Toward New Era of Photonuclear Reactions

Hiroaki Utsunomiya (Konan University)

Content

Lecture 1 : Past of Photonuclear Reactions

- 1.1 γ -ray sources
- 1.2 Nuclear physics (γ ,n) for GDR

1.3 Compilations of experimental data- Atlas, IAEA, CDFE, EXFOR

Lecture 2 : Present of Photonuclear Reactions

- 2.1 Laser Compton-scattering γ -ray beam
- 2.2 Nuclear Physics (γ , γ') for PDR
- 2.3 Nuclear Astrophysics
 - a. p-process (γ,n)
 - b. s-process gamma-ray strength function for (γ, n) and (n, γ)

Lecture 3: Present and Future of Photonuclear Reactions

2.3 Nuclear Astrophysics

c. reciprocity theorem – photodisintegration of D, ⁹Be, ¹⁶O 2.4 Evaluated Nuclear Data Library – ENDF, JEFF, JENDL Reference Input Parameter Library - RIPL

3. ELI-NP project

- 3.1 ELI-NP vs HIGS and NewSUBARU
- 3.2 p-process rare isotopes
- 3.3 Precision Era of Nuclear Physics
 - a. PDR above neutron threshold
 - b. GDR (γ , γ), (γ ,n) (γ ,2n), (γ ,3n) cross sections
- 3.4 Special topic

Photoreactions on isomers – laser-gamma combined experiment

γ -ray sources: radioisotopes

Green and Donahue, PR 135, B701 (1964)

FIG. 1. Neutron counter and source arrangement.

Source	Energy ^a (MeV)	Intensity $\times 10^{-4}$ (γ rays/cm ² -sec)		
Aluminum	7.72	8.1 ±0.7		
Copper	7.91	14.0 ± 1.4		
••	7.63	6.4 ± 0.6		
Chlorine	8.56	2.3 ± 0.3		
	7.77	6.0 ± 0.7		
	7.42	6.9 ± 0.8		
Nitrogen	10.83	0.49 ± 0.03		
	8.31	0.10 ± 0.03		
Nickel	9.00	19.8 ± 2.1		
	8.53	9.1 ± 0.9		
Chromium	9.72	2.5 ± 0.4		
	8.88	6.2 ± 0.9		
Iron	7.64	22.0 ± 2.8		
	9.30	1.9 ± 0.2		
	6.03 + 5.92	11.3 ± 1.5		
Lead	7.38	1.9 ± 0.3		
Sulphur	5.43	10.2 ± 1.4		
	8.64	0.6 ± 0.1		
	7.78	0.8 ± 0.2		
Titanium	6.75	18.9 ± 2.2		
	6.41	12.5 ± 1.5		
	6.61 ^b	33.7 ± 2.7		
Manganese	7.16°	19.0 ± 1.7		
Zinc	7.88	4.5 ± 0.5		

TABLE I. Measured gamma-ray intensities.

Source	Energy ^a (MeV)	Ta ¹⁸¹	Li ⁷	Targets Li ⁶	C13	B10
Aluminum	7 72	4.1 ± 0.4	0.06 +0.01	1.13 ± 0.12	1.7 ± 0.2	
Copper	7 91	10.8 ± 1.0	0.07 ± 0.01	1.1 ± 0.2	0.97 ± 0.13	
Chlorine	8.56	29 + 6	0.17 ± 0.12			• • •
Nickel	9.00	44 ± 6	0.16 ± 0.06	1.6 ± 0.3	0.6 ± 0.1	0.11 ± 0.01
Nitrogen	10.83	121 ± 12	1.07 ± 0.25		4 ± 2	0.9 ± 0.2
Chromium	9.72	84 ±25	0.55 ± 0.25			0.23 ± 0.05
Iron	7.64	0.0 ± 0.9	0.079 ± 0.014	1.3 ± 0.2	0.23 ± 0.05	
Iron	9.30					0.09 ± 0.03
Lead	7.38		0.068 ± 0.035	1.2 ± 0.2	0.3 ± 0.3	
Sulphur	5.43			0.42 ± 0.07		
Sodium	6.41			0.6 ± 0.1		
Titanium	~ 6.75			1.3 ± 0.2		
Titanium	6.61 ^b		10 1 11		0.32 ± 0.04	
Manganese	7.16°			0.9 ± 0.1	0.4 ± 0.1	
Zinc	7.88			1.0 ± 0.2	1.2 ± 0.2	

TABLE II. Summary of measured cross sections (millibarns).

FIG. 2. Energy versus cross section, $Ta^{181}(\gamma,n)$. Boxes are data of Fuller and Weiss (Ref. 8), circles are data of Bramblett *et al.* (Ref. 1). The solid line is a smooth curve through the present cross-section measurements.

FIG. 3. Energy versus cross section, $Li^7(\gamma,n)$. Crosses are data of Goldemberg and Katz (Ref. 3), circles are data of Romanowski and Voelker (Ref. 12).

