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Abstract

In this paper, we proposed algorithms interior proximal methods based on entropy-
like distance for the minimization of the quasiconvex function subjected to nonneg-
ativity constraints. Under the assumptions that the objective function is bounded
below and continuously differentiable, we established the well definedness of the
sequence generated by the algorithms and obtained two important convergence re-
sults, the principal one is a sufficient condition for the convergence point of the
sequence generated by the algorithms is a point of solution of the problem.

Keywords: Interior proximal methods, entropy-like distance, quasiconvex pro-
gramming.

1 Introduction

Consider the quasiconvex minimization problem

(P) min f(x)
s.t. x ≥ 0.

(1.1)

where f : IRn → IR ∪ {∞} is a closed proper quasiconvex function.
The quasiconvex minimization problem has many applications in Economics (e.g. see
[11]), microeconomy (utility function, e.g. see [20]), location theory (e.g. see [13]), ap-
proximation theories (fractional programming, e.g. see [4]) etc.
The classical proximal point algorithm to minimize a convex function f on IRn generates
a sequence {xk} through the iterative scheme: Start with an initial point x0 ∈ IRn and
find

xk+1 = arg min
x∈IRn

{f(x) + λk‖x− xk‖2}, (1.2)
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Universitária, Centro de Tecnologia, Bloco H, Sala 319 C. P. 68511, 21941-972 Tel: +55 21 2562-8672 /
+55 21 2562-8673 Fax: +55 21 2562-8676 Rio de Janeiro - RJ - Brazil E-mail: poliveir@cos.ufrj.br
‡Partially supported by CNPq, Federal University of Piaúı, Teresina, Brazil. E-mail: jurandir@ufpi.br
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where {λk} is a sequence of positive real numbers and ‖ · ‖ denote the Euclidean norm
IRn. This method, first proposed by Martinet [19] and subsequently studied by Rockafel-
lar [24], Guller [14] and many others.

Many researchers have attempted to replace the quadratic term in (1.2) by distance-like
function [1, 3, 8, 17, 26, 27]. Usually, Bregman function and ϕ-divergence distance are
considered to obtain iterates lying within the constraint set, see for example [8], [27] and
their references; another interesting interior proximal family is the so-called logarithmic-
quadratic method studied in [3]. However, as few researches exist regarding the quasicon-
vex case, we highlight the recent study in [25] where the distance of Bregman, [9] and [10]
works with the ϕ-divergence distance. Both work with the following entropy-like distance,
also called ϕ-divergence.

dϕ(x, y) :=
n∑
i=1

yiϕ

(
xi
yi

)
(1.3)

where ϕ : IR+ → IR is the closed proper strictly convex function ϕ(t) = t − ln t − 1,
for all t > 0. This paper deals with two classes of functions Φ1 and Φ2, defined in the
next section. We propose the algorithms A1, A2 and A3 based on the interior proximal
algorithm, where for all ϕ ∈ Φ1 we replace the quadratic term in (1.2), by dϕ is defined
in (1.3), and since we do not require the convexity of f , the algorithm is given by:

x0 > 0
xk+1 ∈ arg min{f(x) + λkdϕ(x, xk)}, (1.4)

where {λk} is sequence of positive numbers. Now, for ϕ ∈ Φ2 use (1.4) with dϕ defined
by

dϕ(x, y) :=
n∑
i=1

y2iϕ

(
xi
yi

)
. (1.5)

The algorithm A3 works with Dh, the Bregman distance induced by h, defined by

Dh(x, y) := h(x)− h(y)− 〈∇h(y), x− y〉. (1.6)

where h defined in the next section. Use (1.4) replaced dϕ by Dh defined by (1.6).

Regarding the algorithm A1, retrieve and expand the works of [9] and [10], because we
work not only with a function ϕ(t) = t − ln t − 1, but with a class Φ1 which contains
this function, and also established, under certain assumption, a sufficient condition for
the convergence of our algorithm to an optimal solution to the problem (P). A condition
which does not appear in [9], [10] and will be applied in [25] with the algorithm A3.

