages 1391–1400, 2018. URL http://homepages.inf.ed.ac.uk/s1044253/

papers/Context_Sensitive_Neural_Lemmatization_with_Lematus.pdf.

J. Brownlee. A gentle introduction to XGBoost for applied machine learning, Aug.

2016. URL https://machinelearningmastery.com/

gentle-introduction-xgboost-applied-machine-learning/.

A. Bérard, C. Servan, O. Pietquin, and L. Besacier. Multivec: a multilingual and

multilevel representation learning toolkit for NLP. In The 10th edition of the

Language Resources and Evaluation Conference (LREC 2016), 2016.

T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 785–794. ACM, 2016.

G. Chrupala, G. Dinu, and J. van Genabith. Learning morphology with Morfette.

In Proceedings of the Sixth International Conference on Language Resources and

Evaluation (LREC’08), pages 2362–2367. European Language Resources

Association (ELRA), May 2008.

J. Cohen. A coefficient agreement for nominal scales. Educational and

Psychological Measurement, (20):37–46, 1960.

D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun. A practical part-of-speech

tagger. In Proceedings of the Third Conference on Applied Natural Language

Processing, Apr. 1992.

75

http://homepages.inf.ed.ac.uk/s1044253/papers/Context_Sensitive_Neural_Lemmatization_with_Lematus.pdf
http://homepages.inf.ed.ac.uk/s1044253/papers/Context_Sensitive_Neural_Lemmatization_with_Lematus.pdf
https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/
https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/

Chapter 7. Conclusion

M. Diab and P. Resnik. An unsupervised method for word sense tagging using

parallel corpora. In Proceedings of the 40th Annual Meeting on Association for

Computational Linguistics, ACL ’02, pages 255–262. Association for

Computational Linguistics, 2002.

A. R. S. Dimitar Kazakov. Using parallel corpora for word sense disambiguation.

In RANLP, pages 336–341, 2013.

J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local information

into information extraction systems by gibbs sampling. In Proceedings of the

43rd Annual Meeting of the Association for Computational Linguistics (ACL

2005), pages 363–370, 2005.

W. A. Gale, K. W. Church, and D. Yarowski. A method for disambiguating word

senses in a large corpus. Computers and the Humanities, 26(5):415–439, 1992.

H. Glück and M. Rödel. Metzler Lexikon Sprache. J.B. Metzler, 5. edition edition,

2016.

J. Graën. Identifying phrasemes via interlingual association measures - a

data-driven approach on dependency-parsed and word-aligned parallel corpora.

In C. Konecny, E. Autelli, A. Abel, and L. Zanasi, editors, Lexemkombinationen

und typisierte Rede im mehrsprachigen Kontext. Stauffenburg Verlag, 2017.

J. Graën. Exploiting Alignment in Multiparallel Corpora for Applications in

Linguistics and Language Learning. PhD thesis, Universität Zürich, 2018.

J. Graën, D. Batinic, and M. Volk. Cleaning the Europarl corpus for linguistic

applications. In Konvens 2014, 2014.

M. Haapalainen and A. Majorin. Gertwol: ein system zur automatischen

Wortformerkennung deutscher Wörter. Technical report, Lingsoft, Inc., Sept.

1994.

P. Hansen and B. Jaumard. Cluster analysis and mathematical programming.

Mathematical Programming, 79(1-3):191–215, 1997.

Z. S. Harris. Distributional structure. Words, 10(2-3):146–162, 1954.

I. Iacobacci, M. T. Pilehavar, and R. Navigli. Embeddings for word sense

disambiguation: An evaluation study. In Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers),

volume 1, pages 897–907, 2016.

76

Chapter 7. Conclusion

D. Jurafsky and J. H. Martin. Speech and language processing: An introduction to

natural language processing, computational linguistics, and speech recognition.

Third Edition draft, Aug. 2017. URL

https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf.

P. Koehn. Europarl: A parallel corpus for statistical machine translation. Machine

Translation Summit, 5, 2005.

Q. V. Le and T. Mikolov. Distributed representations of sentences and documents.

In Proceedings of the International Conference on Machine Learning (ICML),

pages 1188–1196, 2014.

