Reachability in vector addition systems Kosaraju's proof, exposited in *"The Mathematics of Petri Nets"* by C. Reutenauer (translated by I. Craig)

Kamal Lodaya and M. Praveen

The Institute of Mathematical Sciences, Chennai

Formal Methods Update Meeting, IIT Roorkee, July 2009

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

- Mathematical model.
- Widely used to study systems with concurrent processes.

Figure: Hopcroft and Pansiot's example Petri net

Reachability problem

$$= \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$$

[0]

$$M_f = \begin{bmatrix} n-2\\2^{n-3}\\0\\1\\n \end{bmatrix}$$

Work on decidability of the reachability problem

- E.W.Mayr gave an algorithm for the general Petri net reachability problem in 1981/1984.
- S.R.Kosaraju and J.L.Lambert simplified the proofs in 1982 and 1992.
- No upper bound known for the above algorithm. In the worst case, it requires more than primitive recursive space.
- R.J.Lipton gave an exponential space lower bound for the general Petri net reachability problem.
- J. Leroux has published a new algorithm that uses a different approach, but proof of correctness depends on ideas from the earlier algorithm.
- K. Reinhardt extended the idea to decide reachability in Petri nets where inhibitor arcs occur in a restricted way.

A naive approach - reachability graph

Start with the initial marking and grow a tree of reachable markings.

Figure: Reachability graph

$$\mathbf{N} = \begin{array}{c} p_{1} \\ P_{2} \\ \vdots \\ p_{m} \end{array} \begin{bmatrix} t_{1} & t_{2} & \cdots & t_{n} \\ -1 \\ +2 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} M_0(p_1) \\ M_0(p_2) \\ \vdots \\ M_0(p_m) \end{bmatrix} + \begin{bmatrix} t_1 & t_2 & \cdots & t_n \\ -1 & & & \\ +2 & & & \\ 0 & & & \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} M_f(p_1) \\ M_f(p_2) \\ \vdots \\ M_f(p_m) \end{bmatrix}$$

$$\begin{bmatrix} M_0(p_1) \\ M_0(p_2) \\ \vdots \\ M_0(p_m) \end{bmatrix} + \begin{bmatrix} t_1 & t_2 & \cdots & t_n \\ -1 & & & \\ +2 & & & \\ 0 & & & \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} M_f(p_1) \\ M_f(p_2) \\ \vdots \\ M_f(p_m) \end{bmatrix}$$

$$\begin{bmatrix} M_{0}(p_{1}) \\ M_{0}(p_{2}) \\ \vdots \\ M_{0}(p_{m}) \end{bmatrix} + \begin{bmatrix} t_{1} & t_{2} & \cdots & t_{n} \\ -1 & & & \\ +2 & & & \\ 0 & & & \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = \begin{bmatrix} M_{f}(p_{1}) \\ M_{f}(p_{2}) \\ \vdots \\ M_{f}(p_{m}) \end{bmatrix}$$

State equation

$$\begin{bmatrix} M_0(p_1) \\ M_0(p_2) \\ \vdots \\ M_0(p_m) \end{bmatrix} + \begin{bmatrix} t_1 & t_2 & \cdots & t_n \\ -1 & & & \\ +2 & & & \\ 0 & & & \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} M_f(p_1) \\ M_f(p_2) \\ \vdots \\ M_f(p_m) \end{bmatrix}$$

▶ If $M_0 \xrightarrow{\sigma} M_f$, the Parikh vector $\overline{\sigma}$ will satisfy the above equation.

$$\begin{bmatrix} M_0(p_1) \\ M_0(p_2) \\ \vdots \\ M_0(p_m) \end{bmatrix} + \begin{bmatrix} t_1 & t_2 & \cdots & t_n \\ -1 & & & \\ +2 & & & \\ 0 & & & \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} M_f(p_1) \\ M_f(p_2) \\ \vdots \\ M_f(p_m) \end{bmatrix}$$

- ▶ If $M_0 \xrightarrow{\sigma} M_f$, the Parikh vector $\overline{\sigma}$ will satisfy the above equation.
- The converse need not be true.