In relation to algorithm A2, we obtain similar results to those obtained by the algo-
rithm A1 and we have as a particular case the logarithmic-quadratic proximal distance
[2].

This paper is organized as it follows: after this introduction, we present some defini-
tions and results about the quasiconvex functions, the definition of ϕ-divergence and the
definition of Bregman distance, and some of their properties. In section 3, we define the
algorithms and show its well-definedness. In section 4, convergence analysis . Finally, in
section 5, we set the conclusions.
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We will use the following notation throughout this paper. IRn denotes the n-dimensional
Euclidean space. The Euclidean inner product is denoted by 〈., .〉 and ‖ . ‖ indi-
cates the Euclidean norm. The i th component of vector x ∈ IRn is denoted by
xi ∀ i = 1, ..., n. IRn

+ and IRn
++ represent, respectively, the non-negative orthant of

IRn and its interior, i.e., IRn
+ = {(x1, ..., xn) ∈ IRn : xi ≥ 0, i = 1, ..., n} and

IRn
++ = {(x1, ..., xn) ∈ IRn : xi > 0, i = 1, ..., n}. The gradient of f in x is denoted

by ∇f(x) and the ith partial derivative of f in relation to x is represented by (∇f(x))i.
The notation ∇xf(x, y) indicates the partial derivative of f in relation to its first compo-
nent.

2 Preliminary

In this section, we recall some preliminary results that will be used in the next section.
We start with the definitions of quasiconvex functions, properties and some of theirs
characterizations. This theory can be found in [18] and their references.

Definition 2.1 A function f : IRn → IR is said quasiconvex if for every x, y ∈ Rn and
for every α ∈ [0, 1] the following inequality holds:

f((1− α)x+ αy) ≤ max{f(x), f(y)}. (2.7)

When the strict inequality occurs in (2.7) the function f is said to be strictly quasiconvex.
It is immediate that a convex function is quasiconvex and the domain of a quasiconvex
function is convex.
For a given λ ∈ Rn the level (respectively, strict level) set of f , corresponding to λ, is the
set:

Sf (λ) := {x ∈ Rn : f(x) ≤ λ},
respectively,

S<f (λ) := {x ∈ Rn : f(x) < λ}.

The next proposition characterizes the quasiconvex functions.

Proposition 2.1 A function f : IRn → IR is quasiconvex if and only if Sf (λ) is a convex
set for all λ ∈ R.

Proof: See [18]. �

Proposition 2.2 Assume that f : IRn → IR is differentiable. Then f is quasiconvex if
and only if for all x, y ∈ Rn such that

f(x) < f(y)⇒ 〈∇f(y), x− y〉 ≤ 0. (2.8)

Proof: See [18]. �

The following definition of pseudoconvex function can be found in [18].
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Definition 2.2 A function f : IRn → IR is said to be pseudoconvex if for any x, x0 ∈ IRn,
one has

f(x) < f(x0)⇒ 〈∇f(x0), x− x0〉 < 0.

We relate now pseudoconvex functions to and quasiconvex functions.

Lemma 2.1 Assume that f : IRn → IR is quasiconvex and differentiable. If ∇f(x) 6= 0
and f(y) < f(x), then 〈∇f(x), y − x〉 < 0.

Proof: Since f is continuous, there exists δ > 0 such that z ∈ B(y, δ) implies f(z) < f(x),
where B(y, δ) := {w ∈ IRn : ‖ y − w ‖< δ}.
Take

ẑ = y +
1

2δ

∇f(x)

‖ ∇f(x) ‖
∈ B(y, δ) so f(ẑ) < f(x)

by the Proposition 2.2 , it follows that 〈∇f(x), ẑ − x〉 ≤ 0, which means that

〈∇f(x), y − x〉+
‖ ∇f(x) ‖

2δ
≤ 0

consequently,

〈∇f(x), y − x〉 ≤ −‖ ∇f(x) ‖
2δ

< 0.

