CONGENITAL HAND DIFFERENCES

Lisa Lattanza, MD Chief Division of Hand and Upper Extremity Surgery UCSF Medical Center CONGENITAL DEFORMITIES Upper Extremity

Common

• 1 in 626 live births

Many are single gene disorders

DIFFERENTIATION OF THE UPPER LIMB

Limb buds - ventrolateral wall of embryo

Limb buds appear 4th week (day 26)

Limb buds develop from day 26-47

Weeks 5-6

- Hand paddle develops
- Nerve ingrowth from spinal cord rami begins to occur proximally

Hand Paddle

Fingers begin to separate
Cartilaginous "bones" form

Weeks 7 — 8

- The UE grows and rotates 90°
- Elbows project posteriorly
- Dorsal mesenchymal stem cells extensors
- Ventral mesenchymal stems cells flexors

(2008 ASSH SAE qn 68) The period of time following fertilization during which limb bud development is most rapid and when most congenital anomalies occur is:

A. 1-4 weeks
B. 4-8 weeks
C. 8-12 weeks
D. 12-14 weeks
E. 14-18 weeks

Preferred Response: B

Discussion: The most rapid period of limb development is between 4 and 8 weeks after fertilization. The majority of congenital anomalies occur during this period of time. At 8 weeks gestation all limb structures are present and further development is characterized by maturation and differentiation of existing structures

Limb Development

SIGNALING CENTERS IN LIMB DEVELOPMENT

Three centers control limb development

Zone of Polarizing Activity

Transverse Limb Deficit

 Removal of the AER → truncated limb (congenital amputation)

 Placement of the AER elsewhere → ectopic limb

 Can replace AER with Fibroblast growth factor

APICAL EPIDERMAL RIDGE

 The AER is also responsible for interdigital apoptosis

Separates the webbed hand

Abnormal ZPA Signaling

Transplantation of the ZPA or SHH anteriorly → duplication along the radioulnar axis

Remove the ZPA or SHH → fingers fail to form

Mirror Hand Deformity

PALMAR DUPLICATION Wnt7a Gene Mutation

Both hands have thick palmar skin and no hair or nails <u>DORSALLY</u>

Summary

Signaling Center	Responsible Substance	Action	Anomaly
Apical ectodermal ridge	Fibroblast growth factors	Proximal to distal development, interdigital apoptosis	Transverse deficiency, syndactyly
Zone of Polarizing Activity	Sonic Hedgehog protein	Radioulnar limb formation	Mirror Hand
Wnt Pathway	Wnt7a	Ventral and dorsal axis	Nail patella syndrome

CONGENITAL HAND ANOMALIES Classification and Examples

- I Failure of formation of parts
- II Failure of differentiation
- III Duplication
- IV Overgrowth
- V Undergrowth
- VI Constriction band syndrome
- VII Generalized skeletal abnormalities

FAILURE OF FORMATION OF PARTS TRANSVERSE DEFICIENCY

FAILURE OF FORMATION OF PARTS LONGITUDINAL DEFICIENCY

Complete longitudinal failure phocomelia Partial Radial (preaxial) Central Ulnar (post-axial)

Radial Longitudinal Deficiency

- Associated conditions
 - Fanconi anemia
 - Lethal pancytopenia by 5-6 years

- Need early diagnosis to search for bone marrow donor
- Thrombocytopenia-absent radius (TAR)
 - Severe thrombocytopenia in infancy
 - Spontaneously improves after 1 year
- VACTERL
 - Vertebral, anal, cardiac, tracheoesophageal, renal, radial, and lower limb anomalies
- Holt-Oram
 - Cardiac anomalies, usually septal defects

Congenital Hand

HYPOPLASTIC THUMB

Grade I

Mild shortening

Grade II

Moderate shortening

Thenar hypoplasia

****TYPE III HYPOPLASTIC THUMB****

TYPE IV - FLOATING THUMB

TYPE V - ABSENT THUMB

- Lateral pinch grip between index and middle fingers
- Secondary rotation of index finger
- Pollicization improves grasp and tip-to-tip pinch

