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Petri nets - Introduction

I Mathematical model.
I Widely used to study systems with concurrent processes.
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Reachability problem

Starting from

1

1

Mi =


0
1
1
0
0


, can we reach

2n−3

n − 2

1
n

Mf =


n − 2
2n−3

0
1
n


?



Work on decidability of the reachability problem

I E.W.Mayr gave an algorithm for the general Petri net
reachability problem in 1981/1984.

I S.R.Kosaraju and J.L.Lambert simplified the proofs in 1982
and 1992.

I No upper bound known for the above algorithm. In the
worst case, it requires more than primitive recursive space.

I R.J.Lipton gave an exponential space lower bound for the
general Petri net reachability problem.

I J. Leroux has published a new algorithm that uses a
different approach, but proof of correctness depends on
ideas from the earlier algorithm.

I K. Reinhardt extended the idea to decide reachability in
Petri nets where inhibitor arcs occur in a restricted way.



A naive approach - reachability graph

Start with the initial marking and grow a tree of reachable
markings.
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Another naive approach - incidence matrix

N =
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Another naive approach - incidence matrix

I State equation
M0(p1)
M0(p2)

...
M0(pm)

+


t1 t2 · · · tn
− 1
+ 2

0




x1
x2
...

xn

 =


Mf (p1)
Mf (p2)

...
Mf (pm)



I If M0
σ−→ Mf , the Parikh vector σ will satisfy the above

equation.
I The converse need not be true.
I Try all solutions.
I If vector I is such that N× I = 0, there will be infinitely

many solutions.
I If N× I = 0, I is called a T -invariant.
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Idea of the algorithm

I If something is finite, hold on to it!

I All solutions to the state equation M0 + NX = Mf are
contained in B + J∗, where

I B = {B1, . . . ,Br} is the finite set of minimal solutions.
I J = {I1, . . . , Is} is a finite set of T -invariants, that generates

all invariants.
I If the co-ordinate corresponding to a transition t is 0 in all

the vectors I1, . . . , Is, then it is not part of any T -invariant.
I t may be used at most w times, determined by B1, . . . ,Br .
I Create w new Petri nets N1, . . . ,Nw , where Ni allows t to

be fired exactly i times.
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Using a transition boundedly many times

T \ {t}

T \ {t}t t T \ {t}t
p1 q1 p2 q2 pw qw

Figure: A chain of Vector Addition System with States

I pi are entry states and qi are exit states.
I With each transition t is associated a vector effect(t) that

denotes its effect on the places of the Petri net.
I We need to check if starting from (p1,M0), we can reach

(qw ,Mf ). This is a chain of Constrained Vector Addition
System with States (CVASS chain).

I Number of transitions in each CVASS of the chain is strictly
less than the number of transitions in the original CVASS.
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Calculating bound on transitions - another way

Ai
pi

M1

qi

M2

Figure: A constrained CVASS

I Consider the regular language L ⊆ A∗i consisting of paths
from pi to qi (ignore the effect on the vector).

I The set of Parikh images of strings in L will be of the form
L = B + J∗.

I A set of vectors of the form B1 + J∗ is called a linear set.
Finite union of linear sets is a semilinear set. Vectors in J
are called periods.

I We need to handle entry and exit constraints also.



Calculating bound on transitions - another way

Ai
pi

M1

qi

M2

Figure: A constrained CVASS

I Consider the regular language L ⊆ A∗i consisting of paths
from pi to qi (ignore the effect on the vector).

I The set of Parikh images of strings in L will be of the form
L = B + J∗.

I A set of vectors of the form B1 + J∗ is called a linear set.
Finite union of linear sets is a semilinear set. Vectors in J
are called periods.

I We need to handle entry and exit constraints also.



Calculating bound on transitions - another way

Ai
pi

M1

qi

M2

Figure: A constrained CVASS

I Consider the regular language L ⊆ A∗i consisting of paths
from pi to qi (ignore the effect on the vector).