E. Lefever and V. Hoste. Semeval-2010 task 3: Cross-lingual word sense

disambiguation. In Proceedings of the Workshop on Semantic Evaluations:

Recent Achievements and Future Directions, DEW ’09, pages 82–87. Association

for Computational Linguistics, 2009.

E. Lefever and V. Hoste. Parallel corpora make sense: Bypassing the knowledge

acquisition bottleneck for word sense disambiguation. International Journal of

Corpus Linguistics, 19(3):333–367, 2014.

P. Liang, B. Taska, and D. Klein. Alignment by agreement. In Proceedings of the

Main Conference on Human Language Technology Conference of the North

American Chapter of the Association of Computational Linguistics,

HLT-NAACL ’06, pages 104–111, Stroudsburg, PA, USA, 2006. Association for

Computational Linguistics.

E. Loper and S. Bird. Nltk: The natural language toolkit. In Proceedings of the

2nd ACL Workshop on Elective Tools and Methodologies for Teaching Natural

Language Processing and Computational Linguistics, volume 1, pages 63–70.

ACL, 2002.

T. Luong, H. Pham, and C. D. Manning. Bilingual word representations with

monolingual quality in mind. In Proceedings of the 1st Workshop on Vector

Space Modeling for Natural Language Processing, pages 151–159, 2015.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated

corpus of English: The Penn Treebank. Compuational Linguistics, 19(2):

313–330, June 1993.

T. McEnery, A. Wilson, and F. S.-L. Amalio. Multilingual resources for European

languages: contributions of the crater project. Literary and Linguistic

Computing, 12(4):219–226, 1997.

77

https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf

Chapter 7. Conclusion

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed

representations of words and phrases and their compositionality. In Advances in

Neural Information Processing Systems, pages 3111–3119, 2013.

T. Müller, R. Cotterell, A. Fraser, and H. Schütze. Joint lemmatization and

morphological tagging with Lemming. In EMNLP, pages 2268–2274, 2015.

D. Müllner. fastcluster: Fast hierarchical, agglomerative clustering. Journal of

Statistical Software, 53(9):1–18, 2013.

D. Müllner. The fastcluster package: User’s manual. The Comprehensive R

Archive Network, https://cran.r-project.org/web/packages/fastcluster/

vignettes/fastcluster.pdf, Aug. 2017.

R. Navigli. Word sense disambiguation: A survey. ACM Computing Surveys, 41

(2):1–69, Feb. 2009.

H. T. Ng, B. Wang, and Y. S. Chan. Exploiting parallel texts for word sense

disambiguation: An empirical study. In Proceedings of the 41st Annual Meeting

on Association for Computational Linguistics-Volume 1, pages 455–462.

Association for Computational Linguistics, 2003.

J. Nivre and M. Ballesteros. Maltoptimizer: An optimization tool for maltparser.

In Proceedings of the Demonstrations at the 13th Conference of the European

Chapter of the Association for Computational Linguistics, EACL ’12, pages

58–62. Association for Computational Linguistics, 2012.

J. Nivre, J. Hall, and J. Nilsson. Maltparser: A data-driven parser-generator for

dependency parsing. In Proceedings of LREC, volume 6, pages 2216–2219, 2006.

F. J. Och and H. Ney. A systematic comparison of various statistical alignment

models. Computational Linguistics, 29(1):19–51, 2003.

N. Ott. Evaluation of the bananasplit compound splitter. techreport, Seminar fur

Sprachwissenschaft, Eberhard-Karls-Universitat Tubingen, Mar. 2006.

E. Parliament. European Parliament - never lost in translation. web, Oct. 2008.

URL http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP/

/TEXT+IM-PRESS+20071017FCS11816+0+DOC+XML+V0//EN#title1.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and Édouard Duchesnay. Scikit-learn:

78

https://cran.r-project.org/web/packages/fastcluster/vignettes/fastcluster.pdf
https://cran.r-project.org/web/packages/fastcluster/vignettes/fastcluster.pdf
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+IM-PRESS+20071017FCS11816+0+DOC+XML+V0//EN#title1
http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+IM-PRESS+20071017FCS11816+0+DOC+XML+V0//EN#title1

Chapter 7. Conclusion

Machine learning in Python. Journal of Machine Learning Research, 12:

2825–2830, 2011.