γ -ray sources: Nuclear reactions

Anttila et al., NIM 147, 501 (1977)

CHANNEL NUMBER

Fig. 1. Gamma-ray spectrum of the $E_p = 992$ keV resonance in the ${}^{27}Al(p, \gamma){}^{28}Si$ reaction taken at the distance of 6 cm and at $\theta = 55^{\circ}$. The prime and double-prime refer to the single-escape and double-escape peaks, respectively. B means background peak, S the sum peak of the 1779 keV and 511 keV γ -rays and F illustrates $E_{\gamma} = 6129$ keV energy due to the ${}^{19}F(p, \alpha\gamma){}^{16}O$ reaction. The insert illustrates in more detail the intensity of the weak transitions.

27Al(p, γ)28Si, E_p = 992 keV resonance

TABLE 1 Relative intensities obtained in the 27 Al(p, γ) 28 Si reaction at $E_p = 992$ keV. The energy values were taken from refs. 4 and 5.

	F	F	F	ensity (%)			
cation in fig. 2	$\frac{L_{\gamma}}{(\text{keV})}$	(keV)	(keV)	Present	Azuma et al. ⁹)	Scott and Lusby ²)	Meyer et al. ⁴) ^a
1	1522.3	7798.8	6276.5	2.8 ± 0.2	2.9 ± 0.5	3.0 ±0.3	2.8
2	1658.7	6276.5	4617.8	0.52 ± 0.05	0.6 ± 0.1	0.49 ± 0.04	0.4
3	1778.9	1778.9	0	94.8 ± 1.5	94.0 ± 9.4	94.1 ±9.4	95
4	(1874)	Г	10668	0.29 ± 0.03			
5	2099.7	9480.4	7380.7	0.24 ± 0.02			0.2
5	2267	г	10275		?		
6	2529.3	9418.1	6888.8	0.22 ± 0.03		0.19 ± 0.03	0.2
7	(2780.3)	г	9761.5	0.23 ± 0.04			
8	2838.9	4617.8	1778.9	5.5 ± 0.4	6.2 ± 0.6	6.3 ± 0.4	6.3
9	2954.3	7933.4	4979.1	0.24 ± 0.02			0.2
10	3063.3	Г	9478.5	1.15 ± 0.11	1.1 ± 0.3	1.2 ± 0.1	1.3
11	3123.7	г	9418.1	0.70 ± 0.07	1.1 ± 0.3	0.80 ± 0.06	0.9
12	3141.6	9418.1	6276.5	0.09 ± 0.02		0.08 ± 0.02	0.05
13	3181.0	7798.8	4617.8	0.16 ± 0.04		0.16 ± 0.06	0.1
14	3200.2	4979.1	1778.9	0.24 ± 0.06			0.2
15	3315.6	7933.4	4617.8	0.21 ± 0.04		0.34 ± 0.05	0.3
16	(3377.9)	Г	9163.9	0.19 ± 0.05			0.4
17	3952.9	г	8588.9	0.19 ± 0.04			0.3
18	4497.6	6276.5	1778.9	4.8 ± 0.3	4.4 ± 0.4	6.0 ± 0.3	4.9
19	4608.4	r	7933.4	4.5 ± 0.4	3.6 ± 0.4	5.0 ± 0.3	4.2
20	4743.0	г	7798.8	8.8 ± 0.5	8.1 ± 0.8	11.5 ± 0.5	9.7
21	4800.3	9418.1	4617.8	0.31 ± 0.04	1.0 ± 0.3	0.29 ± 0.07	0.3
22	5099.7	6878.6	1778.9	0.10 ± 0.04	06.02	0.30 ± 0.05	0.2
23	5109.9	6888.8	1778.9	0.50 ± 0.06	0.0 ± 0.2	0.52 ± 0.09	0.5
24	5601.8	7380.7	1778.9	0.24 ± 0.05			0.1
25	5653.0	г	6888.8	0.40 ± 0.04	00.02	0.36 ± 0.09	0.3
26	5663.2	г	6878.6	0.58 ± 0.06	0.9±0.3	0.89 ± 0.21	0.6
27	6019.9	7798.8	1778.9	6.0 ± 0.5	5.9 ± 0.6	7.8 ± 0.4	6.8
28	6154.5	7933.4	1778.9	0.26 ± 0.05		0.55 ± 0.07	0.2
29	6265.3	Г	6276.5	2.1 ± 0.2	2.4 ± 0.4	3.4 ± 0.2	2.4
30	6810.0	8588.9	1778.9	0.24 ± 0.05			0.3
31	6878.6	6878.6	0	0.63 ± 0.06	0.5 ± 0.2	0.59 ± 0.04	0.4
32	7639.2	9418.1	1778.9	0.23 ± 0.05		0.32 ± 0.06	0.2
33	7924.0	r	4617.8	4.3 ± 0.4	4.9 ± 0.9	5.2 ± 0.4	4.9
34	7933.4	7933.4	0	3.7 ± 0.4	3.8 ± 0.9	3.9 ± 0.3	3.4
35	9478.5	9478.5	0	0.98 ± 0.10	1.1 ± 0.4	1.1 ± 0.1	1.1
	10275	10275	0		1.1 ± 0.4		
36	10762.9	г	1778.9	76.6 ±1.5	77.0 ± 7.7	72.4 ± 3.6	75
	12541.8	r	0			0.022 ± 0.009	< 0.02

Response of a high-resolution and high-energy spectrometer

Harada et al., NIM in Phys. Res. A 554, 306 (2005)

Ciemada et al., NIM Phys. Res. A 608, 76 (2009)

Table 1

Parameters of the (p, γ) reactions, energies (E_{γ}) and relative intensities (I_{γ}) of the γ -rays emitted by product nucleus [9,11,12].