�

An interesting observation is that if f is a quasiconvex and differentiable function and
∇f(x) = 0, x is not necessarily a minimum of f as it can be seen for instance in f : IR→ IR
given by f(x) = x3 at point x = 0.
We now present the definition of ϕ-divergence function and some of their properties as
used in the context of optimization.
Let ϕ : IR → IR ∪ {∞} be a closed proper convex function. We denote its domain by
domϕ := {t : ϕ(t) < ∞} 6= ∅ with domϕ ⊂ [0,∞). We assume that ϕ satisfies the
following.

(i) ϕ is twice continuously differentiable on int(dom ϕ)= (0,∞),

(ii) ϕ is strictly convex on its domain,

(iii) lim
t→0+

ϕ′(t) = −∞,

(iv) ϕ(1) = ϕ′(1) = 0 and ϕ′′(1) > 0.

We denote by Φ the class of functions satisfying (i) - (iv). For any ϕ ∈ Φ, since
argmin{ϕ(t) : t ∈ IR} = {1} ϕ is coercive. Consider two subclasses of Φ , defined
by.

Φ1 := {ϕ ∈ Φ;ϕ′′(1)

(
1− 1

t

)
≤ ϕ′(t) ≤ ϕ′′(1) log t ∀t > 0} (2.9)

Ψ := {ϕ ∈ Φ;ϕ′′(1)

(
1− 1

t

)
≤ ϕ′(t) ≤ ϕ′′(1)(t− 1) ∀t > 0} (2.10)
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Examples of function in Φ1 ∩Ψ are:

ϕ1(t) = t log t− t+ 1, domϕ1 = [0,+∞)

ϕ2(t) = − log t+ t− 1, domϕ2 = (0,+∞)

ϕ3(t) = 2(
√
t− 1)2, domϕ3 = [0,+∞)

This first time, we fixed our attention to the subclass Φ1.

Definition 2.3 If ϕ ∈ Φ1, then dϕ : IRn
++ × IRn

++ → IR defined by

dϕ(x, y) :=
n∑
i=1

yiϕ

(
xi
yi

)
(2.11)

is said to be a ϕ− divergence.

Denoting by 51 the gradient concerning the first variable, it holds that [51dϕ(x, y)]i =

ϕ′
(
xi
yi

)
for all i = 1, ..., n. From the strict convexity of ϕ and (iv) we obtain,

ϕ(t) ≥ 0 ∀t ≥ 0 ϕ(t) = 0⇔ t = 1.

Hence, dϕ satisfies
dϕ(x, y) ≥ 0 (x, y) ∈ IRn

++ × IRn
++, and

dϕ(x, y) = 0⇔ x = y.

Consider the function ϕ(t) = ϕ1(t) = t log t− t+ 1, we have

dϕ(x, y) := H(x, y) =
n∑
i=1

(xi log
xi
yi

+ yi − xi) (2.12)

which is the so-called Kullback-Leibler relative entropy distance functional. H(x, y) can
be continuously extended to IRn

+×IRn
++, adopting the convention the 0 log 0 = 0. In order

words, H admits a point with zero component in its first argument. The next result shows
some properties of H.

Lemma 2.2 Let H defined in (2.12), we have:

(i) The level sets of H(x, ·) are bounded for all x ∈ IRn
+,

(ii) If {yk} ⊂ IRn
++ converge to y ∈ IRn

+ , then limk→∞H(y, yk) = 0,

(iii) If {zk} ⊂ IRn
+, {yk} ⊂ IRn

++ are such that {zk} is bounded, limk→∞ y
k = y ∈ IRn

+ and
limk→∞H(zk, yk) = 0, them limk→∞ z

k = y,

(iv) For any w, z ∈ IRn
++ and v ∈ IRn

+. If ϕ ∈ Φ1, then 〈51dϕ(z, w), v − z〉 ≤
ϕ′′(1)[H(v, w)−H(v, z)].
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Proof: The proof (i) - (iii) is elementary using (2.12) and (iv) see [27] lemma 4.1 (ii). �

Now, consider the class Ψ. Let Φ2 the class of closed proper convex functions ϕ : R+ →
R ∪ {+∞} is given by

ϕ(t) := µh(t) +
(ν

2

)
(t− 1)2. (2.13)

with ν > µh′′(1) > 0 , h ∈ Ψ and let the associated proximal distance be defined by

Definition 2.4 For a given ϕ ∈ Φ2, the distance-like function dϕ : Rn×Rn → R∪{+∞}
is defined by

dϕ(x, y) :=

{ ∑n
i=1 y

2
iϕ(xi/yi), x, y ∈ Rn

++

+∞, otherwise
(2.14)

In particular, h(t) = ϕ2(t) = − log t + t − 1 gives the so-called logarithmic - quadratic
proximal distance [2].
Considering dϕ given in (2.14) we have that, [∇1dϕ(x, y)]i = yiϕ

′(xi
yi

) for all i = 1, ..., n.

The following lemma will be used in convergence analysis. Defined by

θ := ν + ρ.µ, τ := ν − ρ.µ ρ := h′′(1)

Lemma 2.3 For all w, z ∈ IRn
++ and v ∈ IRn

+, then 〈∇1dϕ(w, z), w − v〉 ≥
θ
2

(‖ w − v ‖2 − ‖ w − z ‖2) + τ
2
‖ w − z ‖2 .

Proof: See [3]. �

We focus our attention on the properties of a given function ϕ ∈ Φ2 and the induced
function dϕ(·, ·), which will be used in the subsequent analysis. Initially, we summarize
some special properties of ϕ. Since their verifications are directed by computations, we
omit the details.

Proposition 2.3 Let ϕ ∈ Φ2. Then, the following results hold.

(i) ϕ(t) ≥ 0 e ϕ(t) = 0 if and only if t = 1,

(ii) ϕ(t) is decreasing in (0, 1) with limt→0+ ϕ(t) = ∞ , and increasing in (1,∞) with
limt→∞ ϕ(t) =∞,

(iii) ϕ(1) = ϕ′(1) = 0, and ϕ′′(1) > 0,

(iv) ϕ′(t) is nondecreasing on (0,∞) and limt→∞ ϕ
′(t) = 1, limt→0+ ϕ

′(t) = −∞.

From the strict convexity of ϕ ∈ Φ2 and property (iii) by the last proposition, ϕ satisfies

ϕ(t) ≥ 0 t > 0, and ϕ(t) = 0⇔ t = 1.
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Hence, dϕ satisfies

dϕ(x, y) ≥ 0 (x, y) ∈ IRn
++ × IRn

++, and

dϕ(x, y) = 0⇔ x = y

Lemma 2.4 Let ϕ ∈ Φr, fixed y ∈ IRn
++. Then, Lr(y, γ) := {x ∈ IRn

++ : dϕ(x, y) ≤ γ}
are bounded for all γ ≥ 0, with r ∈ {1, 2}.

Proof: To r = 1 is direct by definition ϕ ∈ Φ1 and to r = 2 is direct by Proposition 2.3. �

Now, we present the definition of Bregman distance. Let S be an open and convex
subset of IRn and S its closure. Consider a convex real function h defined on S and let
Dh : S × S → IR be

Dh(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉. (2.15)

Definition 2.5 The function h is said to be a Bregman function (and Dh the Bregman
distance induced by h) if the following conditions hold:

(B1) h is continuously differentiable S;

(B2) h is strictly convex and continuous in S;

(B3) For all δ ∈ IR the partial level sets Γ1(y, δ) = {x ∈ S : Dh(x, y) ≤ δ}, Γ2(x, δ) =
{y ∈ S : Dh(x, y) ≤ δ} are bounded for all y ∈ S, all x ∈ S respectively;

(B4) If {yk} ⊂ S converges to y then Dh(y, y
k) converges to 0.

(B5) If {xk} ⊂ S and If {yk} ⊂ S are sequences such that {xk} is bounded, limk→∞ y
k = y

and limk→∞Dh(x
k, yk) = 0 then limk→∞ x

k = y.