S. Petrov, D. Das, and R. McDonald. A universal part-of-speech tagset. In

Proceedings of the 8th International Conference on Language Resources and

Evaluation (LREC), pages 2089–2096, 2012.

J. Piper. Simple hierarchical clustering in python 2.7 using scipy. https://

warwick.ac.uk/fac/sci/sbdtc/people/students/2010/jason_piper/code/,

Feb. 2012. Accessed 20 March 2018.

T. A. Pirinen. Automatic finite state morphological analysis of Finnish language

using open source resources (in Finnish). Master’s thesis, University of Helsinki,

2008.

A. Przepiórkowski, R. L. Górski, B. Lewandowska-Tomaszczyk, and M. Laziński.

Towards the national corpus of Polish. In The Proceedings of LREC 2008, pages

827–830, 2008.

J. Pustejovsky and A. Stubbs. Natural Language Annotation for Machine

Learning: A Guide to Corpus-building for Applications. O’Reilly Media, Inc.,

2012.

S. Raschka. Python Machine Learning. Packt Publishing, 2015.

S. Raschka and V. Mirjalili. Python Machine Learning: Machine Learning and

Deep Learning with Python, Scikit-learn, and TensorFlow. Packt Publishing, 2nd

edition, 2017.

B. Santorini. Part-of-speech tagging guidelines for the penn treebank project (3rd

revision). Technical Reports (CIS), 1990.

A. Schiller, S. Teufel, and C. Stöckert. Vorläufige Guidelines für das Tagging

deutscher Textcorpora mit STTS (Draft). Technical report, Universität

Stuttgart, Institut für maschinelle Sprachverarbeitung, 1995. URL http://www.

cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/stts_guide.pdf.

H. Schmid. Probabilistic part-of-speech tagging using decision trees. In

Proceedings of International Conference on New Methods in Natural Language

Processing (NeMLaP), 1994.

H. Schmid and F. Laws. Estimation of conditional probabilities with decision trees

and an application to fine-grained POS tagging. In Proceedings of the 22nd

79

https://warwick.ac.uk/fac/sci/sbdtc/people/students/2010/jason_piper/code/
https://warwick.ac.uk/fac/sci/sbdtc/people/students/2010/jason_piper/code/
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/stts_guide.pdf
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/stts_guide.pdf

Chapter 7. Conclusion

International Conference on Computational Linguistics (COLING 2008), pages

777–784, Manchester, Great Britain, Aug. 2008.

scikit-learn: Machine learning in Python. 1.11.4. Gradient Tree Boosting.

http://scikit-learn.org/stable/modules/ensemble.htmlgradient-tree-boosting.

R. Sennrich, O. Firat, K. Cho, AlexandraBirch, B. Haddow, J. Hitschler,

M. Junczys-Dowmunt, S. Läubli, A. V. M. Barone, J. Mokry, and M. Nadejde.

Nematus: a toolkit for neural machine translation., Mar. 2017. URL

https://arxiv.org/pdf/1703.04357.pdf.

B. Settles. Active Learning, volume 6:1 of Synthesis Lectures on Artificial

Intelligence and Machine Learning. Morgan & Claypool Publishers, 2012.

M. Silfverberg, T. Ruoklainen, K. Lindén, and M. Kurimo. Finnpos: an

open-source morphological tagging and lemmatization toolkit for Finnish.

Language Resources and Evaluation, 50(4):863–878, Dec. 2016.

R. R. Sokal and F. J. Rohlf. The comparison of dendrograms by objective

methods. Taxon, 11(2):33–40, 1962.

A. Stein. French TreeTagger part-of-speech tags. online, Apr. 2003. URL

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/

french-tagset.html.

K. Taghipour and H. T. Ng. Semi-supervised word sense disambiguation using

word embeddings in general and specific domains. In Proceedings of the 2015

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages 314–323, 2015.

