Reachability in vector addition systems
 Kosaraju's proof, exposited in "The Mathematics of Petri Nets" by C. Reutenauer (translated by I. Craig)

Kamal Lodaya and M. Praveen

The Institute of Mathematical Sciences, Chennai

Formal Methods Update Meeting, IIT Roorkee, July 2009

Petri nets - Introduction

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - Introduction

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - Introduction

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - Introduction

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - Introduction

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - Introduction

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - Introduction

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - Introduction

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - Introduction

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - Introduction

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - Introduction

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - Introduction

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - Introduction

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - Introduction

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - Introduction

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - Introduction

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

Petri nets - Introduction

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

Reachability problem

Starting from

, can we reach

$$
M_{f}=\left[\begin{array}{c}
n-2 \\
2^{n-3} \\
0 \\
1 \\
n
\end{array}\right]
$$

Work on decidability of the reachability problem

- E.W.Mayr gave an algorithm for the general Petri net reachability problem in 1981/1984.
- S.R.Kosaraju and J.L.Lambert simplified the proofs in 1982 and 1992.
- No upper bound known for the above algorithm. In the worst case, it requires more than primitive recursive space.
- R.J.Lipton gave an exponential space lower bound for the general Petri net reachability problem.
- J. Leroux has published a new algorithm that uses a different approach, but proof of correctness depends on ideas from the earlier algorithm.
- K. Reinhardt extended the idea to decide reachability in Petri nets where inhibitor arcs occur in a restricted way.

A naive approach - reachability graph

Start with the initial marking and grow a tree of reachable markings.

Figure: Reachability graph

Another naive approach - incidence matrix

$$
\mathbf{N}=\begin{gathered}
p_{1} \\
p_{2} \\
\vdots \\
p_{m}
\end{gathered}\left[\begin{array}{rrrr}
t_{1} & t_{2} & \cdots & t_{n} \\
-1 & & & \\
+2 & & & \\
& & &
\end{array}\right]
$$

Another naive approach - incidence matrix

- State equation

$$
\left[\begin{array}{c}
M_{0}\left(p_{1}\right) \\
M_{0}\left(p_{2}\right) \\
\vdots \\
M_{0}\left(p_{m}\right)
\end{array}\right]+\left[\begin{array}{cccc}
t_{1} & t_{2} & \cdots & t_{n} \\
-1 & & & \\
+2 & & & \\
& & &
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
M_{f}\left(p_{1}\right) \\
M_{f}\left(p_{2}\right) \\
\vdots \\
M_{f}\left(p_{m}\right)
\end{array}\right]
$$

Another naive approach - incidence matrix

- State equation

$$
\left[\begin{array}{c}
M_{0}\left(p_{1}\right) \\
M_{0}\left(p_{2}\right) \\
\vdots \\
M_{0}\left(p_{m}\right)
\end{array}\right]+\left[\begin{array}{cccc}
t_{1} & t_{2} & \cdots & t_{n} \\
-1 & & & \\
+2 & & & \\
0 & & &
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
M_{f}\left(p_{1}\right) \\
M_{f}\left(p_{2}\right) \\
\vdots \\
M_{f}\left(p_{m}\right)
\end{array}\right]
$$

Another naive approach - incidence matrix

- State equation

$$
\left[\begin{array}{c}
M_{0}\left(p_{1}\right) \\
M_{0}\left(p_{2}\right) \\
\vdots \\
M_{0}\left(p_{m}\right)
\end{array}\right]+\left[\begin{array}{cccc}
t_{1} & t_{2} & \cdots & t_{n} \\
-1 & & & \\
+2 & & & \\
& & &
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
M_{f}\left(p_{1}\right) \\
M_{f}\left(p_{2}\right) \\
\vdots \\
M_{f}\left(p_{m}\right)
\end{array}\right]
$$

Another naive approach - incidence matrix

- State equation

$$
\left[\begin{array}{c}
M_{0}\left(p_{1}\right) \\
M_{0}\left(p_{2}\right) \\
\vdots \\
M_{0}\left(p_{m}\right)
\end{array}\right]+\left[\begin{array}{rlll}
t_{1} & t_{2} & \cdots & t_{n} \\
-1 & & & \\
+2 & & & \\
0 & & &
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
M_{f}\left(p_{1}\right) \\
M_{f}\left(p_{2}\right) \\
\vdots \\
M_{f}\left(p_{m}\right)
\end{array}\right]
$$

- If $M_{0} \xrightarrow{\sigma} M_{f}$, the Parikh vector $\bar{\sigma}$ will satisfy the above equation.