137. A 10 month-old child presentswith the deformity shown in Figures 1and 2. Treatment shouldconsist of:

- A. Carpometacarpal (CMC) joint stabilization, first web space reconstruction
- B. Metacarpal lengthening, metacarpophalangeal (MCP) joint stabilization, opponensplasty, first web space reconstruction
- C. Thumb ablation and toe to hand transfer
- D. Index finger pollicization
- E. Opponensplasty, MCP joint stabilization, first web space reconstruction

CLEFT HAND

TYPICAL **Absent middle finger Usually bilateral** Assoc w/ cleft feet (50%) Assoc with cleft lip, palate

TYPICAL CLEFT HAND

CONGENITAL HAND ANOMALIES Classification

Failure of formation of parts Failure of differentiation Syndactyly Camptodactyly Clinodactyly **Kirner deformity**

SYNDACTYLY

- 1 in 2000 live birth, sporadic vs. familial (10%)
- 50% bilateral
- Middle-ring finger web most common
- Classification

- Webbing: "complete" vs "incomplete"

– Bone: not involved = "simple"

involved = "complex"

SIMPLE SYNDACTYLY

Incomplete

Complete

SIMPLE COMPLETE SYNDACTYLY RF tethering MF

COMPLEX COMPLETE SYNDACTYLY

POLAND'S SYNDROME symbrachydactyly chest wall deformity Thought to be vascular anomaly

POLAND' S SYNDROME absent PIP joints

ACROCEPHALOSYNDACTYLY

- APERT SYNDROME
- Mitten or spoon hand
- FGFR 2
- Common nail index, middle & ring fingers
- Complex bony deformities

- 71. The infant whose hands are shown in Figure
 1
- is expected to have a mutation in which gene?
- A. FGF receptor 2 (FGFR2)
- B. Homeobox D13 (HOXD13)
- C. Holt-Oram syndrome 1 (HOS1)
- D. Human zinc factor protein gene 3 (GLI3)
- E. Brachyury T-box 5 (TBX5)

CAMPTODACTYLY

- Flexion contracture PIP joint
- Small finger 90%
- ? Abnormal insertion of lumbrical muscle
- Bilateral 66%
- Short FDS
- All structures probably involved

CAMPTODACTYLY Treatment

- Advise parents to accept the deformity
- Passive stretching, serial splinting rarely successful
- Consider surgery: Young child with severe contracture Rapid progression
- ???earlier intervention before fixed
 deformity

CLINODACTYLY

- Radial-ulnar curvature
- Usually small finger
- Usually radial deviation

Delta phalanx

DELTA PHALANX

- Trapezoidal-shaped phalanx
- Abnormal C-shaped epiphysis
- Usually middle phalanx of the small finger

KIRNER DEFORMITY

- Palmar-radial curvature, rotation
- Distal phalanx, usually bilateral
- Associated musculoskeletal anomalies
- No functional limitations usually
- Observe
- Splint

Correctional osteotomy

CONGENITAL HAND ANOMALIES Classification

- I Failure of formation of parts
- II Failure of differentiation
- III Duplication polydactyly
 - Pre-axial = radial Thumb
 - Central Index, middle, ring
 - Post-axial=ulnar Small finger

POLYDACTYLY

- Small finger is most commonly involved
- More common in African-American infants (incidence = 1 in 300)
- More common in females

SMALL FINGER POLYDACTYLY Type 1 – Rudimentary Soft Tissue

SMALL FINGER POLYDACTYLY Type III – Metacarpal Duplicated

INDEX FINGER DUPLICATION

THUMB POLYDACTYLY "Duplicate Thumb"