I The set of Parikh images of strings in L will be of the form
L = B + J∗.

I A set of vectors of the form B1 + J∗ is called a linear set.
Finite union of linear sets is a semilinear set. Vectors in J
are called periods.

I We need to handle entry and exit constraints also.



Calculating bound on transitions - another way

Ai
pi

M1

qi

M2

Figure: A constrained CVASS

I Consider the regular language L ⊆ A∗i consisting of paths
from pi to qi (ignore the effect on the vector).

I The set of Parikh images of strings in L will be of the form
L = B + J∗.

I A set of vectors of the form B1 + J∗ is called a linear set.
Finite union of linear sets is a semilinear set. Vectors in J
are called periods.

I We need to handle entry and exit constraints also.



Calculating bound on transitions - Contd. . .

I Suppose there are m places to be handled by the vector
and n transitions.

I For a string σ ∈ A∗i , (σ,effect(σ)) is a vector in Zn+m. First
n co-ordinates is the Parikh image of σ and last m
co-ordinates gives the change induced by σ on the places.
This is the extended commutative image eci(σ).

I (0n,M1) + eci(σ) is a vector, which gives
I Parikh image of σ in the first n co-ordinates.
I Final vector reached if σ is fired from M1, in the last m

co-ordinates.
I (0n,M1) + eci(L) is a semilinear set. Intersect it with the

set of vectors (Nn,M2). We will get another semilinear set
that represents Parikh images of paths from pi to qi that
satisfy the constraint.

I If the co-ordinate corresponding to a transition t is 0 in all
the periods of the above semilinear set, t can be used only
boundedly many times.
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Constraints at intermediate entry/exit states

A1 A2 Aw
p1

Mi

q1 p2 q2 pw qw

Mft1 t2 tw

Figure: A chain of Vector Addition System with States

I L: language of strings from p1 to qw . For σ ∈ L,
project [A1 ∪ {t1} ∪ · · · ∪ Ai ](σ) gives the portion of σ up to
qi .

I effect(project [i](σ)) gives the effect at qi of firing σ at p1.
I (Mi + effect [i](σ),Mi + effect(σ)) is a vector in Z2m — first

m co-ordinates give the result at qi and last m co-ordinates
give the result at qw .

I (Mi + effect [i],Mi + effect)(L) is a semilinear set. Intersect
it with (Nm,Mf ). Result is a semilinear set, whose vectors
contain possible results at qi while walking from (p1,Mi) to
(qw ,Mf ).
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Entry/exit constraints - Contd. . .

I If in the above semilinear set, the entry corresponding to a
co-ordinate j ,1 ≤ j ≤ m is 0 in all periods, that co-ordinate
will never go beyond some bound given by the semilinear
set.

I Such a co-ordinate is said to be constrained at the exit of
i th CVASS, with a bound say w .

I Create w new CVASS chains N1, . . . ,Nw , where Nk puts k
as a constraint in the co-ordinate j at qi .

A1 A2 Aw
p1

Mi

q1 p2 q2

k
...

pw qw

Mft1 t2 tw

Figure: A chain of Constrained Vector Addition System with States

I In each of the w new CVASS chains, number of
unconstrained co-ordinates at exit of i th CVASS has
decreased.
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will never go beyond some bound given by the semilinear
set.

I Such a co-ordinate is said to be constrained at the exit of
i th CVASS, with a bound say w .

I Create w new CVASS chains N1, . . . ,Nw , where Nk puts k
as a constraint in the co-ordinate j at qi .
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Constrained co-ordinates that are bounded
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Figure: A constrained CVASS

I We want to find if within i th CVASS, a co-ordinate can be
bounded.

I Suppose the following sequence of transitions can be

obtained:

 1
2
2

,. . . ,

 5
3
3

,. . . ,

 6
3
3

, where (5,3,3) and

(6,3,3) are in the same state.
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Bounded co-ordinates - Contd. . .