M. S. Toolbox. Cophenetic correlation coefficient. https:

//link.springer.com/content/pdf/10.1186%2F1029-242X-2013-203.pdf,

2012.

D. Varga, P. Hal’acsy, A. Kornai, V. Nagy, L. Németh, and V. Tr’on. Parallel

corpora for medium density languages. In Proceedings of the Recent Advances in

Natural Language Processing (RANLP), 2005.

M. Volk. Choosing the right lemma when analysing German nouns. In

Multilinguale Corpora: Codierung, Strukturierung, Analyse. 11. Jahrestagung

der GLDV, Frankfurt, 1999.

M. Volk, C. Amrhein, N. Aepli, M. Müller, and P. Ströbel. Building a parallel

corpus on the world’s oldest banking magazine. In Proceedings of the 13th

80

https://arxiv.org/pdf/1703.04357.pdf
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/french-tagset.html
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/french-tagset.html
https://link.springer.com/content/pdf/10.1186%2F1029-242X-2013-203.pdf
https://link.springer.com/content/pdf/10.1186%2F1029-242X-2013-203.pdf

Chapter 7. Conclusion

Conference on Natural Language Processing (KONVENS 2016), pages 288–296,

2016.

A. Voutilainen, K. Muhonen, T. K. Purtonen, and K. Lindén. Specifying

treebanks, outsourcing parsebanks: Finntreebank 3. In Proceedings of LREC

2012 8th ELRA Conference on Language Resources and Evaluation, 2012.

I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine Learning

Tools and Techniques. Elsevier Inc., 3rd edition, 2011.

D. Yarowski. Unsupervised word sense disambiguation rivaling supervised

methods. In Proceedings of the 33rd annual meeting on Association for

Computational Linguistics, pages 189–196. Association for Computational

Linguistics, 1995.

81

A Tables

Data Language:
Feature Language:

DE FR IT EN ES

DE - 260 347 990 311
FR 264 - 107 84 89
IT 1,421 482 - 410 395
FI 2,883 921 1,127 1,047 952

Table A.1: Absolute numbers of top ten appearances per translation feature lan-
guage per language as performance measure.

82

B Figures

Figure B.1: The results of the exhaustive best feature and machine learning algo-
rithm search for German.

83

Lemmatisierungsrichtlinien	
	
	
Danke,	dass	du	dir	die	Zeit	nimmst,	mich	bei	meiner	Masterarbeit	zu	
unterstützen!	
	
Du	hilfst	mir	dabei	einen	Goldstandard,	um	die	Genauigkeit	meines	Machine	
Learning	Algorithmus	an	manuell	annotierten	Daten	zu	messen.	Meine	Classifier	
lernen,	aufgrund	von	grossen	Mengen	vorverarbeiteter	Sprachdaten	
mehrdeutige	Wortformen	einem	Lemma	eindeutig	zuzuordnen.	Dies	passiert	
über	diverse	mathematische	Berechnungen.	Um	herauszufinden,	wie	gut	sie	mit	
Rechnen	sind,	benötige	ich	von	Hand	korrigierte	Daten;	diese	stellst	du	mir	nun	
her.	Meine	maschinell	annotierten	Daten	werden	danach	in	einem	weiteren	
Schritt	mit	deinen	manuell	annotierten	Daten	verglichen	und	ich	bekomme	so	
eine	Idee,	wie	gut	oder	schlecht	meine	Classifier	arbeiten.	
	