$$\begin{bmatrix} M_0(p_1) \\ M_0(p_2) \\ \vdots \\ M_0(p_m) \end{bmatrix} + \begin{bmatrix} t_1 & t_2 & \cdots & t_n \\ -1 & & & \\ +2 & & & \\ 0 & & & \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} M_f(p_1) \\ M_f(p_2) \\ \vdots \\ M_f(p_m) \end{bmatrix}$$

- ▶ If $M_0 \xrightarrow{\sigma} M_f$, the Parikh vector $\overline{\sigma}$ will satisfy the above equation.
- The converse need not be true.
- Try all solutions.

$$\begin{bmatrix} M_0(p_1) \\ M_0(p_2) \\ \vdots \\ M_0(p_m) \end{bmatrix} + \begin{bmatrix} t_1 & t_2 & \cdots & t_n \\ -1 & & & \\ +2 & & & \\ 0 & & & \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} M_f(p_1) \\ M_f(p_2) \\ \vdots \\ M_f(p_m) \end{bmatrix}$$

- ▶ If $M_0 \xrightarrow{\sigma} M_f$, the Parikh vector $\overline{\sigma}$ will satisfy the above equation.
- ► The converse need not be true.
- Try all solutions.
- If vector I is such that N × I = 0, there will be infinitely many solutions.
- If $\mathbf{N} \times \mathbf{I} = \mathbf{0}$, I is called a *T*-invariant.

If something is finite, hold on to it!

- If something is finite, hold on to it!
- All solutions to the state equation M₀ + NX = M_f are contained in B + J*, where
 - $\mathbf{B} = \{B_1, \dots, B_r\}$ is the finite set of *minimal solutions*.
 - ► $J = \{I_1, ..., I_s\}$ is a finite set of *T*-invariants, that generates all invariants.

- If something is finite, hold on to it!
- All solutions to the state equation M₀ + NX = M_f are contained in B + J*, where
 - $\mathbf{B} = \{B_1, \dots, B_r\}$ is the finite set of *minimal solutions*.
 - ► $J = \{I_1, ..., I_s\}$ is a finite set of *T*-invariants, that generates all invariants.
- If the co-ordinate corresponding to a transition t is 0 in all the vectors l₁,..., l_s, then it is not part of any T-invariant.
- *t* may be used at most *w* times, determined by B_1, \ldots, B_r .

- If something is finite, hold on to it!
- All solutions to the state equation M₀ + NX = M_f are contained in B + J*, where
 - $\mathbf{B} = \{B_1, \dots, B_r\}$ is the finite set of *minimal solutions*.
 - ► J = {l₁,..., l_s} is a finite set of *T*-invariants, that generates all invariants.
- If the co-ordinate corresponding to a transition t is 0 in all the vectors l₁,..., l_s, then it is not part of any T-invariant.
- *t* may be used at most *w* times, determined by B_1, \ldots, B_r .
- ► Create w new Petri nets N₁,..., N_w, where N_i allows t to be fired exactly *i* times.

Using a transition boundedly many times

Figure: A chain of Vector Addition System with States

Using a transition boundedly many times

t $T \setminus \{t\}$ T $\setminus \{t\}$

Figure: A chain of Vector Addition System with States

Using a transition boundedly many times

Figure: A chain of Vector Addition System with States

Figure: A chain of Vector Addition System with States

• p_i are entry states and q_i are exit states.

Figure: A chain of Vector Addition System with States

- p_i are entry states and q_i are exit states.
- With each transition t is associated a vector effect(t) that denotes its effect on the places of the Petri net.

Figure: A chain of Vector Addition System with States

- *p_i* are entry states and *q_i* are exit states.
- With each transition t is associated a vector effect(t) that denotes its effect on the places of the Petri net.
- We need to check if starting from (p₁, M₀), we can reach (q_w, M_f). This is a chain of Constrained Vector Addition System with States (CVASS chain).

Figure: A chain of Vector Addition System with States

- *p_i* are entry states and *q_i* are exit states.
- With each transition t is associated a vector effect(t) that denotes its effect on the places of the Petri net.
- We need to check if starting from (p₁, M₀), we can reach (q_w, M_f). This is a chain of Constrained Vector Addition System with States (CVASS chain).
- Number of transitions in each CVASS of the chain is strictly less than the number of transitions in the original CVASS.