S is called the zone of h. It is easy to check that Dh(x, y) ≥ 0 for all x ∈ S, y ∈ S and
Dh(x, y) = 0 if and only if x = y.

The following definition presents a subclass of Bregman functions.

Definition 2.6 Let h be a Bregman function with zone S.

(i) h is called zone coercive when for all y ∈ IRn there exists x ∈ S such that ∇h(x) = y,
that is, ∇h is onto.

(ii) h is called separable when h can be written in the form

h(x) =
n∑
i=1

hi(xi),

with hi scalar Bregman functions. In this case, distance Dh associated to h is also
called separable.
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Examples of Bregman functions can be found in [8] , [11]. In particular, let S =
IRn

++, h(x) =
∑n

i=1 xi log xi, extended with continuity to ∂IRn
+ with the convention that

0 log 0 = 0, in this case Dh(x, y) = H(x, y) =
∑n

i=1(xi log xi
yi

+ yi − xi), where H is given

in (2.12).

We next recall the definition of Fejér convergent sequence regarding the Euclidean dis-
tance.

Definition 2.7 A sequence {xk} in IRn is Fejér convergent to a set U ⊂ Rn with respect
to the Euclidean distance if

‖ xk+1 − u ‖≤‖ xk − u ‖ for all k ≥ 0, for all u ∈ U.

We have the following result

Proposition 2.4 If {xk} is Fejér convergent to U 6= ∅ then {xk} is bounded. If a cluster
point x of {xk} belongs to U then x = limk→∞x

k.

Proof: See [16]. �

3 Algorithm

In this section, we propose proximal point algorithms to solve the problem (P). Denoted
by Algorithm A1, A2 and A3, respectively. We show the well definedness of the generated
sequence. All have the following common structure:

Initialization: x0 > 0
Iterative step: Given xk, calculate the next iterative xk+1 from

xk+1 ∈ argmin{fk(x)}

where fk(x) := f(x) + λkdϕ(x, y) and {λk} a sequence of positive real number satisfying
0 < λk ≤ λ̄ for some λ̄ > 0.
According to the choice of ϕ and dϕ(·, ·) we have the following two algorithms:

Algorithm A1 Consider the above structure with ϕ ∈ Φ1 and dϕ(·, ·) defined in (2.11).

Algorithm A2 Consider the above structure with ϕ ∈ Φ2 and dϕ(·, ·) defined in (2.14).

The following algorithm we are interested in Bregman functions with the following re-
quirement:
(R) A Bregman distance Dh(·, ·) , defined in (2.15), induced by a Bregman function h,
with zone S = IRn

++ and such that h is separable and coercive zone.
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Algorithm A3 Consider the above structure where dϕ(·, ·) is replaced by a Bregman
distance Dh(·, ·).

We show that the algorithm A1 and A2 are well-defined under the following assump-
tion.

(H1) f : IRn → IR is bounded below, that is, there exists β ∈ IR such that β ≤ f(x) for
all x ∈ IRn

+.

(H2) f is continuously differentiable and quasiconvex function.

We denote by U the following subset of IRn
+, which is associated to the sequence {xk}.

U := {x ∈ IRn
+ : f(x) < f(xk), k = 0, 1, ...} (3.16)

In the following result we establish the well-definedness of the A1 and A2 algorithms,
and the existence of a limit point to sequence {xk} generated by A1 or A2 algorithms.

Proposition 3.1 Assuming (H1) and (H2), we have:

(i) The sequences {xk} generated by A1 and A2 are well-defined;

(ii) {f(xk)} is a decreasing and convergent sequence, where {xk} is generated by A1 or
A2;

(iii) If U 6= ∅ then, the sequence {xk} generated by A1 is bounded;

(iv) If U 6= ∅ then, the sequence {xk} generated by A2 is Fejér convergent to U .