Reaction	E _{res} (keV)	Q value (keV)	E _p (keV)	E_{γ} (keV)	Iγ	Target and its thickness (µg/cm²)
23 Na(p, γ) 24 Mg	1318.1	11 693	1323	1368.6(1)	1.000(2)	Na ₂ WO ₄
				11584.9(6)	0.960(2)	20
23 Na(p, γ) 24 Mg	1416.9	11 693	1422	2754.0(1)	1.000(1)	Na ₂ WO ₄
				8925.2(6)	0.985(1)	20
27 Al (p 2)28 Si	767.2	11 585	770	2838.7(1)	1.0000(14)	Al ·
/ii(p, /) bi	"(p, f) - 5t			7706.5(2)	0.9810(14)	15
39 K(p, γ) 40 Ca 1346.6	1346.6	8328	1351	3904.4(1)	1.000(1)	K ₂ SO ₄
				5736.5(1)	0.965(1)	20
$^{11}B(p,\gamma)^{12}C$	675	15957	676	4438.0(3)	1.0000(7)	LiBO ₂
				12 137.1(3)	1.0000(7)	75
$^{7}\text{Li}(p,\gamma)^{8}\text{Be}$	441	17 255	450	17619.0(6)		LiBO ₂ , 75

Nuclear data are taken from ENSDF [13]. Q values calculated by QCalc from NNDC [14].

Response of a 2" x 2" LaBr3(Ce) detector

Fig. 1. Gamma-ray spectrum emitted by ²⁴Mg nuclei created in the ²³Na(p, γ)²⁴Mg reaction at the 1.318 MeV resonance energy, measured by a LaBr₃ : Ce 2 in. \times 2 in. scintillation detector.

7Li(p, γ)8Be, E_p = 441 keV

Fig. 2. Gamma-ray spectrum emitted by ⁸Be nuclei created in the ⁷Li(p, γ)⁸Be reaction, measured by a LaBr₃ : Ce 2 in. × 2 in. scintillation detector. It is compared, after normalization to the full absorption peak, to spectrum simulated using a GEANT4 code.

γ -ray sources: Bremsstrahlung

Collisional loss: Electrons lose kinetic energies in matter by colliding with atomic electrons, leading to atomic excitation and ionization.

Bremsstrahlung (Radiation loss): Electrons lose kinetic energies in matter by radiative processes.

linear stopping power of electrons for radiation loss

$$-\left(\frac{dE}{dx}\right)_{r} = \frac{NEZ(Z+1)e^{4}}{137m_{0}^{2}c^{4}} \left(4\ln\frac{2E}{m_{0}c^{2}} - \frac{4}{3}\right)$$

Radiative losses are most important for high electron energies and for absorber materials of large atomic number.

Ratio of the specific energy losses

$$\frac{\left(\frac{dE}{dx}\right)_{r}}{\left(\frac{dE}{dx}\right)_{c}} \cong \frac{EZ}{700} \qquad E \text{ in MeV}$$

Bremsstrahlung facilities

- 1. Moscow State University, Nuclear Physics Institute, Moscow, Russia (microtron)
- 2. Joint Institute for Nuclear Research, Dubna, Russia (microtron)
- 3. Uzhgorod State University, Ukraine (betatron)
- 4. Kharkovskii Fiziko-Tekhnicheskii Institute, Kharkov, Ukraine (linear accelerator)
- 5. Forschungszentrum-Rossendorf (FZD), Dresden, ELBE, Germany (linear accelerator)
- 6. Tech. Universitaet, Darmstadt, S-DALINAC, Germany (linear accelerator)
- 7. Kyoto University, Kyoto, Japan (linear accelerator)
- 8. Pohang University of Science and Technology, Pohang, Korea (linear accelerator)
- 9. Bhabha Atomic Res. Centre, Trombay, India (linear accelerator)
- 10. Mangalore University, Mangalagangotri, Konaje, India (microtron)
- 11. Australian Radiat. Protect. & Nucl. Safe. Agency, Melbourne, Australia (linear accelerator)

The bremsstrahlung facility at the electron accelerator ELBE

Ronald Schwengner | Institut für Strahlenphysik | http://www.hzdr.de

Yield : convolution of the photonuclear cross section with the bremsstrahlung spectrum over the photon energies.

$$Y(E_0) = N_R \int_{Threshold}^{E_0} \sigma(E_{\gamma}) K(E_0, E_{\gamma}) \frac{dE_{\gamma}}{E_{\gamma}},$$