Figure: A constrained CVASS

Consider the regular language L ⊆ A^{*}_i consisting of paths from p_i to q_i (ignore the effect on the vector).

Figure: A constrained CVASS

- Consider the regular language L ⊆ A^{*}_i consisting of paths from p_i to q_i (ignore the effect on the vector).
- ► The set of Parikh images of strings in *L* will be of the form $\overline{L} = \mathbf{B} + \mathbf{J}^*$.

Figure: A constrained CVASS

- Consider the regular language L ⊆ A^{*}_i consisting of paths from p_i to q_i (ignore the effect on the vector).
- ► The set of Parikh images of strings in *L* will be of the form $\overline{L} = \mathbf{B} + \mathbf{J}^*$.
- A set of vectors of the form B₁ + J* is called a linear set. Finite union of linear sets is a semilinear set. Vectors in J are called periods.

Figure: A constrained CVASS

- Consider the regular language L ⊆ A^{*}_i consisting of paths from p_i to q_i (ignore the effect on the vector).
- The set of Parikh images of strings in *L* will be of the form $\overline{L} = \mathbf{B} + \mathbf{J}^*$.
- A set of vectors of the form B₁ + J* is called a linear set. Finite union of linear sets is a semilinear set. Vectors in J are called periods.
- We need to handle entry and exit constraints also.

- Suppose there are *m* places to be handled by the vector and *n* transitions.
- For a string σ ∈ A^{*}_i, (σ̄, effect(σ)) is a vector in Z^{n+m}. First n co-ordinates is the Parikh image of σ and last m co-ordinates gives the change induced by σ on the places. This is the extended commutative image eci(σ).

- Suppose there are *m* places to be handled by the vector and *n* transitions.
- For a string σ ∈ A^{*}_i, (σ̄, effect(σ)) is a vector in Z^{n+m}. First n co-ordinates is the Parikh image of σ and last m co-ordinates gives the change induced by σ on the places. This is the extended commutative image eci(σ).
- $(0^n, M_1) + eci(\sigma)$ is a vector, which gives
 - Parikh image of σ in the first *n* co-ordinates.
 - Final vector reached if σ is fired from M₁, in the last m co-ordinates.

- Suppose there are *m* places to be handled by the vector and *n* transitions.
- For a string σ ∈ A^{*}_i, (σ̄, effect(σ)) is a vector in Z^{n+m}. First n co-ordinates is the Parikh image of σ and last m co-ordinates gives the change induced by σ on the places. This is the extended commutative image eci(σ).
- $(0^n, M_1) + eci(\sigma)$ is a vector, which gives
 - Parikh image of σ in the first *n* co-ordinates.
 - Final vector reached if σ is fired from M₁, in the last m co-ordinates.
- (0ⁿ, M₁) + eci(L) is a semilinear set. Intersect it with the set of vectors (ℕⁿ, M₂). We will get another semilinear set that represents Parikh images of paths from p_i to q_i that satisfy the constraint.

- Suppose there are *m* places to be handled by the vector and *n* transitions.
- For a string σ ∈ A^{*}_i, (σ̄, effect(σ)) is a vector in Z^{n+m}. First n co-ordinates is the Parikh image of σ and last m co-ordinates gives the change induced by σ on the places. This is the extended commutative image eci(σ).
- $(0^n, M_1) + eci(\sigma)$ is a vector, which gives
 - Parikh image of σ in the first *n* co-ordinates.
 - Final vector reached if σ is fired from M₁, in the last m co-ordinates.
- (0ⁿ, M₁) + eci(L) is a semilinear set. Intersect it with the set of vectors (ℕⁿ, M₂). We will get another semilinear set that represents Parikh images of paths from p_i to q_i that satisfy the constraint.
- If the co-ordinate corresponding to a transition t is 0 in all the periods of the above semilinear set, t can be used only boundedly many times.

Figure: A chain of Vector Addition System with States

► L: language of strings from p_1 to q_w . For $\sigma \in L$, $project[A_1 \cup \{t_1\} \cup \cdots \cup A_i](\sigma)$ gives the portion of σ up to q_i .