Another naive approach - incidence matrix

- State equation

$$
\left[\begin{array}{c}
M_{0}\left(p_{1}\right) \\
M_{0}\left(p_{2}\right) \\
\vdots \\
M_{0}\left(p_{m}\right)
\end{array}\right]+\left[\begin{array}{cccc}
t_{1} & t_{2} & \cdots & t_{n} \\
-1 & & & \\
+2 & & & \\
0 & & &
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
M_{f}\left(p_{1}\right) \\
M_{f}\left(p_{2}\right) \\
\vdots \\
M_{f}\left(p_{m}\right)
\end{array}\right]
$$

- If $M_{0} \xrightarrow{\sigma} M_{f}$, the Parikh vector $\bar{\sigma}$ will satisfy the above equation.
- The converse need not be true.

Another naive approach - incidence matrix

- State equation

$$
\left[\begin{array}{c}
M_{0}\left(p_{1}\right) \\
M_{0}\left(p_{2}\right) \\
\vdots \\
M_{0}\left(p_{m}\right)
\end{array}\right]+\left[\begin{array}{cccc}
t_{1} & t_{2} & \cdots & t_{n} \\
-1 & & & \\
+2 & & & \\
0 & & &
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
M_{f}\left(p_{1}\right) \\
M_{f}\left(p_{2}\right) \\
\vdots \\
M_{f}\left(p_{m}\right)
\end{array}\right]
$$

- If $M_{0} \xrightarrow{\sigma} M_{f}$, the Parikh vector $\bar{\sigma}$ will satisfy the above equation.
- The converse need not be true.
- Try all solutions.

Another naive approach - incidence matrix

- State equation

$$
\left[\begin{array}{c}
M_{0}\left(p_{1}\right) \\
M_{0}\left(p_{2}\right) \\
\vdots \\
M_{0}\left(p_{m}\right)
\end{array}\right]+\left[\begin{array}{cccc}
t_{1} & t_{2} & \cdots & t_{n} \\
-1 & & & \\
+2 & & & \\
0 & & &
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
M_{f}\left(p_{1}\right) \\
M_{f}\left(p_{2}\right) \\
\vdots \\
M_{f}\left(p_{m}\right)
\end{array}\right]
$$

- If $M_{0} \xrightarrow{\sigma} M_{f}$, the Parikh vector $\bar{\sigma}$ will satisfy the above equation.
- The converse need not be true.
- Try all solutions.
- If vector I is such that $\mathbf{N} \times \mathbf{I}=\mathbf{0}$, there will be infinitely many solutions.
- If $\mathbf{N} \times \mathbf{I}=\mathbf{0}$, \mathbf{I} is called a T-invariant.

Idea of the algorithm

- If something is finite, hold on to it!

Idea of the algorithm

- If something is finite, hold on to it!
- All solutions to the state equation $M_{0}+\mathbf{N X}=M_{f}$ are contained in $\mathbf{B}+\mathbf{J}^{*}$, where
- $\mathbf{B}=\left\{B_{1}, \ldots, B_{r}\right\}$ is the finite set of minimal solutions.
- $\mathbf{J}=\left\{I_{1}, \ldots, I_{s}\right\}$ is a finite set of T-invariants, that generates all invariants.

Idea of the algorithm

- If something is finite, hold on to it!
- All solutions to the state equation $M_{0}+\mathbf{N X}=M_{f}$ are contained in $\mathbf{B}+\mathbf{J}^{*}$, where
- $\mathbf{B}=\left\{B_{1}, \ldots, B_{r}\right\}$ is the finite set of minimal solutions.
- $\mathbf{J}=\left\{I_{1}, \ldots, I_{s}\right\}$ is a finite set of T-invariants, that generates all invariants.
- If the co-ordinate corresponding to a transition t is 0 in all the vectors I_{1}, \ldots, I_{s}, then it is not part of any T-invariant.
- t may be used at most w times, determined by B_{1}, \ldots, B_{r}.

Idea of the algorithm

- If something is finite, hold on to it!
- All solutions to the state equation $M_{0}+\mathbf{N X}=M_{f}$ are contained in $\mathbf{B}+\mathbf{J}^{*}$, where
- $\mathbf{B}=\left\{B_{1}, \ldots, B_{r}\right\}$ is the finite set of minimal solutions.
- $\mathbf{J}=\left\{I_{1}, \ldots, I_{s}\right\}$ is a finite set of T-invariants, that generates all invariants.
- If the co-ordinate corresponding to a transition t is 0 in all the vectors I_{1}, \ldots, I_{s}, then it is not part of any T-invariant.
- t may be used at most w times, determined by B_{1}, \ldots, B_{r}.
- Create w new Petri nets $\mathcal{N}_{1}, \ldots, \mathcal{N}_{w}$, where \mathcal{N}_{i} allows t to be fired exactly i times.