- Most common congenital anomaly----Ikuta
- Second to syndactyly-----Cohen

Types	Ι	II	III	IV	V	VI	VII
h, sultaulie		1000			200		800
Bifurca- tion level	Distal phalanx	IP joint	Proximal phalanx	MP joint	Metacarpus	CM joint	Floating
Cases %	16 5.3%	61 20.1%	14 4.6%	97 31.9%	12 3.9%	25 8.2%	42 13.8%

THUMB DUPLICATION Type 2

THUMB DUPLICATION Type 3

THUMB DUPLICATION Type 4

TRIPHALANGEAL THUMB Type 7

CONGENITAL HAND ANOMALIES Classification

- I Failure of formation of parts
- II Failure of differentiation
- III Duplication
- IV Overgrowth
- V Undergrowth
- VI Constriction band syndrome
- VII Generalized skeletal abnormalities

MACRODACTYLY

- 90% unilateral
- Multiple digits vs. single digit = 3 : 1
- Affects radial side of hand
- Index finger most frequently affected
- ? Related to neurofibromatosis

MACRODACTYLY

MACRODACTYLY

- Staged debulking of soft tissue
- Epiphysiodesis
- Wedge osteotomies to correct deviation
- Consider ray amputation

101. Which of the following treatment options is not effective in arresting the longitudinal overgrowth in the 9-month-old child with the condition depicted in Figures 1 and 2? A. Epiphysiodesis **B.** Epiphysectomy C. Digital neurectomy D. Digital shortening E. Debulking

CONGENITAL HAND ANOMALIES Classification

- I Failure of formation of parts
- II Failure of differentiation
- III Duplication
- IV Overgrowth
- V Undergrowth (brachydactyly)
- Short digit normal # of bones, 1 is small
- Short metacarpal (brachymetacarpia)
- Short phalanx (brachyphalangia)

BRACHYMETACARPIA

CONGENITAL HAND ANOMALIES Classification

- I Failure of formation of parts
- II Failure of differentiation
- III Duplication
- IV Overgrowth
- V Undergrowth
- VI Constriction band syndrome
- VII Generalized skeletal abnormalities

CONSTRICTION RING SYNDROME

- Circumferential grooving or transverse amputation
- Associated anomalies (40-50%) Club feet; cleft lip and palate

 Associated hand anomalies (80%) Syndactyly

- 21. Acrosyndactyly (Figure 1), or fusion of the terminal
- portion of two or more digits with proximal sinuses
- between the digits, is seen in:
- A. Constriction band syndrome
- B. Poland's syndrome
- C. Cleft hand
- D. Simple, incomplete syndactyly
- E. Simple, complete syndactyly

CONGENITAL HAND ANOMALIES Classification

- I Failure of formation of parts
- II Failure of differentiation
- III Duplication
- IV Overgrowth
- V Undergrowth
- VI Constriction band syndrome
- VII Generalized skeletal abnormalities

Madelung Deformity

- Basics
 - Focal physeal abnormality of distal radius

 Volar-ulnar corner growth inhibition
 - Abnormal radiolunate ligament from metaphysis of distal radius

 Vicker's ligament
 - Caused by mutation in SHOX gene
 - Associated with short stature, Turner syndrome, Leri-Weill dyschondrosteosis

- Madelung Deformity
 - Evaluation
 - Deformity becomes evident in adolescence
 - Volar sag to carpus
 - Dorsally prominent distal ulna
 - Self-limited period of pain in adolescence

Congenital Hand

Madelung Deformity Evaluation

- Radiographs/MRI show typical volar-ulnar physeal fall-off and carpal subluxation
- MRI reveals Vicker's ligament

- Madelung Deformity
 - Treatment
 - Physiolysis, resection of tethering Vicker's ligament may halt progression if done early enough
 - Dome osteotomy of distal radius to correct established deformity

Congenital Hand

Congenital Dislocation of the Radial Head

- Uncommon
- DDx: traumatic dislocation
- Sporadic or inheritable
- Isolated or syndromic
- 40-60% bilateral