Figure: A chain of Vector Addition System with States

- ▶ *L*: language of strings from p_1 to q_w . For $\sigma \in L$, $project[A_1 \cup \{t_1\} \cup \cdots \cup A_i](\sigma)$ gives the portion of σ up to q_i .
- *effect*(*project*[*i*](σ)) gives the effect at q_i of firing σ at p_1 .

Figure: A chain of Vector Addition System with States

- ► L: language of strings from p_1 to q_w . For $\sigma \in L$, $project[A_1 \cup \{t_1\} \cup \cdots \cup A_i](\sigma)$ gives the portion of σ up to q_i .
- *effect*(*project*[*i*](σ)) gives the effect at q_i of firing σ at p_1 .
- ► (*M_i* + *effect*[*i*](*σ*), *M_i* + *effect*(*σ*)) is a vector in Z^{2m} first *m* co-ordinates give the result at *q_i* and last *m* co-ordinates give the result at *q_w*.

Figure: A chain of Vector Addition System with States

- ► L: language of strings from p_1 to q_w . For $\sigma \in L$, $project[A_1 \cup \{t_1\} \cup \cdots \cup A_i](\sigma)$ gives the portion of σ up to q_i .
- *effect*(*project*[*i*](σ)) gives the effect at q_i of firing σ at p_1 .
- (*M_i* + *effect*[*i*](*σ*), *M_i* + *effect*(*σ*)) is a vector in Z^{2m} first *m* co-ordinates give the result at *q_i* and last *m* co-ordinates give the result at *q_w*.
- (M_i + effect[i], M_i + effect)(L) is a semilinear set. Intersect it with (ℕ^m, M_f). Result is a semilinear set, whose vectors contain possible results at q_i while walking from (p₁, M_i) to (q_w, M_f).

If in the above semilinear set, the entry corresponding to a co-ordinate *j*, 1 ≤ *j* ≤ *m* is 0 in all periods, that co-ordinate will never go beyond some bound given by the semilinear set.

- If in the above semilinear set, the entry corresponding to a co-ordinate *j*, 1 ≤ *j* ≤ *m* is 0 in all periods, that co-ordinate will never go beyond some bound given by the semilinear set.
- Such a co-ordinate is said to be constrained at the exit of ith CVASS, with a bound say w.

- If in the above semilinear set, the entry corresponding to a co-ordinate *j*, 1 ≤ *j* ≤ *m* is 0 in all periods, that co-ordinate will never go beyond some bound given by the semilinear set.
- Such a co-ordinate is said to be constrained at the exit of ith CVASS, with a bound say w.
- ► Create *w* new CVASS chains N₁,..., N_w, where N_k puts *k* as a constraint in the co-ordinate *j* at q_i.

Figure: A chain of Constrained Vector Addition System with States

- If in the above semilinear set, the entry corresponding to a co-ordinate *j*, 1 ≤ *j* ≤ *m* is 0 in all periods, that co-ordinate will never go beyond some bound given by the semilinear set.
- Such a co-ordinate is said to be constrained at the exit of ith CVASS, with a bound say w.
- ► Create *w* new CVASS chains N₁,..., N_w, where N_k puts *k* as a constraint in the co-ordinate *j* at q_i.

Figure: A chain of Constrained Vector Addition System with States

In each of the w new CVASS chains, number of unconstrained co-ordinates at exit of ith CVASS has decreased.

Constrained co-ordinates that are bounded

Figure: A constrained CVASS

We want to find if within ith CVASS, a co-ordinate can be bounded.

Constrained co-ordinates that are bounded

Figure: A constrained CVASS

- We want to find if within ith CVASS, a co-ordinate can be bounded.
- Suppose the following sequence of transitions can be obtained: $\begin{bmatrix} 1\\2\\2 \end{bmatrix}, \dots, \begin{bmatrix} 5\\3\\3 \end{bmatrix}, \dots, \begin{bmatrix} 6\\3\\3 \end{bmatrix}$, where (5,3,3) and (6,3,3) are in the same state.

 A co-ordinate is unbounded iff there is such a "self covering" sequence. Existence of such sequences is decidable.