 E_0 : electron beam energy; $K(E_0, E_{\gamma})$: bremsstrahlung spectrum

Yield curve: obtained by changing the electron beam energy in small steps

This technique requires:

(1) Accurate knowledge of the bremsstrahlung spectrum for all electron energies

(2) Great stability in the accelerator operation and large counting statistics to accurately measure the yield curve

(3) Unfolding (differentiation) procedure of the yield curve

(a) Photon Difference Method: difference of two bremsstrahlung spectra with slightly-different end-point energies

(b) Penfold-Leiss Method: a set of liner equations for a given energy bin

(c) Regularization Methods

Tikhonov's Method, Cook's Least Structure Method, the Second Difference Method, the Statistical Regularization Method

Bremsstrahlung data compiled in CDFE, MSU

γ -ray sources: Positron annihilation in flight

Lawrence Livermore National Laboratory (USA)

Saclay (France)

Lecture 1 : Past of Photonuclear Reactions

Lecture 1 : Past of Photonuclear Reactions

(γ,n) cross section measurements in 1960s – 1980s LLNL (USA) Saclay (France)

Thomas-Reiche-Kuhn sum rule (energy-weighted sum rule) $\int \sigma(E) dE = 60 \frac{NZ}{A} [MeV \cdot mb] = \frac{16\pi^3}{9} \overline{E} \cdot B(E1) \uparrow \cdot \alpha$

Compilations photoneutron cross sections

- (1) ATLAS of photoneutron cross sections obtained with monoenergetic photons,
 S.S. Dietrich and B.L. Berman
 Atomic Data and Nuclear Data Tables 38, 199-338 (1988)
- (2) Handbook on photonuclear data for applications, Cross sections and spectra IAEA TECDOC-1178 (2000)

International Nuclear Reaction Database in the format EXFOR

IAEA -https://www-nds.iaea.org/exfor/exfor.htm/CDFE -http://cdfe.sinp.msu.ru/exfor/index.php/USA NNDC - http://www.nndc.bnl.gov/exfor/exfor.htm/

Lecture 2

Present of Photonuclear Reactions

- 2.1 Laser Compton-scattering γ -ray beam
- 2.2 Nuclear Physics (γ , γ') for PDR

2.3 Nuclear Astrophysics

a. p-process – (γ,n)

b. s-process - gamma-ray strength function for (γ ,n) and (n, γ)

γ-ray sources: Inverse Compton scattering

Compton scattering vs Inverse Compton scattering

$$E_{\gamma} = \frac{4\gamma^2 \varepsilon_{\rm L}}{1 + (\gamma \theta)^2 + 4\gamma \varepsilon_{\rm L}/(mc^2)}$$

 $\gamma = E_e/mc^2$ Lorentz factor

Laser Compton scattering γ -ray beam

Realm of Nuclear Photonics

modified by H. Utsunomiya

Norbert Pietralla, TU Darmstadt ELI Workshop

PDR is / might be

... sensitive to neutron skin thickness

... sensitive to parameters of symmetry energy

... influencing reaction rates / nucleosynthesis

detailed understanding of the PDR mandatory

Courtesy by D. Savran Deniz Savran | ExtreMe Matter Institute

Photon scattering ...

... using Bremsstrahlung

Atoto A

- e.g. Darmstadt High Intensity Photon Setup (DHIPS):
- K. Sonnabend et al., Nucl. Instr. and Meth. A640 (2011) 6

Courtesy by D. Savran Deniz Savran | ExtreMe Matter Institute

structure

Photon scattering ...

... using Laser Compton Backscattering

e.g. High Intensity γ-ray Source (HIγS):

H.R. Weller et al., Prog. Part. Nucl. Phys. 62 (2009) 257

Cortesy by D. Savran

Deniz Savran | ExtreMe Matter Institute

Courtesy by A. Tonchev

7.1

Spin and Parity Determination

¹³⁸Ba

N. Pietralla, at al. PRL 88 (2002) 012502; A. Tonchev, NIM B 241 (2005) 51474

¹³⁸Ba

300

Courtesy by A. Tonchev

Spin and Parity Determination

z axis: beam direction; x axis: vector of polarization

vertical 200 100 Counts / 2 keV backward **M**1 M1 horizontal 40 **M1** 20 0└ 7.9 8.0 8.2 8.1 8.3 E_{γ} (MeV)

N. Pietralla, at al. PRL 88 (2002) 012502; A. Tonchev, NIM B 241 (2005) 51474

PDR study by NRF (nuclear resonance fluorescence = photon scattering = (γ, γ')) measurements

- 1) Ideal to separate PDR (E1) and M1 resonance using linearly-polarized photons
- 2) Limited below neutron threshold (S_n)
- 3) Best suited to even-even nuclei
 - 0⁺ ground state
 - high neutron threshold (S_n)
- 4) Determine partial strength
 - discrete (resolved) states
 - unresolved states: model -dependent

PDR in ^{207,208}Pb above neutron threshold

(b)