Congenital Dislocation of the Radial Head

- Indications for treatment
 - PAIN
 - Skeletally mature

Congenital Proximal Radio-ulnar Synostosis

- Uncommon
- Sporadic, syndromic or other malformations
- 1/3 with fetal alcohol syndrome
- 50-80% bilateral

- No forearm rotation (usually fixed in pronation)
- Indications: function (esp if bilateral)
- Surgical repositioning

Infantile Trigger Thumb

Common

- Isolated anomaly
- Developmental, not congenital
- May resolve spontaneously

Infantile Trigger Thumb

Surgical Indications

Persists for >1 yr after diagnosis
Dx at age > 4 y.o.

Treatment

Surgical release of A1 pulley
Excellent results

TRIGGER FINGER

• Different than trigger finger in adult

Extensile approach

 Look for anomalous muscle/tendon attachment

(2008 ASSH SAE qn 68) Patients with the congenital deformity depicted in Figure 1 often have:

A. Limited elbow range of motion
B. Carpal tunnel syndrome
C. Subluxation of the extensor carpi ulnaris tendon
D. Short stature
E. Mucupolysaccharidase deficiency

Preferred Response: D

Discussion: Most patients with Madelungs have a dyschondrosteosis, or a combination of the deformity of the distal radius, short forearms, and short stature. Elbow range of motion is rarely affected and carpal tunnel syndrome and extensor tendon abnormalities are uncommon as well.

An 8-month-old child is seen with the thumb deformity in Figure 1. The MCP joint is flexed, but supple, and easily passively extended. The child cannot actively extend the MCP or the IP joint of the thumb. There are no other abnormalities seen in this child. In considering surgery for this deformity, what common abnormality is found?

A. Thickening in the flexor pollicis longus tendon
B. Stenotic A1 pulley of the thumb
C. Absence of the flexor pollicis longus
D. Hypoplastic extensor pollicis brevis
E. Absence of the brachioradialis

- 71. The infant whose hands are shown in Figure
 1
- is expected to have a mutation in which gene?
- A. FGF receptor 2 (FGFR2)
- B. Homeobox D13 (HOXD13)
- C. Holt-Oram syndrome 1 (HOS1)
- D. Human zinc factor protein gene 3 (GLI3)
- E. Brachyury T-box 5 (TB)

74. The abnormality depicted in Figure 1 occurred during embryogenesis between weeks: A. 1 and 2 B. 3 and 4 C. 5 and 7 D. 8 and 10 E. 11 and 13

100. The hand finding most commonly associated with the condition depicted in Figure 1 is: A. Normal hand **B.** Hypoplastic hand C. Radial club hand **D.** Brachysyndactyly E. Transverse deficiency proximal to the MCP joints

- 21. Acrosyndactyly (Figure 1), or fusion of the terminal portion of two or more digits with proximal sinuses
- between the digits, is seen in:
- A. Constriction band syndrome
- B. Poland's syndrome
- C. Cleft hand
- D. Simple, incomplete syndactyly
- E. Simple, complete syndactyly

66. What is the diagnosis of the infant seen in Figure 1?
A. Congenital radioulnar synostosis
B. Ulnar dimelia
C. Arthrogryposis multiplex
congenita
D. Aperts syndrome
E. Congenital contractural arachnodactyly of the elbow

- 84. In hypoplasia of the thumb, what factor would
- favor pollicization?
- A. Absence of thenar muscles
- B. Narrowing of the first web space
- C. Insufficiency of the ulnar collateral ligament of the
- MP joint
- D. Extrinsic tendon abnormalities (flexor and extensor)
- E. Unstable carpometacarpal joint

The patient with the depicted hand deformity (Figures 1, 2 and 3), is more likely to have:

A a craniofacial deformity B amniotic disruption syndrome C a cleft hand deformity D synpolydactyly E renal abnormalities