- A co-ordinate is unbounded iff there is such a "self covering" sequence. Existence of such sequences is decidable.
- If we find that a co-ordinate is bounded by say b, we will "get rid" of that co-ordinate and track its changes through states instead.

If the first co-ordinate is bounded by 100 and the set of states in *i*th CVASS is *S*, the new set of states will be $S \times \{0, ..., 100\}$. If $p \xrightarrow{t} q$, effect(t) = (-1, ..., 2), it will be replaced by $(p, k + 1) \xrightarrow{t'} (q, k)$, effect(t') = (0, ..., 2).

- A co-ordinate is unbounded iff there is such a "self covering" sequence. Existence of such sequences is decidable.
- If we find that a co-ordinate is bounded by say b, we will "get rid" of that co-ordinate and track its changes through states instead.

If the first co-ordinate is bounded by 100 and the set of states in *i*th CVASS is *S*, the new set of states will be $S \times \{0, ..., 100\}$. If $p \xrightarrow{t} q$, effect(t) = (-1, ..., 2), it will be replaced by $(p, k + 1) \xrightarrow{t'} (q, k)$, effect(t') = (0, ..., 2).

If while exiting at q_i, value of the bounded co-ordinate is to be k, we will make (q_i, k) as the exit state.

Figure: Bounded co-ordinates

The number of non-rigid co-ordinates has reduced in the *i*th CVASS.

Reverse bounded co-ordinates

Figure: An unbounded Petri net

Starting from (1,0), can we reach (1,50)?

Reverse bounded co-ordinates

Figure: An unbounded Petri net

- Starting from (1,0), can we reach (1,50)?
- ▶ p₂ is unbounded. Once we reach (1,51), can we go back to (1,50)?

Reverse bounded co-ordinates

Figure: An unbounded Petri net

- Starting from (1,0), can we reach (1,50)?
- ▶ p₂ is unbounded. Once we reach (1,51), can we go back to (1,50)?
- Reverse the arcs, let the original final marking to be reached be the new initial marking and check for boundedness.

Figure: The reversed Petri net

Reverse bounded co-ordinates - Contd...

- In a CVASS, this amounts to reversing the arrows and making exit constraints as the new entry constraints.
- Just like an unbounded co-ordinate is due to a self covering sequence that pumps up the value, a reverse unbounded co-ordinate is due to a "self destroying" sequence that pumps down the value.

Will it ever stop? — Size of a CVASS chain

- ▶ The size of a CVASS $|N_i|$ is a triple $(a, b, c) \in \mathbb{N}^3$ where
 - ► *a* = number of non-rigid co-ordinates,
 - b = number of arcs and
 - c = number of unconstrained entry and exit co-ordinates.

Will it ever stop? — Size of a CVASS chain

- ▶ The size of a CVASS $|N_i|$ is a triple $(a, b, c) \in \mathbb{N}^3$ where
 - a = number of non-rigid co-ordinates,
 - b = number of arcs and
 - c = number of unconstrained entry and exit co-ordinates.
- ▶ The size of a CVASS chain *C* is

 $|\mathcal{C}| = (|\mathcal{N}_1|, \dots, |\mathcal{N}_w|) \in (\mathbb{N}^3)^*.$

► If we start with a CVASS chain of size (a₁, b₁, c₁), (a₂, b₂, c₂), ..., (a_w, b_w, c_w) and expand it using one of the pro-

cedures we saw earlier, the new CVASS chain will have size $(a_1, b_1, c_1), (a_{21}, b_{21}, c_{21}), \dots, (a_{2r}, b_{2r}, c_{2r}), \dots, (a_w, b_w, c_w).$

Will it ever stop? — Size of a CVASS chain

- ▶ The size of a CVASS $|N_i|$ is a triple $(a, b, c) \in \mathbb{N}^3$ where
 - ► a = number of non-rigid co-ordinates,
 - b = number of arcs and
 - c = number of unconstrained entry and exit co-ordinates.
- ▶ The size of a CVASS chain *C* is

 $|\mathcal{C}| = (|\mathcal{N}_1|, \dots, |\mathcal{N}_w|) \in (\mathbb{N}^3)^*.$

If we start with a CVASS chain of size (a₁, b₁, c₁), (a₂, b₂, c₂), ..., (a_w, b_w, c_w) and expand it using one of the pro-

cedures we saw earlier, the new CVASS chain will have size $(a_1, b_1, c_1), (a_{21}, b_{21}, c_{21}), \dots, (a_{2r}, b_{2r}, c_{2r}), \dots, (a_w, b_w, c_w).$

► For any *k* between 1 and *r*, $(a_{2k}, b_{2k}, c_{2k}) <_{lex} (a_2, b_2, c_2)$.