Proof: Considering that the proof of (i) and (ii), for both the sequence generated by A1
and by A2, follows the same structure, we prove only the case where {xk} is generated
by A2.
(i) By induction, x0 > 0 there exists by the initialization of the algorithm A2. Let xk > 0,
by H1 it follows that

fk(x) = f(x) + λkdϕ(x, xk) ≥ β + λkdϕ(x, xk)

by Definition 2.4 and (xk)i > 0, we have

λkdϕ(x, xk)→∞, as x→ ∂IRn
++ (3.17)

Since f is bounded below and (3.17) holds, then

fk(x) = f(x) + λkdϕ(x, xk)→∞ as x→ ∂IRn
++ (3.18)

With fk is continuous, bounded below and (3.18) holds, fk reaches its minimum in a point
w > 0. Therefore, there exists xk+1 ∈ argmin{fk(xk)}, with xk+1 = w > 0, which can
not unique due to the non convexity of f .

(ii) By definition of xk given by algorithm A2, we have

f(xk) + λkdϕ(xk, xk−1) ≤ f(x) + λkdϕ(x, xk−1) ∀x ∈ IRn
++
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Setting x = xk−1 in the last inequality, we have that

f(xk) + λkdϕ(xk, xk−1) ≤ f(xk−1)

which, by the nonnegativity of dϕ and λk, implies that

0 ≤ λkdϕ(xk, xk−1) ≤ f(xk−1)− f(xk).

This shows that {f(xk)} is a decreasing sequence. As f is bounded below {f(xk)} is
convergent.

(iii) Given x ∈ U then f(x) < f(xk+1) ∀k ∈ IN , where {xk} is generated by A1.
By the assumption (H2) and Proposition (2.2), we obtain that

〈∇f(xk+1), x− xk+1〉 ≤ 0. (3.19)

Since z ∈ argmin{fk(x)} is such that z > 0. Hence, from the optimality conditions of this
problem, it results ∇fk(z) = 0, and so ∇f(z) = −λk51 dϕ(z, xk) ∀k ∈ IN . Particularly,

∇f(xk+1) = −λk 51 dϕ(xk+1, xk) ∀k ∈ IN. (3.20)

By (3.19), (3.20) and Lemma 2.2 (iii) with w = xk+1, z = xk and v = x, we have that

0 ≥ 〈∇f(xk+1, x− xk+1)〉 = 〈−λk 51 dϕ(xk+1, xk), x− xk+1〉
= λk〈51dϕ(xk+1, xk), xk+1 − x〉
≥ λkϕ

′′(1)[H(x, xk+1)−H(x, xk)] (3.21)

with λk > 0 and ϕ′′(1) > 0, we obtain that

H(x, xk+1) ≤ H(x, xk) (3.22)

Now, from Lemma 2.2 (i) the level sets of H(x, ·) are bounded, thus implying the bound-
edness of {xk}.

(iv) In a way similar to the previous item, given x ∈ U where {xk} is generated by
A2 then, we obtain

〈∇f(xk+1), x− xk+1〉 ≤ 0. (3.23)

By (3.20), (3.23) and Lemma 2.3, with v = x,w = xk+1 and z = xk, we have

0 ≥ 〈∇f(xk+1, x− xk+1)〉 = 〈−λk 51 dϕ(xk+1, xk), x− xk+1〉
= λk〈51dϕ(xk+1, xk), xk+1 − x〉

= λk

[
θ

2

(
‖ xk+1 − x ‖2 − ‖ xk − x ‖2

)
+
τ

2
‖ xk+1 − xk ‖2

]
≥ λk

θ

2

(
‖ xk+1 − x ‖2 − ‖ xk − x ‖2

)
(3.24)

with λk > 0 and θ > 0, we obtain that

‖ xk+1 − x ‖2≤‖ xk − x ‖2

then {xk} is Fejér convergent to U . �
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4 Convergence Analysis

In this section we prove important convergence results. In the first, we establish conver-
gence to a stationary point of the problem (P), when U 6= ∅.