Using a transition boundedly many times

\square

Figure: A chain of Vector Addition System with States

Using a transition boundedly many times

Figure: A chain of Vector Addition System with States

Using a transition boundedly many times

Figure: A chain of Vector Addition System with States

Using a transition boundedly many times

Figure: A chain of Vector Addition System with States

- p_{i} are entry states and q_{i} are exit states.

Using a transition boundedly many times

Figure: A chain of Vector Addition System with States

- p_{i} are entry states and q_{i} are exit states.
- With each transition t is associated a vector effect (t) that denotes its effect on the places of the Petri net.

Using a transition boundedly many times

Figure: A chain of Vector Addition System with States

- p_{i} are entry states and q_{i} are exit states.
- With each transition t is associated a vector $\operatorname{effect}(t)$ that denotes its effect on the places of the Petri net.
- We need to check if starting from (p_{1}, M_{0}), we can reach $\left(q_{w}, M_{f}\right)$. This is a chain of Constrained Vector Addition System with States (CVASS chain).

Using a transition boundedly many times

Figure: A chain of Vector Addition System with States

- p_{i} are entry states and q_{i} are exit states.
- With each transition t is associated a vector effect (t) that denotes its effect on the places of the Petri net.
- We need to check if starting from (p_{1}, M_{0}), we can reach $\left(q_{w}, M_{f}\right)$. This is a chain of Constrained Vector Addition System with States (CVASS chain).
- Number of transitions in each CVASS of the chain is strictly less than the number of transitions in the original CVASS.

Calculating bound on transitions - another way

Figure: A constrained CVASS

- Consider the regular language $L \subseteq A_{i}^{*}$ consisting of paths from p_{i} to q_{i} (ignore the effect on the vector).

Calculating bound on transitions - another way

Figure: A constrained CVASS

- Consider the regular language $L \subseteq A_{i}^{*}$ consisting of paths from p_{i} to q_{i} (ignore the effect on the vector).
- The set of Parikh images of strings in L will be of the form $\bar{L}=\mathbf{B}+\mathbf{J}^{*}$.

Calculating bound on transitions - another way

Figure: A constrained CVASS

- Consider the regular language $L \subseteq A_{i}^{*}$ consisting of paths from p_{i} to q_{i} (ignore the effect on the vector).
- The set of Parikh images of strings in L will be of the form $\bar{L}=\mathbf{B}+\mathbf{J}^{*}$.
- A set of vectors of the form $B_{1}+\mathbf{J}^{*}$ is called a linear set. Finite union of linear sets is a semilinear set. Vectors in \mathbf{J} are called periods.

Calculating bound on transitions - another way

Figure: A constrained CVASS

- Consider the regular language $L \subseteq A_{i}^{*}$ consisting of paths from p_{i} to q_{i} (ignore the effect on the vector).
- The set of Parikh images of strings in L will be of the form $\bar{L}=\mathbf{B}+\mathbf{J}^{*}$.
- A set of vectors of the form $B_{1}+\mathbf{J}^{*}$ is called a linear set. Finite union of linear sets is a semilinear set. Vectors in \mathbf{J} are called periods.
- We need to handle entry and exit constraints also.

Calculating bound on transitions - Contd. . .

- Suppose there are m places to be handled by the vector and n transitions.
- For a string $\sigma \in A_{i}^{*},(\bar{\sigma}, \operatorname{effect}(\sigma))$ is a vector in \mathbb{Z}^{n+m}. First n co-ordinates is the Parikh image of σ and last m co-ordinates gives the change induced by σ on the places. This is the extended commutative image $\operatorname{eci}(\sigma)$.

Calculating bound on transitions - Contd. . .

- Suppose there are m places to be handled by the vector and n transitions.
- For a string $\sigma \in A_{i}^{*},(\bar{\sigma}, \operatorname{effect}(\sigma))$ is a vector in \mathbb{Z}^{n+m}. First n co-ordinates is the Parikh image of σ and last m co-ordinates gives the change induced by σ on the places.
This is the extended commutative image $\operatorname{eci}(\sigma)$.
- $\left(0^{n}, M_{1}\right)+\operatorname{eci}(\sigma)$ is a vector, which gives
- Parikh image of σ in the first n co-ordinates.
- Final vector reached if σ is fired from M_{1}, in the last m co-ordinates.

Calculating bound on transitions - Contd. . .