Die	Daten	sind	in	einer	Excel-Datei	aufbereitet.	Du	arbeitest	Zeile	um	Zeile	nach	
unten.	Die	erste	Spalte	beinhaltet	eine	ID,	die	für	dich	nicht	weiter	relevant	ist.	In	
der	zweiten	Spalte	siehst	du	die	Wortform,	wie	sie	im	Originaltext	vorkommt.	In	
der	dritten	Spalte	siehst	du	das	mehrdeutige	Lemma.	Ein	Lemma	ist	die	
Grundform	eines	Wortes;	so	wie	sie	im	Wörterbuch	stehen	würde.	Wir	
Menschen	können	aufgrund	des	Kontextes	meist	sofort	bestimmen,	welches	der	
beiden	Lemmata	korrekt	ist.	Die	Maschine	kann	das	aber	nicht	ohne	weiteres.	In	
der	vierten	Spalte	ist	der	Vorschlag	eines	Classifiers.	In	der	fünften	Spalte	kommt	
nun	dein	Einsatz:	wenn	das	vorgeschlagene	Lemma	korrekt	ist,	trägtst	du	‚1’	ein,	
wenn	es	falsch,	aber	in	Spalte	3	enthalten	ist,	trägst	du	0	ein,	und	wenn	das	
richtige	Lemma	weder	in	Spalte	3	noch	in	Spalte	4	vorkommst,	trägst	du	deinen	
eigenen	Vorschlag	ein.	Die	Entscheidung	kannst	du	aufgrund	des	Kontextes	der	
in	Spalte	sechs	bis	acht	gegeben	ist	treffen.		
	
	
	
	
	
	
Im	obigen	leider	etwas	verpixelten	Bildausschnitt	siehst	du	einen	Ausschnitt	aus	
meinem	Dokument	für	Französisch.		
In	der	obersten	Zeile	hat	der	Classifier	‚croître’	vorgeschlagen.	Das	ist	falsch,	
denn	im	Kontext	rechts	ist	klar	‚croire’	richtig	und	somit	habe	ich	den	Classifier	
mit	0	bewertet.		
Beim	zweiten	und	dritten	Beispiel	hat	der	Classifier	wiederum	‚croître’	
vorgeschlagen.	Hier	stimmt	aber	weder	‚croître’,	noch	‚croire’	aus	Spalte	3.	Hier	
ist	‚cru’	vom	Adjektiv	‚cru’	abstammend,	also	habe	ich	das	so	eingetragen.	
	
Im	Finnischen	hat	es	manchmal	‚#’	in	den	einzelnen	Lemmata.	Leider,	weiss	ich	
nicht,	was	sie	zu	bedeuten	haben.	Vielleicht	sagen	sie,	aber	dir	etwas.	Wenn	du	
deren	Bedeutung	kennst,	oder	sie	erahnen	kannst,	bin	ich	froh	darum,	wenn	du	
deine	Gedanken	mit	mir	teilst.	
	

C Lemmatisation Guidelines

	Abstract
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Research Questions
	Thesis Structure

	Previous Works
	Morphological Analysis and Lemmatisation
	Neural Lemmatisation
	Lemma Disambiguation Approaches
	Word Sense Disambiguation

	Data
	The European Parliament Corpus
	Data Format of the Corpus
	Lemmas in FEP6
	Lemmatisation with the TreeTagger
	Lemma Distribution of German, French Italian and Finnish

	Gold Standard and Lemmatisation Quality Measurements
	German Gold Standard and Lemmatisation Quality
	French Gold Standard
	Italian Gold Standard
	Finnish Gold Standard

	Lemma Coverage in German

	Distant Semi-Supervised Machine Learning Approach
	Concept of the Distant Semi-supervised Machine Learning Approach
	Machine Learning Algorithms
	Naive Bayes
	Support Vector Machines (SVM)
	Gradient Tree Boosting (GTB)
	XGBoost

	Feature Extraction and Selection
	Local Features
	Cooccurrence Features
	Morphological Analysis
	POS tags

	Syntactic Feature
	Cross-lingual and Semantic Features
	Translations
	Translation Feature Evaluation
	Word Embeddings

	Feature Transformation

	Training
	Prediction
	Testing

	The Active Learning Approach
	Conceptualisation of the Active Learning Approach
	Clustering
	Cluster Modification
	fastcluster Experiments
	Cluster Quality

	Efficiency for User Queries
	User Interaction and Input
	Classification

	Results
	Evaluation of the Distant Semi-supervised Machine Learning Approach
	Baseline
	Extensive Evaluation of German
	Evaluation of French, Italian and Finnish
	Evaluation of graen2018

	Evaluation of the supervised active learning approach
	Baseline
	Evaluation of German
	Side Effects of Active Learning

	Conclusion
	Future Work

	References
	Tables
	Figures
	Lemmatisation Guidelines