Theorem 4.1 If assumptions (H1), (H2) hold and U 6= ∅, then the sequence {xk} gen-
erated by the algorithm A1 or A2 converge to a stationary point of (P).

Proof: First, prove that the sequence {xk}, generated by A1 or A2, is convergent.
Let x be an accumulation point of {xk} and {xkj} be a subsequence converging to x.
From the continuity of f , it we have that

lim
j→∞

f(xkj) = f(x)

by the definition of U , it implies that x ∈ U .
To {xk} generated by A1, by (3.22) {H(x, xk)} is decreasing, and the nonnegativity of
H, we have {H(x, xk)} is convergent. With {xkj} converge to x , by Lemma 2.2 (ii),
limj→∞H(x, xkj) = 0, then it follows that

lim
k→∞

H(x, xk) = 0.

Consider, now, another accumulation point x̂ of {xk} and {xqj} is a subsequence of {xk}
such that, limj→∞ x

qj = x̂. By the same argument

lim
k→∞

H(x̂, xqj) = 0.

Using, again, by Lemma 2.2 (iii) with yk = xqj , y = x̂ and zk = x, we have that x = x̂.
Soon {xk} is convergent.
To {xk} generated by A2, using Proposition 2.4 and Proposition 3.1 (iv), we have that
{xk} is convergent.
We will show, now, that x is a stationary point of the problem (P), that is,

x ≥ 0, ∇f(x) ≥ 0 and xi(∇f(x))i = 0 ∀i = 1, ..., n. (4.25)

Henceforth the proof basically follows the same structure, for both the sequence generated
by A1 and A2, we will do only the case where {xk} is generated by A2.
The first condition in (4.25) is immediate, since limk→∞ x

k = x and xk > 0. To prove the
other two conditions in (4.25) we consider the sets:

I(x) := {i ∈ {1, ..., n} : xi = 0} and J(x) := {i ∈ {1, ..., n} : xi > 0}
Clearly, the two disjoint sets from a division of {1, ..., n}, and we analyze the cases when
i ∈ I(x) or i ∈ J(x) for any i ∈ {1, ..., n}.

Case 1: If i ∈ I(x), it supposes by contradiction that (∇f(x))i < 0. By the contin-
uous differentiability of f , we have ∇f(xk+1)i → ∇f(x)i < 0. Therefore ∇f(xk+1)i < 0
for k sufficiently large. By (3.20) and Definition 2.4, we have

(∇f(xk+1))i = −λk(51dϕ(xk+1, xk))i = −λkϕ′
(
xk+1
i

xki

)
(4.26)
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Since λk > 0, ϕ′
(
xk+1
i

xki

)
> 0 for k sufficiently large. By Proposition 2.3, we have

xk+1
i > xki > 0 for k sufficiently large, which contradicts the fact that {xki } converges

to xi and xi = 0. Therefore (∇f(x))i ≥ 0 for each i ∈ I(x).

Case 2: If i ∈ J(x), then limk→∞
xk+1
i

xi
= 1. Using, again, Proposition 2.3, we obtain,

ϕ′
(
xk+1
i

xi

)
→ ϕ′(1) = 0.

This, together with (4.26) and the boundedness of {λk}, we have

(∇f(xk+1))i → (∇f(x))i = 0 ∀i ∈ J(x).

From cases (1) and (2), we conclude that

∇f(x) ≥ 0 and xi(∇f(x))i = 0 ∀i = 1, ..., n.

�
With the hypotheses of the previous theorem, the next result establishes a sufficient
condition for x is a solution of the problem (P). Condition which is not included in [9],
[10] and [25]. Henceforward x = limk→∞ x

k, where {xk} is generated by A1 or A2.

Theorem 4.2 Suppose (H1), (H2) hold and U 6= ∅, we have

(i) If ∇f(x) 6= 0 then x is solution of the problem (P);

(ii) If λk → 0, then x is solution of the problem (P).