- Suppose there are m places to be handled by the vector and n transitions.
- For a string $\sigma \in A_{i}^{*},(\bar{\sigma}, \operatorname{effect}(\sigma))$ is a vector in \mathbb{Z}^{n+m}. First n co-ordinates is the Parikh image of σ and last m co-ordinates gives the change induced by σ on the places. This is the extended commutative image $\operatorname{eci}(\sigma)$.
- $\left(0^{n}, M_{1}\right)+e c i(\sigma)$ is a vector, which gives
- Parikh image of σ in the first n co-ordinates.
- Final vector reached if σ is fired from M_{1}, in the last m co-ordinates.
- $\left(0^{n}, M_{1}\right)+e c i(L)$ is a semilinear set. Intersect it with the set of vectors $\left(\mathbb{N}^{n}, M_{2}\right)$. We will get another semilinear set that represents Parikh images of paths from p_{i} to q_{i} that satisfy the constraint.

Calculating bound on transitions - Contd. . .

- Suppose there are m places to be handled by the vector and n transitions.
- For a string $\sigma \in A_{i}^{*},(\bar{\sigma}, \operatorname{effect}(\sigma))$ is a vector in \mathbb{Z}^{n+m}. First n co-ordinates is the Parikh image of σ and last m co-ordinates gives the change induced by σ on the places. This is the extended commutative image $\operatorname{eci}(\sigma)$.
- $\left(0^{n}, M_{1}\right)+\operatorname{eci}(\sigma)$ is a vector, which gives
- Parikh image of σ in the first n co-ordinates.
- Final vector reached if σ is fired from M_{1}, in the last m co-ordinates.
- $\left(0^{n}, M_{1}\right)+e c i(L)$ is a semilinear set. Intersect it with the set of vectors $\left(\mathbb{N}^{n}, M_{2}\right)$. We will get another semilinear set that represents Parikh images of paths from p_{i} to q_{i} that satisfy the constraint.
- If the co-ordinate corresponding to a transition t is 0 in all the periods of the above semilinear set, t can be used only boundedly many times.

Constraints at intermediate entry/exit states

Figure: A chain of Vector Addition System with States

- L : language of strings from p_{1} to q_{w}. For $\sigma \in L$, $\operatorname{project}\left[A_{1} \cup\left\{t_{1}\right\} \cup \cdots \cup A_{i}\right](\sigma)$ gives the portion of σ up to $q{ }_{i}$.

Constraints at intermediate entry/exit states

Figure: A chain of Vector Addition System with States

- L : language of strings from p_{1} to q_{w}. For $\sigma \in L$, $\operatorname{project}\left[A_{1} \cup\left\{t_{1}\right\} \cup \cdots \cup A_{i}\right](\sigma)$ gives the portion of σ up to q_{i}.
- effect(project $[i](\sigma))$ gives the effect at q_{i} of firing σ at p_{1}.

Constraints at intermediate entry/exit states

Figure: A chain of Vector Addition System with States

- L : language of strings from p_{1} to q_{w}. For $\sigma \in L$, $\operatorname{project}\left[A_{1} \cup\left\{t_{1}\right\} \cup \cdots \cup A_{i}\right](\sigma)$ gives the portion of σ up to q_{i}.
- effect $(\operatorname{project}[i](\sigma))$ gives the effect at q_{i} of firing σ at p_{1}.
- $\left(M_{i}+\operatorname{effect}[i](\sigma), M_{i}+\operatorname{effect}(\sigma)\right)$ is a vector in $\mathbb{Z}^{2 m}$ - first m co-ordinates give the result at q_{i} and last m co-ordinates give the result at q_{w}.

Constraints at intermediate entry/exit states

Figure: A chain of Vector Addition System with States

- L: language of strings from p_{1} to q_{w}. For $\sigma \in L$, $\operatorname{project}\left[A_{1} \cup\left\{t_{1}\right\} \cup \cdots \cup A_{i}\right](\sigma)$ gives the portion of σ up to q_{i}.
- effect $(\operatorname{project}[i](\sigma))$ gives the effect at q_{i} of firing σ at p_{1}.
- $\left(M_{i}+\operatorname{effect}[i](\sigma), M_{i}+\operatorname{effect}(\sigma)\right)$ is a vector in $\mathbb{Z}^{2 m}$ — first m co-ordinates give the result at q_{i} and last m co-ordinates give the result at q_{w}.
- $\left(M_{i}+\operatorname{effect}[i], M_{i}+\right.$ effect $)(L)$ is a semilinear set. Intersect it with $\left(\mathbb{N}^{m}, M_{f}\right)$. Result is a semilinear set, whose vectors contain possible results at q_{i} while walking from $\left(p_{1}, M_{i}\right)$ to $\left(q_{w}, M_{f}\right)$.