T. Kondo et al., Phy. Rev. C 86, 014316 (2012)

Borated polyethylene

Polyethylene

³He tube

Cd sheet

1- 1+

E1 M1

²⁰⁸Pb

 0^+

9587 mg, 98.5%, 208Pb 3482 mg, 99.1%, 207Pb

Neutron anisotropy detector for E1 & M1 (γ ,n) cross section measurements

E1 cross sections for ^{208,207}Pb

<u>HFB+QRPA E1 strength</u> plus pygmy E1 resonance in Lorentzian shape

 E_o = 7.5 MeV, Γ = 0.4 MeV σ_o ≈ 20 mb for 208Pb σ_o ≈ 15 mb for 207Pb TRK sum rule 0.42% for 208Pb

0.32% for 207Pb

$B(E1)\uparrow$

207Pb

$$B(E1) \uparrow = 0.88 \pm 0.17 \ e^2 \cdot fm^2$$

 $E = 7.02 - 8.32 \ MeV$

M1 cross sections for ^{208,207}Pb

PDR study by (γ, n) measurements

- 1) Limited above neutron threshold (S_n)
- 2) Best suited to odd-A nuclei
 - low S_n
- 3) Determine partial strength
 - above S_n (complementary to (γ, γ'))
 - both discrete and continuum components
- 4) energy resolution
 - low with 4π neutron detector
 - high with TOF technique (future)

Nucleosynthesis of Heavy Elements s-process, r-process and p-process

p-process nucleosynthesis

P. Mohr et al., Phys. Lett. B 488 (2000) 127
H. Utsunomiya et al., Nucl. Phys. A 777 (2006) 459

Photoreaction rates for gs

$$\lambda_{\gamma m}(T) = \int_{0}^{\infty} cn_{\gamma}(E,T)\sigma_{\gamma m}(E)dE$$

Planck distribution

$$n_{\gamma}(E,T)dE = \frac{1}{\pi^2} \frac{1}{(hc)^3} \frac{E^2}{\exp(E/kT) - 1} dE$$

Stellar photoreaction rate

Photoreaction rates for a state μ

$$\lambda_{\gamma m}^{\mu}(T) = \int_{0}^{\infty} cn_{\gamma}(E,T)\sigma_{\gamma m}^{\mu}(E)dE$$

Stellar photoreaction rate

$$\lambda_{\gamma n}^{*} = \frac{\sum_{\mu} (2j^{\mu} + 1)\lambda_{\gamma n}^{\mu}(T)\exp(-\varepsilon_{\mu}/kT)}{\sum_{\mu} (2j^{\mu} + 1)\exp(-\varepsilon_{\mu}/kT)}$$

$$\sigma_{\gamma n}^{\mu}(E_{\gamma}) = \pi \mathsf{D}_{\gamma}^{2} \frac{1}{2(2j^{\mu}+1)} \sum_{J^{\pi}} (2J+1) \frac{T_{\gamma}^{\mu}(E_{\gamma},J^{\pi})T_{n}(E,J^{\pi})}{T_{tot}(E,J^{\pi})}$$

 $T^{\mu}_{\nu}(E_{\nu},J^{\pi}) = 2\pi \varepsilon^{3}_{\nu} f_{\nu}(E_{\nu}) \uparrow$ for E1 transition

Key quantity: γ -ray strength function f_{γ} (E_{γ})

 $E_{\gamma} > S_n$ for gs $E_{\gamma} < S_n$ for excited states μ

Only naturally occurring isomer ¹⁸⁰Ta^m

- Odd-odd Nucleus (Z=73, N=107)
- Neutron deficient nucleus (classified as one of p-nuclei)
- Solar Abundance ; 2.48×10^{-6} (the rarest)
- Half Life > 1.2×10^{15} y

Nucleosynthesis of ¹⁸⁰Ta^m

• **p-process** in the pre-supernova phase of massive stars or during their explosions as type- II supernovae Temperature ; $1.8 \leq T[10^9K] \leq 3.0$ Peak photon energy ; 200[keV]¹⁸¹Ta(γ ,n)¹⁸⁰Ta(thermal equilibrium) ¹⁸⁰Ta^m

• S-process in the Low-mass AGB star Temperature ; $2.9 \leq T[10^8 K] \leq 3.3$ (Zs. Nèmeth, F. Käppeler, G. Reffo; 1992) Typical neutron energy ; 25[keV] $179 \text{Hf}^m(\beta)^{179} \text{Ta}(n,\gamma)^{180} \text{Ta}^m$

181 Ta(γ ,n) 180 Ta

H. Utsunomiya et al., Phys. Rev. C 67, 015807 (2003)

Extra E1 γ-ray strength near Sn

Pygmy Dipole Resonance N. Paar, D. Vretenar, E. Khan, G. Colò *Rep. Prog. Phys.* **70 691** (2007)

Model calculation of the p-process nucleosynthesis

H. Utsunomiya et al., Phys. Rev. C 67, 015807 (2003)

S. Goriely, ULB 10^{3} Pt口 Yb Hf \square Hg Hg Os Se X/X solar X/X Ba Xe 🗄 Ce Kr Dv Sm Sn Pd Te 10¹ Sr H Gd Ru Cd In La Mo 1**0**⁰ 80 100 120 140 160 180 200 Mass Number