The computation tree

Figure: Computation tree

The computation tree

Figure: Computation tree

The computation tree

Figure: Computation tree

The computation tree

Figure: Computation tree

(a, b, c)

What if everything is infinite?

Figure: Everything infinite

- Kosaraju's condition θ: suppose there is a path from (p₁, M_i) to (q₁, M_f) and that
 - Every internal transition can be used unboundedly many times,
 - Every co-ordinate constrained at entry state is unbounded and
 - Every co-ordinate constrained at exit state is "reverse unbounded".

What if everything is infinite?

Figure: Everything infinite

- Kosaraju's condition θ: suppose there is a path from (p₁, M_i) to (q₁, M_f) and that
 - Every internal transition can be used unboundedly many times,
 - Every co-ordinate constrained at entry state is unbounded and
 - Every co-ordinate constrained at exit state is "reverse unbounded".
- No more finite things to hold on to. What do we do?

- If everything is infinite, answer to the reachability question is yes!
- ► There is a path from (p₁, M_i) to (q_w, M_f), but co-ordinates may become negative while firing internal transitions.
- Since unconstrained co-ordinates can exceed any value, choose a path from (p₁, M_i) to (q_w, M_f) that assigns high enough values to all unconstrained co-ordinates.

- If everything is infinite, answer to the reachability question is yes!
- ► There is a path from (p₁, M_i) to (q_w, M_f), but co-ordinates may become negative while firing internal transitions.
- Since unconstrained co-ordinates can exceed any value, choose a path from (*p*₁, *M_i*) to (*q_w*, *M_f*) that assigns high enough values to all unconstrained co-ordinates.
- What about constrained co-ordinates?

- If everything is infinite, answer to the reachability question is yes!
- ► There is a path from (p₁, M_i) to (q_w, M_f), but co-ordinates may become negative while firing internal transitions.
- Since unconstrained co-ordinates can exceed any value, choose a path from (p₁, M_i) to (q_w, M_f) that assigns high enough values to all unconstrained co-ordinates.
- What about constrained co-ordinates?
- Pump them up! Use the self covering sequence to reach high enough values.
- Self covering sequence is not part of the path from (p₁, M_i) to (q_w, M_f), so it will cause some damage. Can we repair it?

- If everything is infinite, answer to the reachability question is yes!
- ► There is a path from (p₁, M_i) to (q_w, M_f), but co-ordinates may become negative while firing internal transitions.
- Since unconstrained co-ordinates can exceed any value, choose a path from (p₁, M_i) to (q_w, M_f) that assigns high enough values to all unconstrained co-ordinates.
- What about constrained co-ordinates?
- Pump them up! Use the self covering sequence to reach high enough values.
- Self covering sequence is not part of the path from (p₁, M_i) to (q_w, M_f), so it will cause some damage. Can we repair it?
- Yes, by using the self destroying sequence!. This will need the fact that all transitions can be used unboundedly many times.

Detailed proof of Sufficiency theorem

- E_i = Set of constrained entry co-ordinates at N_i ,
- S_i = Set of constrained exit co-ordinates at N_i and
- R_i = Set of rigid co-ordinates at N_i .

The following morphism gives a semilinear set of extended commutative images of constrained paths from (P_1, M_i) and (q_w, M_f) .

(entry[1], exit[1], ..., entry[w], exit[w], Parikh[1], ..., Parikh[w])

- ► First 2m co-ordinates gives the entry and exit co-ordinates of N₁.
- n co-ordinates associated with Parikh[1] gives the Parikh image of the path in N₁.
- If a co-ordinate j ∉ E₁, there will be corresponding non-zero entry in a period. Similarly for S₁.

Detailed proof of sufficiency theorem - Contd...