Entry/exit constraints - Contd. . .

- If in the above semilinear set, the entry corresponding to a co-ordinate $j, 1 \leq j \leq m$ is 0 in all periods, that co-ordinate will never go beyond some bound given by the semilinear set.

Entry/exit constraints - Contd. . .

- If in the above semilinear set, the entry corresponding to a co-ordinate $j, 1 \leq j \leq m$ is 0 in all periods, that co-ordinate will never go beyond some bound given by the semilinear set.
- Such a co-ordinate is said to be constrained at the exit of $i^{\text {th }}$ CVASS, with a bound say w.

Entry/exit constraints - Contd...

- If in the above semilinear set, the entry corresponding to a co-ordinate $j, 1 \leq j \leq m$ is 0 in all periods, that co-ordinate will never go beyond some bound given by the semilinear set.
- Such a co-ordinate is said to be constrained at the exit of $i^{\text {th }}$ CVASS, with a bound say w.
- Create w new CVASS chains $\mathcal{N}_{1}, \ldots, \mathcal{N}_{w}$, where \mathcal{N}_{k} puts k as a constraint in the co-ordinate j at q_{i}.

Figure: A chain of Constrained Vector Addition System with States

Entry/exit constraints - Contd...

- If in the above semilinear set, the entry corresponding to a co-ordinate $j, 1 \leq j \leq m$ is 0 in all periods, that co-ordinate will never go beyond some bound given by the semilinear set.
- Such a co-ordinate is said to be constrained at the exit of $i^{\text {th }}$ CVASS, with a bound say w.
- Create w new CVASS chains $\mathcal{N}_{1}, \ldots, \mathcal{N}_{w}$, where \mathcal{N}_{k} puts k as a constraint in the co-ordinate j at q_{i}.

Figure: A chain of Constrained Vector Addition System with States

- In each of the w new CVASS chains, number of unconstrained co-ordinates at exit of i th CVASS has decreased.

Constrained co-ordinates that are bounded

$$
\left[\begin{array}{c}
k_{1} \\
K_{2} \\
\omega \\
\vdots \\
k_{m}
\end{array}\right] \stackrel{A_{i}}{p_{i}}{ }^{2}
$$

Figure: A constrained CVASS

- We want to find if within $i^{\text {th }}$ CVASS, a co-ordinate can be bounded.

Constrained co-ordinates that are bounded

$$
\left[\begin{array}{c}
k_{1} \\
K_{2} \\
\omega \\
\vdots \\
k_{m}
\end{array}\right] \stackrel{ }{ } \quad{ }^{M_{i}} \quad{ }^{A_{i}} \dot{q}_{2}
$$

Figure: A constrained CVASS

- We want to find if within $i^{\text {th }}$ CVASS, a co-ordinate can be bounded.
- Suppose the following sequence of transitions can be
obtained: $\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right], \ldots,\left[\begin{array}{l}5 \\ 3 \\ 3\end{array}\right], \ldots,\left[\begin{array}{l}6 \\ 3 \\ 3\end{array}\right]$, where $(5,3,3)$ and
$(6,3,3)$ are in the same state.

Bounded co-ordinates - Contd...

- A co-ordinate is unbounded iff there is such a "self covering" sequence. Existence of such sequences is decidable.

Bounded co-ordinates - Contd...

- A co-ordinate is unbounded iff there is such a "self covering" sequence. Existence of such sequences is decidable.
- If we find that a co-ordinate is bounded by say b, we will "get rid" of that co-ordinate and track its changes through states instead.
If the first co-ordinate is bounded by 100 and the set of states in $i^{\text {th }}$ CVASS is S, the new set of states will be $S \times\{0, \ldots, 100\}$. If $p \xrightarrow{t} q$, effect $(t)=(-1, \ldots, 2)$, it will be replaced by $(p, k+1) \xrightarrow{t^{\prime}}(q, k)$, effect $\left(t^{\prime}\right)=(0, \ldots, 2)$.

Bounded co-ordinates - Contd...

- A co-ordinate is unbounded iff there is such a "self covering" sequence. Existence of such sequences is decidable.
- If we find that a co-ordinate is bounded by say b, we will "get rid" of that co-ordinate and track its changes through states instead.
If the first co-ordinate is bounded by 100 and the set of states in $i^{\text {th }}$ CVASS is S, the new set of states will be $S \times\{0, \ldots, 100\}$. If $p \xrightarrow{t} q$, effect $(t)=(-1, \ldots, 2)$, it will be replaced by $(p, k+1) \xrightarrow{t^{\prime}}(q, k)$, effect $\left(t^{\prime}\right)=(0, \ldots, 2)$.
- If while exiting at q_{i}, value of the bounded co-ordinate is to be k, we will make $\left(q_{i}, k\right)$ as the exit state.