I A co-ordinate is unbounded iff there is such a “self
covering” sequence. Existence of such sequences is
decidable.

I If we find that a co-ordinate is bounded by say b, we will
“get rid” of that co-ordinate and track its changes through
states instead.
If the first co-ordinate is bounded by 100 and the set of
states in i th CVASS is S, the new set of states will be
S × {0, . . . ,100}. If p t−→ q,effect(t) = (−1, . . . ,2), it will be

replaced by (p, k + 1)
t ′−→ (q, k), effect(t ′) = (0, . . . ,2).

I If while exiting at qi , value of the bounded co-ordinate is to
be k , we will make (qi , k) as the exit state.
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Bounded co-ordinates - Contd. . .
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Figure: Bounded co-ordinates

The number of non-rigid co-ordinates has reduced in the i th

CVASS.



Reverse bounded co-ordinates

•
p1 p2

Figure: An unbounded Petri net

I Starting from (1,0), can we reach (1,50)?

I p2 is unbounded. Once we reach (1,51), can we go back
to (1,50)?

I Reverse the arcs, let the original final marking to be
reached be the new initial marking and check for
boundedness.

•
p1

50
p2

Figure: The reversed Petri net
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Reverse bounded co-ordinates - Contd. . .

I In a CVASS, this amounts to reversing the arrows and
making exit constraints as the new entry constraints.

I Just like an unbounded co-ordinate is due to a self
covering sequence that pumps up the value, a reverse
unbounded co-ordinate is due to a “self destroying”
sequence that pumps down the value.



Will it ever stop? — Size of a CVASS chain

I The size of a CVASS |Ni | is a triple (a,b, c) ∈ N3 where
I a = number of non-rigid co-ordinates,
I b = number of arcs and
I c = number of unconstrained entry and exit co-ordinates.

I The size of a CVASS chain C is
|C| = (|N1|, . . . , |Nw |) ∈ (N3)∗.

I If we start with a CVASS chain of size
(a1,b1, c1), (a2,b2, c2), . . . , (aw ,bw , cw ) and expand it using
one of the pro-
cedures we saw earlier, the new CVASS chain will have size
(a1,b1, c1), (a21,b21, c21), . . . , (a2r ,b2r , c2r ), . . . , (aw ,bw , cw ).

I For any k between 1 and r , (a2k ,b2k , c2k ) <lex (a2,b2, c2).
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Computation tree - Contd. . .
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What if everything is infinite?
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Figure: Everything infinite

I Kosaraju’s condition θ: suppose there is a path from
(p1,Mi) to (q1,Mf ) and that

I Every internal transition can be used unboundedly many
times,

I Every co-ordinate constrained at entry state is unbounded
and

I Every co-ordinate constrained at exit state is “reverse
unbounded”.

I No more finite things to hold on to. What do we do?
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What if everything is infinite? The answer

I If everything is infinite, answer to the reachability question
is yes!

I There is a path from (p1,Mi) to (qw ,Mf ), but co-ordinates
may become negative while firing internal transitions.

I Since unconstrained co-ordinates can exceed any value,
choose a path from (p1,Mi) to (qw ,Mf ) that assigns high
enough values to all unconstrained co-ordinates.

I What about constrained co-ordinates?
I Pump them up! Use the self covering sequence to reach

high enough values.
I Self covering sequence is not part of the path from (p1,Mi)

to (qw ,Mf ), so it will cause some damage. Can we repair
it?

I Yes, by using the self destroying sequence!. This will need
the fact that all transitions can be used unboundedly many
times.
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may become negative while firing internal transitions.

I Since unconstrained co-ordinates can exceed any value,
choose a path from (p1,Mi) to (qw ,Mf ) that assigns high
enough values to all unconstrained co-ordinates.