Nuclear Level Density of ¹⁸⁰Ta

Experimental Set-up

Ge Detector Set-up

Activated Ta foils on the acrylic cap

Experimental results, and comparison with theoretical models

Goko et al. Phys. Rev. Lett. 96, 192501 (2006)

Radiative neutron capture - ${}^{A}X(n,\gamma)^{A+1}X$

Hauser-Feshbach model cross section for ${}^{A}X(n,\gamma)^{A+1}X$

$$\sigma_{n\gamma}(E) = \frac{\pi}{k_n^2} \sum_{J,\pi} g_J \frac{T_{\gamma}(E,J,\pi) T_n(E,J,\pi)}{T_{tot}} \cong \frac{\pi}{k_n^2} \sum_{J,\pi} g_J T_{\gamma}(E,J,\pi) T_{tot} \approx T_n(E,J,\pi)$$

Total γ transmission coefficient

After integrating over J and π

$$T_{\gamma}(E,J,\pi) = \sum_{\nu,X,\lambda} T_{X\lambda}^{\nu}(\varepsilon_{\gamma}) + \sum_{X,\lambda} \int T_{X\lambda}(\varepsilon_{\gamma}) \rho(E - \varepsilon_{\gamma}) d\varepsilon_{\gamma}$$

X=E, M
 $\lambda=1, 2, ...$

$$\gamma$$
-ray strength function
 $T_{X\lambda}(\varepsilon_{\gamma}) = 2\pi\varepsilon_{\gamma}^{2\lambda+1} f_{X\lambda}(\varepsilon_{\gamma}) \downarrow$
nuclear level density
 $\rho(E - \varepsilon_{\gamma})$
neutron resonance spacing

neutron resonance spacing low-lying levels

 (n,γ) and (γ,n) are interconnected through the γ -ray strength function and the nuclear level density in the Hauser-Feshbach model.

Brink Hypothesis

 $f_{X\lambda}(\mathcal{E}_{\nu}) \uparrow \cong f_{X\lambda}(\mathcal{E}_{\nu}) \downarrow$

γ -ray Strength Function Method

H. Utsunomiya et al., Phys. Rev. C 80, 055806 (2009)

Indirect determination of (n, γ) cross sections for unstable nuclei based on a unified understanding of (γ, n) and (n, γ) reactions through the γ -ray strength function

The best understanding of the γ SF with PDR and M1 resonance is obtained by integrating

- (γ, n) data
- (γ, γ') NRF data
- Particle-γ coin. data , Oslo Method
- Existing (n, γ) data

Applications of the γ -ray Strength Function Method

1. Nuclear Astrophysics

s-process branch-point nuclei: unstable nuclei along the line of β -stability

F. Käppeler *et al.,* Rev. Mod. Phys. **83**, 157 (2011)

63Ni, 79Se, 81Kr, 85Kr, 95Zr, 147Nd, 151Sm, 153Gd, 185W

2. Nuclear Data for Nuclear Engineering

In collaboration with Univ. Oslo etc.

In collaboration with ELI-NP etc.

Structure of γ -ray strength function

E1 strength of the low- energy tail of GDR

Experimental determination of γ -ray strength function

Statistical model calculation of $^{A-1}X(n, \gamma)^{A}X$ cross sections with experimental γ SF

Theoretical extrapolation of γ -ray strength function

Sn isotopes

<u>HFB+QRPA E1 strength</u> supplemented with a pygmy E1 resonance in Gaussian shape

 $E_0 \approx 8.5 \text{ MeV}, \Gamma \approx 2.0 \text{ MeV}, \sigma_0 \approx 7 \text{ mb}$

~ 1% of TRK sum rule (E1 strength)

γSF for Sn isotopes

(γ**, n) data** H. Utsunomiya et al., PRC84 (2011)

Oslo data (3He, αγ), (3He, 3He' γ) Toft et al., PRC 81 (2010); PRC 83 (2011)

(n,γ) CS for Sn isotopes

(n,γ) CS for unstable Sn isotopes

¹²¹Sn[T_{1/2}=27 h]

 123 Sn[T_{1/2}=129 d]

Mo isotopes

(γ**, n) data** H. Utsunomiya et al., PRC 88 (2013)

Oslo data (3He, αγ), (3He, 3He'γ) M. Guttormsen et al., PRC71 (2005)

(γ,γ') data G. Rusev et al., PRC77 (2008)

Lecture 3

Present and Future of Photonuclear Reactions

2.3 Nuclear Astrophysics (continued)

- c. reciprocity theorem photodisintegration of D, ⁹Be, ¹⁶O
- 2.4 Evaluated Nuclear Data Library ENDF, JEFF, JENDL, RIPL

3. ELI-NP project

- 3.1 ELI-NP vs HIGS and NewSUBARU
- 3.2 p-process rare isotopes
- 3.3 Precision Era of Nuclear Physics
 - a. PDR above neutron threshold
 - b. GDR (γ, γ) , (γ, n) $(\gamma, 2n)$, $(\gamma, 3n)$ cross sections
- 3.4 Special topic