- Since all internal transitions can be used unboundedly often, every internal transition will have a corresponding non-zero entry in a period.
- Let c be a "constant" vector in the above semilinear set and q be the sum of all the "witnessing" periods.
- For any k ∈ N, c + kq is a vector corresponding some constrained walk from (p₁, M_i) to (q_w, M_f).
- We can assign large values to k to get large values at unconstrained co-ordinates and to use internal transitions large number of times.
- ► Now we concentrate on building a constrained positive path in N_i.
- Let $\overline{\sigma(j)}$ denote the Parikh vector of the path in \mathcal{N}_i given by $\mathbf{c} + j\mathbf{q}$.
- Let x_i (y_i) be the entry (exit) co-ordinate given by the constant vector c.

Detailed proof of sufficiency theorem - Contd...

- Let $u_i(w_i)$ be the entry (exit) constraints given by **q**.
- ► $(p_i, x_i) \xrightarrow{\sigma(0)} (q_i, y_i)$ and $(p_i, x_i + u_i) \xrightarrow{\sigma(1)} (q_i, y_i + w_i)$.

$$\blacktriangleright \quad \underbrace{(p_i, x_i + u_i)}_{\overline{\sigma(1)} = \overline{\sigma(0)}} \underbrace{(q_i, y_i + u_i)}_{\sigma} \xrightarrow{\sigma} (q_i, y_i + w_i), \text{ where }$$

$$\blacktriangleright (q_i, u_i) \xrightarrow{\sigma} (q_i, w_i). effect(\sigma) = w_i - u_i.$$

- Let σ₁ be the pumping up sequence that pumps up constrained co-ordinates: (p_i, x_i ⇒_{E_i}x_i + Γ_i), Γ_i ↾_{E_i}≥ (1,...,1).
- ► Let σ_4 be the pumping down sequence: $(q_i, y_i + \Delta_i) \stackrel{\sigma_4}{\Rightarrow}_{S_i} (q_i, y_i), \Delta_i \upharpoonright_{S_i} \geq (1, ..., 1).$
- Let δ ≥ 1 be an integer greater than the absolute value of all co-ordinates of Γ_i, Δ_i, σ₁ + σ₄.
- Consider the sequence σ_3 such that $\overline{\sigma_3} = \delta \overline{\sigma} \overline{\sigma_1} \overline{\sigma_4}$.

Detailed proof of sufficiency theorem - Contd...

- Consider the "magic sequence of ℓ repetitions" ms(ℓ) = σ^ℓ₁σ(0)σ^ℓ₃σ^ℓ₄.
- If $k = \delta \ell$, then

$$(\boldsymbol{p}_{i}, \boldsymbol{x}_{i} + \boldsymbol{k}\boldsymbol{u}_{i}) \stackrel{\sigma_{1}^{\ell}}{\Rightarrow} (\boldsymbol{p}_{i}, \boldsymbol{x}_{i} + \boldsymbol{k}\boldsymbol{u}_{i} + \ell\Gamma_{i}) \stackrel{\sigma_{0}}{\Rightarrow} (\boldsymbol{q}_{i}, \boldsymbol{y}_{i} + \boldsymbol{k}\boldsymbol{u}_{i} + \ell\Gamma_{i}) \stackrel{\sigma_{3}^{\ell}}{\Rightarrow} (\boldsymbol{q}_{i}, \boldsymbol{y}_{i} + \boldsymbol{k}\boldsymbol{w}_{i} + \ell\Delta_{i}) \stackrel{\sigma_{4}^{\ell}}{\Rightarrow} (\boldsymbol{q}_{i}, \boldsymbol{y}_{i} + \boldsymbol{k}\boldsymbol{w}_{i}).$$

All the walks above can be made positive by choosing high enough value for k.

- Reachability in Petri nets is decidable.
- If some aspect of the net is bounded, unfold the net. Continue checking for boundedness of aspects in the expanded net.
- Termination of this process is shown by carefully defining a size and showing that it is well founded.
- If all aspects of the net are unbounded, conclude that answer to the reachability question is positive.
- The fact that all aspects of the net are unbounded can be expressed in terms of linear algebraic relations.

Thank you.

Questions?