Bounded co-ordinates - Contd...

Figure: Bounded co-ordinates

The number of non-rigid co-ordinates has reduced in the $i^{\text {th }}$ CVASS.

Reverse bounded co-ordinates

Figure: An unbounded Petri net

- Starting from $(1,0)$, can we reach $(1,50)$?

Reverse bounded co-ordinates

Figure: An unbounded Petri net

- Starting from $(1,0)$, can we reach $(1,50)$?
- p_{2} is unbounded. Once we reach $(1,51)$, can we go back to $(1,50)$?

Reverse bounded co-ordinates

Figure: An unbounded Petri net

- Starting from $(1,0)$, can we reach $(1,50)$?
- p_{2} is unbounded. Once we reach $(1,51)$, can we go back to $(1,50)$?
- Reverse the arcs, let the original final marking to be reached be the new initial marking and check for boundedness.

Figure: The reversed Petri net

Reverse bounded co-ordinates - Contd. . .

- In a CVASS, this amounts to reversing the arrows and making exit constraints as the new entry constraints.
- Just like an unbounded co-ordinate is due to a self covering sequence that pumps up the value, a reverse unbounded co-ordinate is due to a "self destroying" sequence that pumps down the value.

Will it ever stop? - Size of a CVASS chain

- The size of a CVASS $\left|\mathcal{N}_{i}\right|$ is a triple $(a, b, c) \in \mathbb{N}^{3}$ where
- $a=$ number of non-rigid co-ordinates,
- $b=$ number of arcs and
- $c=$ number of unconstrained entry and exit co-ordinates.

Will it ever stop? - Size of a CVASS chain

- The size of a CVASS $\left|\mathcal{N}_{i}\right|$ is a triple $(a, b, c) \in \mathbb{N}^{3}$ where
- $a=$ number of non-rigid co-ordinates,
- $b=$ number of arcs and
- $c=$ number of unconstrained entry and exit co-ordinates.
- The size of a CVASS chain C is $|C|=\left(\left|\mathcal{N}_{1}\right|, \ldots,\left|\mathcal{N}_{w}\right|\right) \in\left(\mathbb{N}^{3}\right)^{*}$.
- If we start with a CVASS chain of size
$\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right), \ldots,\left(a_{w}, b_{w}, c_{w}\right)$ and expand it using one of the pro-
cedures we saw earlier, the new CVASS chain will have size $\left(a_{1}, b_{1}, c_{1}\right),\left(a_{21}, b_{21}, c_{21}\right), \ldots,\left(a_{2 r}, b_{2 r}, c_{2 r}\right), \ldots,\left(a_{w}, b_{w}, c_{w}\right)$.

Will it ever stop? - Size of a CVASS chain

- The size of a CVASS $\left|\mathcal{N}_{i}\right|$ is a triple $(a, b, c) \in \mathbb{N}^{3}$ where
- $a=$ number of non-rigid co-ordinates,
- $b=$ number of arcs and
- $c=$ number of unconstrained entry and exit co-ordinates.
- The size of a CVASS chain C is
$|C|=\left(\left|\mathcal{N}_{1}\right|, \ldots,\left|\mathcal{N}_{w}\right|\right) \in\left(\mathbb{N}^{3}\right)^{*}$.
- If we start with a CVASS chain of size
$\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right), \ldots,\left(a_{w}, b_{w}, c_{w}\right)$ and expand it using one of the pro-
cedures we saw earlier, the new CVASS chain will have size $\left(a_{1}, b_{1}, c_{1}\right),\left(a_{21}, b_{21}, c_{21}\right), \ldots,\left(a_{2 r}, b_{2 r}, c_{2 r}\right), \ldots,\left(a_{w}, b_{w}, c_{w}\right)$.
- For any k between 1 and $r,\left(a_{2 k}, b_{2 k}, c_{2 k}\right)<_{l e x}\left(a_{2}, b_{2}, c_{2}\right)$.

The computation tree

Figure: Computation tree

Computation tree - Contd...

$$
(a, b, c)
$$

Figure: Growth of the infinite path

Computation tree - Contd...

Figure: Growth of the infinite path

Computation tree - Contd...

Figure: Growth of the infinite path

Computation tree - Contd...