I What about constrained co-ordinates?
I Pump them up! Use the self covering sequence to reach

high enough values.
I Self covering sequence is not part of the path from (p1,Mi)

to (qw ,Mf ), so it will cause some damage. Can we repair
it?

I Yes, by using the self destroying sequence!. This will need
the fact that all transitions can be used unboundedly many
times.



Detailed proof of Sufficiency theorem

I Ei = Set of constrained entry co-ordinates at Ni ,
I Si = Set of constrained exit co-ordinates at Ni and
I Ri = Set of rigid co-ordinates at Ni .

The following morphism gives a semilinear set of extended
commutative images of constrained paths from (P1,Mi) and
(qw ,Mf ).

(entry [1],exit [1], . . . ,entry [w ],exit [w ],Parikh[1], . . . ,Parikh[w ])

I First 2m co-ordinates gives the entry and exit co-ordinates
of N1.

I n co-ordinates associated with Parikh[1] gives the Parikh
image of the path in N1.

I If a co-ordinate j /∈ E1, there will be corresponding
non-zero entry in a period. Similarly for S1.



Detailed proof of sufficiency theorem - Contd. . .

I Since all internal transitions can be used unboundedly
often, every internal transition will have a corresponding
non-zero entry in a period.

I Let c be a “constant” vector in the above semilinear set
and q be the sum of all the “witnessing” periods.

I For any k ∈ N, c + kq is a vector corresponding some
constrained walk from (p1,Mi) to (qw ,Mf ).

I We can assign large values to k to get large values at
unconstrained co-ordinates and to use internal transitions
large number of times.

I Now we concentrate on building a constrained positive
path in Ni .

I Let σ(j) denote the Parikh vector of the path in Ni given by
c + jq.

I Let xi (yi ) be the entry (exit) co-ordinate given by the
constant vector c.



Detailed proof of sufficiency theorem - Contd. . .

I Let ui (wi ) be the entry (exit) constraints given by q.

I (pi , xi)
σ(0)−−→ (qi , yi) and (pi , xi + ui)

σ(1)−−→ (qi , yi + wi).

I (pi , xi + ui)
σ(0)−−→ (qi , yi + ui)

σ−→ (qi , yi + wi), where
σ(1) = σ(0) + σ.

I (qi ,ui)
σ−→ (qi ,wi). effect(σ) = wi − ui .

I Let σ1 be the pumping up sequence that pumps up
constrained co-ordinates: (pi , xi

σ1⇒Ei xi + Γi),
Γi �Ei≥ (1, . . . ,1).

I Let σ4 be the pumping down sequence:
(qi , yi + ∆i)

σ4⇒Si (qi , yi), ∆i �Si≥ (1, . . . ,1).
I Let δ ≥ 1 be an integer greater than the absolute value of

all co-ordinates of Γi ,∆i , σ1 + σ4.
I Consider the sequence σ3 such that σ3 = δσ − σ1 − σ4.



Detailed proof of sufficiency theorem - Contd. . .

I Consider the “magic sequence of ` repetitions”
ms(`) = σ`1σ(0)σ`3σ

`
4.

I If k = δ`, then

(pi , xi + kui)
σ`

1⇒(pi , xi + kui + `Γi)
σ0⇒(qi , yi + kui + `Γi)

σ`
3⇒

(qi , yi + kwi + `∆i)
σ`

4⇒(qi , yi + kwi).

I All the walks above can be made positive by choosing high
enough value for k .



Conclusion

I Reachability in Petri nets is decidable.
I If some aspect of the net is bounded, unfold the net.

Continue checking for boundedness of aspects in the
expanded net.

I Termination of this process is shown by carefully defining a
size and showing that it is well founded.

I If all aspects of the net are unbounded, conclude that
answer to the reachability question is positive.

I The fact that all aspects of the net are unbounded can be
expressed in terms of linear algebraic relations.



Thank you.

Questions?
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