Proof: (i) Suppose by contradiction that x is not one of minimizing f , then there exists
x̂ ≥ 0 such that f(x̂) < f(x). With ∇f(x) 6= 0 and f(x̂) < f(x) by Lemma 2.1, we have

〈∇f(x), x̂− x〉 < 0

Consequently,

0 > 〈∇f(x), x̂− x〉 = 〈∇f(x), x̂〉 − 〈∇f(x), x〉 = 〈∇f(x), x̂〉.

Which is a contradiction, because ∇f(x) ≥ 0 and x̂ ≥ 0. Therefore x is a solution of the
problem (P).

(ii) Since xk+1 is the minimizer of f(x) + λkdϕ(x, xk), we have

f(xk+1) + λkdϕ(xk+1, xk) ≤ f(x) + λkdϕ(x, xk) ∀x ∈ IRn
++

Taking the limit k →∞ in the last inequality, and using the continuity of f, limk→∞ λk = 0
and Lemma 2.4, we have that

f(x) ≤ f(x) ∀x ∈ IRn
++ (4.27)

Consider {yk} sequence in IRn
++ and y ∈ IRn, with limk→∞ y

k = y.
It follows directly from (4.27) that,

f(x) ≤ f(yk) ∀k ∈ IN (4.28)
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taking the limit in (4.28) with k →∞ and using, again, the continuity of f , we have

f(x) ≤ f(y) ∀y ∈ IRn
+

Therefore, x is a solution of the problem (P). �

Considering now the sequence {xk} generated by algorithm A3. Let S∗ the solution
set of problem (P ). The following proposition shows the results of sequence {xk} under
(H2) and the following additional assumption.

(H3) S∗, the solution set of (P ), is nonempty.

Proposition 4.1 Let {xk} the sequence generated by algorithm A3. Suppose (H2) and
(H3) hold and, we have:

(i) The sequence {xk} is well-defined;

(ii) The sequence {xk} converges to a stationary point x of (P);

(iii) If λk → 0, then x is the solution of the problem (P);

(iv) If ∇f(x) 6= 0, then x is the solution of the problem (P).

Proof: For part (i) - (iii) see [25]. For part (iv) the proof as exactly as it is in the proof
of Theorem 4.2 (i). �

Finally, consider now the case U = ∅.

Proposition 4.2 Assume(H1), (H2) hold. If U = ∅ then limk→∞ f(xk) = infx≥0 f(x)
and {xk} is unbounded, where {xk} generated by A1 or A2.

Proof: Considering that the proof follows the same structure, so that {xk} can be gen-
erated by A1 or A2, prove only the case where {xk} is generated by A2. Therefore, by
Proposition 3.1 {f(xk)} is decreasing and a convergent sequence. Let α := limk→∞ f(xk),
and suppose by contradiction that α 6= infx≥0 f(x). Then there exists x∗ ∈ IRn

+ such that
f(x∗) < α. On the other hand, f(x∗) < limk→∞ f(xk), implies that x∗ ∈ U , which is a
contradiction with U = ∅, consequently,

lim
k→∞

f(xk) = inf
x≥0

f(x).

Suppose, again, by contradiction that {xk} is bounded. Then there exists the subsequence
{xkj} of {xk} such that,

lim
j→∞

f(xkj) = w ≥ 0

From the continuity of f ,

lim
j→∞

f(xkj) = f(w)
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on the other hand,
lim
j→∞

f(xkj) = inf
x≥0

f(x)

Soon w = infx≥0 f(x), implies that w ∈ U , which is a contradiction. Therefore, {xk} is
unlimited. �

5 Conclusions and future work

We analyze the proximal point algorithms defined by (1.4) associated to distance-like
functions (1.3), (1.5) and (1.6) for minimizing continuously differentiable quasiconvex
functions in the nonnegative orthant. We have shown that, the sequences generated by
algorithms A1, A2 and A3 converge to a stationary point x of problem (P). It shows that,
if ∇f(x) 6= 0 or if the parameters λk satisfy the condition λk → 0 then x is a solution
of (P). As a future research, we are interested in extending this work, considering the
objective function only lower semicontinuous quasiconvex.
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