Figure: Growth of the infinite path

Computation tree - Contd...

Figure: Growth of the infinite path

Computation tree - Contd...

Figure: Growth of the infinite path

What if everything is infinite?

Figure: Everything infinite

- Kosaraju's condition θ : suppose there is a path from $\left(p_{1}, M_{i}\right)$ to $\left(q_{1}, M_{f}\right)$ and that
- Every internal transition can be used unboundedly many times,
- Every co-ordinate constrained at entry state is unbounded and
- Every co-ordinate constrained at exit state is "reverse unbounded".

What if everything is infinite?

Figure: Everything infinite

- Kosaraju's condition θ : suppose there is a path from $\left(p_{1}, M_{i}\right)$ to $\left(q_{1}, M_{f}\right)$ and that
- Every internal transition can be used unboundedly many times,
- Every co-ordinate constrained at entry state is unbounded and
- Every co-ordinate constrained at exit state is "reverse unbounded".
- No more finite things to hold on to. What do we do?

What if everything is infinite? The answer

- If everything is infinite, answer to the reachability question is yes!
- There is a path from $\left(p_{1}, M_{i}\right)$ to $\left(q_{w}, M_{f}\right)$, but co-ordinates may become negative while firing internal transitions.
- Since unconstrained co-ordinates can exceed any value, choose a path from $\left(p_{1}, M_{i}\right)$ to $\left(q_{w}, M_{f}\right)$ that assigns high enough values to all unconstrained co-ordinates.

What if everything is infinite? The answer

- If everything is infinite, answer to the reachability question is yes!
- There is a path from $\left(p_{1}, M_{i}\right)$ to $\left(q_{w}, M_{f}\right)$, but co-ordinates may become negative while firing internal transitions.
- Since unconstrained co-ordinates can exceed any value, choose a path from $\left(p_{1}, M_{i}\right)$ to $\left(q_{w}, M_{f}\right)$ that assigns high enough values to all unconstrained co-ordinates.
- What about constrained co-ordinates?

What if everything is infinite? The answer

- If everything is infinite, answer to the reachability question is yes!
- There is a path from $\left(p_{1}, M_{i}\right)$ to $\left(q_{w}, M_{f}\right)$, but co-ordinates may become negative while firing internal transitions.
- Since unconstrained co-ordinates can exceed any value, choose a path from $\left(p_{1}, M_{i}\right)$ to $\left(q_{w}, M_{f}\right)$ that assigns high enough values to all unconstrained co-ordinates.
- What about constrained co-ordinates?
- Pump them up! Use the self covering sequence to reach high enough values.
- Self covering sequence is not part of the path from $\left(p_{1}, M_{i}\right)$ to $\left(q_{w}, M_{f}\right)$, so it will cause some damage. Can we repair it?

What if everything is infinite? The answer

- If everything is infinite, answer to the reachability question is yes!
- There is a path from $\left(p_{1}, M_{i}\right)$ to $\left(q_{w}, M_{f}\right)$, but co-ordinates may become negative while firing internal transitions.
- Since unconstrained co-ordinates can exceed any value, choose a path from $\left(p_{1}, M_{i}\right)$ to $\left(q_{w}, M_{f}\right)$ that assigns high enough values to all unconstrained co-ordinates.
- What about constrained co-ordinates?
- Pump them up! Use the self covering sequence to reach high enough values.
- Self covering sequence is not part of the path from $\left(p_{1}, M_{i}\right)$ to $\left(q_{w}, M_{f}\right)$, so it will cause some damage. Can we repair it?
- Yes, by using the self destroying sequence!. This will need the fact that all transitions can be used unboundedly many times.

Detailed proof of Sufficiency theorem

- $E_{i}=$ Set of constrained entry co-ordinates at \mathcal{N}_{i},
- $S_{i}=$ Set of constrained exit co-ordinates at \mathcal{N}_{i} and
- $R_{i}=$ Set of rigid co-ordinates at \mathcal{N}_{i}.

The following morphism gives a semilinear set of extended commutative images of constrained paths from (P_{1}, M_{i}) and $\left(q_{w}, M_{f}\right)$.
(entry[1], exit[1], ..., entry[w], exit[w], Parikh[1], ..., Parikh[w])

- First $2 m$ co-ordinates gives the entry and exit co-ordinates of \mathcal{N}_{1}.
- n co-ordinates associated with Parikh[1] gives the Parikh image of the path in \mathcal{N}_{1}.
- If a co-ordinate $j \notin E_{1}$, there will be corresponding non-zero entry in a period. Similarly for S_{1}.