Photoreactions on isomers – laser-gamma combined experiment

Nucleosynthesis of light nuclei

Reciprocity Theorem $A + a \rightarrow B + b + Q$ $B + b \rightarrow A + a - Q$ Q value $\frac{\sigma(b \rightarrow a)}{(2I_A + 1)(2i_a + 1)p_a^2} = \frac{\sigma(a \rightarrow b)}{(2I_B + 1)(2i_b + 1)p_b^2}$

Neutron Channel

a=n, b=
$$\gamma$$
 $p_{\gamma} = \hbar k = \frac{E_{\gamma}}{c}$ $p_n^2 = 2\mu E_n$ $2j_b + 1 \rightarrow 2$

Equivalency between (n, γ) and (γ ,n)

 \square

Examples

Big Bang Nucleosynthesis: $p(n,\gamma)D$ vs $D(\gamma,n)p$

Examples

Big Bang Nucleosynthesis: $p(n,\gamma)D$ vs $D(\gamma,n)p$

K.Y. Hara et al., PRD 68, 072001 (2003)

Examples

9BeSupernova Nucleosynthesis $\alpha \alpha \rightleftharpoons^{8}Be(n,\gamma)^{9}Be$ vs ${}^{9}Be(\gamma,n)^{8}Be$

Type II Supernova

Examples

```
9Be Supernova Nucleosynthesis
\alpha \alpha \rightleftharpoons^{8}Be(n,\gamma)^{9}Be vs ^{9}Be(\gamma,n)^{8}Be
```

H. Utsunomiya *et al.* PRC 63, 018801 (2001) K. Sumiyoshi *et al*. NPA709, 467 (2002)

Examples

Supernova Nucleosynthesis $\alpha \alpha \rightleftharpoons {}^{8}Be(n,\gamma) {}^{9}Be vs {}^{9}Be(\gamma,n) {}^{8}Be$

C.W. Arnold *et al*. PRC 85, 044605 (2012) HIGS

A new measurement has been done by Konan University and CNS, University of Tokyo etc. at the NewSUBARU synchrotron radiation facility and data reduction is in progress.

Courtesy by C. Ugalde

Reciprocal advantage: a factor of 100

Application ¹⁶O(γ, α)¹²C

Application ${}^{16}O(\gamma, \alpha){}^{12}C$

Claudio Ugalde, The University of Chicago

Bubble Chamber

Superheated Target for Astrophysics Research (STAR)

Moshe Gai, U. Conn. and Yale

Optical Readout TPC

Evaluated Nuclear Data Library

• ENDF (USA)

http://t2.lanl.gov/nis/data/endf/index.html

- JEFF (Europe)
 - http://www.oecd-nea.org/dbforms/data/eva/evatapes/jeff_32/
- JENDL (Japan) http://wwwndc.jaea.go.jp/jendl/j40/J40_J.html

Reference Input Parameter Library (RIPL-3)

https://www-nds.iaea.org/RIPL-3/

ELI-NP (Europe)

(Extreme Light Infrastructure- Nuclear Physics)

Magurele-Bucharest, Romania

Approved by the European Commission in 2012

First Experiments in 2018

$$\begin{split} E_{\gamma} &= 0.2 \text{ -19 MeV} \\ I_{\gamma} &\geq 10^{11} \text{ (s}^{-1} \text{ mm}^{-2} \text{ mrad}^{-2} \text{ } 0.1\%^{-1} \text{)} \\ \Delta E/E &\leq 0.5\% \end{split}$$

HIGS (USA) (High Intensity Gamma-Ray Source)

Duke Free Electron Laser Laboratory

$$\begin{split} E_{\gamma} &= 1 \text{ -100 MeV} \\ I_{\gamma} &> 10^8 \text{ s}^{\text{-1}} \text{ cm}^{\text{-2}} \text{ on target} \\ \Delta E/E &> 1\% \end{split}$$

0.24-0.28 GeV

AIST Electron Accelerator Facility

AIST : National Institute for Advanced Industrial Science and Technology TERAS (Tsukuba Electron Ring for Acceleration and Storage) closed in April 2012

NewSUBARU (Japan)

$$\begin{split} E_{\gamma} = & 0.5 - 76 \text{ MeV} \\ I_{\gamma} = & 10^6 - 10^7 \text{ s}^{-1} \\ & (3 - 6 \text{ mm dia.}) \\ \Delta E/E > & 2\% \end{split}$$

0.55 – 1.5 GeV storage ring

Experimental Hutch GACKO (Gamma Collaboration Hutch of Konan University)

Table-top Lasers

I. Physics and Experiments with a 4π Neutron Detector

Physics

Rare isotope measurements for the p-process nucleosynthesis

- Highest intensity and monochromatic γ -ray beam
- 1mg samples of rare isotopes

Production vs 181Ta(γ ,n)<u>180Ta</u> 139La(γ ,n)<u>138La</u> measured!