Detailed proof of sufficiency theorem - Contd. . .

- Since all internal transitions can be used unboundedly often, every internal transition will have a corresponding non-zero entry in a period.
- Let c be a "constant" vector in the above semilinear set and \mathbf{q} be the sum of all the "witnessing" periods.
- For any $k \in \mathbb{N}, \mathbf{c}+k \boldsymbol{q}$ is a vector corresponding some constrained walk from (p_{1}, M_{i}) to (q_{w}, M_{f}).
- We can assign large values to k to get large values at unconstrained co-ordinates and to use internal transitions large number of times.
- Now we concentrate on building a constrained positive path in \mathcal{N}_{i}.
- Let $\overline{\sigma(j)}$ denote the Parikh vector of the path in \mathcal{N}_{i} given by $\mathbf{c}+j \mathbf{q}$.
- Let $x_{i}\left(y_{i}\right)$ be the entry (exit) co-ordinate given by the constant vector \mathbf{c}.

Detailed proof of sufficiency theorem - Contd. . .

- Let $u_{i}\left(w_{i}\right)$ be the entry (exit) constraints given by \mathbf{q}.
- $\left(p_{i}, x_{i}\right) \xrightarrow{\sigma(0)}\left(q_{i}, y_{i}\right)$ and $\left(p_{i}, x_{i}+u_{i}\right) \xrightarrow{\sigma(1)}\left(q_{i}, y_{i}+w_{i}\right)$.
- $\frac{\left(p_{i}, x_{i}\right.}{\sigma(1)}+\overline{\left.u_{i}\right)} \xrightarrow[\sigma(0)]{\sigma(0)}\left(q_{i}, y_{i}+u_{i}\right) \xrightarrow{\sigma}\left(q_{i}, y_{i}+w_{i}\right)$, where
- $\left(q_{i}, u_{i}\right) \xrightarrow{\sigma}\left(q_{i}, w_{i}\right) . \operatorname{effect}(\sigma)=w_{i}-u_{i}$.
- Let σ_{1} be the pumping up sequence that pumps up constrained co-ordinates: $\left(p_{i}, x_{i} \stackrel{\sigma_{1}}{\Rightarrow} E_{i} x_{i}+\Gamma_{i}\right)$, $\Gamma_{i} \upharpoonright_{E_{i}} \geq(1, \ldots, 1)$.
- Let σ_{4} be the pumping down sequence: $\left(q_{i}, y_{i}+\Delta_{i}\right) \stackrel{\sigma_{4}}{\Rightarrow} s_{i}\left(q_{i}, y_{i}\right), \Delta_{i} \upharpoonright s_{i} \geq(1, \ldots, 1)$.
- Let $\delta \geq 1$ be an integer greater than the absolute value of all co-ordinates of $\Gamma_{i}, \Delta_{i}, \overline{\sigma_{1}}+\overline{\sigma_{4}}$.
- Consider the sequence σ_{3} such that $\overline{\sigma_{3}}=\delta \bar{\sigma}-\overline{\sigma_{1}}-\overline{\sigma_{4}}$.

Detailed proof of sufficiency theorem - Contd. . .

- Consider the "magic sequence of ℓ repetitions" $m s(\ell)=\sigma_{1}^{\ell} \sigma(0) \sigma_{3}^{\ell} \sigma_{4}^{\ell}$.
- If $k=\delta \ell$, then

$$
\begin{aligned}
& \left(p_{i}, x_{i}+k u_{i}\right) \stackrel{\sigma_{1}^{\ell}}{\Rightarrow}\left(p_{i}, x_{i}+k u_{i}+\ell \Gamma_{i}\right) \stackrel{\sigma_{0}}{\Rightarrow}\left(q_{i}, y_{i}+k u_{i}+\ell \Gamma_{i}\right) \stackrel{\sigma_{3}^{\ell}}{\Rightarrow} \\
& \left(q_{i}, y_{i}+k w_{i}+\ell \Delta_{i}\right) \stackrel{\sigma_{4}^{\ell}}{\Rightarrow}\left(q_{i}, y_{i}+k w_{i}\right) .
\end{aligned}
$$

- All the walks above can be made positive by choosing high enough value for k.

Conclusion

- Reachability in Petri nets is decidable.
- If some aspect of the net is bounded, unfold the net. Continue checking for boundedness of aspects in the expanded net.
- Termination of this process is shown by carefully defining a size and showing that it is well founded.
- If all aspects of the net are unbounded, conclude that answer to the reachability question is positive.
- The fact that all aspects of the net are unbounded can be expressed in terms of linear algebraic relations.

Thank you.

Questions?