Rarest element Only naturallyoccurring isomer

H. Utsunomiya et al., PRC67, 015807 (2003)

Day 1 Experiment #1

¹⁸⁰Ta(γ ,n) & ¹³⁸La(γ ,n) measurement

20 ³He proportional counters embedded in polyethylene moderator Triple-ring configuration

1st ring of 4 counters 2nd ring of 8 counters 3rd ring of 8 counters

 4π Neutron Detector

¹⁸⁰Ta vs ¹⁸¹Ta (Isotopic Impurity)

A ¹⁸⁰Ta sample with **rather low enrichment** may contain a large amount of ¹⁸¹Ta.

 $S_n(^{181}Ta:7576.8 \text{ keV}) - S_n(^{180}Ta: 6641.2 \text{ keV}) = 935.6 \text{ keV}$ Similarly,

S_n(¹³⁹La:8778 keV) - S_n(¹³⁸La: 7495 keV) = 1283 keV

We have to be careful about the amount of chemical impurities of ¹⁸⁰Ta and ¹³⁸La samples as well.

Rare isotopes to be studied

35 p-nuclei Neutron-deficient isotopes

	Natural	4.06 00
Nucleus	abundance	Abundance (10 [°] S1)
	(%)	Anders&Grevesse
180Ta	0.012	2.48E-06
190Pt	0.014	0.00017
184Os	0.02	0.000122
156Dy	0.06	0.000221
120Te	0.09	0.0043
124Xe	0.09	0.00571
126Xe	0.09	0.00509
138La	0.09	0.000409
158Dy	0.1	0.000378
132Ba	0.101	0.00453
130Ba	0.106	0.00476
180W	0.12	0.000173
168Yb	0.13	0.000322
162Er	0.14	0.000351
196Hg	0.15	0.00048
174Hf	0.16	0.000249
136Ce	0.185	0.00216
152Gd	0.2	0.00066
138Ce	0.251	0.00284
115Sn	0.34	0.0129
78Kr	0.35	0.153
84Sr	0.56	0.132
114Sn	0.66	0.0252
74Se	0.89	0.55
108Cd	0.89	0.0143
112Sn	0.97	0.0372
102Pd	1.02	0.0142
106Cd	1.25	0.0201
164Er	1.61	0.00404
98Ru	1.87	0.035
144Sm	3.07	0.0008
113In	4.29	0.0079
96Ru	5.54	0.103
94Mo	9.25	0.236
92Mo	14.84	0.378

Realm of Nuclear Photonics

modified by H. Utsunomiya

Norbert Pietralla, TU Darmstadt ELI Workshop

Resonances above S_n

Threshold Photoneutron Technique Bremsstrahlung + n-TOF

C.D. Berman et al., PRL25, 1302 (1970) R.J. Baglan et al., PRC3, 2475 (1971)

²⁰⁷Pb(γ,n)

²⁰⁸Pb(γ,n)

⁵⁷Fe(γ,n)

⁵³Cr(γ,n)

Day 1 Experiment #2

PDR and M1 resonance in 207 Pb - 207 Pb(γ ,n) measurement -

Liquid Scintillation and LaBr₃(Ce) Detector Array

34 LaBr₃(Ce), 3" x 3" Lecture 3 : Present and Future of Photonuclear Reactions Day 1 Experiment #3

Exclusive neutron decays of GDR in ¹⁵⁹Tb in collaboration with Vladimir Varlamov

Day 1 Experiment #4-1

Production of long-lived Isomers by 2 x 10PW lasers at <u>E7</u>

Laser 2 x 10 PW

Laser acceleration of heavy ions that undergo nuclear excitations induced by electrons.

¹⁸⁹Os: 9/2⁻, 30.8 keV, 5.81h
¹⁷⁶Lu: 1⁻, 123 keV, 3.66h

Experimental setup for Laser acceleration of Fe ions

Private communication with Dr. Nishiuchi of JAEA-KIZU

Acceleration mechanism (Target Normal Sheath Acceleration)

Extension of the classical case of plasma expansion into vacuum driven by ambipolar electric field

Boltzmann dist. for electron

$$n_e = n_{e0} \exp(e\Phi/T_e)$$

$$\varepsilon_0 \frac{\partial^2 \Phi}{\partial^2 x} = e(n_e - n_p)$$

Mora, PRL 90, 185002 (2003), Mora, PRE 72, 056401 (2005) Murakami and Basko, PoP 13 012105 (2006) Passoni and Lontano LPB 22 163 (2004), Lontano and Passoni PoP 13 042102 (2006) Passoni and Lontano PRL 101 115001 (2008),

Day 1 Experiment #4-2 <u>Photoexcitation</u> of long-lived isomers at <u>E8</u>

¹⁸⁹Os: 9/2⁻, 30.8 keV, 5.81h ¹⁷⁶Lu: 1⁻, 123 keV, 3.66h

We can confirm photo-excitation of isomers by detecting neutrons.

Summary

- Following pioneering developments at HIGS, AIST, and NewSUBARU, ELI-NP will open up a new era of nuclear science with intense gamma and laser photon beams.
- Please join photon physics at different facilities worldwide.

Imagination is more important than knowledge.

– A. Einstein